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ABSTRACT
 
 

Human immunodeficiency virus (HIV), the cause of a decades-long pandemic 

responsible for over 30 million deaths and 38 million ongoing infections, establishes a 

chronic infection for which there is no cure. While the development of combination 

antiretroviral therapy (ART) has radically transformed the course of the pandemic, 

individuals living with HIV must maintain therapy for the remainder of their lives. This is 

the result of cells harboring latent HIV proviruses, which are stably integrated in the host 

cell DNA but remain transcriptionally silent. These latent proviruses are not targeted by 

ART and evade clearance by the host immune response, but can begin to express viral 

genes and re-establish an ongoing infection in the event of ART interruption. The leading 

theoretical framework to achieve an HIV cure is the “shock and kill” approach, in which 

latent proviruses are therapeutically reactivated to express viral genes and subsequently 

killed by the cytopathic effects of the virus or the host immune response.  

The latent reservoir of replication-competent HIV is found in a multitude of 

quiescent cell types residing in diverse tissues, including resting memory CD4+ T cells 

and hematopoietic stem and progenitor cells (HSPCs). Understanding the mechanisms 

regulating HIV latency and reactivation in quiescent cells will enable the development of 

targeted latency reversing agents (LRAs). Chapter 2 describes two modifications to in 

vitro cultures that independently maintain primary HSPCs in a quiescent state. These 

quiescent HSPCs are susceptible to HIV infection, but preferentially harbor latent 



 xiii 

proviruses that have a significantly reduced likelihood of spontaneous reactivation. Latent 

proviruses in quiescent cells are resistant to therapeutic reactivation by histone 

deacetylase inhibition or P-TEFb activation, but are responsive to NFkB activation. 

Collectively, this work provides a path forward to identify mechanisms contributing to 

latency and latency reversal in quiescent primary cells.  

In the event that a potent shock or sequential shocks successfully induce HIV gene 

expression in every cell harboring a replication-competent provirus, these cells need to 

be killed before the latent reservoir can be reseeded. Cytotoxic T lymphocytes (CTLs) are 

the main effectors of the adaptive immune system responsible for eliminating HIV-infected 

cells by recognizing HIV peptides presented by MHC-I on the cell surface. HIV evades 

these responses through the activity of the accessory protein Nef, which downregulates 

MHC-I by redirecting it to the lysosome instead of the plasma membrane. The work 

described in Chapter 3 led to the identification of concanamycin A (CMA) as a potent 

inhibitor of HIV Nef. CMA counteracted Nef at sub-nanomolar concentrations that did not 

interfere with lysosomal acidification or degradation and were non-toxic in primary cell 

cultures. CMA specifically reversed Nef-mediated downregulation of MHC-I, but not CD4, 

and cells treated with CMA showed reduced formation of the AP-1:Nef:MHC-I complex 

required for MHC-I downregulation. CMA restored expression of diverse allotypes of 

MHC-I in Nef-expressing cells and inhibited Nef alleles from divergent clades of HIV and 

SIV, including from primary patient isolates. Importantly, restoration of MHC-I in HIV-

infected cells was accompanied by enhanced CTL-mediated clearance of infected cells 

comparable to genetic deletion of Nef. Thus, CMA is a promising lead compound for 

therapeutic inhibition of Nef to enhance immune-mediated clearance of HIV-infected cells.  
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CHAPTER 1 

Introduction1 

 

Human immunodeficiency virus (HIV) is the etiologic agent of acquired 

immunodeficiency syndrome (AIDS) and the cause of a global pandemic responsible for 

approximately 700,000 deaths and 1.7 million new infections in 2019, over 32 million 

AIDS-associated deaths since the start of the pandemic, and approximately 38 million 

ongoing infections for which there is no cure1. HIV belongs to the family of viruses called 

retroviruses (Retroviridae), a unique and fascinating family of RNA viruses found 

throughout vertebrate life, characterized by the two defining features of their life cycle: 

reverse transcription and integration. The process of reverse transcription, where the viral 

genomic RNA is reverse-transcribed to genomic DNA by the enzyme reverse 

transcriptase, was believed to be impossible prior to the discovery of retroviruses2,3. While 

reverse transcription has since been described in other viruses, such as hepadnaviruses4 

and caulimoviruses5, the discovery of reverse transcriptase in retroviruses fundamentally 

transformed the field of microbiology6. Integration of the viral genome into the host cell 

