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Abstract

Small sample, sequential, multiple assignment, randomized trials (snSMARTS) are
multistage trials with the overall goal of determining the best treatment after a fixed
amount of time. In sSnSMART trials, patients are first randomized to one of three
treatments and a binary (e.g. response/non-response) outcome is measured at the
end of the first stage. Responders to first stage treatment continue their treatment.
Non-responders to first stage treatment are re-randomized to one of the other treat-
ments. The same binary outcome is measured at the end of the first and second stages
and data from both stages are pooled together to find the best first stage treatment.
However, in many settings the primary endpoint may be continuous and dichotomiz-
ing this continuous variable may reduce statistical efficiency. In this manuscript, we
extend the snSMART design and methods to allow for continuous outcomes. Instead
of requiring a binary outcome at the first stage for re-randomization, the probabil-
ity of staying on the same treatment or switching treatment is a function of the first
stage outcome. Re-randomization based on a mapping function of a continuous out-
come allows for saSMART designs without requiring a binary outcome. We perform
simulation studies to compare the proposed design with continuous outcomes to stan-
dard snSMART designs with binary outcomes. The proposed design results in more
efficient treatment effect estimates and similar outcomes for trial patients.
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1 | INTRODUCTION:

Recent developments have been made in small sample, sequential, multiple assignment, randomized trials (snSMARTSs) 2 where
the primary goal is identifying the best first stage treatment by sharing information across the two stages of the trial. In snS-
MARTS, patients are randomly assigned to a first treatment and a binary outcome (e.g. response) is measured at a fixed time
point. The second stage treatment is assigned randomly or deterministically based on the design and response to first stage treat-
ment. The same binary outcome is again measured at the end of the second stage. Data from the first and second stages are shared
to determine the single best first stage treatment. This information-sharing design is beneficial in the setting of rare diseases. The
attractiveness of using an saASMART design over a traditional single-stage design is that each patient contributes more informa-
tion than in a single-stage design. snSMARTSs may be preferable to traditional crossover designs in that patients who respond
remain on treatment and those who do not respond switch to other treatments. While snSMARTSs designs are similar to standard
sequential, multiple assignment, randomized trials (SMARTs),? they differ in their primary goal. Unlike SMARTS, the focus
of an snSMART is not on estimating the effects of the embedded dynamic treatment regimens (DTRs) or tailored sequences of
treatments, but rather in efficiently using two stages of information from the same individuals to find the best first stage treatment.
One ongoing snSMART is the A Randomized Multicenter Study for Isolated Skin Vasculitis (ARAMIS) trial.# The goal
of this trial is to determine the best treatment for isolated skin vasculitis, a rare disease. Currently, there are three treatments
available for patients and all are prescribed routinely, and none are considered standard of care for this disease. As such, this trial
has three active treatments as the three arms and there is no control arm. The snSMART design is appropriate since the number
of patients is more of a limiting factor than the duration of the trial. Therefore, the longer duration of the trial due to the two
stages was seen as a lower priority than needing to obtain as much information as possible from a limited number of patients.
One benefit of a multistage trial in rare disease settings is that there is more information obtained from an individual patient.
The International Rare Diseases Research Consortium (IRDiRC) published a list of recommendations for rare disease clini-
cal trial design in 2018.5 In these recommendations, they include using longitudinal data and using patients more than once.
Multistage designs have been shown to have increased power relative to single stage designs.!* This is due to having more infor-
mation about the sources of variation.”” Single stage designs can only identify between treatment variation.” Crossover designs
and other multistage designs also can identify the between-patient variation” resulting in less variation in the error term and
more statistical efficiency. Even more powerful are snSMARTS where patients may stay on the same treatment so the variation

between treatments and the variation between patients receiving the same treatment” can both be identified.

B

OAbbreviations: snSMART, small sample, sequential, multiple assignment, randomized trials; DTR, dynamic treatment regimen; SMART, equential, multiple
assignment, randomized trials; PRO, patient reported outcome; TSP, treatment specific pathway
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Multistage designs such as a crossover design do not incorporate the patient outcome in the design. This is not ideal for rare
diseases.® Second stage treatment assignment in snSMARTSs and other multistage designs is often based on a binary outcome
such that the trial protocol must specify a binary rule for what qualifies as a “response.” Some procedures may dichotomize a

110

continuous variable such as change in prostate specific antigen (PSA) in a prostate cancer trial*“ or response may be determined

using defined criteria such as Response Evaluation Criteria In Solid Tumors (RECIST). In an snSMART, the binary outcome
must be the same at the end of the first and second stages and must be selected and agreed upon before the start of the trial.'l

However, in many studies the outcome of interest may not be a binary variable or there may not be enough information
known about a continuous variable to dichotomize it for use in second stage randomization. Another recommendation from
IRDIRC is to not dichotomize continuous endpoints.” Dichotomizing a continuous outcome often results in lowered statistical
efficiency. 2131145 In rare diseases, ensuring statistical efficiency is critical due to the inherently low number of patients in the
trial. 1 Further, results may vary based on the dichotomization strategy and cutoff selected.?

