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Summary: The Continual Reassessment Method (CRM) is an adaptive design for Phase

I trials whose operating characteristics, including appropriate sample size, probability of

correctly identifying the MTD, and the expected proportion of participants assigned to each

dose, can only be determined via simulation. The actual time to determine a final “best” de-

sign can take several hours or days, depending on the number of scenarios that are examined.

The computational cost increases as the kernel of the one-parameter CRM design is expanded

to other settings, including additional parameters, monitoring of both toxicity and efficacy

and studies of combinations of two agents. For a given vector of true DLT probabilities, we

have developed an approach that replaces a simulation study of thousands of hypothetical

trials with a single simulation. Our approach, which is founded on the consistency of the

CRM, very accurately reflects the results produced by the simulation study, but does so in

a fraction of time required by the simulation study. Relative to traditional simulations, we

extensively examine how our method is able to assess the operating characteristics of a CRM

design for a hypothetical trial whose characteristics are based upon a previously published

Phase I trial. We also provide a metric of non-consistency and demonstrate that although

non-consistency can impact the operating characteristics of our method, the degree of over-
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or under-estimation is unpredictable. As a solution, we provide an algorithm for maintaining

the consistency of a chosen CRM design so that our method is applicable for any trial.

Key words: adaptive clinical trial; Bayesian methods; consistency; dose-finding trial;

non-parametric optimal design; Phase I trial
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1. Background

The purpose of traditional Phase I clinical trials is to suggest a dose, or several doses, of a

potential new treatment that are safe, and therefore assumed to be worth pursuing in future

efficacy (Phase II) trials. These dose-finding studies typically enroll participants for whom

no other treatment options exist and tend to start enrollment on low doses rather than use

randomization. Higher doses are assigned to future participants adaptively, meaning that

the experience of earlier participants is used to inform which dose is assigned to future

participants. As the trial reaches the end of accrual, it is expected that the adaptive design

has directed dose assignments toward a “desirable” dose, commonly known as the maximum

tolerated dose (MTD) or recommended Phase II dose (RP2D).

There are an abundance of Phase I trial designs1, which fall generally into two classes.

The first class includes the 3+3 design2, the cumulative cohort design3, and the k-in-a-

row design4, all of which use an algorithm to determine dose assignments from the toxicity

profile of currently enrolled participants. The second class includes designs in which dose

assignments are based upon the results of a statistical model used to estimate the probability

of DLT for each dose. These designs include the Bayesian Optimal Interval (BOIN) design5,

the modified toxicity probability (mTPI) interval design6, escalation with overdose control

(EWOC)7, and the continual reassessment method (CRM)8, which is the pre-cursor of most

other model-based designs.

An excellent tutorial of the CRM has been published by Garrett-Mayer9, as well as a more

recent presentation by Wheeler, et al10. The CRM design begins by first eliciting an a priori

value for the probability of DLT for each dose; the vector of these values is known as the

“skeleton.” The first participant or cohort of participants is assigned to a dose and each

participant is followed for the occurrence of DLT over a pre-defined window of time. For

agents that are given repeatedly in cycles, often DLTs are only assessed in the first cycle.
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Although the original formulation of the CRM recommended the dose for the first cohort

should be the one believed a priori to be the MTD, later modifications to the CRM suggested

for participant safety reasons that the starting dose should be the lowest dose11, which has

become standard convention in most applications of the CRM.

In the CRM, the probability of DLT for each of the doses under study is assumed to

follow a one-parameter model. In the Bayesian formulation of the CRM, a prior distribution

is placed on the model parameter and the observed proportions of DLT at each dose are

used to compute the posterior distribution for the model parameter. The posterior mean

is then inserted in the CRM model to estimate the posterior probability of DLT for each

dose. Subject to escalation and/or de-escalation constraints, the next cohort of participants

is then assigned to the MTD, which is the dose with posterior probability of DLT closest to

the target DLT probability. The posterior estimates of the DLT probabilities are continually

updated with each successive cohort and enrollment stops once the desired sample size is

reached, at which point the final determination of the MTD or RP2D is made.

The CRM has a number of “tuning parameters,” including the skeleton, prior variance,

maximum sample size, and potential stopping rules, that need to be defined by the user.

Furthermore, there are no closed-form expressions that quantify how each tuning param-

eter impacts operating characteristics of the CRM, including the probability of correctly

identifying the MTD and the expected proportion of participants assigned to each dose.

Although assessment for a single design can be done in several minutes on a personal

computer using the titesim function included in the R library package dfcrm12, or online at

https://uvatrapps.shinyapps.io/crmb13 or https://trialdesign.org, the actual time

to determine a final “best” design among all tuning parameters can take several hours or

days, depending upon how many features of the design are allowed to vary and the number

of settings of true DLT probabilities that are considered.
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For a given set of parameter settings, we have developed an approach that uses a single

simulation to replicate information that, until now, could only be produced by a simulation

study that examines thousands of hypothetical trials. Our approach very accurately reflects

the results that would have been produced by the simulation study, but does so in a fraction

of time required by the simulation study. In Section 2, we first present the necessary details

for the CRM, and in Section 3, we follow with a description of our approach and its underlying

theory. In Section 4, we demonstrate how our approach can be used in the design of a new

trial and compare computation speed and results relative to a traditional simulation study.

We summarize our current and ongoing work in Section 5.

2. Review of CRM

2.1 Model and Design

The design of a Phase I trial starts with J dose levels of an investigational treatment and

the targeted probability of a DLT, denoted as θ. A one-parameter model, denoted as pj =

f(dj; β), is used to associate dose dj, j = 1, 2, . . . , J , with its corresponding DLT probability,

pj, in which dj is a numeric value assigned to dose j. The two most-commonly used models in

the CRM are the power (or empiric) model, pj = d
exp(β)
j , and the logistic model, log(pj/[1−

pj]) = 3 + exp(β)dj, in which β is the unknown model parameter. The remainder of this

manuscript will focus on the power model, but we emphasize that our method is applicable

to any one-parameter model.

