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ABSTRACT  10 

In the last decades, topology optimization has been widely investigated as a preliminary design tool to minimize the 11 
use of material in a structure. Despite this, applications to realistic three-dimensional engineering problems are still 12 
limited. This study provides the instruments for the definition of a versatile and integrated framework in order to 13 
apply topology optimization to large-scale 3D domains for the design of efficient and high-performing structures. The 14 
paper proposes a novel topology optimization strategy to identify the optimal layout of lateral resisting systems for 15 
tall buildings through the adoption of Mindlin-Reissner shell elements for the discretization of the continuum design 16 
domain. The framework is based on the practical interoperability between Matlab, Ansys and CAD environments to 17 
incorporate optimization routines in the conceptual design phase of structural systems. Finally, the paper examines a 18 
three-dimensional tall building case-study in order to demonstrate the applicability of the proposed procedure to 19 
realistic Civil Engineering design problems and its robustness in finding optimal layouts free from mesh-dependency 20 
instabilities.  21 

KEYWORDS: Tall buildings, topology optimization, shell elements, mesh refinement, 3D optimization, integrated framework 22 

 23 

1 Introduction 24 

Topology optimization is widely recognized as a powerful preliminary design tool to determine the 25 

optimal material layout in a structure, i.e. the most effective configuration that reduces the consumption 26 

of structural material. The ability of finding innovative, efficient designs together with the improvement 27 

of computational tools has allowed, in the last decades, the possibility to carry out topology optimization 28 

with affordable computational cost. Most methods for topology optimization of continuum structures are 29 

based on the homogenization method and the SIMP (Solid Isotropic Material with Penalization) 30 

approach. In the homogenization method [1], a periodically micro-perforated structure is suggested and 31 

its micro-scale mechanical properties are expressed via the homogenization theory. The drawbacks 32 

associated with the evaluation of the optimal microstructure and the manufacturability of the resulting 33 

layout, led to the introduction of the SIMP method [2]. This methodology assumes a constant density 34 

distribution over the design domain where the stiffness matrix and the element density are interpolated 35 

through a heuristic power-law. 36 

Since the release of the commercial software Optishape by Quint software in 1989, many other 37 

platforms have been developed to include topology optimization in the structural design process. Among 38 

them there are Optistruct (by Altair Computing), Construct (by MSC software), Catopo (by CES Eckard 39 

GmbH) and TOSCA (by FE-Design). Many optimization approaches and codes have also been interfaced 40 

with commercial FE solvers. For example, Altair OptiStruct uses Altair HyperWorks FE package while 41 

Ansys and TOSCA use the Ansys FE package. As many commercial design software companies have 42 
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equipped their products with structural optimization techniques in recent years, computer aided topology 1 

optimization has attracted increasing interest in the engineering community. Optimization tools developed 2 

by academics include the topology optimization program by Liu et al. [3] for Femlab, ToPy for Python 3 

[4], the 99-line program for Mathematica [5], the 99-line code [6] and the 88-line code [7] for Matlab. 4 

Based on the level-set method, Wang et al. [8] introduced TOPLSM for Matlab and Challis [9] developed 5 

the 129-line program. In 2013, Aage et al. [10] introduced TopOpt, the first topology optimization App. 6 

More recently, researchers have dedicated great effort towards the reduction of numerical anomalies 7 

related to the implementation of standard four-node quadrilateral elements (Q4) in topology optimization 8 

problems through proposing the use of alternative higher-order finite elements [11]–[14]. The use of 9 

unstructured finite element meshes was also extended to 3D domains with the introduction of PolyTop3D 10 

[15] and Toptimiz3D [16]. The main difficulties in dealing with large-scale applications are related to the 11 

following two aspects of the problem: handling of large data sets, and careful selection of proper finite 12 

elements (FE) for the discretization of the domain. Both aspects affect memory storage and processing 13 

requirements. Due to the abovementioned challenges, only a limited number of works have focused on 14 

topology optimization of 3D domains, with particular concentration on the use of eight-node hexahedral 15 

(brick) elements [17]–[20]. Although relevant results have been achieved, the use of solid elements leads 16 

to several drawbacks in the context of large-scale designs. First of all, a sufficient number of elements is 17 

needed to correctly model the thickness of the members in order to accurately capture the effects of 18 

bending stiffness. Furthermore, refining a solid mesh to improve the accuracy of the solution generally 19 

implies a huge number of elements, resulting in an increased number of slower iterations for achieving 20 

convergence. To overcome these challenges, this work is focused on the possibility of implementing shell 21 

elements for the discretization of 3D domains during the definition of optimal lateral loading resisting 22 

systems of multi-story steel buildings subject to winds loads through topology optimization. In the field 23 

of structural engineering, optimization techniques have been recently adopted to improve the overall 24 

response of tall buildings subject to critical excitations, e.g. the design of tuned mass dampers [21]–[26] 25 

or the best location for outrigger systems [27]–[30]. A considerable effort has also been made by 26 

researchers to perform the topology optimization of tall building systems subject to stochastic excitation, 27 

i.e. wind loads, seismic loads or integrated hazards [31]–[34].  28 

It is generally assumed that a tall building, under wind loads, can be schematized as a cantilever beam 29 

with two flange faces resisting bending action and two web faces resisting shear forces. However, given 30 

the aleatory nature of the wind direction, each face will in general act simultaneously as a web and a 31 

flange, withstanding both in-plane and out-of-plane loads [35]. Because in shell elements, the membrane 32 

behavior is preserved and enriched with that of the plates, which carry transverse loads by bending and 33 

shear through out-of-plane stiffness, they appear especially suitable for the discretization of the design 34 

domain of three-dimensional tall buildings. Furthermore, the adoption of shells requires a reduced number 35 

of elements compared to solids, as they do not involve the modeling of the thickness, whose mechanical 36 

behavior is already included in the mathematical model. This significantly reduces the number of 37 

equations to be solved during the FE analysis and makes the use of shell elements more convenient than 38 

solid elements when iterative algorithms are inevitably implemented during the solution process. Finally, 39 

since shells can model curved and free-form designs and are compliant for software implementation, they 40 

are especially suitable for the discretization of complex 3D geometries and represent a valid option to 41 

perform topology optimization for modern designs. In the state-of-the-art, the problem of finding optimal 42 

topologies using shell elements is usually applied to problems focused on the definition of the optimal 43 

location of reinforcement in plate structures. Since plates suffer from poor overall rigidity, topology 44 

optimization represents an effective means to define the optimal layout of stiffeners [36]–[39]. 45 