In rare diseases and rare cancers, selecting a robust, holistic outcome is ideal to capture the patient’s subjective experience
and individual variations in the disease.#'9 Patient reported outcomes (PROs) can be used to measure treatment benefit or
risk!Z and can record the full patient experience with a treatment. The primary endpoint of the ARAMIS trial is a dichotomized
composite endpoint that incorporates PROs and clinical outcomes.* The goal of the composite endpoint is to holistically capture
both the disease clinical progression and the patient experience on the treatment. Dichotomized outcomes may miss critical
information and may obfuscate results. A major drawback of implementing an snSMART in oncology and other chronic diseases
is that efficacy and toxicity are both important outcomes and creating a dichotomous binary outcome that captures both outcomes
effectively can be challenging. 'Y Dichotomizing a continuous outcome, such as a PRO or other composite endpoint, requires
expansive knowledge on the outcome and treatment effects in order to select an appropriate dichotomization strategy.

Moreover, when the outcome of interest is a continuous variable, a clear choice for a dichotomization method or binary
surrogate may not always be available prior to the start of a study. If a continuous variable is dichotomized, the cutoff selected
will play a critical role in the trial progression. If the cutoff selected is too high and the majority of participants are categorized
as non-responders, then most patients will switch treatments and the long term benefits of a treatment may not be observed.
Conversely, if a cutoff is selected that is too low and the majority of participants are categorized as responders, then most
patients will stay on the treatment and the effects of switching treatments will not be adequately observed and estimation errors
in treatment effects may occur.

In small samples, this problem of identifying an appropriate cutoff is magnified as fewer patients in each treatment pathway
will be observed with poorly selected cutoffs. Further, if a dichotomous response is used for the endpoint or outcome of a trial, as
in a responder analysis, there is potential for significant loss in statistical power.'81% In small samples and rare disease settings,

there may be few prior studies and less knowledge regarding the treatment effects on the outcome which further hinders the
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ability to select a suitable binary outcome. Additionally, the time and resources to run a pilot study to determine an appropriate
cutoff are often not available in diseases and disorders that affect a small number of individuals.

Here we examine an snSMART design with a continuous outcome measured at the end of stages one and two where re-
randomization depends on a mapping function of a continuous outcome as opposed to a binary outcome. This design leverages
the additional information gained by a multistage design and better captures the effect of the treatment by using a continuous
outcome. The ultimate aim is to estimate the expected first stage treatment effects for the multiple treatments being investigated
in the snSMART. As in the ARAMIS trial, we assume that all treatments are used in practice and the goal is to identify the best
first stage treatment. Examples of continuous outcomes with no clear dichotomization strategy are percent change, PROs, utility
measures (or some combination of efficacy and toxicity), probabilities of response, or other composite endpoints. The trial design
presented here allows for the implementation of an snSMART without requiring a binary first stage outcome to determine the
next stage treatment for a patient. This method maintains the patient benefit of an snSMART by having an increased probability of
switching treatments if an individual is not responding well on the current treatment and increased probability of staying on that
treatment if the individual is responding well. It also maintains the benefit of being able to identify variation between treatments
and between patients resulting in a more powerful design. In addition to allowing randomization to depend on a continuous
outcome in the snSMART design, the methods presented here allow for continuous first and second stage outcomes as opposed
to previous methods to analyze snSMART data that only applied to binary outcomes. Thus, due to continuous outcomes, we
cannot use previously proposed methods for snSMARTSs? and due to on second stage randomization depending on a continuous

outcome and sharing information across stages for the first stage treatment effect, we cannot use standard SMART methods.

2 | METHODS

2.1 | snSMART design with a continuous mapping function

Here we present the proposed snSMART design which allows for a continuous outcome measured at the end of the first and
second stages. This design does not require a binary outcome. In this design, all patients are randomized with equal probability
to a first stage treatment. We measure the continuous outcome at the end of stage one for patient i, Y;;, at a set time point, 7.
The probability of staying on the same treatment for patient i is a function of Y;;, and we call this function, f(Y;), the mapping
function. The mapping function ranges between O to 1 in order to yield valid probabilities. This is similar to the idea of treatment
effect mappings introduced by Rosenberger®, but only relies on the patient’s individual outcome and not the outcome of others.
Patients randomized to switch treatments are randomized to one of the remaining treatments with equal probability. At a set final
time point, 2¢, the outcome at the end of stage two, Y},, is measured. A schematic of the traditional snSMART design is given

in Figure[TJA and the proposed snSMART design is presented in Figure [IB.
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The randomization at the end of the first stage can be thought equivalently as a one-step randomization process or a two-step
randomization process. The one step randomization proceeds as presented in Figure where the next treatment is decided
by a multinomial distribution with probabilities [ f(Y),05(1 = f(¥)),0.5(1 = f (Yl))] for staying on the same treatment and
switching to either other treatment, respectively. It can also be thought of as a two-step randomization process with two binomial
distributions (Web Figure [I)). The first randomization determines if the patient stays or switches treatment and has probability
of staying equal to f(Y)). If the person switches treatments, then there is a second randomization with probability 0.5 for each

remaining treatment.