DNA is unique to retroviruses and endows them with the capacity to establish persistent 

infections that can remain undetectable by the host immune response when the virus is 

 
1 Portions of this chapter were published previously: 
 
Painter Mark M., and Collins Kathleen L. (2019) HIV and Retroviruses. In: Schmidt, Thomas M. (ed.) 
Encyclopedia of Microbiology, 4th Edition. vol. 2, pp. 613-628. UK: Elsevier. 
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transcriptionally silent. Integration also implies the possibility of altering host cell gene 

expression, as is the case with oncogenic activation and tumor formation observed in 

some retroviruses. The beginning of this chapter aims to place the work described in 

Chapters 2-4 in the context of the existing knowledge of the biology of retroviruses, 

providing a broad overview focusing on the retroviral life cycle. Particular emphasis will 

be placed on human immunodeficiency virus type 1 (HIV), the retrovirus responsible for 

the greatest disease burden in humans and the focus of the research presented here. 

This chapter will conclude by introducing the specific topics to be explored in Chapters 2-

4, discussing the host immune response to HIV and the obstacles that stand in the way 

of curing HIV infection.  

 

Taxonomy and Classification 

 

All retroviruses share three genes that are essential to the viral life cycle: gag, pol, 

and env. Gag encodes the structural proteins required for virion formation, pol encodes 

the viral enzymes, and env encodes the transmembrane envelope protein, which 

mediates receptor binding and entry into the target cell. Retroviruses share a common 

genomic organization, in which Gag and a Gag-Pol polyprotein are generated via various 

mechanisms from the full-length genomic RNA (gRNA), and Env is produced from a singly 

spliced subgenomic RNA. The viral protease (Pro), an enzyme required for viral particle 

maturation and infectivity, is often referred to as part of the pol gene, although it can be 

produced from a separate open reading frame (ORF) from pol, or as part of gag. 

Retroviruses encoding only gag, pol, and env are considered simple retroviruses, while 
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those that encode additional genes, such as HIV, are known as complex retroviruses. 

The retrovirus family is divided into two subfamilies: orthoretrovirinae, which is further 

divided into six genera, including the lentiviruses, and spumaretrovirinae, which includes 

only the spumavirus genus7.  

 

Lentiviruses 

Lentiviruses are complex retroviruses encoding gag in one ORF and pro-pol in 

another. Production of the Gag-Pro-Pol polyprotein requires a ribosomal frameshift at the 

end of gag. Lentivirus particles assemble at the cell membrane and have distinctive 

conical cores, and the viral genome is approximately 9.3 kb in length. Lentiviruses include 

HIV-1 and HIV-2, SIV, caprine arthritis encephalitis virus, and Maedi-visna virus7. They 

encode several additional proteins, which vary among members of the genus. 

Lentiviruses are capable of infecting non-dividing cells and are named for the 

characteristically slow onset of the associated disease. HIV-1 and HIV-2 are the etiologic 

agents of acquired immunodeficiency syndrome (AIDS) and are the retroviruses 

responsible for the greatest disease burden in humans. 

 

 

Fig. 1.1: Diagram of the retroviral genomic RNA (gRNA) highlighting important features.2 The 
components of the gRNA are shown from 5’ to 3’. A 5’ methyl cap is present, as with all host mRNA 

 
2 All figures and data from figures throughout were generated by Mark M. Painter unless otherwise 
indicated in footnotes. 
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molecules. R is the repeated sequence found at both ends of the gRNA. U5 is the unique 5’ sequence 
containing an “att” site for integration. PBS is the primer binding site, an 18 nucleotide tRNA hybridization 
sequence which is complementary to the tRNA primer that initiates reverse transcription. The Psi element 
(Y) is the encapsidation signal for packaging of the gRNA. Gag, pol, and env are the coding regions of the 
retroviral proteins, and complex retroviruses have additional coding regions in this section of the genome. 
Ppt is the polypurine tract, the initiation site for plus-strand DNA synthesis. U3 is the unique 3’ sequence 
containing an “att” site for integration. A 3’ poly-A tail is present, as with all host mRNA molecules.  
 