Analogously to Q4 elements, shell elements may suffer from numerical instabilities and their 46 

implementation in density-based optimization procedures may produce mesh distortion, which may cause 47 

overestimation of the stiffness matrix and a checkerboarding pattern may occur. Bletzinger [40] and 48 
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Hassani et al. [41] implemented noise cleaning techniques to lessen the problem of mesh dependency in 1 

the resulting layouts. Boroomand and Barekatein [42] employed a sequential refinement strategy for the 2 

density-mesh together with a continuous field of density to alleviate instability effects. Pham and Phan 3 

have recently introduced polygonal plate elements (PRMn) to prevent the formation of checkerboarding 4 

patterns in the optimization of shell and plate structures [43].  5 

The optimization problem dealt with here aims to find a maximum stiffness structural design for 3D 6 

tall buildings where the compliance of the structure is taken as the objective function and a constraint on 7 

the maximum available material is considered. The continuous domain, subject to out-of-plane and in-8 

plane loadings, is modeled using Mindlin-Reissner (MR) shell elements. The SIMP model is adopted in 9 

formulating the topology optimization problem and a density filter is employed on the interpolation of the 10 

element elastic properties [44]. Mesh independent solutions are monitored by operating a gradual 11 

refinement of the mesh structure of the design domain. The paper presents the numerical results achieved 12 

by performing topology optimization on 3D case studies and highlights the advantages in the use of shell 13 

elements to discretize this class of domains. The work provides the instruments to overcome the 14 

limitations associated with large-scale domains and demonstrates the potential of topology optimization 15 

for 3D structures. This intent is made feasible by defining an integrated framework, which combines the 16 

efficiency of a reliable optimization algorithm, written in Matlab, with the advanced capabilities of Ansys 17 

(ANSYS® Academic Research Mechanical) for performing the finite element analysis. 18 

2 Shell elements for continuum domains 19 

The computational procedure for solving topology optimization problems must first deal with a spatial 20 

discretization of the continuum design domain. Most of the current topology optimization techniques 21 

have been applied to small-scale designs and implemented using four-node quadrilateral (Q4) elements, 22 

for two-dimensional domains, or eight-node brick (B8) elements, for three-dimensional domains. Many 23 

works have also emphasized investigating higher-order finite elements for 2D and 3D domains, which are 24 

naturally less susceptible to numerical instabilities. Although the topic of domain discretization using 25 

uniform or irregular meshes has been exhaustively investigated in the literature, shortcomings on the 26 

adequate finite element to be adopted are still present. The most commonly used elements for two-27 

dimensional models are based on the traditional membrane formulation, with only two translational 28 

degrees of freedom (DOFs) per node (u in x-direction and v in y-direction). The membranes exhibit no 29 

flexural rigidity and, therefore, cannot withstand any out-of-plane load. In fact, they only transfer in-plane 30 

forces as a result of tensile and compressive stresses. Due to this, although membrane plane-stress 31 

elements have led to satisfactory results for two-dimensional problems, their implementation to three-32 

dimensional cases may not provide equally accurate results in reproducing the real behavior of 3D 33 

structures. Three-dimensional domains, on the other hand, are generally analyzed using solid elements 34 

with three translational degrees of freedom per node (u in x-direction, v in y-direction and w in z-35 

direction). The main disadvantage in adopting bricks is that a large number of elements is required to 36 

correctly model the thickness of the domain and capture the effects of bending and stiffness. Furthermore, 37 

refining a solid mesh to improve the accuracy of the final solution involves a huge number of elements, 38 

which adds higher computational cost and further memory requirements. The aforementioned drawbacks 39 

associated with the tessellation of 3D domains using membrane or solid elements have naturally led this 40 

study towards the selection of alternative elements. In the specific case, the main assumption of the study 41 

is that the outer skin of the tall building is treated as a natural design domain, as depicted in Figure 1. The 42 

façades can be easily conceived as giant panels of small thickness, connected to each other along the 43 

panel joints and to the floor slabs at each floor level. Since one dimension of the design domain is much 44 

smaller than the other two, shell elements are particularly suitable for its discretization. Following this 45 

approach, the building skin is converted into equivalent shells, so that each panel can be assumed as a 46 

continuous design domain in which to apply topology optimization. 47 
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 1 
 2 

Figure 1. Schematic of the constitutive elements of a tall building. 3 
 4 

Unlike membrane elements (Figure 2 (a)), shells can endure loads acting on the mid-surface of the 5 

element as well as transverse loads (Figure 2 (b)). Hence, in shell elements, the in-plane stiffness of the 6 

membrane is preserved and enriched with the out-of-plane stiffness of plates, which resist the transverse 7 

loads through bending and shear actions. In addition, the adoption of shells requires fewer elements to 8 

tessellate the thickness of the domain compared to solid bricks (Figure 2 (c)). This is mainly due to the 9 

fact that the mechanical behavior of the thickness is naturally included in the mathematical model of the 10 

shells. Moreover, only the stresses at the integration points are available for solid elements, while shell 11 

elements have the ability to account for the bending stress gradient across the thickness. This significantly 12 

reduces the number of equations to be solved during the FE-analysis and makes the use of shells more 13 

convenient than solids when iterative algorithms are executed. Furthermore, since shells can model 14 

curved and free-form designs and, they are especially suitable for the discretization of complex 3D tall 15 

buildings and represent a valid option for topology optimization routines. 16 
 17 

 18 
        (a)                   (b)          (c) 19 

 20 
Figure 2. Domain discretization of a tall building using membrane elements (a), shell elements (b) and solid elements (c). 21 
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2.1 Element description and formulation 1 

As already discussed, in the state of the art, finding optimal topologies using shell elements is 2 

generally posed as a problem of defining the optimal position of reinforcements in plate structures. 3 

Nevertheless, the potential advantages associated with the adoption of shell elements in topology 4 

optimization routines are far from being exhaustively investigated. To this end, a complete description of 5 

the finite element adopted, carefully chosen from those available in the Ansys database, is presented 6 

hereafter. 7 

A 4-node shell element based on the Mindlin-Reissner plate theory (SHELL181) is chosen from the 8 

software library to discretize the design domain [45]. The element, illustrated in Figure 2 (b), is defined 9 

by four nodes and has six DOFs per node, three translations (u, v, w) and three rotations (Θx, Θy, Θz). In 10 

addition to the five traditional DOFs, in fact, the element adopts a supplemental rotation about the normal 11 

to the plane of the element, the so-called “drilling” degree of freedom. Although this rotation is not 12 

explicitly required for the kinematics of the shell, it allows for a correct modeling of the connection with 13 

other shells or beam elements and helps to improve the accuracy of the numerical results. The shell is 14 

formulated as the combination of a membrane element, with in-plane behavior, and a plate element, with 15 

out-of-plane behavior. For the plate component, the first-order shear deformation theory of Mindlin-16 

Reissner (MR) is employed. Assuming a plate with homogeneous and isotropic material and small 17 

displacements and strains with respect to its thickness, the pure bending component and the transverse 18 

shear contribution can be treated separately. This greatly simplifies the element formulation and helps 19 

preventing locking phenomena. According to this assumption, the element constitutive matrix for the MR 20 

plate can be formally written as the sum of the bending (Cb) and the shear (Cs) components. The flexural 21 

rigidity of the pure bending counterpart is given by: 22 

3
0

b
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1 0
E

1 0
12(1 ) 1

.