2.1.1 | The mapping function

The mapping function maps the first stage outcome, Y;;, to [0, 1] and gives the probability of staying on the same treatment. More
favorable values of the outcome map to values closer to 1 so that patients doing well on a treatment have a higher probability
of staying on the same treatment. Depending on what is known about the outcome, various mapping functions can be selected.
We provide examples of mapping functions and assume that higher values of Y indicate more favorable performance, but the
functions are generalizable in other cases. While we offer the following suggestions, any cumulative distribution function can
be used.

For areas of study with small samples such as rare diseases, there may be little information known about the distribution of
Y,. If only minimum and maximum values are known for Y;, a linear mapping function f(Y}) = (Y] = Y,i.)/ Yuax — Yomin) AN
be used. This linear f(Y;) function can be easily modified using powers for different trial characteristics. For example, if it is
desirable for high proportions of patients stay on the same treatment through both stages, or if it is expected that the outcome
may be right skewed, then using f(Y;)!/*, k > 1, may be appropriate. Likewise, if having more people switch is of interest or if
the outcome is left skewed, then f(Y;)*, k > 1, may be appropriate.

If there are extreme values within this possible range of Y; that rarely occur, the linear function over the possible range of
Y, may result in very few people on certain treatment regimens. For example, if Y| has a distribution as seen in Figure [2] (iii),
then a linear mapping function will result in the majority of people switching treatments. To adjust for this, one can select a
more practical minimum and maximum and then truncate the mapping function at O and 1. These values may represent safety
and ethical limits in addition to the practicality of the study. The minimum could be the lowest value of Y; where investigators
feel comfortable with a patient staying on the same treatment. This lower lower limit is a safety measure as it represents the
worst outcome a patient will have and stay on the same treatment. The highest value of Y, is selected where investigators feel
comfortable with a patient switching treatments, so that if a patient has a higher outcome they will stay on the current treatment.
This upper limit represents an ethical boundary since it could be viewed as unethical to switch treatments for a patient responding

this well to their current treatment. Patients can be consulted to aid in determining the upper and lower limits, which may make the
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FIGURE 1 A traditional small sample, sequential, multiple assignment randomized trial (snSMART) design with a binary
outcome (A) and the proposed snSMART design with a continuous outcome (B). A, B, and C are treatments, R indicates a
randomization point, and f(Y;) is the mapping function. Numbers indicate probability of assignment to the treatment following.
Each stage is the same length so that Y, is measured at time ¢ and Y, is measured at time 2¢.
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trial more patient centered and appealing to patients.? Developing these extreme limits requires less prior knowledge regarding
the treatment effects than is needed to effectively dichotomize a continuous outcome. Additionally, even when minimums and

maximums are selected, the mapping function is more flexible than a binary outcome.

FIGURE 2 Possible distributions of outcome Y and mapping functions that balance patients staying or switching treatments.
The plots labelled distribution of Y are the probability distribution functions. The y-axis for plots labelled possible mapping
functions is the probability of staying on the treatment for a given value of Y. Higher values of Y are assumed to indicate better
outcomes.

Distribution of Y Possible mapping functions
(i)
Y Y Y
(ii)
Y Y Y
(iii)
Y Y Y

2.2 | Bayesian Analysis Methods

2.2.1 | Model and likelihood

We assume the data from the snSMART design, has a multivariate normal likelihood: 21

Y, Hi(Tiy)
T3, Ti ~ MV N V(T T )
Yy Hy (T}, Tp)
where Y, is a continuous outcome and T, is the treatment for patient i in stage s, s = 1, 2. The mean outcome for stage one,

#,, is a function of only the first stage treatment. The mean for the second stage, p,, is a function of both the first and second

stage treatments. The covariance matrix is a function of the sequence of treatments the patient received.
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The mean treatment effects for stage one and two are modeled as follows for treatments A, B, and C:
c
w(T) =Y BT, =) (1)
j=A

C C
w(Ty, Ty =y Y BT, =) +ay Y I (T = k) + o [(T, =Tp)
j=A k=A

The f; parameters are the expected effect of treatment j, j = A, B, C, in the first stage. The primary goal of an snSMART is to
estimate these §; parameters in order to identify the single best treatment during the first stage. The first stage mean outcome
depends on the treatment effect for the treatment received in stage one. We model the second stage mean outcome as a weighted
average of the treatment effects from stage one and stage two with an additional effect if the patient stays on the same treatment.
Practically, this mean model for stage two can occur when there is some lingering effect of the first treatment (a;) and some
additional effect of the second treatment (a,) when a;, @, > 0. Alternatively, if the patient stays on the same treatment, the
effect of the treatment in the second stage is the first stage effect with some cumulative effect that occurs on the treatment longer
term (a3). The proposed mean models allow for shared information between the two stages through ;. The previously proposed

linkage parameters in prior work to analyze data from an snSMART with binary outcomes

are similar to the o parameters that
we use in our models.

