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ABSTRACT 

Severe cases of coronavirus disease 2019 (COVID-19) are regularly complicated by 

respiratory failure. While it has been suggested that elevated levels of blood neutrophils 
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associate with worsening oxygenation in COVID-19, it is unknown whether neutrophils are 

drivers of the thrombo-inflammatory storm or simple bystanders. To better understand the 

potential role of neutrophils in COVID-19, we measured levels of the neutrophil activation 

marker S100A8/A9 (calprotectin) in hospitalized patients and determined its relationship to 

severity of illness and respiratory status. Patients with COVID-19 (n=172) had markedly 

elevated levels of calprotectin in their blood. Calprotectin tracked with other acute phase 

reactants including C-reactive protein, ferritin, lactate dehydrogenase, and absolute 

neutrophil count, but was superior in identifying patients requiring mechanical ventilation. In 

longitudinal samples, calprotectin rose as oxygenation worsened. When tested on day 1 or 2 

of hospitalization (n=94 patients), calprotectin levels were significantly higher in patients who 

progressed to severe COVID-19 requiring mechanical ventilation (8039 ± 7031 ng/ml, n=32) 

as compared to those who remained free of intubation (3365 ± 3146, p<0.0001). In 

summary, serum calprotectin levels track closely with current and future COVID-19 severity, 

implicating neutrophils as potential perpetuators of inflammation and respiratory compromise 

in COVID-19. 

 

Serum calprotectin levels track closely with current and future COVID-19 severity, potentially 

implicating neutrophils as active perpetuators of inflammation and respiratory compromise in 

COVID-19. 
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INTRODUCTION 

Since December 2019, the outbreak of coronavirus disease 2019 (COVID-19) caused by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to hundreds of 

countries and territories and has been declared a global pandemic. Severe COVID-19 

results in death due to progressive hypoxemia, acute respiratory distress syndrome (ARDS), 

and multi-organ failure [1]. The role of the host response in this progression remains to be 

fully defined. 

 

S100A8 (myeloid-related protein 8/MRP8) and S100A9 (MRP14) are calcium-binding 

proteins that belong to the S100 family. They exist mainly together as a biologically-

functional heterodimer known as S100A8/A9 or calprotectin. Calprotectin is found in 

abundance in neutrophils, where it can account for almost two-thirds of soluble protein in the 

cytosol. Calprotectin may also be detected at low levels in monocytes, macrophages, 

platelets, and squamous epithelial cells [2]. Upon neutrophil activation or death, calprotectin 

is released extracellularly where it has microbicidal functions (via heavy-metal chelation) and 

also serves as a pro-inflammatory ligand for innate receptors such as receptor for advanced 

glycation endproducts (RAGE) and Toll-like receptor 4 (TLR4) [3]. Given its small size, easy 

diffusion between tissue and blood, and resistance to enzymatic degradation, calprotectin is 

a sensitive and dynamic marker of neutrophil activation anywhere in the body [4, 5]. High 

levels of calprotectin have been found in many types of infectious and inflammatory 

diseases—including sepsis, myocardial infarction, inflammatory bowel disease, lupus, and 

adult-onset Still’s disease—where it tracks closely with disease severity [6-10].  

 

While work to date exploring COVID-19 pathophysiology has focused especially on 

macrophages and their products such as interleukin-6 (IL-6) and IL-1β, it has also been 

observed that elevated levels of blood neutrophils associate with worsening oxygenation in 

COVID-19 [11-13]. Furthermore, our group and others have also revealed a potentially 

pathogenic role for neutrophil-derived extracellular traps (NETs) in COVID-19 [14, 15]. There 

remains though a paucity of information about neutrophil catalysts, checkpoints, and effector 

mechanisms in COVID-19—all of which could add actionable context to our understanding of 

the COVID-19 thrombo-inflammatory storm. Here, to better understand the potential role of 

neutrophils in COVID-19, we measured calprotectin in the blood of patients hospitalized with 

COVID-19 and determined its relationship to severity of illness and respiratory status. 

 

 

RESULTS AND DISCUSSION 
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Serum samples were obtained from 172 patients hospitalized with COVID-19 at a large 

academic hospital (Supplemental Table 1). In some cases, sera were stored at 4°C in the 

clinical laboratory for up to 48 hours before being frozen. Interestingly, we found that 

calprotectin levels are stable in both serum and plasma for up to six days at 4°C 

(Supplemental Figure 1), which is in line with past research on the topic [16]. As compared 

with serum samples from 47 healthy controls, the COVID-19 samples showed markedly 

higher levels of calprotectin (Figure 1A). For 36 patients, longitudinal sera were available. 