We let πj denote an a priori DLT probability for dose j; collectively, the vector, π =

{π1, π2, . . . , πJ}, is called the skeleton. As suggested earlier, the value of dj is not the actual

clinical dose, but is a value solved using the assumed model, f(dj; β). Once π is specified,

we set β equal to its prior mean, denoted as µ, and we use πj and f(dj; β) to solve for dj,

i.e. dj = πj/exp(µ) for the power model.
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In the Bayesian formulation of the CRM, a prior distribution, g(β), is assumed for β, such

that β has support on the real line. We emphasize that in our model we exponentiate the value

of β because we assume that the probability of DLT must increase with dose. If the support

of g(β) is already constrained to the positive line, then β can be used directly in the model

rather than exp(β). The dose assignment for each cohort is determined adaptively based

upon the dose assignments and DLT outcomes observed on previously enrolled participants.

Specifically, if we have enrolled k participants, in which participant i = 1, 2, . . . , k has dose

assignment d[i], which is one of the values in {d1, d2, ...dJ}, and a binary indicator of DLT

Yi, we can compute the posterior mean for β as

β̂ =

∫∞
−∞ βL(β|Y,D)g(β)dβ∫∞
−∞ L(β|Y,D)g(β)dβ

, (1)

where

L(β|Y,D) =
k∏
i=1

f(d[i]; β)Yi [1− f(d[i]; β)]1−Yi (2)

=
k∏
i=1

[dβ[i]]
Yi [1− dβ[i]]

1−Yi (3)

is the likelihood for β, Y = {Y1, Y2, ...Yk}, and D = {d[1], d[2], ...d[k]}. We can then compute

a posterior DLT probability for each dose as p̂j = dβ̂j .

The dose level, j∗, recommended for the next enrolled cohort is the dose with the estimated

DLT probability closest to θ. After observing the DLT outcomes for this most-recently

enrolled cohort, we use Equation (1) to update p̂j and update which dose has a DLT

probability closest to the targeted DLT probability. At the end of the study, we determine

the MTD as the index j∗ based upon the data from all N participants, where N is selected

either as a feasible number of participants that can be enrolled, or based upon published

sample size calculations14,15.
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2.2 Consistency of CRM

The selection of the MTD at the end of the study is founded on the belief that the probability

of correctly identifying the MTD increases with the sample size, so that dose assignments

begin to focus on a single dose, which is more and more likely to be the MTD. This so-called

consistency of the CRM was first explored by Shen and O’Quigley16 and later expanded

upon by Cheung and Chappell17 and O’Quigley18. The original consistency requirement of

Shen and O’Quigley16 begins with the support of the model parameter β being divided into

J non-overlapping intervals B1,B2, . . .BJ . Assuming that β has support on the real line, and

defining b1 = −∞ and bJ+1 = ∞, we have Bj = (bj, bj+1) such that bj, j = 2, 3, . . . J solves

f(dj−1; bj) + f(dj; bj) = 2θ. Essentially, interval Bj contains the values of β that lead to

dose j having a modeled DLT probability closest to the targeted DLT probability θ. Thus,

for a given model, these intervals are a function only of the skeleton and the targeted DLT

probability.

If we have a vector of true DLT probabilities, α = {α1, α2, . . . , αJ}, where αj is the

true DLT probability of dose j, we can find a value for the model parameter β, denoted

β∗j , at which the modeled DLT probability is equivalent to the true DLT probability, i.e.

αj = f(dj; β
∗
j ). Certainly the CRM is consistent if there exists a unique value, β∗0 , such that

β∗0 = β∗1 = β∗2 = · · · = β∗J , i.e. the model is correct. However, even if the model is incorrect,

the CRM can still be consistent as follows.

First, from the values in α, we know which dose is the true MTD, i.e. the dose for

which |αj − θ| is smallest. We denote this dose with the subscript ` ∈ {1, 2, . . . , J}, with

corresponding interval B`. Consistency for the CRM will occur if β∗j ∈ B` for every dose.

As an example, which will be explored more in Section 4, suppose we have a study of

J = 6 doses with a target DLT probability of θ = 0.25, and that dose 4 is the true

MTD. If we adopt the skeleton π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71), we have the intervals
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B1 = (−∞,−0.692),B2 = (−0.692,−0.223),B3 = (−0.223, 0.245),B4 = (0.245, 0.714),B5 =

(0.714, 1.183), and B6 = (1.183,∞) based upon our assumed power model. With true DLT

probabilities α = (0.01, 0.03, 0.11, 0.25, 0.41, 0.57), we have, β∗1 = 0.376, β∗2 = 0.415, β∗3 =

0.447, β∗4 = 0.469, β∗5 = 0.483, and β∗6 = 0.492. Therefore, α is consistent with π because

β∗j ∈ B4 for all j. In contrast, consistency is violated if dose 3 has true DLT probability

α3 = 0.18, because now β∗3 = 0.212 which is outside the bounds of B4.

3. Proposed Methodology

3.1 Approximating Simulations

As we stated earlier, a CRM design is examined in a simulation study in which many, perhaps

5,000, hypothetical trials are run assuming a vector of true DLT probabilities α. For each of

the simulations, we record the dose assigned to each participant and the dose selected as the

MTD at the end of the study. The performance of the CRM is often summarized by (i) the

proportion of simulations in which each dose is selected as the MTD, and (ii) the average

proportion of participants assigned to each dose. The value in (i) corresponding to the true

MTD is known as the probability of correct selection (PCS); the consistency of the CRM

implies that PCS increases to 1 as the sample size increases, which implies that each of the

other doses is selected with a probability that decreases to 0 as the sample size increases. We

also desire that the largest value in (ii) corresponds to the true MTD and that the values in

(ii) are relatively small for doses larger than the true MTD as a measure of overdosing. Our

goal is to compute values for these three quantities without the need for simulations.

To do this, we first return to the intervals B1,B2, . . .BJ that divide the support of the model

parameter β. In any single simulation, when we have collected data on n 6 N participants,

we will have a posterior distribution for β and we define ωjn to be the amount of posterior

mass in Bj, such that
∑

j ωjn = 1. Thus, ωj0 is the amount of a priori mass contained in Bj
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and ωjN is the amount of posterior mass contained in Bj at the end of the study. If dose ` is

the true MTD, then the consistency of the CRM implies that ω`N converges to 1 as N goes

to infinity. Thus, both PCS and ω`N converge to 1 as N goes to infinity.