0 0
2

h



 

 
 
 
   
 
 

C

 

(1) 

where ν and E0 are the Poisson’s ratio and the elastic modulus of the structural material, respectively; h 23 

is the shell thickness, which is assumed to be constant over the element. On the other hand, the 24 

contribution of the shear rigidity is given by: 25 

0

s

E 1 0

0 12(1 )
.

h



 
  

  
C

 

(2) 

where μ is the shear correction factor, set to 5/6 [46]. 26 

After evaluating the section curvatures and the shear strains, the relative strain-displacement matrices 27 

(Bb and Bs) and the element stiffness matrices of the plate component are directly constructed. The global 28 

stiffness matrix Kp of the MR plate element is formulated by integrating the separated contributions of the 29 

pure bending (Kb) and the transverse shear (Ks) over the area 𝐴 of the element, as follows: 30 

s s s
T T

p b s b b b= + d d. .
A A

A A  K K K B C B B C B
 

(3) 

Finally, through assembly of the plate contribution Kp with the membrane counterpart Km, the stiffness 31 

matrix of the shell element (K) can be written as follows: 32 

m

p

0

symm

 
  
 

K
K

K
 

(4) 
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where T
m m m m= d.

A
AK B C B  is the in-plane stiffness component of the shell, Bm is the associated strain-1 

displacement matrix and Cm is the membrane constitutive matrix, defined as follows: 2 
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(5) 

It should be emphasized here that, in order to avoid undesirable shear-locking phenomena, the 3 

formulation of the 4-node MR plate element is modified by including the assumed strain interpolation of 4 

Bathe-Dvorkin [47]. It is a Mixed Interpolated Tensorial Component (MITC) method that constructs the 5 

stiffness matrix by including the bending and shear effects through different interpolations, producing 6 

many benefits. First, even when the element is highly distorted, a 2x2 standard Gauss integration is 7 

adequate and, since a full numerical integration is used, the element does not contain any spurious zero 8 

energy mode. Second, the element passes the patch test and does not lock even in the analysis of thin 9 

shells, i.e. its behavior is independent of the specific plate theory assumed. Hence, it can be concluded 10 

that the SHELL181 element is highly accurate, even with coarse meshes, and has a good predictive 11 

capability for displacements, bending moments and membrane forces. This is particularly favorable in the 12 

present case, since if shear-locking occurs, the stiffness of the structure might be significantly over-13 

predicted with consequent underestimation of the displacements. A similar condition should always be 14 

avoided in topology optimization problems because it may negatively affect the results and undermine the 15 

objectivity of the final layouts, leading to undesirable effects such as checkerboarding. 16 

2.2 Interpolated elastic properties 17 

In order to find efficient solutions for the topology optimization problem, the Solid Isotropic Material 18 

with Penalization (SIMP) approach is adopted in this work with the modified scheme proposed by 19 

Sigmund in [48]. The mechanical properties of each shell element are manipulated using a heuristic 20 

power-law that relates the element-wise design variable (𝑥𝑒) with the element elastic properties, through: 21 

min 0 min ..., 1..( ) ( ) 0p

e e e eE x E x E E x    
  (6) 

where e=1,…,n and n is the total number of elements discretizing the domain, Emin is a small positive 22 

elastic modulus greater than zero to avoid any singularity of the global stiffness matrix, E0  is the elastic 23 

modulus of the solid material. A penalty factor p greater than zero, typically 3 or 5, is introduced to 24 

penalize the presence of intermediate densities in the relaxed setting and to steer the solution to binary 0-1 25 

values. 26 

Topology optimization using shell elements is performed based on the assumption that the stiffness 27 

matrix of each finite element is proportional to its “artificial” elastic modulus (𝐸𝑒). By isolating the elastic 28 

modulus E0 in Eqs. (1), (2) and (5), the constitutive matrices of element e can be rewritten in a 29 

generalized form, as follows: 30 

0( ) ( )e e e e ex E xC C
 

(7) 

where Ee  is calculated using Eq. (6) and Ce
0 is the generalized constitutive matrix with unit Young’s 31 

modulus (Cb
0, Cs

0 and Cm
0). In the above equation Ee is the only variable term, while the constitutive 32 

matrix is assumed to be constant. Using the finite element method, the stiffness matrix Ke of element e is 33 

evaluated as the integral over the area of the element constitutive matrix Ce
0 and the element strain-34 

displacement matrix Be. Therefore, according to the SIMP approach, even the element stiffness matrix of 35 

Eq. (4) can be interpolated as follows: 36 
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(8) 

where Ke
0 is the element stiffness matrix of the material with unit Young’s modulus. The global stiffness 1 

matrix is, therefore, obtained by assembling the element-level counterparts through:  2 

0

1 1

( ) ( ) ( )
n n

e e e e e e

e e

x x E x
 

  K K K

  
(9) 

Introducing the modified interpolation function in Eq. (6), the previous relation assumes the following 3 

form:  4 

1

0
min 0 nmi (E E )( ) ( )E

n

p
ee e

e

x x
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(1

0) 

Finally, the nodal displacement vector u(xe) is calculated as the solution of the equilibrium equation: 5 

0

min 0 min

1

(E (E E )) ) ( )p

n

e e e

e

x x


   K u F

 

(

11) 

where F is the load vector independent of the design variables. It is significant to recall here that, in the 6 

relation above, Ke
0 is a constant matrix and it is decoupled from the element fictitious densities, which are 7 

updated at each iteration. This is a crucial advantage for the construction of the topology optimization 8 

framework, since it allows to acquire the element stiffness data only once at the beginning of the 9 

procedure, speeding up the overall optimization process. 10 

3 Problem statement 11 

A standard “academic” formulation for topology optimization problems, commonly referred to as the 12 

design for minimum compliance or for maximum global stiffness, consists in minimizing the external 13 

work done by the applied loads (i.e. the mean compliance) subjected to a volume constraint. The mean 14 

compliance is a self-adjoint function, which makes the formulation straightforward when calculating the 15 

sensitivities, and allows for achieving good results at reduced computational cost. Due to these properties 16 

it is a widely used approach and is adopted herein. Discretizing the design domain using finite elements 17 

and using the same mesh for both the displacement (u) and the stiffness (K) fields, the topology 18 

optimization problem can be formally written in the following discrete relaxed form: 19 