Nine of those patients showed a clinically meaningful change in oxygenation status during 

the period of collection (six worsening and three improving). Notably, calprotectin levels 

trended upward in the six patients for whom oxygenation worsened (Figure 1B). We next 

asked how calprotectin compared to commonly available clinical measurements. 

Specifically, we assessed potential correlations with C-reactive protein, ferritin, lactate 

dehydrogenase, absolute neutrophil count, absolute lymphocyte count, hemoglobin level, 

and platelet count. Calprotectin demonstrated a positive correlation with C-reactive protein 

(Figure 1C), ferritin (r=0.31, p=0.0002), lactate dehydrogenase (r=0.52, p<0.0001), absolute 

neutrophil count (Figure 1D), and platelet count (r=0.39, p<0.0001). There was no 

correlation with absolute lymphocyte count (Figure 1E), and a negative correlation with 

hemoglobin level (r=-0.34, p<0.0001). In summary, calprotectin is markedly elevated in the 

sera of patients with COVID-19 and may rise as clinical status deteriorates. 

 

We next determined each patient’s clinical respiratory status at the time calprotectin was 

measured. As compared with patients breathing room air, patients requiring mechanical 

ventilation had significantly higher levels of calprotectin (Figure 2A). Interestingly, 

differences were also appreciated between patients requiring noninvasive oxygen support 

(such as nasal-cannula oxygen) and mechanical ventilation (Figure 2A). In contrast, C-

reactive protein did not discriminate between patients requiring noninvasive oxygen support 

and those requiring mechanical ventilation (Figure 2B). To further evaluate the potential 

clinical utility of calprotectin, we performed receiver operating characteristic (ROC) curve 

analysis based on requirement for mechanical ventilation. As compared with C-reactive 

protein, ferritin, and lactate dehydrogenase, calprotectin had a superior area under the curve 

(Figure 2C). Beyond clinical respiratory status, oxygenation efficiency can also be measured 

by comparing pulse oximetry (SpO2) to the fraction of inspired oxygen (FiO2). We tested the 

correlation between calprotectin and SpO2/FiO2 ratio, and found a striking negative 

association (Figure 2D). A less robust association was also appreciated for C-reactive 

protein (Figure 2E). In summary, calprotectin levels strongly associate with severe 

respiratory disease requiring mechanical ventilation. 
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To confirm these findings, we also obtained plasma from 119 of the 172 patients. As 

compared with plasma samples from 50 healthy controls, the COVID-19 samples showed 

markedly higher levels of calprotectin (Supplemental Figure 2A). Furthermore, for the 

COVID-19 patients, plasma calprotectin demonstrated a distinct negative correlation with 

SpO2/FiO2 ratio (Supplemental Figure 2B), and positive correlations with C-reactive protein 

(Supplemental Figure 2C) and absolute neutrophil count (Supplemental Figure 2D). We 

also found positive correlations between calprotectin and markers of neutrophil extracellular 

trap (NET) release including cell-free DNA (Supplemental Figure 2E) and 

myeloperoxidase-DNA complexes (Supplemental Figure 2F). 

 

Finally, of the 172 patients with serum samples evaluated here, 94 had sera available from 

the first two days of their hospitalization. When some of the aforementioned correlation 

analyses were reanalyzed with just these 94 samples (Supplemental Figure 3), we found a 

strong negative correlation with SpO2/FiO2, and strong positive correlations with C-reactive 

protein and absolute neutrophil count. Most importantly, calprotectin levels were significantly 

higher in those individuals who required mechanical ventilation at any point during their 

hospitalization (n=32), as compared with those who did not (p<0.0001, Figure 2F). C-

reactive protein was also analyzed (when available on the same day as the calprotectin 

measurement) and was found to be predictive of any mechanical ventilation with a p-value of 

0.0054 (Figure 2G). Taken together, these data suggest a compelling relationship between 

neutrophil activation, as defined by serum calprotectin levels, and severe respiratory disease 

in COVID-19. 

 

In summary, we report markedly elevated levels of serum and plasma calprotectin in the 

majority of patients hospitalized with COVID-19. Furthermore, we found that high levels of 

serum calprotectin on day 1 or 2 of hospitalization tracked with a requirement for mechanical 

ventilation at any point during the admission, a finding that should be assessed in larger 

prospective cohorts. These data provide strong evidence in support of neutrophils as 

potential players in moderate-to-severe cases of COVID-19. 