In a simulated trial, each participant supplies a single indicator of DLT for a single dose. For

our method to mimic many simulations simultaneously, we generate a J-vector of outcomes

for each participant, with one outcome for each dose, and we use these multivariate data

to determine the MTD. However, instead of generating a vector of binary DLT indicators

for each dose, we instead assign each participant the vector α, i.e. each participant’s DLT

indicator for each dose is replaced with its expected value. The idea of using a multivariate

vector of outcomes for each participant is similar to the non-parametric optimal design

(NPOD)19 that provides an upper bound on the PCS of the CRM.

At this point, without further adjustment, we have JN observations to determine the MTD

instead of the N observations in an actual trial. We solve this issue as follows. Per Corollary 1

in O’Quigley18, we know that if the posterior mean of β based upon data from k participants

lies in interval Bj, then dose j would be assigned to participant (k + 1). Therefore, we can

interpret ωjk to be the posterior propensity that dose j would be assigned to participant

(k + 1), and we incorporate these propensities as weights into the likelihood used by the

CRM. For each participant k + 1, we adaptively change the weights based upon the results

occurring from participants i = 1, 2, . . . k. Explicitly, the likelihood in Equation (2) changes

to

L(β|α) =
k∏
i=1

J∏
j=1

{f(dj; β)αj}w(j−1),i{[1− f(dj; β)](1−αj)}ω(j−1),i

=
k∏
i=1

J∏
j=1

{
f(dj; β)αj [1− f(dj; β)](1−αj)

}ω(j−1),i
(4)

Thus, in this “likelihood”, every participant has the same vector of outcomes, quantified

by α, but each participant has a different set of weights. The posterior distribution of β is
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recursively updated with each new participant, which produces a new set of weights, and we

repeat this process for all N participants. From this one simulation of N participants, we

have generated the operating characteristics of the CRM. Specifically, if dose ` is the true

MTD, then ω`N is the estimate of the PCS, and
∑N

i=1 ω`i is the estimated expected number

of participants assigned to dose `.

Let us now examine this algorithm with our previous example. Recall that we have a study

of J = 6 doses with a target DLT probability of θ = 0.25, and that dose 4 is the true MTD.

We choose to use the CRM with the power model and adopt a skeleton π = (0.03, 0.11, 0.25,

0.42, 0.58, 0.71) and vector of true DLT probabilities α = (0.01, 0.03, 0.11, 0.25, 0.41, 0.57),

which is consistent with π. If we give β a normal prior distribution with mean 0 and

variance 1.00, then we have the a priori weights ω10 = 0.251, ω20 = 0.133, ω30 = 0.150, ω40 =

0.186, ω50 = 0.122, and ω60 = 0.158, where ωj0 is the a priori mass in interval Bj. These

values are the weights assigned to the first participant.

If we enroll participants in cohorts of size 1, then we use Equation (4) with these weights to

produce a posterior distribution for β. For each dose j, we now compute the a posteriori mass

in Bj, giving us new weights ω11 = 0.173, ω21 = 0.173, ω31 = 0.217, ω41 = 0.201, ω51 = 0.138,

and ω61 = 0.098. These values are the weights assigned to the second subject. This process

continues with each consecutive participant; weights for the first 25 participants can be

found in Table 1. After 25 participants, the final updated weights, which are the weights

for the hypothetical 26th participant, are the final probabilities that each dose is selected

as the MTD. Thus, for dose 4 (the true MTD), the weight ω26,4 = 0.626 is the estimated

PCS with 25 participants. Moreover, the final row in Table 1 is the sum of the weights for

each dose across all 25 participants, which provides an estimate of the expected number of

participants that would be assigned to each dose. Thus, for this design, we expect that 10

or 11 participants would be assigned to the MTD.
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The CRM is also often designed with a limit on escalation, whereby a dose cannot be as-

signed to a new participant unless all lower doses have been assigned to previous participants.

Such a restriction could be applied to our method by simply adding the weights of doses

that cannot be currently assigned to the weight of the highest dose that can be assigned.

With this restriction, for example, row 1 in Table 1 would have a 1.000 for dose 1 and 0.000

for all other doses, while row 2 in Table 1 would have a value of 0.727 for dose 2 and 0.000

for doses 3-6 (dose 1 would be unchanged).

[Table 1 about here.]

We note that our description assumed that dose assignments were done sequentially with

each individual participant. However, mostly due to historical references to the 3+3 design2,

the CRM is sometimes implemented to enroll participants in cohorts of three participants,

with each participant in the cohort assigned to the same dose. Our method is able to

accommodate this feature by simply giving each participant in the cohort the same weights

before computing the posterior distribution for β and updating the weights, rather than

updating the weights after each individual participant. Thus, our method is able to quickly

examine the impact that cohort size has on the CRM operating characteristics, with only

one simulation necessary for each cohort size.

Furthermore, appropriate sample sizes for Phase I trials using the CRM have been tradi-

tionally based on extensive simulation studies, although approximations have been published

recently by both Cheung14, who uses PCS as a metric, and Braun15, who uses posterior

credible interval length as a metric. The elegance of our proposed method lies in its ability

to quickly determine PCS after every consecutive participant, so that PCS can be estimated

for a multitude of sample sizes in one simulation, with computations that are faster and do

not require approximations used Cheung and Braun.

More generally, our method applies to any design parameter whose “optimal” value is
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traditionally calibrated through simulation. For example, Lee and Cheung20,21 present a

systematic way of calibrating values for both the skeleton and model parameter prior vari-

ance, but both algorithms eventually incorporate simulation into their approach. Instead,

our method could be used to replace the simulation step in each algorithm and promote

greater use of their methods in the design of actual Phase I trials.

Last, our method is able to quickly assess any stopping rule that is based upon accumulated

dose assignments. For example, if the lowest dose is assigned to several participants, this may

suggest in reality that all doses are too toxic and enrollment should be paused or the study

should end. Or, further accrual could be terminated once a specific number of participants

are all assigned the same dose, which is likely the dose selected as the MTD. Examination

of a stopping rule is presented in conjunction with the hypothetical trial designed in Section

4.

3.2 Lack of Consistency Between Skeleton and True DLT probabilities

Our method hinges on the assumption that the true DLT probabilities examined are consis-

tent with the selected skeleton. Thus, one must first select a skeleton and then select a set

of true DLT probabilities that are consistent with that skeleton. Although such a process

confirms that the CRM will eventually converge its dose assignments to the MTD, often

studies are designed in reverse, i.e. the true DLT probabilities are selected first and then a

skeleton is examined with those true DLT probabilities; see James et al.22 for an example.