Structure and Composition 

 

Genomic RNA and protein nomenclature 

The retroviral genome is packaged into viral particles as a dimer of single-

stranded, positive-sense, linear RNA molecules. The genomic RNA (gRNA) is produced 

by the host RNA polymerase II (Pol II) machinery and processed as a host mRNA, with 

addition of a 5’ methyl cap and a 3’ poly-A tail. The gRNA includes many important 

regulatory sequences, shown in Fig. 1.1. The coding region encodes the Gag, Pol, and 

Env polyproteins, which are further processed to produce the functional products listed in 

Table 1.18.  

 
Precursor Protein Abbreviation HIV-1 

Gag 
Matrix MA p17 
Capsid CA p24 
Nucleocapsid NC p9 

Pol 
Protease PR p10 
Reverse Transcriptase RT p65/p51 
Integrase IN p31 

Env 
Surface SU gp120 
Transmembrane TM gp41 

 

Table 1.1: Protein products common to all retroviruses. All retroviruses generate Gag, Pol, and Env 
precursor proteins, which are then cleaved to generate the functional protein products. These products are 
named in common for all retroviruses with the shown two-letter abbreviations, and the specific names for 
HIV-1 are also shown. 
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Fig. 1.2: Diagram of the mature retroviral virion. The essential components of mature retroviral virions 
are depicted, with the protein products labeled in groups according to their unprocessed precursor proteins, 
Gag, Pol, and Env.  
 

Structure of virions  

Retroviral virions are initially assembled when unprocessed Gag and Gag-Pol 

precursors multimerize within the cytoplasm or at the plasma membrane, which is likely 

mediated by initial interactions between Gag and dimerized gRNA9-12. The immature 

virion is spherical and appears translucent by electron microscopy. The virion matures 

when the viral protease (Pro) cleaves Gag and Gag-Pol to the functional products listed 

in Table 1.1. The mature virion is roughly spherical, but the cleaved CA forms a more 

ordered viral core around the highly condensed gRNA, which is coated with NC13,14. The 

viral particle typically contains 1500-2000 Gag precursors, with 5-10% as much Gag-Pol 

in HIV virions15,16. The capsid core is made up of primarily hexamers of CA, while some 
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pentamers stabilize the structure17. The capsid core is surrounded by a sphere of MA 

proteins, which is surrounded by a lipid bilayer envelope acquired during budding from 

the host cell membrane. The lipid envelope includes host transmembrane proteins as well 

as the heavily glycosylated viral SU and TM proteins, which exist as trimers18. SU is 

entirely extracellular, but remains associated with the envelope through interactions with 

the single-pass transmembrane TM protein19. The number of Env trimers varies among 

retroviruses, with lentiviruses having as few as 2-1018,20.  
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Retroviral Life Cycle 

 

 

Fig. 1.3: Diagram of the retroviral life cycle. The critical stages of the retroviral life cycle within a single 
host cell are depicted, from the infection of a target cell with a mature virus particle to the production of 
mature virus particles from the infected cell.  
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Receptor binding and membrane fusion 

The retroviral life cycle begins when SU trimers on the outside of the virion 

envelope bind with high specificity to a protein or proteins on the surface of the target cell, 

which act as the viral receptor. Receptor usage is determined by the structure of the SU 

protein, and thus SU is responsible for defining the range of host cells that are susceptible 

to infection. The SU protein of HIV (gp120) binds to the viral receptor CD421,22, as well as 

one of two co-receptors, either CXCR423 or CCR524,25. As CD4 is predominantly 

expressed on a subset of T cells, as well as to a lesser extent on macrophages26,27 and 

hematopoietic stem and progenitor cells (HSPCs)28-32, these cells represent the primary 

targets of HIV infection. Upon receptor binding, the SU-TM trimers undergo a structural 

change that exposes the N-terminal fusion peptide of TM19. TM mediates fusion of the 

viral envelope with the target cell plasma membrane, and the viral core is released into 

the target cell cytoplasm. 