For modeling the covariance, we use V(T;1, T;,) = V1 I(T;; = T,) + V,I(T;; # T,;) where V| and V, are both 2 X 2 variance-
covariance matrices. This allows those who stay on the same treatment to have a different correlation between stage one and
stage two outcomes than those who switch treatments.

Data from the snSMART design in Figure[IB can be analyzed using other mean models (e.g. to consider non-additive effects

or effects of treatment specific pathways), but since our focus is on small samples, we present a parsimonious model where

information sharing is feasible and the primary goal is to estimate and compare first stage treatments.

2.2.2 | Prior distributions

We propose minimally informative prior distributions for all model parameters. For the treatment effects, fis, we use a normal
prior with mean within the range of outcome Y. We suggest using the midpoint between Y, ;, and Y, for the mean.

We impose three constraints regarding the «,, parameters, m = 1,2, 3:
lL.ey=1-a;,a,a,>0,

2. ay> ay, and

3. a3 20.

Constraint 1 states that if a person does not stay on the same treatment then the second stage expected outcome is a weighted

average of first stage outcomes the stage one and stage two treatments. This constraint facilitates estimation by requiring fewer
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variables to be estimated. Constraint 2 states that the second stage treatment has a larger effect on the second stage outcome than
the first stage treatment. Constraint 3 states that staying on the same treatment has a non-negative effect on the expected second
stage outcome. Constraints 2 and 3 reduce the parameter space and are therefore practical in many rare disease settings.

The prior for ; is set to be uniform from 0 to 0.5. Since we set @, = 1 - @; per constraint 1, this prior fulfills constraint
2 and forces @, > a; since a; will always be less than 0.5. Since we constrain a; to be non-negative, we use a folded nor-
mal (FN) distribution. For the prior on the covariance matrices, we use inverse Wishart (IW) distributions since they are the

non-informative conjugate prior for multivariate normal covariances. Thus, suggested priors are as follows: f; ~ N(mean =

10
50, standard deviation (sd) = 50) for all j, @; ~ Unif(0,0.5), @3 ~ FN(mean = 0,sd =20), and V, and V, ~ IW, L2

01

2.2.3 | Single-stage design

To examine the efficiency of the trial design of an snSMART with a mapping function, we compare it to a traditional single-
stage design in which individuals are equally randomized to one of the three treatments. In the single-stage design, we analyze

the outcome using the following Bayesian methods. Using the same notation as in section [2.2] we assume a normal likelihood:
2
YT, ~ N (uy(T;)),0%)

The mean y,(T;,) is the same as in (1) and the fs have the same priors as in Section The prior for o is an inverse gamma,

I1G(1000, 1000).

3 | SIMULATIONS

For each scenario, simulations were done with n = 100, 30, 15 in each treatment arm for total sample sizes of 300, 90, or 45.
Results for n = 30 are presented here and results for n = 100 and 15 are presented in the supplemental material. Results are
based on 2500 simulated trials. For analysis, we used the Bayesian analysis methods described in Section[2.2) with 1000 burn in
and 5000 MCMC repetitions. We used R and rjags for simulations.

Our primary goal is accurate and efficient estimation of the effects of the treatments after the first stage in order to identify
the best overall treatment. As such, we examine bias and root mean squared error (rtMSE) of the estimates of §;. Additionally,

we examined patient outcomes and how many patients stayed on their current treatment or switched treatments.

3.1 | Generation of Trial Data

Trial data was generated by first assigning » patients equally to each of three treatments. Stage one outcome was generated

as Y; ~ N(u,(T,),c?*) where 6> was the marginal variance for the first stage outcome. Based on this outcome, a patient was
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randomly assigned to a stay on the same treatment with probability f(Y)) using Bernoulli(f(Y,)) where f(-) was the mapping
function. We set the parameters so that the range of Y was approximately 0-100. Correspondingly we set Y, ;, =0and Y,,,. =

100. We then investigated the three following mapping functions:

MF I = f,(Y}) =Y,/100
MF 172 = f,(Y,) = (Y,/100)'/2 (2)

ME 2 = f5(Y,) = (Y,/100)?