Nonetheless, if one has a specific vector of true DLT probabilities to examine, a given

skeleton that is inconsistent can be modified to become consistent using the following

algorithm:

(1) From the vector α of true DLT probabilities, determine which dose is the MTD; denote

this dose as `;
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(2) From the vector π of skeleton DLT probabilities and target DLT probability θ, compute

the intervals B1,B2, . . . ,BJ as described in Section 2.2; denote interval B` = (b`, b`+1);

(3) Determine the values β∗1 , β
∗
2 , . . . , β

∗
J as described in Section 2.2;

(4) For j = 1, 2, . . . J , compute an indicator of consistency, i.e. determine if β∗j ∈ B`;

(5) If all doses indicate consistency, then stop and use current skeleton.

(6) If at least one dose indicates lack of consistency:

(a) For k = 1, 2, . . . , `− 1, update β∗k = b` + (β∗` − b`)k/`;

(b) For k = `+ 1, `+ 2, . . . , J , update β∗k = β∗` + (b`+1 − β∗` )(k − `)/(J − `+ 1);

(c) For j = 1, 2, . . . , J , update the dose value dj that solves αj = f(dj; β
∗
j ) and convert

dj to the corresponding skeleton value πj;

(7) Repeat steps (2)-(6) until consistency occurs for all doses.

In step (6a), we consider doses lower than the true MTD. We replace their corresponding

value of β∗k with the expected value of the kth of (`−1) order statistics drawn uniformly over

the interval (b`, β
∗
` ), which is simply the shifted and scaled mean of a Beta random variable.

Likewise, for doses higher than the MTD, in step (6b) we replace their corresponding value

of β∗k with the expected value of the (J−k)th of (J−`) order statistics drawn uniformly over

the interval (β∗` , b`+1), which is also a shifted and scaled mean of a Beta random variable.

We then derive the skeleton values that correspond to these updated values and repeat the

process until we generate a skeleton that is consistent with the desired vector of true DLT

probabilities. Convergence usually occurs within one or two iterations.

Recall in our earlier example that we had a skeleton π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71).

If the true DLT probabilities were α = (0.04, 0.09, 0.18, 0.26, 0.40, 0.70), this skeleton would

not be consistent because of the values assigned to doses 1, 2, 3, and 6. The greatest impact

is from α3, which hampers the ability of the CRM to differentiate between whether dose 3 or
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4 is the MTD. After two iterations of the algorithm above, we create the modified skeleton

π = (0.10, 0.19, 0.32, 0.42, 0.58, 0.83) which is now consistent with α.

4. Application to Design of a New Trial

We now present an application of our method in the design a Phase I trial. Our trial setting

is one presented in Infante, et al.23, which is a Phase I trial of eleven doses of LCL161, a

promoter of cancer cell death, in participants with advanced solid tumors. Based upon the

trial summary data presented in the manuscript, which collapsed the six lowest doses into a

single dose, we assume our trial has a more manageable set of six doses. At the end of the

actual study, the investigators decided that the fourth dose was the recommended Phase II

dose, and we will assume this dose is the true MTD. The original study targeted a desired

DLT probability between 0.16 and 0.33, so we have selected a target of θ = 0.25. Thus, we

assume the true DLT probabilities are α = (0.01, 0.03, 0.11, 0.25, 0.41, 0.57). We also assume

that the maximum planned sample size is N = 30.

Using the getprior function in the R library dfcrm, the code getprior(0.08, 0.25, 3, 6)

produces a skeleton of π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71) which happens to be consistent

with α. The value of 0.08 used in the function is one we use in practice to produce skeleton

values that are reasonably spaced so as to provide a distinct a priori MTD. We model

the association between dose and the probability of DLT with the power model whose

model parameter, β, has a log-normal distribution with log(β) having mean 0 and standard

deviation σ. Our first goal is to determine an appropriate value for σ. One approach21 is

to find the value of σ, among a grid of values, that leads to nearly equal prior probability

placed on each dose being the MTD. Using this approach produces a value of σ = 1.00; note

that the default value in the titecrm function in the R library dfcrm is σ =
√

1.34 = 1.16.

However, because of the speed of our method, it is possible to quickly find an appropriate

value for σ that makes PCS as large as possible. Among the 141 candidate values in
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(0.70, 0.71, . . . , 2.10), we found that any value between 0.73 and 0.89 led to the largest value

of PCS; this search took 18 seconds on a MacBook Pro with a 2.8 GHz processor with 16 GB

of memory. We also ran 5,000 simulations for each candidate value of σ using the crmsim

function in the R library dfcrm; this search took 6.3 hours. Among the candidate values

of σ, the difference in PCS computed from our method and traditional simulations was no

more than two percentage points. Moreover, the two methods differed by no more than two

participants assigned to the true MTD by the end of the study among all values of σ, with

88% of values for σ having a difference of no more than one subject. Thus, we have very

strong evidence for the concordance of operating characteristics of our method and those

produced with traditional simulations. Furthermore, we have conclusive evidence that our

method is valid for any reasonable value of σ, even though the consistency of the CRM was

founded in maximum likelihood (frequentist) methods.

At this point in our design, we adopt σ = 0.85 and wish to determine how the operating

characteristics of the CRM might vary among other skeletons, each that is consistent with α.

We do this by first randomly selecting with equal probability one of doses 2,3,4, and 5 to be

the a priori MTD. For the a priori MTD, we then select a DLT probability randomly in the

interval (0.20, 0.30), which is five percentage points on either side of our target θ = 0.25. We

then select ordered DLT probabilities uniformly from the intervals (0.05, 0.20) and (0.30, 0.95)

for doses below and above the a priori MTD, respectively. The resulting skeleton is then

assessed for consistency; if it is not consistent, it is modified using the algorithm in Section

3.2.

Using our method, we were able to examine 1,000 skeletons in just over two minutes. In

contrast, examining these 1,000 skeletons via 5,000 simulations each took nearly two days.