 

Internalization and capsid core disassembly  

The initial stages following membrane fusion and internalization of the capsid core 

are poorly understood. After internalization, it remains unclear precisely what must take 

place with the capsid core, made up of CA hexamers and pentamers, for productive 

infection33. Maturation of Gag precursors is essential for reverse transcription to proceed, 

and mutations that destabilize or hyperstabilize the capsid core severely hinder reverse 

transcription34,35. The capsid core may also play a role in shielding the cytoplasmic viral 

DNA from recognition by innate immune sensors36,37. Recent studies indicate that CA can 

be detected in the nucleus, suggesting that some amount of CA remains associated with 
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the viral genome throughout the reverse transcription process38-41. Furthermore, CA is 

the major determinant that allows HIV-1 and other lentiviruses to infect non-dividing 

cells42,43, and many interactions between nuclear import machinery and domains of CA 

that are only present when it is assembled in the capsid core are essential for this to 

occur44,45. More recent evidence suggests that the fully assembled capsid core may be 

translocated into the nucleus, casting doubt on the importance of cytoplasmic 

disassembly altogether. A recent study indicates clearly that uncoating and reverse 

transcription occur in the nucleus after nuclear import46, shifting the widely-accepted 

paradigm that reverse transcription occurs in the cytoplasm and casting further doubt on 

the temporal relationships between post-entry events, including nuclear translocation, 

capsid core disassembly, and reverse transcription. 

 

Nuclear entry  

Many host proteins are involved in the nuclear import of lentiviruses. NUP358 (also 

known as RANBP2) is located on the cytoplasmic side of the NPC47 and interacts with 

HIV-1 CA to facilitate docking of the PIC at the NPC48. NUP153 is located on the nuclear 

side of the NPC47 and interacts with residues on CA that are only present when CA is 

assembled in multimers as in the capsid core40,44, and this interaction is important for HIV-

1 integration48,49. TNPO3 also binds CA50 and facilitates nuclear import of the PIC51, and 

may be involved in removing CA from the PIC once it enters the nucleus41,52. CPSF6 

binds CA53 and is essential for proper trafficking of the PIC to the nucleus and nuclear 

import54, as well as maintaining the characteristic integration site preferences of 

HIV48,55,56.  
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Reverse transcription  

Upon entry into the target cell, the virus must complete the reverse transcription of 

its RNA genome into a double-stranded DNA genome, allowing the virus to integrate into 

the host cell DNA and generate new viral progeny. Reverse transcription is a complex but 

remarkable process, proceeding through a series of essential steps, facilitated by the 

reverse transcriptase (RT) enzyme, that ultimately produce the reverse transcribed 

complementary DNA (cDNA) (see reviews for the details presented below57,58). Reverse 

transcription was previously believed to begin shortly after the viral core enters the 

cytoplasm, although recent findings indicate that reverse transcription occur in the 

nucleus46. The precise signals regulating the initiation of reverse transcription are 

unknown, but the reaction proceeds within the reverse transcription complex (RTC). The 

RTC is likely enclosed in a partially-assembled capsid core containing the gRNA dimer 

and 50-100 RT enzymes59,60.  
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Fig. 1.4: Schematic of the process of reverse transcription. 1) gRNA with primer tRNA bound. 2) 
initiation of minus-strand synthesis. 3) formation of the 3’ strong-stop DNA and degradation by RNase H. 
4) first translocation. 5) minus-strand elongation and generation of the ppt primer. 6) completion of minus-
strand synthesis and initiation of plus-strand synthesis. 7) completion of 5’ strong-stop DNA and 
degradation of ppt and tRNA primer. 8) linear product prior to second translocation. 9) second translocation 
and formation of circular intermediate with simultaneous minus- and plus-strand synthesis. 10) completion 
of minus- and plus-strand synthesis. 11) finished cDNA product differing from gRNA with the presence of 
LTRs at both ends. 
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Initiation of minus-strand DNA synthesis 

Reverse transcription begins when the 3’-terminal 18 nucleotides of the primer 

tRNA hybridize with complementarity to the 18-nucletoide pbs near the 5’ end of the 

gRNA. Each virus uses a preferred tRNA molecule as the primer, which varies among the 

different retroviruses and for HIV is tRNALys3. The 3’-OH of the tRNA serves as the primer 

for the initial DNA synthesis, which proceeds toward the 5’ end of the gRNA. This 

generates the U5 and R sequences of the minus-strand DNA, known as the minus-strand 

strong-stop DNA.  