For Y, outside the range of 0-100, these probabilities were truncated to be 0 or 1 respectively. Guidance for selecting the
mapping function is provided in Section [2.1.1] If the patient did not stay on the same treatment, then the second treatment was
randomly assigned using Bernoulli(0.5).

Let the ith row and jth column in V(T7};, T; ;) be denoted V,;. Then the conditional means for the outcomes are:

YulT,, Tiy ~ N(uy(T;1), Vi) 3)

V'V
YplY,, T, T, ~ N </42(7—}1’7—}2) + TVIZ(YII —u(T;))), (1 - V%Q)V22>
11

The second outcome was generated from a conditional normal distribution in equation [3] For the single-stage design, only

the first stage outcomes were used.

3.2 | Scenarios

3.2.1 | Ideal situations

As in Section [2.2.1} we let the covariance matrix be V(T},,T;,) = VI I(T;; = T;) + V,1(T;, # T},) and we set V; and V to be:

We set 7, = 0.8, 7, = 0.3, and ¢ = 20 (based on results from a validated ANCA-associated vasculitis PRO 22 For the mean
model, we set &; = 0.2, a; = 0.8, a; = 5. We changed the f parameters to examine different effects of the mapping functions
in scenarios such as presented in Figure [2] The f parameters are presented in Table [T| where scenarios 1, 2, and 3 are ideal
scenarios where the model assumptions are met. These § values reflect possible values for a continuous outcome that has been

standardized to range from 0-100 (e.g. this is typical in PRO development).23/22
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TABLE 1 Simulation scenarios. Parameters are estimated as in equation |1| with any violations as described in Section m
Treatment specific pathway (TSP) violates the mean model assumptions, Variance indicates that there are more variance param-
eters than are estimated, and Correlation indicates that there are more correlation parameters than estimated. §; indicates the
treatment effect of treatment j after a fixed amount of time and the study goal is to accurately and efficiently estimate these
parameters.

B Violation in Assumptions

Scenario | A B C | TSP Variance Correlation

1 40 50 60

2 20 30 40

3 60 70 80

4 40 50 60 X

5 40 50 60 X

6 40 50 60 X

7 40 50 60 X X

8 40 50 60 X X

9 40 50 60 X X

10 40 50 60 X X X

3.2.2 | Comparison with dichotomized outcome

This trial design that does not require a binary outcome (Figure [IB) will be primarily useful in cases when a binary outcome
is not available. However, in simulations we are able to compare these the proposed design with a mapping function to an
snSMART with a binary outcome (Figure[T]A), even though in practice, a design with a well selected binary outcome may not be
always feasible. We compare the three mapping functions in equation 2] with three binary outcomes based on dichotomizing the
continuous outcome at the end of the first stage. If the patient’s outcome at the end of the first stage is above the cutoff, they stay
on treatment, and if it is below the cutoff, they are equally randomized to one of the two remaining treatments. We investigated
three cutoffs of 30, 50, and 70 for the binary outcome. We use scenarios 1, 2, and 3 (scenarios with no model assumption
violations) in table [T with these cutoffs to examine trial properties and compare with the mapping functions in equation 2] We

compare the average patient outcomes and the number of patients on each sequence of treatments between the trial designs.

3.2.3 | Model assumption violations

We examined three potential assumption violations individually and in combination as defined in Table[I] scenarios 4-10. In each
scenario, the parts of the data generative model without assumption violations are the same as in scenario 1. First, we assumed
the second stage mean was fully dependent on the combination and ordering of treatments the patients received in stages one and

two (T;;,T},) (i.e. not a weighted mean). We call this the treatment specific pathway (TSP) (column “TSP" in Table[I]; scenarios
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12 | H. Hartman ET AL

4,7, 8, 10) and is essentially where there is an interaction between treatments. We set u, = Y, ; 2 Ty I(Ty = j, T, = k) where

55 43 47
T =140 50 60
70 65 60

and T}, indicates the jth row and kth column of matrix T .

The second assumption violation was that we set the standard deviation of the outcome, o, to depend on treatment (column
“Variance" in Table E]; scenarios 5, 7, 9, 10). Here we set the standard deviation to be 10, 20, and 30 for treatments A, B, and C
respectively.

The third assumption violation allowed the correlation between the first and second stage outcome to depend on the TSP
(column “Correlation" in TableE]; scenarios 6, 8-10). Practically, this would arise if treatment outcomes have different correlation
due to similarities in treatment mechanism even if the actual treatments differ. We set the correlations 7 = 3}, ¥, R I(T;; =

J>T» = k) where
0.85 0.6 0.2

R=]06 0.80.5

0.2 0.2 09

and R, indicates the jth row and kth column of matrix R .