T..
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ρ F u ρ

ρ

K u F

ρ

ρ ρ

 

(12) 

where c(ρ) is the mean compliance, which is a global measure of the stiffness of the structure; 20 

ρ(x)={ρ1,…, ρn}T is the element-wise material density vector related to the independent design variable 21 

vector 𝒙 through ρ1=φe (xe); xe is the design variable assumed constant within each element; φe is the filter 22 

operator (e.g. the H-filter [44]); n is the total number of finite elements set equal to the number of design 23 

variables; volfrac is the volume fraction computed as the ratio between the actual volume of structural 24 

material in the design domain V(ρ) and the initial volume V0. Assuming an isotropic and homogeneous 25 

material, the volume of the structure can be evaluated as the integral of the design variables over the 26 

domain 𝛺; therefore, ρ(x) can be referred to as a material density. In the following sections, we omit the 27 

dependence of the filtered densities ρ on the design variables x, i.e. ρ=ρ(x). 28 
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4 Implementation strategy 1 

In this work, the topology optimization problem is performed by introducing a versatile framework 2 

based on the practical interoperability between Matlab, Ansys and CAD environments in order to create a 3 

robust procedure for practical engineering problems.  4 

Ansys is a general-purpose commercial software package, which generates simulated computer models 5 

of structures, electronic elements or machines. The program package can perform structural, thermal, 6 

dynamic and fluid dynamic analyses. These capabilities may be integrated with the proposed framework 7 

and could encourage users to adopt it also in research fields other than Civil Engineering, opening new 8 

frontiers for topology optimization. The interactive use of Ansys Mechanical offers many benefits to the 9 

optimization procedure. First, by exploiting the interaction with neutral formats, such as IGES files, 10 

Ansys provides the possibility of importing CAD (Computer Aided Design) geometries into the 11 

mechanical data. Thus, a complete model can be generated with 3D modeling software and subsequently 12 

exported to the Ansys environment. This allows the framework to handle complex or articulated 2D and 13 

3D geometries. Second, the use of external software allows the selection of appropriate finite element 14 

types from those available in the program library, e.g. membrane elements, shell elements or solid 15 

elements. Finally, different methods for solving the system of simultaneous equilibrium equations can be 16 

selected by the user in the Ansys database. In topology optimization problems, in fact, the finite element 17 

analysis is a computationally intensive part, in which up to 60% of numerical calculations are spent for 18 

the solution of a sequence of equilibrium equations in the form: 𝐊(𝐱) 𝐮 = 𝐟 (where K is the stiffness 19 

matrix of the structure as a function of the design variables x, u is the displacement vector and f is the 20 

load vector). In this study, the sparse direct method is adopted to solve the systems of linear equations. 21 

Since the factorization of the K is generally the most time-consuming phase in a serial implementation, 22 

the solver is based on a direct elimination of equations, which minimizes the cost of the factorizing using 23 

equation reordering strategies. This significantly reduces both the storage space needed and the work 24 

performed. 25 

The methodology is conceived in a generalized form to handle a wide set of design problems. The 26 

flowchart of the proposed integrated framework for solving 2D and 3D large-scale topology optimization 27 

problems is illustrated in Figure 3 and the main steps are discussed in the following sections and briefly 28 

introduced here. 29 

(i) First, the geometrical and mechanical models are generated and the information required to 30 

perform the topology optimization procedure are stored. 31 

(ii) The integrated framework is initialized to solve the minimum compliance problem stated in Eq. 32 

(12). The main loop of the framework starts with the finite element sub-routine, through a batch-33 

mode call to Ansys Mechanical. In this stage, the finite element analysis is performed and the 34 

resulting nodal displacements are stored. 35 

(iii) Next, a loop over the elements computes the objective and constraint functions with related 36 

sensitivity analyses. In order to update the design variables through the mathematical 37 

programming optimizer, the calculated sensitivities are converted to non-filtered quantities. The 38 

current structural compliance, the related volume constraint and the iteration number are printed 39 

and the resulting optimal material distribution is displayed. The convergence of the sub-problem in 40 

terms of the design variable vector is checked at each iteration. 41 

Because the finite element analysis and the optimization routines are separately defined, the framework 42 

can be extended and easily modified in all its parts. In fact, the design domain, the loading and supporting 43 

conditions, the problem formulation and the optimization algorithm can be altered for adapting the 44 

procedure to different design needs. This work should be considered as the setting up of a robust 45 

generalized methodology, so that it can be adopted as a preliminary design tool for simplified loading 46 

conditions or interpreted as a sub-problem by including more complicated scenarios (e.g. stochastic 47 

loading conditions). In both cases, the procedure allows achieving reliable optimal layouts where the 48 
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precision of the resulting topologies depends on the accuracy of modeling and loading assumptions. The 1 

framework is adaptable and ready for integration since extensions and changes are ensured. 2 
 3 

 4 
 5 

Figure 3. Flowchart of the proposed integrated framework. 6 

4.1 Description of the integrated framework 7 

As previously observed, Ansys Mechanical interacts with neutral formats, e.g. IGES files, allowing the 8 

possibility of importing regular or complex-shaped CAD geometries. The interaction with 3D modeling 9 

software strongly supports users in carefully drawing and managing the overall design. The first step of 10 

the proposed procedure concerns the design of the structural components within a general CAD 11 

environment, where a relevant preliminary phase consists in choosing a suitable continuum domain by 12 

selecting the parts of the model that should be designed and the parts that should be left as solids or voids 13 

in the final topology. At the beginning of the procedure, an Ansys APDL (Ansys Parametric Design 14 

Language) script is written, which contains the following operational commands: (i) import CAD 15 

geometries into the finite element software through an IGES file; (ii) assign material properties and 16 
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discretize the continuum domain using shell elements and (iii) store information on the geometrical and 1 

mechanical model.  2 

For step (i), the script constructs the geometrical entities of the model (e.g. key-points, lines and area 3 

elements), based on the information acquired from the IGES file. In step (ii), element types are assigned 4 

to the corresponding elements, with sections of the structural members (e.g. cross-section of beam 5 

elements and thickness of shells) sized according to a preliminary design. The continuum domain is 6 

discretized using SHELL181 elements with Mindlin-Reissner formulation and a finite element mesh is 7 

constructed, which remains unchanged throughout the design process. The discretization of the domain 8 

should be fine enough to guarantee an accurate solution, a reasonably reduced computational cost and a 9 

clear resolution of the final topology. Material properties are defined for each element. Because the elastic 10 

moduli are iteratively updated during the optimization routines, an external text file is written, which 11 

univocally assigns to each finite element the corresponding fictitious elastic parameter. The use of an 12 

outer folder allows editing of only the updated variables, without affecting other operational commands. 13 