 

First translocation 

The RNase H activity of RT degrades the region of the gRNA complementary to 

the newly synthesized DNA, which exposes the DNA as a single strand. The R sequence 

of the minus-strand DNA is translocated and anneals to the 3’ r sequence of the gRNA, 

leaving a 5’ overhang of U5 and the tRNA primer. This translocation is facilitated by NC61, 

and can result in annealing to either of the two gRNAs packaged in the virion. 

 

Long minus-strand DNA synthesis 

Synthesis of the minus-strand DNA proceeds along the length of the gRNA, 

beginning with the strong-stop 3’-OH as the primer. Thus, the entire minus-strand DNA 

copy of the gRNA is generated. As the DNA polymerase activity of RT synthesizes the 

minus-strand DNA, the RNase H activity of RT degrades the gRNA from the RNA-DNA 

hybrid that is generated. This can be performed by the same RT enzyme that is 
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synthesizing the DNA, with degradation occurring 17-18 base pairs behind the elongating 

3’ end, or by a separate RT enzyme62,63.  

 

Initiation of plus-strand DNA synthesis 

In order for synthesis of the DNA plus-strand to begin, a 3’-OH primer is required. 

The ppt, a purine-rich region of the genome located near the 3’ end of the gRNA, is 

resistant to RNase H degradation and remains intact and bound to the fully-synthesized 

minus-strand DNA as an RNA-DNA hybrid. The ppt RNA oligonucleotide serves as the 

primer for initial plus-strand DNA synthesis, which proceeds through U3, R, and U5, 

continuing up to base 19 of the primer tRNA. The first 18 base pairs of the tRNA are 

copied, generating the PBS and the plus-strand strong-stop DNA product. The RNase H 

activity of RT degrades the ppt, which is susceptible to degradation after 

deoxynucleotides are added. In addition to the ppt near the 3’ end of the gRNA, 

spumaviruses and lentiviruses encode a central polypurine tract that acts as a second 

primer for plus-strand DNA synthesis, allowing for more efficient production of the plus-

strand DNA64,65. 

 

Removal of tRNA and second translocation 

The RNase H activity of RT removes the tRNA, exposing the 3’ end of the plus-

strand DNA, which contains the PBS. The exposed PBS at the 3’ end of each DNA strand 

anneals, generating a circular intermediate with both 3’ ends ready for elongation. Each 

strand serves as the template for the other strand.  
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Completion of both strands 

Elongation of the minus strand continues from the PBS through U5-R-U3, 

displacing the plus strand as it proceeds, creating a ssDNA template for synthesis of the 

plus-strand 3’ LTR. Simultaneously, elongation of the plus strand proceeds along the 

minus strand from the PBS, through the viral genome, and through the PPT-U3-R-U5 

region at the 5’ end of the minus strand. Lentiviruses, which have also initiated plus-strand 

elongation from a central ppt, generate breaks in the plus-strand DNA with flaps of 

overlapping sequence66. These are eventually corrected by the host cell DNA repair 

machinery prior to integration.  

Upon completion of reverse transcription, it is important to note that the cDNA 

genome is modified relative to the template gRNA. The overhangs from the two 

translocations result in the duplication of U5 and U3. The viral DNA now has 2 long 

terminal repeats (LTRs), one at each end of the genome, composed of U3-R-U5.  