Figure 1 contains boxplots of the difference in both PCS and number of participants assigned

to the MTD after 30 participants among the 1,000 skeletons used with the two methods. In
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Figure 1, although there are differences among a few skeletons, for a majority of skeletons,

we have excellent concordance between the two methods, again providing strong evidence

that our method replicates the results produced in traditional simulations.

[Figure 1 about here.]

For a given skeleton and value for σ, we can also examine the operating characteristics

for our design across many possible vectors of true DLT probabilities, as long as each is

consistent with our skeleton. The consistency of the CRM described in Section 2.2 implies

that once the skeleton and the location of the MTD are specified, each dose has an interval

of probabilities in which its true DLT probability must exist. For our setting, those intervals

are I1 = (0.00, 0.01), I2 = (0.01, 0.06), I3 = (0.06, 0.17), I4 = (0.17, 0.33), I5 = (0.33, 0.50),

I6 = (0.50, 0.65), for doses 1 through 6, respectively. For each dose, we drew 1,000 DLT

probabilities uniformly from its corresponding interval to produce 1,000 vectors for α and

used our method to compute the operating characteristics for each of those 1,000 vectors

with a sample size of 30 participants. See Figure 2 for distributions of PCS and expected

numbers of participants assigned to the MTD and doses higher than the MTD.

[Figure 2 about here.]

Because our method is able to compute PCS and number of subjects assigned to the

MTD after each consecutive participant, determining an appropriate sample size can also

be done quickly. Across the 1,000 vectors of true DLT probabilities just examined, we used

our method to compute PCS for any sample size up to 100 participants to determine the

sample sizes necessary for producing PCS of both 0.70 and 0.80 across many possible true

settings. Figure 3 presents boxplots of the sample sizes that provide PCS of 0.70 and 0.80

among the 1,000 settings examined; we note that such a plot would be nearly impossible to

provide using traditional simulations. The figures provide a range of sample sizes that could

be proposed, and perhaps the median could be suggested as the final sample size, rather
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than one sample size generated from one specific value for α. We note that, in a handful

of settings, we compared our sample sizes to those generated from a traditional simulation

study (results not shown) to confirm the accuracy of our results, as verifying all 1000 settings

would have required a prohibitive amount of computational expense.

[Figure 3 about here.]

As a reference, we compared our sample sizes to those resulting from the methods of Che-

ung14, which are contained in the function getn in the titecrm library. This function requires

the user to supply an odds ratio that summarizes the pattern in the true DLT probabilities,

which becomes less and less accurate as the true DLT probabilities deviate from a linear

pattern on a log-odds scale. For example, when α = (0.01, 0.03, 0.17, 0.20, 0.45, 0.58), whose

values are summarized well with an odds ratio of 2.35, using the getn function produced sam-

ple sizes of 32 and 51 for PCS of 0.70 and 0.80, which are close to 33 and 49, the corresponding

sample sizes generated by our method. In contrast, whenα = (0.01, 0.03, 0.15, 0.27, 0.48, 0.61),

the best fitting odds ratio is 2.43, which leads to sample sizes of 30 and 48 using the getn

function, but actually requires sample sizes of 46 and 75 based upon our method, for PCS

of 0.70 and 0.80, respectively.

We would also like to assess the impact of a safety stopping rule that halts accrual once

five participants have been assigned to the lowest dose. If the vector of true DLT rates is α =

(0.28, 0.36, 0.50, 0.67, 0.83, 0.90), the first stopping rule leads to a median of 10 enrolled par-

ticipants before the stopping criterion is met. This value of 10 compares favorably to the value

of 11 participants that was produced from 5,000 simulations. Thus, the study is expected to

halt enrollment quite early and potentially terminate after approximately one-third of the

planned accrual. If we increase the true DLT rates to α = (0.38, 0.48, 0.58, 0.68, 0.78, 0.88),

the median number of participants drops further to eight participants for both our method

and traditional simulations.
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We emphasize that our method assumes that the skeleton and the vector of true DLT

probabilities are consistent with each other. In practice, it is common for individuals to

select one skeleton and then assess the operating characteristics for a handful of vectors

of true DLT probabilities, without any consideration of consistency. In fact, it is likely not

possible to find one skeleton that would be consistent with all the vectors of true DLT

probabilities. We now seek to compare the operating characteristics of our design with those

of traditional simulations when the skeleton is not consistent for all vectors of true DLT

probabilities examined.

Continuing with our same skeleton and prior standard deviation, we consider seven vectors

of true DLT rates, whose lack of consistency is quantified as follows. As explained in Section

3.2, if dose ` ∈ {1, 2, . . . , J} is the MTD, there is a corresponding interval B` = (β1, β2) of

values for the model parameter. Consistency for the CRM will occur if β∗j ∈ B` for every

dose, where β∗j is the value of the model parameter that mades the modeled DLT probability

for dose j equal to its true DLT probability. We define the measure of non-consistency

φNC =
∑

j:β∗
j<β1

(β∗j − β1)2 +
∑

j:β∗
j>β2

(β∗j − β2)2,

which is a sum of Euclidean distances of each β∗j from the interval B`, depending on whether

β∗j is to the left or right of B`. By definition φNC = 0 when consistency exists.

Table 2 summarizes how our measure of non-consistency is related to the differential

between traditional simulations and our method in their values of both PCS and the average

proportion of subjects assigned to the MTD. In scenarios 1 and 2, in which dose 4 is the MTD,

we see that our method overestimates the operating characteristics of the CRM because it

is unable to replicate the fact that dose 5 is selected as the MTD and is assigned more

often in traditional simulations. In scenarios 3 and 4, although the degree of non-consistency

is greater than in scenarios 1 and 2, we see our method produces operating characteristics

comparable to traditional simulations. In contrast, in scenarios 5 and 6, we now have the
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MTD at dose 3, although the DLT probability of dose 2 is also close to the target of 0.25. In

both of these scenarios, our method places greater weight on dose 2 than on dose 3, while

traditional simulations do the same, but to a lesser degree. Finally, in scenario 7, we see there

is little difference between the DLT probabilities of doses 2 and 3, although dose 2 is the

MTD. Thus, traditional simulations are selecting and assigning dose 3 as the MTD about

as often as dose 2, while our method greatly prefers dose 2 to dose 3.

[Table 2 about here.]