In this initial preparatory stage, unit elastic moduli are set for all finite elements, in order to store the solid 14 

element stiffness matrices ( 0
eK ), related to the artificial densities through Eq. (10), and required for 15 

performing the sensitivity analyses. Loading and supporting conditions are also applied. In step (iii), the 16 

APDL script acquires the information needed to initialize the optimization algorithm, i.e. the coordinate 17 

data and the element stiffness matrices of the solid material. In detail, a nodal array stores the spatial 18 

position of each node (in the x, y, z coordinates) in the node coordinate matrix while an element array 19 

acquires information about the connectivity between elements and nodes. These data are indispensable for 20 

reproducing a univocal correlation of the element-node representation between Ansys and Matlab 21 

environments, i.e. the so-called connectivity matrix. The solid element stiffness matrices are then stored. 22 

Because the connectivity and the stiffness matrices are invariant during the optimization routines, it is 23 

possible to acquire this information only once at the beginning of the optimization run. To further speed 24 

up the optimization procedure, only information on the continuum domain is explicitly acquired in a text 25 

format, which can be directly converted and updated in the Matlab environment. Supplementary data on 26 

additional members of the mechanical model, which implicitly contribute to the global response, can be 27 

retrieved at any iteration, if necessary. A similar data structure is compact and easy to implement, as it 28 

employs only a small amount of memory usage while providing the user with information on the 29 

complete geometrical and mechanical model. This is particularly convenient in the case of large-scale 30 

models where the amount of records may require extensive storage space if not carefully considered, 31 

rendering their cost prohibitive.  32 

Once the mechanical model is generated and the related data are stored, the topology optimization 33 

framework is initialized. The optimization routine starts with a preliminary homogeneous distribution of 34 

material within the domain. To this end, a vector of independent design variables x is firstly defined, 35 

which associates an artificial density value to each finite element of the domain. Furthermore, because 36 

topology optimization problems are generally prone to numerical instabilities, the framework applies a 37 

regularization technique [44], [49] to ensure existence of solutions and cope with checkboard patterns and 38 

mesh-dependent designs. The density filter performs a convolution product between a kernel and the 39 

design variable vector. As a result, the density of the element 𝑒 is modified to be a function of the initial 40 

variable xe and of its neighboring elements, included within a region Ne of fixed radius rmin, so that 41 

( )
ee k Nx  . The filtered densities ρe are related to the mechanical properties of the element through the 42 

SIMP interpolation scheme of Eq. (6). At each step of the optimization procedure, the design variables are 43 

updated and the filtered densities ( )e eE   are iteratively overwritten in the external text file of the APDL 44 

script. Consequently, Ansys is called from Matlab to perform the finite element analysis of the complete 45 

structural model. The batch mode is especially beneficial in the case of optimization cycles, avoiding the 46 

need to directly operate on the finite element program. In addition, Ansys updates a database file (.db) at 47 
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each iteration, which provides the user with the possibility of monitoring the procedure in an iterative 1 

fashion. The file, indeed, contains the complete model generated during the finite element analysis. 2 

Therefore, it is always possible to retrieve information on stresses, strains, displacements and force 3 

reactions of all the members constituting the complete structure, at any time. 4 

When the analysis terminates, the APDL script stores the resulting nodal displacements  u ρ . The 5 

displacement vector and the element stiffness matrices, in fact, are the only fields of interest required to 6 

solve the topology optimization problem.  7 

After the objective function, the constraint function and the associated sensitivities with respect to the 8 

design variables are computed, the approach is well posed for solving the optimization problem in the 9 

form of Eq. (12). In order to update the design variables of the non-linear programming problem, the 10 

Method of Moving Asymptotes (MMA) [50] is adopted. The convergence of the problem, expressed in 11 

terms of changes between consecutive updates, is checked at each iteration. If the difference between two 12 

successive feasible solutions ( new oldx x ) is less than a convergence ratio εi, the optimization routine is 13 

stopped and the final layout printed. Otherwise, the optimization loop is repeated. The convergence ratio 14 

provides information on the stability of the optimality condition between the previous and the current 15 

iteration. It is commonly accepted that when the change of the compliance for two consecutive iterations 16 

is less than 10%, the optimization under the current volume constraint has reached a stable status [51]. 17 

When the convergence check is satisfied, the density matrix is converted into a grey-scale bitmap image, 18 

whereas each finite element can be translated into a pixel with discrete values of material densities, 19 

ranging between 0 and 1.  20 

5 Numerical implementation 21 

The integrated topology optimization framework described in the previous sections is employed here 22 

for defining the optimal layout of lateral resisting systems for tall buildings subject to wind loads. The 23 

optimal location of braces on the perimeter of tall buildings is generally determined by a trial and error 24 

procedure, which requires many iteration cycles and does not always guarantee the minimum amount of 25 

structural material to meet design requirements. Conversely, since the topology optimization framework 26 

is stated in terms of minimum compliance, which is a measure of the global stiffness within the structure, 27 

the optimal layout will always guarantee the attainment of the stiffest configuration to limit the lateral 28 

sway and the most economical arrangement for the structural components, at the same time. The focus of 29 

this section is to illustrate the applicability of shell elements within topology optimization procedures for 30 

three-dimensional tall building models and demonstrate the stability and efficiency of the proposed 31 

methodology in finding optimal solutions. For an efficient use of topology design, the problem is 32 

formulated on a test model (the ground structure) intentionally very simple to reduce the size of the 33 

analysis problem, thus the computational time of each iteration, and speed up the overall optimization 34 

routine without any loss of objectivity for the optimal solution. The reference model is a regular tall-35 

building with a squared plan, as depicted in Figure 4.  36 
 37 
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 1 
 2 

Figure 4. Model representation for the topology optimization procedure. 3 
 4 

The external skin of the building is adopted as a natural optimizable domain Ω. The geometric regularity 5 

of the building allows to impose two significant simplifications to the general problem: symmetry with 6 

respect to the centerline and doubly symmetric condition of the plan. Symmetry constraints are highly 7 

desirable in order to achieve a pattern repetition of the structural components of the tall building and 8 

minimize manufacturing costs [52], [53]. In addition, the introduction of a controlled regularization 9 

significantly reduces the amount of CPU-time, improves memory efficiency and allows the consideration 10 

of anti-symmetric loading scenarios. 11 

The external loads acting on the building are reduced to two translational forces (acting in the 12 

longitudinal and transversal directions) for each floor, as depicted in Figure 5: the design domain located 13 

on the perimeter is subject to both in-plane and out-of-plane design forces. In fact, since wind can act in 14 

any horizontal direction, it is mandatory to determine and analyze both the forces along the building’s 15 

longitudinal and transverse directions. 16 

The optimal topology would certainly benefit from modeling a realistic loading scenario. However, in 17 

a preliminary design stage, a uniformly distributed load is generally considered to be sufficiently accurate 18 

and avoids adding further complexity to the problem.  19 

Since the direct application of forces on the continuum designable domain could affect the objectivity 20 

of the final layout, an auxiliary frame (also referred to as secondary system) is introduced, as shown in 21 