 

Our study raises the need to investigate the specific form of neutrophil activation and/or cell 

death that floods COVID-19 blood with excess calprotectin. Tissue damage and neutrophil 

necrosis are potential sources of passive calprotectin release [17]. At the same, active 

calprotectin secretion has been documented upon stimulation of neutrophils with 

complement C5 and fMLP [18]. Engagement of neutrophil PSGL-1 by E-selectin can also 
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trigger neutrophils to actively release calprotectin in calcium ion-dependent fashion (TLR4 

and its downstream MyD88 and Rap1-GTP trigger release via this same mechanism) [19]. A 

newer consideration regarding active calprotectin release is NETosis [14, 20]. NETs are 

extracellular webs of DNA, histones, and microbicidal proteins that appear to perpetuate 

many types of lung disease including smoking-related disease, cystic fibrosis, and ARDS. 

NETs leverage calprotectin as an antimicrobial strategy against Candida [21] and Aspergillus 

[22], but, when left unchecked, NETs are also an important source of macrophage activation 

and microvascular occlusion. Whether passive calprotectin release in necrotic lung tissue or 

active release via NETosis (or another mechanism) is most important to COVID-19 

pathophysiology awaits further research. 

 

In addition to being an inflammatory marker, calprotectin may also have a direct role in the 

self-amplifying thrombo-inflammatory storm of COVID-19 via engagement and activation of 

innate immune sensors such as RAGE [23, 24] and TLR4 [25, 26]. Depending on the 

system, calprotectin has also been detected both upstream [27] and downstream [28] of IL-

6, which has emerged as a possible therapeutic target in COVID-19. As a key alarmin 

molecule of the immune system, calprotectin modulates the inflammatory response by 

recruiting leukocytes and stimulating cytokine secretion [29]. Calprotectin also induces 

reactive nitrogen and oxygen species [30, 31] and triggers microvascular endothelial cells to 

take on thrombogenic and pro-inflammatory phenotypes characterized by increased vascular 

permeability and synthesis of cytokines, chemokines, and adhesion molecules [29]. 

Furthermore, calprotectin is a potent stimulator of neutrophils themselves, promoting 

degranulation and phagocytosis [32, 33], as well as NETosis [34]. Intriguingly, crosstalk 

between neutrophils, platelets, and calprotectin appears to play a role in both arterial and 

venous thrombosis [34, 35], which are being increasingly identified as complications of 

COVID-19 [36, 37]. 

 

As we await definitive antiviral and immunologic solutions to the current pandemic, we posit 

that anti-neutrophil therapies [38-40] may be part of a personalized strategy for some 

individuals affected by COVID-19 who are at risk for progression to respiratory failure. In this 

context, calprotectin is well-positioned to be an early indicator of patients with COVID-19 

likely to progress to respiratory failure and who therefore require immunomodulatory 

treatment. 
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Figure 1:  Calprotectin in sera of COVID-19 patients and its association with clinical 

studies. A, Sera from COVID-19 patients (n=172) and healthy controls (n=47) were 

assessed for calprotectin (note log scale). COVID-19 samples were compared to controls by 

Mann-Whitney test; ****p<0.0001. B, For 36 patients, serum samples from two time points 

were available. Patients were grouped by whether their oxygenation was worsening, stable, 

or improving; *p<0.05 by paired Wilcoxon test. C-E, Calprotectin levels were compared to 

clinical laboratory results (when available on the same day as the research sample). 

Spearman’s correlation coefficients were calculated for C-reactive protein (n=138), absolute 

neutrophil count (n=139), and absolute lymphocyte count (n=139). 
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Figure 2:  Levels of calprotectin track closely with oxygenation status. A-B, Patients 

(n=172) were grouped by clinical status: room air (n=41), noninvasive supplemental oxygen 

(n=71), or mechanical ventilation (n=60). Levels of calprotectin and C-reactive protein were 

compared by Kruskal-Wallis test corrected by Dunn's test for multiple comparisons; *p<0.05 
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and ****p<0.0001. C, Receiver operating characteristic curves based on requirement for 

mechanical ventilation. D-E, Calprotectin (n=172) or C-reactive protein (n=137) were 

compared to SpO2/FiO2 ratio for each patient, and correlations were determined by 

Spearman’s test. F-G, For 94 patients, a calprotectin level was available from hospital day 1 

or 2. For 75 of the 94, a CRP level was also available. Patient were then grouped by whether 

they at any point required mechanical ventilation (vent ever, n=32) during their 

hospitalization. Groups were compared by Mann-Whitney test; **p<0.01 and ****p<0.0001. 

 

 