To assess sensitivity to normally distributed outcomes, we also examined scenarios where the first stage outcome was a scaled
Beta distribution rather than a normal distribution. The second stage was still conditionally normal but no longer marginally
normal. We set the parameters of the Beta distribution such that the scaled means were the same as those in Scenarios 1, 2, and

3. We set the variance to be 0.1 prior to scaling.

4 | RESULTS

R software code used for the simulations is available upon request.

4.1 | Estimation of the treatment effect

4.1.1 | Two-stage versus single-stage design

We first compare this two-stage snSMART design to a single-stage design with the same total number of patients but only
one stage of treatment (and thus one outcome per patient). As expected, in scenarios 1, 2, and 3 we found large reductions in
rMSE when comparing the two-stage design with the single-stage design regardless of the mapping function used (Table [2).

The percent of trials that correctly identified the best treatment (determined by having the highest estimated first stage treatment

This article is protected by copyright. All rights reserved.
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effect) was consistently higher in the two-stage designs than the single-stage designs (Table[2), although all simulations resulted

in >95% of trials identifying the true best treatment.

TABLE 2 The root mean squared error (rMSE) for each ., j = A, B, C when estimated in a single-stage design and the proposed
two-stage snSMART design. §; indicates the treatment effect. Ratio is the rMSE divided by the rMSE of the single-stage design
for that scenario. MF = mapping function, DO = dichotomized outcome (Section @

rMSE Ratio
Scenario Design B4 Py Pe B4 Py Pc | Percent Correct

1 Single-Stage | 3.65 3.69 3.51 | 1.00 1.00 1.00 97.40
MF 1 297 301 287|082 0.82 0.80 99.52

MF 1/2 3.02 293 284|083 079 0.81 99.40

MF 2 3.00 3.09 3.15|0.82 0.84 0.90 99.24

DO 50 557 558 515|153 151 147 99.16

DO 30 532 392 319|146 106 091 99.35

DO 70 2.87 352 480|079 095 137 99.15

2 Single-Stage | 3.51 3.66 3.66 | 1.00 1.00 1.00 96.64
MF 1 3.08 296 291 | 0.88 0.81 0.79 99.68

MF 1/2 322 299 291|092 082 0.79 99.52

MF 2 294 287 297|084 078 0.81 99.44

DO 50 295 351 479|084 096 131 99.68

DO 30 575 550 5.03 | 164 151 137 99.32

DO 70 298 3.11 331|085 085 091 99.64

3 Single-Stage | 3.64 3.66 3.67 | 1.00 1.00 1.00 97.36
MF 1 3.04 3.00 292|083 082 0.79 99.28

MF 1/2 302 290 287|083 079 0.78 99.60

MF 2 319 322 319 | 0.88 0.88 0.87 99.08

DO 50 520 381 3.15| 143 1.04 0.86 98.67

DO 30 299 296 289|082 081 0.79 99.40

DO 70 565 574 523|155 157 143 96.87

4.1.2 | Mapping function versus dichotomized outcome

In ideal scenarios (1-3), where the data generation model matched the analysis model, our method estimated the first stage
treatment effects, f; with minimal bias (Figure E]A). Bias and efficiency did not change substantially by changing the mapping
function in scenarios 1, 2, and 3. Since the main goal of this trial design is to identify the best treatment from estimating the f,
parameters, low bias and high efficiency are both desirable trial traits.

Efficiency was similar between the mapping functions for each scenario (data not shown). Correspondingly, the coverage
probability of the credible interval was close to the desired 95% and the credible interval width was consistent (Web Table
[I). The coverage probability was lower for the small sample size of 15 patients per treatment arm (Web Table[2)). Overall, the
selection of the mapping function does not appear to have a substantial impact on the operating characteristics of the trial design

when assumptions are met.
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The results from using a dichotomized outcome vary considerably (Figure[3]A). When the median treatment effect was selected
as the cutoff, the bias was lowest, but the efficiency was worst as seen by the high variance (Figure 3]A). Moderate bias was
observed for other cutoffs due to poor estimates of the correlation parameters and ,,, m = 1 and 3. The quality of these estimates
is dependent on the number of subjects that stay or switch and having a balance of people staying on the same treatment and
switching treatments allows for better estimation of these parameters. The increased variance for the median cutoff is also related
to the correlation and a,,, m = 1 and 3 parameter estimates. When these parameters and the correlation are fixed and do not need
to be estimated, the bias is negligible and the variance in the bias estimates are consistent (Web Figure [2).

In general, the statistical performance was worse when using a binary outcome based on dichotomizing the outcome at the end
of stage one than when using a continuous outcome with a mapping function. For some scenarios, binary outcomes performed
similar to the mapping functions (Scenario 2, dichotomous outcome (DO) 70; Scenario 3, DO 30). However, the selection of the
dichotomized outcome cutoff influences the model parameter estimation which is not ideal since the optimal cutoff value is not
generally known in advance. For all scenarios, there were binary outcomes that performed worse than all mapping functions in
terms of bias and efficiency. This indicates that poorly selected binary outcomes perform worse than any recommended mapping
function. We additionally looked at mapping functions with a smaller range (25 to 75 instead of 0 to 100) and found that these
functions also had improved performance over the dichotomized outcomes (Web Table TT).