Figure 4. A complete system is fully defined by combining the continuum domain with the discrete 22 

elements of the secondary system, as already proposed in [32], [34]. All external loads enter the complete 23 

system at master nodes located at the intersections of the secondary system (black nodes in Figure 5). 24 

Because of this and provided the assumption that the auxiliary perimeter framework is not included in the 25 

optimizable domain, the final topologies are independent of the definition of the master nodes [34]. This 26 

allows to arbitrarily choose the secondary system bounding the continuum domain. The members of the 27 

unbraced frame are preliminary sized for gravity loads only according to strength requirements. It is 28 

straightforward to demonstrate that when wind forces are applied, a demand for additional material results 29 

at the base of the domain from the topology optimization procedure. It follows that, once the optimal 30 

layout of the perimeter braced frame is achieved, columns should be re-sized for lateral loads before 31 

performing conclusive analyses on the optimized structural system. The elements constituting the 32 

auxiliary unbraced frame are discretized into smaller members, so that the nodes of the beam-column 33 

elements and those of the shell elements coincide. This operation results in a continuous connection 34 

between the discrete frame and the continuum domain, forcing the shell elements to move accordingly 35 

This article is protected by copyright. All rights reserved.



13 

 

with the deformation of the neighboring members, since they share three translational and three rotational 1 

degrees of freedom throughout the height and width of the building. 2 
 3 

 4 
 5 

Figure 5. Schematic of the constitutive elements of the numerical model. 6 

5.1 Case study 7 

Numerical applications of the framework developed in this paper are presented in this section for the 8 

cases of a three-dimensional high-rise buildings. In order to investigate the efficiency of the proposed 9 

procedure in finding optimal solutions without the occurrence of numerical instabilities, a careful study 10 

on the mesh refinement is conducted. The 3D reference model has a height of 40 m and a plan of 12 m by 11 

12 m, with a floor height of 4 m. On the perimeter, an outer lateral load resisting braced frame is designed 12 

by means of the proposed optimization framework. The structure is fully fixed at the base. The design 13 

dead load is assumed to be 7.0 kN/m2. Live loads of 2.0 kN/m2 are applied as uniformly distributed on the 14 

floor slabs.  15 

An auxiliary perimeter framework bounding the continuum domain is arbitrarily chosen with a bay 16 

width of 3 meters and a bay height of 4 meters. W8x21 steel cross-sections are preliminary designed to 17 

model both the columns and the beams of the unbraced frame. 18 
 19 

 20 
 21 

Figure 6. Design domain of the reference model (40 m x 12 m x 12 m) discretized using three mesh sizes: from the top 1 m x 1 m, 22 
0.5 m x 0.5 m and 0.25 m x 0.25 m. 23 

 24 
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By the definition of this gravity system, external wind loads can be reduced to point loads, acting on 1 

the perimeter of each floor, and afterwards transferred to the lateral load resisting system [34]. The 2 

topology of the optimal braced frame is designed considering a lateral load with uniform distribution 3 

along the height of the building. Point forces of 100 kN are applied at each beam-to-column façades 4 

master node of the secondary system. 5 

The topology optimization problem is stated in terms of minimum compliance with a constraint on the 6 

amount of volume available Eq. (12). The framework is performed according to the scheme depicted in 7 

Figure 3. The algorithm is run with a volume fraction of 30% and a projection radius of rmin=1.5 m. A 8 

penalization factor of p = 3 is used, since it has been shown to provide good convergence properties to 9 

binary (0-1) solutions. The complete numerical model is analyzed using two types of finite elements, 10 

chosen from Ansys library. Three-dimensional two-node beams (BEAM188) with six degrees of freedom 11 

at each end and based on the Timoshenko beam theory are set for both the beams and columns. Four-node 12 

shell elements (SHELL188) with six degrees of freedom at each node are assigned to the floor slabs and 13 

the design domain. Floor slabs connecting the external faces of the building at each level are designed to 14 

be a C28/35 concrete deck (E=25 GPa) with a thickness of 0.10 m and a mesh size of 3x3 m. The 15 

continuum design domain is modeled using shell elements with Mindlin-Reissner formulation and the 16 

material properties of steel S275 (E=210 GPa) and a thickness of 0.15 m. The models are analyzed 17 

through static analysis in the elastic field. The design domain is optimized using three different mesh 18 

sizes as illustrated in Figure 6: 1 m x 1 m (resulting in 1,920 finite elements), 0.5 m x 0.5 m (7,680 19 

elements) and 0.25 m x 0.25 m (30,720 elements). The utilization of homogeneous shells for the domain 20 

removes the necessity for the repeated computation of local stiffness matrices.  21 

Although the mesh of the continuum design domain is refined, the loading conditions and the location 22 

of the secondary system do not change. This is an essential assumption in order to obtain comparable 23 

final topologies. 24 

5.2 Results of the mesh refinement 25 

Firstly, topology optimization is performed for the 40x12x12 m model with unit mesh size and the 26 

final topology is displayed in Figure 7(a) in terms of physical densities (𝛒), i.e. filtered design variables. 27 

As can be observed, the mesh is too coarse to achieve a feasible layout, since the size of finite elements is 28 

excessively large if compared to the model dimensions. Although a more detailed topology is needed to 29 

correctly define the working points between the diagonals and the column-to-brace connections, this 30 

initial result provides a preliminary evaluation of the material distribution within the domain. 31 

Furthermore, this initial step is indispensable in order to calibrate the optimization parameters of the 32 

subsequent stages and obtain qualitatively equivalent topologies. Figure 7(b) and Figure 7(c) show the 33 

optimal topologies obtained when refining the design domain using a mesh of 0.5 x 0.5 m and 0.25 x 0.25 34 

m, respectively.  35 
 36 
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 1 
                  (a)                (b)             (c)           (d) 2 

 3 
Figure 7. Optimal topologies using mesh size of 1 m x 1m (a), 0.5 m x 0.5 m (b) and 0.25 m x 0.25 m (c) and post-processed 4 

refined layout (c). 5 
 6 

The results clearly demonstrate that the optimal topologies remain qualitatively the same, despite 7 

significant differences of the boundaries of the domain, which become gradually smoother with mesh 8 

refinement. In fact, using a progressively finer mesh leads to increasingly improved resolution of the 9 

bitmap image and a more detailed definition of the members and the working points. In order to 10 

physically appreciate the results of the topology optimization process and correctly identify the location 11 

of the working points of the brace-to-brace and brace-to-column nodes, the optimized continuum domain 12 

is post-processed. In detail, all the pixels are subject to an image repair process to obtain the refined 13 

layout in Figure 7(d). The topology optimization problem is stated in such a way that each structural 14 

member composing the optimal layout contributes to the global lateral stiffness by exhibiting a specific 15 

design which maximizes the overall stiffness while minimizing the total amount of structural material.  16 
 17 