In summary, we see that the amount of non-consistency does not necessarily predict

whether our method will over- or under-estimate the operating characteristics of the CRM,

nor by how much discrepancy will occur. In scenario 7, we see the greatest amount of

non-consistency and our method vastly over-estimates both the PCS and the proportion

of participants assigned to the MTD. However, in scenarios 5 and 6, which have less non-

consistency than scenario 7, our method now underestimates both PCS and the proportion of

participants assigned to the MTD. Moreoever, in scenarios 3 and 4, although non-consistency

exists, the performance of our method is actually comparable to traditional simulations.

5. Concluding Remarks

We have developed methodology that reduces the need for simulations to determine common

operating characteristics of the CRM. From our method, we can develop several summary

measures, including PCS, the average number of participants assigned to each dose, desired

sample size, and the average dose value assigned to each patient. We have also developed

methods that produce a skeleton that is compatible with a given vector of true DLT prob-

abilities so that the CRM will be consistent. However, two challenges to our method are

(i) the inability to estimate the probability of stopping early as is done in traditional

simulations, and (ii) the need for consistency between the skeleton and vector of true DLT
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probabilities. With regard to the latter limitation, we have attempted to provide one metric

for the degree of non-consistency, but it was unable to predict the differential between

operating characteristics of our method and traditional simulations. We are pursuing different

approaches for quantifying non-consistency that better inform our method and potentially

allow direct adjustment of any over- or under-estimation of PCS.

Cheung and Chappell17 developed a weaker definition of consistency based upon the

expectation that the CRM will do well whenever the true DLT probabilities are sufficiently

steep around the MTD. In general, for a given skeleton, their methods allow for a broader

set of true DLT probabilities. However, a crucial component of our method is the consistency

intervals B1,B2, . . . ,BJ , which are not part of the weaker consistency definition. As a result,

our method is not necessarily applicable to any vector of true DLT probabilities that meet

the weaker consistency definition, but not the stronger definition, which we confirmed using

the settings presented in Section 4 (results not shown).

We expect that our method will prove impactful beyond the traditional CRM and will be

useful for any Bayesian adaptive design that has foundations in the CRM. This includes the

bivariate CRM (bCRM)24, the partial order CRM (PO-CRM)25, the CRM with Bayesian

model averaging (BM-CRM)26, the time-to-event CRM (TITE-CRM)27, and the two-agent

combination design of Braun and Jia28. All of these approaches are even more computation-

intensive than the original CRM, and we expect that our method could provide even greater

computational savings over traditional simulations when determining operating characteris-

tics for these designs.

Nonetheless, general use of our method remains an open problem to solve. For example,

one of the modifications to the CRM proposed by Neuenschwander, et al.29 was to replace

the fixed value of the intercept in the logistic model to instead be a parameter, α with its

own prior distribution, so that both the intercept and the slope were estimated through
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their posterior distributions. Through a log-log transformation to the power model, we have

log[− log(pj)] = β + log[−log(dj)], which can be generalized to the two-parameter model

log[− log(pj)] = β + αlog[−log(dj)], where now α serves as a slope parameter. For either

model, we can compute the intervals B1,B2, . . .BJ for a given value of α. Thus, the intervals

will change as α changes, making it possible to find joint bivariate regions for (α, β) for

each dose, although it is unclear how those regions relate to the requirement of consistency

necessary for our method. We also continue to develop a process for adjusting our method

directly for non-consistency of the skeleton and vector of true DLT probabilities so that PCS

and assignment to the true MTD better reflect what results from simulations.

Through our work, we have also discovered in practice that there is a general lack of

appreciation that the skeleton and the vector of true DLT probabilities should be selected

in relationship to each other so that consistency of the CRM is maintained. This issue has

been examined in greater detail30,31, but the message has fallen mostly on deaf ears. Instead,

most applications of the CRM first identify the skeleton and the true DLT probabilities

independent from each other and then examine the operating characteristics via simulation,

without any consideration that the CRM may not be consistent in the first place. Such a

practice needs to be eliminated, and can be mitigated with our proposed algorithm.
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Appendix

1. R function for computing operating characteristics of CRM; example found at end of

function

############## START FUNCTION #############

crm_oc <- function(my_skel , ptox_true , theta , Nsubj , cohort_size , sigma ,

start_dose=1, restrict=T, d1_maxn=Nsubj , cum_maxn=Nsubj)

{

#This function computes operating characteristics for the CRM for a given

#set of true DLT rates and design parameters.

#Currently the function only uses the power (empiric) model

#my_skel = vector of DLT probabilities

#ptox_true = vector of true DLT probabilities

#theta = targeted DLT probability

#Nsubj = maximum number of participants to enroll

#cohort_size = number of participants enrolled together as a cohort

#sigma = prior standard deviation for model parameter

#start_dose = dose assigned to first participant

#restrict = restrict escalation from untried doses

#d1_maxn = number of participants assigned to dose 1 to invoke stopping

#cum_maxn = number of particpants assigned to same dose to invoke stopping

#Function to determine which dose has largest weight

get_maxw <- function(rownum) (1: ndose)[w[rownum ,]== max(w[rownum ,])]

#Likelihood function used for posterior computations

llh <- function(beta)

{

llh <- 1

for (i in 1: length(Yout))

{

p <- Dout[i]^exp(beta)

llh <- llh*p^(Wout[i]*Yout[i])*(1-p)^( Wout[i]*(1-Yout[i]))

}

llh*dnorm(beta , 0, sigma)
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}

#Function to compute consistency intervals

get.consist.int <- function(my_skel , theta)

{

zz <- function(beta , i, dd, theta)

dd[i]^exp(beta) + dd[i+1]^ exp(beta) - 2*theta

ndose <- length(my_skel)

lb <- -Inf

for (i in 1:(ndose -1))

lb <- c(lb, uniroot(zz, interval=c(-100,100), i=i, theta=theta , dd=my_skel)$root)

ub <- c(lb[2: ndose], Inf)

list(lb=lb, ub=ub)

}

#Number of doses

ndose <- length(my_skel)

#Computing bounds on consistency intervals

ci <- get.consist.int(my_skel , theta)

#Computing prior mass for each interval

w <- pnorm(ci$ub , 0, sigma) - pnorm(ci$lb , 0, sigma)

if (restrict ==T) w <- as.numeric ((1: ndose )== start_dose)

w <- matrix(rep(w, cohort_size), nrow=cohort_size , byrow=T)