 

Biochemistry and structure of RT 

The amino-terminal domain of RT has DNA polymerase activity67, which is unique 

among DNA polymerases in its ability to use either RNA or DNA as the primer or the 

template (see review68). The DNA polymerase activity of RT is slow relative to host DNA 

polymerases, ranging from 1-100 nucleotide additions per second, with estimates for 

minus-strand synthesis around 70 nucleotides per minute69. It also possesses poor 

processivity, releasing frequently from the template, and is relatively low-fidelity, 

generating 10-4-10-5 mutations per base70,71. This low fidelity is exacerbated by the fact 

that RT lacks any proofreading activity. RT also has a helicase activity that is capable of 
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displacing a DNA strand that is annealed to the template being used, which is essential 

during synthesis of the minus-strand 5’ LTR72. The carboxy-terminal domain of RT 

possesses RNase H activity, which generates oligonucleotides with a 3’-OH, creating a 

suitable primer from the ppt to initiate plus-strand synthesis67. RNase H only degrades 

RNA in duplex form, either with DNA or RNA, and can act in concert with the DNA 

polymerase activity of RT62,63. Lentiviruses produce RT as a heterodimer, which for HIV-

1 is composed of a p66 subunit with both DNA polymerase and RNase H, and a p51 

subunit, which lacks the RNase H domain but is essential for proper positioning of the 

p66 subunit for RNase activity73-75.  

Recombination between the two co-packaged virion gRNAs happens frequently 

during reverse transcription and contributes to the generation of genetic diversity within 

the viral population76-78. In order for recombination between the two gRNAs to produce 

significant changes in the viral sequence, the producer cell must be co-infected with 

multiple viral genomes77. Usually the two gRNAs that are packaged are identical, limiting 

the effects of recombination events. Recombination is most common during template 

switching, and is thus a frequent event during minus-strand synthesis, when the template 

routinely switches back and forth between the two RNA strands79,80. This switching can 

occur when RNase H degrades the template and allows annealing to the other RNA 

strand, which may occur more frequently at sites with RNA secondary structures that slow 

RT DNA polymerase activity81-83, or when nicks in the template strand force a switch to 

the other strand84. Template switching requires that the two gRNAs be similar enough for 

the 3’ end of the growing DNA strand to anneal, and similar enough for the two gRNAs to 

successfully dimerize and be co-packaged into a single virion85-87. Recombination 
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between two gRNAs only occurs between the pairs of a packaged dimer, suggesting that 

each virion performs its own RT reaction, and the gRNAs packaged in other virions are 

not accessible for the duration of RT.  

 

Integration 

After reverse transcription has been completed, the RTC transitions to become the 

pre-integration complex (PIC), as the next important step of the viral life cycle is the 

integration of the double stranded genomic DNA into the host cell genome (reviewed in 

detail here88,89). Integration is the truly unique and defining feature of retroviruses, as it is 

not an essential step in the life cycle of any other family of viruses. Despite being present 

in the nucleus, unintegrated retroviral cDNA is a relatively poor substrate for transcription, 

and an integrated provirus is essential for persistent and efficient expression of retroviral 

genes90,91. Integration allows retroviruses to occasionally enter the germline and become 

transmitted vertically92,93, and is also responsible for retroviral-mediated mutational and 

insertional oncogenesis94,95. Integration is mediated by the IN enzyme, which forms a 

dimer of dimers structure called the intasome via interactions in the N-terminal 

oligomerization domain96,97. The catalytic core domain contains three acidic residues that 

interact with two Mg2+ ions98 and is highly conserved99. The integration reaction proceeds 

via two steps: 

 

3’-end processing 

To initiate the integration reaction, IN recognizes an ‘A-T-T’ sequence at each end 

of the viral cDNA and removes 2-3 nucleotides (2 for HIV-1) on the 3’ strand at each blunt 
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end of the cDNA in a concerted manner, with both ends being trimmed simultaneously100-

102. The cleavage occurs at a highly conserved ‘C-A’ sequence in the cDNA, releasing the 

dinucleotide and leaving C-A-OH 3’-hydroxyl ends. This generates short 5’ overhangs at 

each end of the cDNA. 