The percent of trials that correctly identified the best treatment were similar between mapping functions and dichotomous
outcomes where the mapping function performed slightly better (Table[2] Web Table [3)). In a null scenario where all treatments
have treatment effect of 50, each treatment was identified as the best approximately 33% of the time which is as expected (Web
Table[9).

One difference between snSMARTS with a mapping function and snSMARTSs with a binary outcome was the proportion of
subjects that stayed on the same treatment (Web Table[6). The proportion that stayed on the same treatment had less variation
under a mapping function than that from a binary outcome. In scenarios where the dichotomization strategy was a poor fit for
the patient outcomes (i.e. the cutoff is either too high or too low), extreme results occurred where 3.2% stayed on treatment
(scenario 2, DO 70) or where 96.8% switched treatments (scenario 3, DO 30). These same scenarios had somewhat less extreme
results under a mapping function where 13.5% and 85% stayed on treatment respectively (scenario 2, mapping function (MF)
2; scenario 3, MF 1/2). Since some model parameters may be impossible to estimate if a trial concludes with no patients on a
certain treatment path (i.e. if all patients stay on the same treatment or all switch treatments) having a moderate proportion of
individuals that stay on the same treatment is preferable to avoid such extreme circumstances. Additionally, patients all stay or
switch is beneficial to the patients if all are doing very well or very poorly respectively. However, having all patients stay may
prevent some patients from trying other treatments that perform better and having all switch may mean that the patients do not

experience the long term benefits of staying on a treatment.
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FIGURE 3 A. Box plots of bias averaged across the three §,, j = A, B, C parameters for ideal scenarios where f ; indicates the
treatment effect. A single point represent the average bias for one simulated trial. Light gray boxes are mapping functions (MF,
Section@ and dark gray boxes are dichotomized outcomes (DO, Section @p B. Box plots of bias for each of the three f;
parameters in scenarios where assumptions are violated using MF 1. A single point represent the bias for one f; in one simulated
trial. Top labels indicate which scenario is being presented. Shades indicate the different f; parameters.
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4.1.3 | Model Assumption Violations

Here we examine the effects on the results when model assumptions are violated. Unlike the ideal scenarios, the bias heavily
depended on the § parameter being estimated (Web Table 4] Figure[3B). We examine when the second stage treatment effect is
based on the treatment specific pathway (TSP) of the first and second stage treatments rather than a weighted average (scenarios
4,17, 8, 10), variance is based on treatment and stage (scenarios 5, 7, 9, 10), and correlation is based on the two treatments
received (scenarios 6, 8, 9, 10).

In general, the mean model violation caused the largest increase in bias (Figure [3B). Correlation and variance assumption
violations did not result in increased bias suggesting that the estimates are some what robust to correlation and variance mis-
specification. Similarly, the coverage probability for scenarios with the mean model assumption violation was more frequently
less than the expected 0.95 (Web Table [8)). The variance violation changed the variance of the estimates with estimates of f,
having smaller variance and estimates of f; having larger variances (Figure 3B). Correlation assumption violations did not have
a large impact on any statistical performance metric when not compounded with other assumption violations. Results were sim-
ilar with other mapping functions (Web Table[7, Web Table[5). We also examined scenarios where the first stage outcome is a
beta distribution with the same treatment effects as scenarios 1, 2, and 3. These results show that the mapping function has better

statistical efficiency than the dichotomized outcome even when the model distribution is incorrectly specified. (Web Table[I0).

4.2 | Patient Outcomes

From the patient perspective when considering whether to enroll on a clinical trial, expected outcomes for the patients on that
trial are a key consideration. Since the first stage of the trial with the mapping function and with the dichotomized outcome are
the same, we focus on the second stage outcomes. Overall the outcomes between mapping functions and dichotomized outcomes
were very similar within scenarios (Figure ). Additionally, the patient outcomes did not vary by which mapping function was
used indicating that the average patient experience in such a trial is not heavily influenced by the selection of the mapping

function.

S | DISCUSSION

We demonstrated that mapping functions are a flexible way to design multistage trials and this design can be used to efficiently
estimate treatment effects while achieving similar outcomes for patient outcomes. We see that the most intuitive choice for the
binary outcome, dichotomizing a continuous outcome by selecting a cutoff at the median treatment effect, has low bias but also
has high variance. Other cutoffs had high bias, but lower variance. The mapping function does not have this extreme bias-variance

trade off and can provide efficient and unbiased estimates in small samples. Although sample size calculations are outside of the

This article is protected by copyright. All rights reserved.