#Run computations for each subject

ntot <- cohort_size

while (ntot <= Nsubj)

{

Wout <- c(t(w))

Yout <- rep(ptox_true , ntot)

Dout <- rep(my_skel , ntot)

pm <- rep(0, ndose)
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for (k in 1: ndose)

pm[k] <- integrate(llh , ci$lb[k], ci$ub[k])$value

new_w <- pm/sum(pm)

if (restrict ==T)

{

currmax <- get_maxw(ntot)

newmax <- min(ndose , currmax +1)

new_w[newmax] <- sum(new_w[newmax:ndose])

new_w[(1: ndose)>newmax] <- 0

}

w <- rbind(w, matrix(rep(new_w, cohort_size), nrow=cohort_size , byrow=T))

ntot <- ntot+cohort_size

}

pcs <- w[seq(1, Nsubj+cohort_size , by=cohort_size),][-1,]

rownames(pcs) <- 1:( Nsubj/cohort_size)

colnames(pcs) <- paste("Dose" ,1:ndose ,sep="")

nassn <- apply(w[-(Nsubj +(1: cohort_size)),], 2, cumsum)

nassn <- nassn[seq(cohort_size , Nsubj , by=cohort_size),]

rownames(nassn) <- 1:( Nsubj/cohort_size)

colnames(nassn) <- paste("Dose" ,1:ndose ,sep="")

nstp_tox <- (1: Nsubj )[apply(w[1:Nsubj ,], 2, cumsum )[,1]>=d1_maxn]

nstp_tox <- ifelse(length(nstp_tox)==0, Nsubj , nstp_tox)

nstp_cum <- apply(w[1:Nsubj ,], 2, cumsum)>=cum_maxn

nstp_cum <- row(nstp_cum)*nstp_cum

nstp_cum <- (nstp_cum ==0)*Nsubj + (nstp_cum >0)*nstp_cum

nstp_cum <- min(apply(nstp_cum , 2, min))

list(pcs=pcs[nrow(pcs),], nassn=nassn[nrow(nassn),],

nstp_tox=nstp_tox , nstp_cum=nstp_cum , accum_pcs=pcs , accum_nassn=nassn)

}

############## END FUNCTION #############

################## EXAMPLE #################

my_skel <- c(0.03, 0.11, 0.25, 0.42, 0.58, 0.71)
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ptox_true <- c(0.01, 0.03, 0.11, 0.25, 0.41, 0.57)

theta <- 0.25

Nsubj <- 30

cohort_size <- 2

sigma <- 0.85

my_oc <- crm_oc(my_skel , ptox_true , theta , Nsubj , cohort_size , sigma ,

start_dose=1, restrict=T, d1_maxn=5, cum_maxn =10)

This article is protected by copyright. All rights reserved.



Assessing the CRM Without Simulations 27

2. R function for assessing skeleton for consistency and modifying, if necessary; example

found at end of function

############## START FUNCTION #############

consist_skel <- function(my_skel , ptox_true , theta)

{

#This function assesses the consistency of a given skeleton and vector

#of true DLT probabilities; f consistency does not exist ,

#recursively develops consistent skeleton

#my_skel = vector of DLT probabilities

#ptox_true = vector of true DLT probabilities

#theta = targeted DLT probability

#Algorithm to compute consistency interval bounds

get.consist.int <- function(my_skel , theta)

{

zz <- function(beta , i, dd, theta)

dd[i]^exp(beta) + dd[i+1]^ exp(beta) - 2*theta

ndose <- length(my_skel)

lb <- -Inf

for (i in 1:(ndose -1))

lb <- c(lb, uniroot(zz, interval=c(-100,100), i=i, theta=theta , dd=my_skel)$root)

ub <- c(lb[2: ndose], Inf)

list(lb=lb, ub=ub)

}

#Determine which dose is the true MTD

ndose <- length(my_skel)

delta <- abs(ptox_true -theta)

mtd_true <- (1: ndose)[ delta==min(delta)]

#Computing bounds on consistency intervals

ci <- get.consist.int(my_skel , theta)
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#Check for consistency

mu1 <- cbind(my_skel^exp(ci$ub[mtd_true]), my_skel^exp(ci$lb[mtd_true ]))

consist <- sum(ptox_true >=mu1[,1] & ptox_true <=mu1 [ ,2])== ndose

while(!consist)

{

#Compute parameter value for each dose so that skeleton and truth are equal

beta_star <- log(log(ptox_true)/log(my_skel))

#Determine how many doses are above and below the true MTD

n_below <- mtd_true -1

n_above <- ndose -(n_below +1)

beta_below <- beta_above <- NULL

a_below <- a_above <- b_below <- b_above <- NULL

if (n_below >0)

{

a_below <- ci$lb[mtd_true]

b_below <- beta_star[mtd_true]

beta_below <- (b_below -a_below)*(1:n_below)/(n_below +1) + a_below

}

if (n_above >0)

{

a_above <- beta_star[mtd_true]

b_above <- ci$ub[mtd_true]

beta_above <- (b_above -a_above)*(1:n_above)/(n_above +1) + a_above

}

beta_star <- c(beta_below , beta_star[mtd_true], beta_above)

#Compute skeleton corresponding to beta values

my_skel <- exp(log(ptox_true)/exp(beta_star))

#Determine if consistency now exists for each dose

ci <- get.consist.int(my_skel , theta)
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mu1 <- cbind(my_skel^exp(ci$ub[mtd_true]), my_skel^exp(ci$lb[mtd_true ]))

consist <- sum(ptox_true >=mu1[,1] & ptox_true <=mu1 [ ,2])== ndose

}

my_skel

}

############## END FUNCTION #############

################## EXAMPLE #################

my_skel <- c(0.03, 0.11, 0.25, 0.42, 0.58, 0.71)

theta <- 0.25

#Vector of true DLT rates where skeleton is consistent

ptox_true1 <- c(0.01, 0.03, 0.11, 0.25, 0.41, 0.57)

new_skel1 <- consist_skel(my_skel , ptox_true1 , theta)

print(new_skel1)