 

Strand Transfer 

After 3’ end processing, the target capture complex is formed. The free 3’-OH from 

the trimmed ends attack the target DNA in a concerted manner, with the two cDNA 

strands attacking the two strands of the host DNA simultaneously and only a few base 

pairs apart. This generates two nicks in the host DNA on opposite strands. The two nicks 

leave an equal number of unpaired complementary bases on either side of the integrated 

viral DNA, which were annealed to each other prior to the integration reaction. Host DNA 

polymerase fills in the empty bases on either side of the viral genome, generating a short 

duplication of the host integration site sequence. The length of the duplication is 

characteristic for each retrovirus and is 5 bp for HIV. 5’ flap endonuclease removes the 

short 5’ overhang generated on the viral DNA during 3’ end processing, and DNA ligase 

seals the gaps to complete the integration of the retroviral provirus. Thus the integrated 

HIV-1 provirus contains a 2 bp deletion from the end of each LTR, as well as a 5 bp 

duplication of the host integration site sequence found immediately adjacent to each 

LTR103.  

 

Integration Sites 
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The integration site has the potential to dramatically affect host cell function by 

altering gene expression or disrupting functional genomic elements. Integration near 

oncogenes can cause increases in oncogene expression and drive tumor 

development94,95. Retroviral integration sites are not sequence-specific, and for the 

alpharetroviruses and betaretroviruses, the integration site is essentially random through 

the entire host genome104-106. However, despite the absence of a specific integration site 

sequence, other retroviruses demonstrate preferential integration into certain locations in 

the host cell genome. Lentiviruses, including HIV, preferentially integrate within 

expressed genes, intron-rich regions, and in chromatin located near the nuclear envelope, 

while avoiding chromatin in lamina associated domains49,107-110. 

 

Transcription 

The integration of the virus into the host cell DNA, establishing a permanent 

provirus within the genome of the infected cell, marks the end of the early phase of 

retrovirus infection, shifting the focus to the production of new virus particles. The first 

step in virion production is the initiation of transcription from the promoter found within the 

5’ LTR, which is responsible for producing both the mRNAs needed to encode the viral 

structural proteins and the viral gRNA. Initiation of transcription at the 5’ LTR is stochastic, 

although the U3 region contains a promoter, with both a TATA box and CCAAT box, as 

well as a range of enhancers111. U3 enhancer regions recruit several transcription factors, 

including NFkB112, AP-1113,114, NFAT115,116, and SP-1117,118, among others. Transcription 

of the provirus is performed by the host Pol II enzyme and initiates at the U3-R border.  
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Many complex retroviruses encode additional trans-activating proteins to enhance 

expression of the viral genes. HIV encodes Tat, which binds to the TAR element, a 

secondary structure near the 5’ end of the nascent viral RNA119. Tat then recruits P-TEFb, 

increasing the processivity of Pol II, which tends to stall early in the transcription of the 

HIV genome, by phosphorylating the Pol II C-terminal domain120,121.  

Transcription proceeds through the 5’ LTR and the coding region of the viral genes 

and concludes in the 3’ LTR, where transcription stops at the R-U5 border. A 5’ methyl 

cap is added, and the 3’ end is polyadenylated. This generates the full-length viral RNA, 

which serves as both the packaged gRNA and as the mRNA template for translation of 

Gag and Gag-Pol polyproteins.  

 

Splicing and nuclear export 

Upon generation of the full-length viral RNA, simple retroviruses require the 

successful nuclear export of two RNA forms: a singly-spliced variant that is used to 

produce Env proteins, and the full-length RNA for production of Gag-Pol and packaging 

into nascent virions. Complex retroviruses like HIV include other alternatively-spliced or 

multiply-spliced subgenomic RNAs. The splicing of the singly-spliced variants uses host 

cell machinery and behaves similarly to any cellular mRNA (reviewed here122). Export of 

unspliced or incompletely spliced RNA, however, is inefficient, as host nuclear export 

factors are often recruited during splicing, and splicing factors that bind introns provide 

signals to prevent nuclear export123. Thus, most host RNAs are properly and completely 

spliced prior to nuclear export. Splicing of HIV is very complex, with at least four 5’ splice 

donor sites and eight 3’ splice acceptor sites124. The major splice donor site is used in 
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generating each of the spliced RNA products. Thus, there are many incompletely spliced 

subgenomic RNAs, as well as the unspliced gRNA, that must be exported. HIV encodes 

Rev to facilitate this process125. Rev exports incompletely-spliced HIV RNA products by 

binding to a specific element on the viral RNA, the Rev-response element (RRE), and 

then binding to the host CRM1 protein, which is responsible for the export of proteins 

containing a nuclear export signal (NES)126,127.  