 18 
               (a)       (b)               (c)    (d) 19 

 20 
Figure 8. Front views of optimal topologies: model with different mesh sizes: (a) 1x1 m, (b) 0.5x0.5 m and (c) 0.25x0.25 m; post-21 

processed refined layout (d). 22 
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 1 
From the final layouts, three full width X-diagonals emerge, extending over a gradually reduced 2 

number of floors, from the bottom towards the top of the building, and with working points located at 3 

approximately mid-height of each module. Front views in Figure 8 better show that vertical members 4 

should be sized to gradually increase their cross section along the height, in order to exhibit adequate 5 

flexural stiffness in accordance with the bending moment distribution of the vertical cantilever beam. 6 

However, it can be observed that the lateral columns on the top are interrupted before reaching the last 7 

module. This is caused by a very low value of intermediate densities and, of course, it is an unfeasible 8 

result. Because corner columns cannot be removed from the final braced system, they are introduced as 9 

very thin members in the discrete final layout (Figure 8(d)). Furthermore, it is worth noticing here that 10 

the optimal topology does not include the presence of the secondary system and, therefore, it can be 11 

omitted from the final layout. Such observation is consistent with the assumption on the arbitrary 12 

selection of the secondary system. Since symmetry constraints are enforced along the three axes, the 13 

topology optimization framework leads to identical layouts on each façade, such regularity is effective in 14 

simplifying the model through the replication of structural components.  15 

The evolution of the optimal solution during the optimization routines can be appreciated in Figure 9 16 

by considering the iteration histories of the objective function (mean compliance) and the constraint 17 

function (material volume) with respect to the number of iterations required until a tolerance of 1% is 18 

met. In the diagrams, the convergence to the optimal solution is emphasized using a filled circle at the end 19 

of the curves. 20 

The validity and efficiency of the methodology is confirmed by the steady convergence as well as the 21 

limited number of optimization cycles required for all the three mesh-refining models. In order to 22 

evaluate the rapidity of the proposed framework in finding optimal solutions, additional information 23 

about the time consumption until convergence is provided in Table 1. It is worth clarifying here that 24 

almost 50% of the computation time is spent by Matlab to plot the intermediate optimized layouts, which 25 

can be conveniently eliminated from the main framework if not needed. Furthermore, the first iteration is 26 

generally slower (almost 35%) than the next ones due to the need to acquire mechanical and geometrical 27 

information of the model. However, for the sake of completeness, the computation time is calculated as 28 

the average over the first five iterations of the complete optimization routine, using a laptop with an Intel 29 

core i7-3610-QM, 2.30 GHz CPU, 4.00 GB memory. Refining a shell mesh to half of the element size 30 

requires approximately 2 times the number of iterations and 2.6 times the mean time per iteration with 31 

respect to a unit mesh size. Refining the mesh size to a quarter of the initial size requires more than 4.5 32 

times the number of iterations and approximately 10 times the mean time per iteration with respect to the 33 

initial mesh size. The total time required to perform the overall optimization procedure for the mesh size 34 

of 0.5 m x 0.5 m and 0.25 m x 0.25 m is 5.5 times and more than 45 times the unit mesh size, 35 

respectively. 36 
 37 

Table 1. Comparison of the time consumption between the analyzed models. 38 

Mesh size No. of Iterations  Mean time per iteration Total required time  

(m2) (-) (sec) (h) 

1x1 173 6.00 0.28 

0.5x0.5 352 16.00 1.55 

0.25x0.25 782 59.00 12.80 

  39 
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(a)  1 

 2 
(b) 3 

 4 
(c) 5 

 6 
 7 

Figure 9. Iteration histories of the objective and constraint functions for the model with different mesh sizes: (a) 1x1 m, (b) 0.5x0.5 8 
m and (c) 0.25x0.25 m. 9 

 10 
In order to estimate the actual contribution of loads acting on the mid-surface of the shell elements as 11 

well as transverse loads, the in-plane and out-of-plane components of the wind action on the continuum 12 

domain are separately considered in Figure 10. The stress distributions of the Mindlin-Reissner shells, 13 

extracted from Ansys, are expressed in kN/m2 and refer to a representative façade of the optimized model 14 

with mesh size of 1 m x 1 m. Because of the adoption of symmetry constraints and the proven mesh 15 

independent solutions, similar results occur for the other faces and other mesh refinements, respectively. 16 

It is worth mentioning here that the incomplete stress distribution, especially in the upper part of the 17 

building model, is mainly due to low artificial density values. This, in turn, suggests a reduced use of 18 

structural material for the braces located at the top. Furthermore, the element solutions confirm that the 19 

optimal topology is characterized by a gradual increase in the stress/strain distribution towards the base, 20 

as a result of a gradual compliance (or stiffness) distribution along the elevation. Such features improve 21 

the overall mechanical performance of the structural system by preventing the occurrence of stress peaks, 22 

especially in the column-to-brace nodes and in the working points between the diagonals. 23 
 24 
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1 
              (a)                (b)        (c)        (d) 2 
 3 

Figure 10. Stress and shear stress distributions for the pure in-plane component ((a) and (b), respectively) and pure out-of-plane 4 
component ((c) and (d), respectively) of the wind loading. 5 

5.3 Comparison between 2D and 3D results 6 

This section outlines the difference between optimal solutions obtained using a 2D planar model, 7 

envisioned as part of the 3D building, with those obtained by considering the complete structure. The 8 

same reference model (40 meters height and 12 meters width) is considered here. It is worth noticing that 9 

because two-dimensional models are loaded in their mid-plane, actually the shell behavior is reduced to 10 

that of a membrane with only in-plane stiffness. The iterative history and the resulting layout of the planar 11 

design domain are shown in Figure 11.  12 

The mean elapsed time until convergence for the 2D model using a mesh size of 1m x 1m is around 3.5 13 

seconds per iteration. The same observation made above for 3D domains concerning the elapsed to plot 14 

intermediate optimal layouts is also valid here. Comparing the 2D and 3D post-processed layouts in 15 

Figure 12, it emerges that the optimal results are quite similar when a model with a low aspect ratio is 16 

assumed as in the case under examination (aspect ratio equal to 3.3). However, some peculiarities emerge 17 

focusing on the diagonal arrangement and the working point locations. In fact, the optimization process 18 

leads to a gradually varying inclination for braces along the height of the building in the two-dimensional 19 

domain [54]. According to the literature, the optimal location of the working points lies in a feasible 20 

region delimited by a lower bound of 0.50 ℎ and an upper bound of 0.75 ℎ, where ℎ is the module height 21 