#Two other vectors of true DLT rates where skeleton is non -consistent

ptox_true2 <- c(0.05, 0.08, 0.12, 0.18, 0.25, 0.35)

new_skel2 <- consist_skel(my_skel , ptox_true2 , theta)

print(new_skel2)

ptox_true3 <- c(0.15, 0.25, 0.35, 0.45, 0.55, 0.65)

new_skel3 <- consist_skel(my_skel , ptox_true3 , theta)

print(new_skel3)
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Figure 1. Boxplots of differences in operating characteristics of a CRM design with 30
participants produced by a traditional simulation study of 5,000 simulations and the proposed
method over 1,000 different consistent skeletons. The vector of true DLT probabilities is α =
(0.01, 0.03, 0.11, 0.25, 0.41, 0.57). The upper plot presents the difference in the probability of
correct selection (PCS) of the maximum tolerated dose (MTD); the middle plot presents
the difference in the average number of participants assigned to the MTD; the lower plot
presents the difference in the average number of participants assigned to doses above the
MTD. Difference is computed as result from proposed method minus result from traditional
simulations.
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Figure 2. Boxplots of operating characteristics of a CRM design with 30 participants
produced by the proposed method over 1000 different consistent vectors of true DLT
probabilities using a skeleton o π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71). The upper plot presents
the probability of correct selection (PCS) of the maximum tolerated dose (MTD); the middle
plot presents average number of participants assigned to the MTD; the lower plot presents
the average number of participants assigned to doses above the MTD.
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Figure 3. Boxplots of maximum sample sizes required for PCS of 0.70 (upper plot) and
0.80 (lower plot) across 1000 different vectors of true DLT probabilities of a CRM design for
a study of six doses with a skeleton of π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71) and vector of
true DLT probabilities α = (0.01, 0.03, 0.11, 0.25, 0.41, 0.57).
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Table 1
Posterior probabilities placed on each of six doses during a Phase I trial using the CRM. Dose 4 is the true MTD
and is indicated by the vertical double lines. The skeleton is π = (0.03, 0.11, 0.25, 0.42, 0.58, 0.71) and the vector of
true DLT probabilities is α = (0.01, 0.03, 0.11, 0.25, 0.41, 0.57). Each row corresponds to the weight that would be

produced after that subject’s data are incorporated into the posterior calculations. The dose with the largest weight
would be assigned to the next subject. The sum of the first 25 rows provides information on the expected number of

participants assigned to each dose in a trial.

Participant Dose Number
ID 1 2 3 4 5 6

1 0.244 0.167 0.185 0.166 0.119 0.118
2 0.173 0.173 0.217 0.201 0.138 0.098
3 0.122 0.170 0.241 0.234 0.151 0.082
4 0.086 0.161 0.260 0.263 0.161 0.068
5 0.061 0.149 0.275 0.291 0.168 0.056

6 0.043 0.135 0.286 0.317 0.172 0.046
7 0.030 0.122 0.294 0.341 0.175 0.038
8 0.021 0.109 0.299 0.364 0.176 0.031
9 0.015 0.096 0.302 0.385 0.176 0.026
10 0.011 0.085 0.304 0.405 0.174 0.021

11 0.008 0.074 0.304 0.424 0.173 0.017
12 0.005 0.065 0.303 0.442 0.170 0.014
13 0.004 0.057 0.301 0.460 0.167 0.011
14 0.003 0.049 0.299 0.476 0.164 0.009
15 0.002 0.043 0.295 0.491 0.161 0.008

16 0.001 0.037 0.292 0.506 0.157 0.006
17 0.001 0.032 0.287 0.521 0.153 0.005
18 0.001 0.028 0.283 0.534 0.150 0.004
19 0.000 0.024 0.278 0.547 0.146 0.003
20 0.000 0.021 0.273 0.560 0.142 0.003

21 0.000 0.018 0.268 0.572 0.139 0.002
22 0.000 0.016 0.263 0.584 0.135 0.002
23 0.000 0.014 0.258 0.595 0.131 0.002
24 0.000 0.012 0.253 0.606 0.128 0.001
25 0.000 0.010 0.248 0.616 0.125 0.001

26 0.000 0.009 0.243 0.626 0.121 0.001

Sum of
Rows 1-25 0.831 1.867 6.868 10.901 3.851 0.672
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Table 2
Comparison of operating characteristics between proposed method (New) and traditional simulations (Trad) when
the skeleton (0.03, 0.11, 0.25, 0.42, 0.58, 0.71) and the vector of true DLT probabilities α are not consistent with

each other. Seven scenarios of true DLT probabilities are presented in order of increasing level of non-consistency as
quantified by φNC .

Prob of Select Prop Assigned
At Below Above At Below Above

Scenario Method MTD MTD MTD MTD MTD MTD
1
α =(0.01, 0.06, 0.12, 0.21, 0.30, 0.45) New 0.68 0.15 0.17 0.47 0.38 0.15
φNC = 0.03 Trad 0.52 0.18 0.31 0.41 0.35 0.25

2
α =(0.01, 0.10, 0.12, 0.20, 0.35, 0.40) New 0.68 0.18 0.14 0.46 0.42 0.11
φNC = 0.12 Trad 0.55 0.20 0.25 0.42 0.37 0.21

3
α =(0.01, 0.03, 0.06, 0.12, 0.24, 0.48) New 0.59 0.36 0.05 0.38 0.59 0.03
φNC = 0.27 Trad 0.62 0.32 0.06 0.41 0.52 0.07

4
α =(0.01, 0.05, 0.07, 0.15, 0.30, 0.35) New 0.43 0.57 0.00 0.29 0.71 0.00
φNC = 0.38 Trad 0.43 0.50 0.07 0.30 0.64 0.06

5
α =(0.07, 0.16, 0.18, 0.26, 0.41, 0.46) New 0.31 0.69 0.00 0.25 0.75 0.00
φNC = 0.49 Trad 0.42 0.50 0.08 0.32 0.58 0.10

6
α =(0.09, 0.18, 0.20, 0.28, 0.43, 0.48) New 0.15 0.85 0.00 0.16 0.84 0.00
φNC = 0.66 Trad 0.34 0.61 0.05 0.28 0.65 0.08

7
α =(0.17, 0.26, 0.28, 0.36, 0.51, 0.56) New 0.70 0.12 0.17 0.53 0.22 0.26
φNC = 0.94 Trad 0.38 0.18 0.43 0.34 0.23 0.43
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