H. Hartman ET AL | 17

FIGURE 4 Median second stage outcome across all simulated trials. Lines indicate the 25th and 75th percentile of second stage
outcomes across all simulated trials. MF = mapping function (Section @, DO = dichotomized outcome (Section@

Scenario 1 | | Scenario 2 | | Scenario 3 |

100

B3 MF1

B3 wmF2

=R

B8 pozo

l l l B Do 5o
B oo

Second Stage Outcome

MF 1 MF2 MF1/2 DO30 DO50 DO70 MF 1 MF2 MF1/2 DO30 DO50 DO70 MF 1 MF2 MF1/2 DO30 DO50 DO70

scope of this manuscript, we expect that the mapping function snSMART design will typically require smaller sample size than
a binary outcome snSMART due to the smaller rMSE. Our group has developed sample size calculations for an snSMART with
binary endpoint?? and a corresponding aspplet (https://umich-biostatistics.shinyapps.i0/snsmart_sample_size_app). If a more
refined sample size estimate is needed, simulation is always possible and the R code that generated the simulation results in this
manuscript is available from the corresponding author.

Mapping functions could take many forms. While we primarily discussed linear functions and modifications to those func-
tions, there may be cases where more is known about the distribution of ¥; which could be used to generate a mapping function.
For instance, Robson et. al. describe the distribution of a PRO for ANCA-associated vasculitis for both when the patient has
active disease or is in remission.22 In this case, the empirical distribution of this PRO for patients in remission could be used as
a mapping function. A similar approach could be used for when the PRO or other continuous outcome is well studied and has
a known empirical distribution. 3 Using the empirical cumulative distribution results in the median value of ¥, having equal
probability of staying or switching treatments. In all distributions, even when heavily skewed, this mapping function has the trait
such that if a patient has an outcome above the median, they have a higher probability of staying on treatment and if the outcome

is below the median they have a higher probability of switching treatment, but is more efficient than using a median cutoff.
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While we focused on a continuous outcome in a small sample setting, this trial design is very flexible in terms of the number
of treatments, Bayesian analysis, and distribution of the outcome. We presented the design with three treatments, but it is easily
extendable to more treatments. The probability of staying on the same treatment would still be determined by the mapping
function. If a patients switches treatments, the second treatment would be randomly selected from the remaining treatments with
each remaining treatment having equal probability. The Bayesian analysis framework is also very adaptable. Baseline measures
and covariates measured up until the re-randomization can be added to the mean models for stages one and two. Other covariates
measured during the second stage of the trial up until the final outcome measurement can be added to mean model in equation
[I} However, with small samples, parsimony in the model is important. Likewise, if treatment specific pathway effects are the
primary interest, the mean model could be changed to be unique for each treatment regimen rather than a parsimonious model
using weighted means. Since an incorrectly specified mean model resulted in the largest increase in bias, we suggest sensitivity
analysis of the mean model specification. Similarly, if the distributions of the outcome are not expected to be normal, other
multivariate distributions can be used for the likelihood to be more suited to the outcome of interest.

It is not surprising that we did not see improved patient outcomes when using a mapping function relative to a binary outcome.
This design is primarily focused on improving statistical efficiency while maintaining similar outcomes for patients enrolled in
the trial. One possibility to improve patient outcomes would be to incorporate an adaptive re-randomization scheme where prior
patient outcomes are included in the mapping function in addition to the patient’s own outcome. This could be similar to the
non-dichotomous randomized play-the-winner proposed by Rosenberger in 1993.1°

This trial design still has many benefits to patients. Patient input could help guide the selection of the outcome or determine
the minimum and maximum values where switching treatment and remaining on treatment are possible. Rare disease patient
representatives stated that increasing patient involvement would improve clinical trials.?” Additionally, patients have the poten-
tial to receive two treatments or stay on treatment if it is working. This lessens time on treatments that are less effective for
the patient which may be viewed as a benefit to patients.” Informing patients about the clinical trial procedure and ensuring
that patients understand that they may not receive the treatment they prefer due to randomization is also critical.2Y While the
mapping function increases the probability of switching if a treatment is not working and staying if it is, there is no guarantee
since there is randomization for all treatment assignments. To further patient involvement, the upper and lower values of re-
randomization could potentially vary for each patient depending on their goals and needs. Future work will investigate adaptive
randomization components to potentially improve patient outcomes and to consider individualized mapping functions to fully
incorporate patient-specific willingness to stay on or switch treatment.

Overall, this snSMART design with a mapping function has improved statistical efficiency and lower bias over using a

dichotomized outcome. The proposed design with a mapping function allows trials to proceed without the need for a pilot study
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or extensive knowledge of the treatment effects and outcome and may be particularly useful in estimating treatment effects in

small samples.
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