[55]. This leads to a brace-to-brace angle of around 45 degrees at the top and X-high waisted diagonals 22 

near the base. As a consequence, a progressive translation of between these two values can be observed 23 

along the height of the building in Figure 12(a). Conversely, in three-dimensional cases, the final 24 

topology is strictly related to the number of stories within each module and their location with respect to 25 

the optimizable domain (i.e. the inter-story height), both of which are information usually defined in 26 

advance in the design of tall buildings. Therefore, 3D systems are more sensitive to loading and modeling 27 

variations, producing the stretching effect of the diagonals over a largest number of floors in Figure 28 

12(c). The introduction of a complete 3D floor system moves the optimal layout away from the 29 

theoretical 2D optimal configuration, as it not only results in an increase of the gravity load but the 30 

vertical action of floors also insists along the diagonal length. Since the bracing member expands over a 31 

certain number of stories, in fact, the transfer of loads occurs at each floor level, producing concentrated 32 

loads along the diagonal length. Bending moments and shear forces arise due to this state. Furthermore, a 33 

deeper evaluation of the optimal topology can be assessed by observing the stress trajectory distribution 34 

of a cantilever beam with hollow tube section in Figure 13.  35 
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 1 

 2 
 3 

Figure 11. Iterative history and final optimal topology for the 2D model. 4 
 5 

 6 
         (a)                (b)                          (c) 7 

 8 
Figure 12. 2D optimal results, design domain and front view of the 3D optimal layout for the 40 x 12 x 12 m model (a, b, c 9 

respectively) using a mesh size of 0.5 x 0.5 m. 10 
 11 

The principal stress directions are a good indicator of the optimization tool efficiency, since they 12 

inform on the natural flow of forces throughout the structure, i.e. where adding or removing structural 13 

material is favorable. The stress trajectories in the web panel, parallel to wind direction, behave similarly 14 

to the two-dimensional problem analyzed in Figure 11. On the other hand, the flange panel orthogonal to 15 

wind direction presents vertical stress trajectories [56]. The different behavior of the building façades 16 

allows considering two flange sides mainly carrying the overturning moment and two web sides carrying 17 

the shear force. When the external loads acting on the building are reduced to two translational forces, in 18 

order to simulate the aleatory action of wind, an intermediate condition arises on each panel. The vertical 19 

component of the overturning moment (due to the out-of-plane forces) together with the gravity action of 20 

the floor slabs produces higher flexural demands for the diagonal members.  21 
 22 

This article is protected by copyright. All rights reserved.



20 

 

 1 
           (a)                (b)    2 

 3 
Figure 13. Schematic of the mechanical behavior of braced tube systems (a) and stress trajectories of a cantilever beam [56] (b). 4 

 5 

This results in a progressively steeper configuration against more severe loading conditions, 6 

observable in the vertical translation of the working points, which are lowered towards mid-height of the 7 

module when compared to the 2D layout. According to these considerations and since the final topologies 8 

resulting from the 2D and 3D models are qualitatively different, it is clear that a spatial model is highly 9 

desirable in order to achieve more reliable and objective optimal layouts. A three-dimensional design 10 

domain, in fact, reduces the amount of modeling and loading simplifications, allowing to consider more 11 

realistic scenarios for the topology optimization problem.  12 

6 Conclusions 13 

The paper presents an integrated framework for topology optimization of three-dimensional buildings 14 

using shell elements for the discretization of the design domain. The proposed methodology is envisioned 15 

for the preliminary design phase of structural systems for tall buildings, demonstrating the potentials of 16 

automated techniques in exploring innovative and efficient design solutions for large-scale domains. In 17 

particular, the framework incorporates a complete and efficient optimization algorithm with the advanced 18 

capabilities of Ansys for the assessment of optimal layouts for three-dimensional geometries, generated in 19 

CAD environments. The paper proposes the adoption of shell elements within topology optimization 20 

procedures to discretize the designable domain of three-dimensional tall buildings. In fact, given the 21 

potential of shells in describing loads acting on the mid-surface of the element, as well as transverse 22 

loads, these elements are especially convenient for simulating tubular high-rise buildings with perimeter 23 

structural system under wind actions.  24 

This procedure offers the possibility to explore optimal layouts for standard or unconventional three-25 

dimensional designs. The applicability and potential of the approach are validated by performing the 26 

topology optimization of a three-dimensional tall building. A case study with gradually refined mesh sizes 27 

is presented in order to demonstrate the efficiency of the proposed framework in finding optimal solutions 28 

free from numerical mesh-dependency instabilities. A further study is conducted by comparing the 29 

optimized resisting system of the reference tall building when planar and three-dimensional domains are 30 
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adopted. The main differences between the two modeling approaches emerge when focus is placed on the 1 

arrangements of the diagonal members. For two-dimensional domains, the optimization process leads to a 2 

gradually varying inclination for braces along the height of the building. Conversely, three-dimensional 3 

domains are seen to be more sensitive to loading and modeling variations, resulting in diagonals that 4 

stretch over a larger number of floors. In fact, for three-dimensional domains, the final topology is strictly 5 

related to the number and location of the stories as well as to the transverse action of the out-of-plane 6 

component of the wind load. The introduction of a complete three-dimensional model of the floor system 7 

together with a comprehensive modeling of the loading scenario moves the optimal layout away from the 8 

theoretical two-dimensional optimal configuration. Such a modeling approach is made possible by the 9 

adoption of shell elements for the discretization of the continuum domain of the building. 10 

This paper demonstrated that the implementation of shell elements within topology optimization 11 

frameworks allows the assessment of accurate and reliable solutions, given the possibility of assuming 12 

realistic modeling and loading conditions. The use of shells within the proposed integrated framework 13 

shows good stability and predictability properties together with a rapid convergence rate, which makes it 14 

especially suitable for the analysis of three-dimensional large-scale engineering problems, as in the case 15 

of tall buildings. While the adoption of shell elements within two-dimensional topology optimization 16 

procedures naturally involves a greater number of degrees of freedom (which in turn produces higher 17 

computational costs) than membrane elements, they represent a convincing option for the discretization of 18 

three-dimensional domains. In fact, shells require fewer elements compared to solid bricks, which are 19 

often implemented in performing three-dimensional topology optimizations. This significantly reduces 20 

the number of equations to be solved during finite element analyses and makes the use of shell elements 21 

more convenient than solid elements for iterative algorithms. Additionally, since shells can model curved 22 

and free-form designs, they are especially suitable for the discretization of complex geometries and 23 

represent a valid alternative for performing topology optimization of modern designs. 24 
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