 

Translation and protein processing 

The Gag, Pol, and Env proteins are essential to the production of infectious virions 

for all retroviruses. Each of these proteins is translated as a precursor that is eventually 

cleaved and processed into the functional subunits that form a mature virus particle128. 

Producing precursors likely benefits retroviruses in many ways, including the ability to 

produce many functional proteins from a single ORF, guaranteeing that proteins are 

produced and packaged in the appropriate ratio, and targeting many proteins to the site 

of virion assembly simultaneously.  

 

Gag 

The Gag precursor is produced from the full-length RNA. Some retroviruses may 

employ an internal ribosomal entry site (IRES) near the gag start codon to prevent the 

need for translational initiation at the 5’ cap, which requires an elongated scanning 

through the R-U5 region of the genome129-134. The major form of Gag is myristylated by 

myristyl CoA transferase, increasing the hydrophobicity of Gag and facilitating membrane 

association and packaging into the virion135. 
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Pro-Pol 

The viral protease is also produced from the full-length RNA and exists between 

the gag and pol genes. It can be fused to the 3’ end of gag, the 5’ end of pol, or neither, 

and is often produced along with Pol, which includes RT and IN, by translational 

readthrough136 or frameshifting133,137-139. Lentiviruses require a single -1 frameshift to 

occur during the junction between gag and pol, as they exist in separate ORFs. This is 

facilitated by a slippery region near the gag stop codon, which includes homopolymeric 

bases such as poly-A or poly-U and a large hairpin, stem-loop, or pseudoknot 

structure140,141. The -1 frameshift results in an out of frame gag stop codon, and translation 

continues through the Pol ORF139. This occurs in 5-10% of translation events, resulting in 

Gag-Pol being 10-20-fold less abundant than Gag142. In lentiviruses, pro is in the pol ORF 

and is produced equimolar to Pol.  

 

Env 

All retroviruses produce the Env precursor from a singly-spliced subgenomic RNA, 

with a 5’ leader sequence joined directly to the env coding region after gag-pol is removed 

as an intron. Env is synthesized as a single-pass transmembrane protein in the ER, where 

it is folded, glycosylated, and oligomerizes to form Env trimers143. Unlike the other 

retroviral precursor proteins, the Env precursor is not processed by the viral protease, but 

rather by host furin proteases in the Golgi, which separate the SU and TM subunits144,145. 

SU is wholly extracellular and remains associated with the virion via interactions with TM. 

It is heavily glycosylated146-149, protecting the virion from neutralizing antibodies by 
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shielding antibody epitopes150-153, and contains hypervariable regions that determine 

receptor binding154,155. TM has extracellular, transmembrane, and cytoplasmic domains, 

with the extracellular N-terminus containing the fusion peptide, which is essential for 

membrane fusion during entry into the target cell156. TM also contains the major contacts 

for oligomerization157, and trimers of SU-TM heterodimers are transported to the cell 

surface for assembly.  

 

Assembly and packaging 

Assembly of retroviral virions is predominantly mediated by Gag precursors, as 

these are sufficient for production of virus-like particles in the absence of any other viral 

factors (see reviews9,158). The C-type viruses assemble at the plasma membrane, with 

Gag targeted there by hydrophobic residues, basic residues, and myristic acid159-161. For 

HIV, the MA domain of Gag, which has a myristic acid added to the N-terminal glycine, 

embeds in the plasma membrane and forms stable anchors only upon binding to 

PI(4,5)P2, which is specifically localized to the plasma membrane162,163. This prevents 

improper virion assembly at internal membranes. The MA domain of Gag also localizes 

HIV to budding lipid rafts164 and incorporates the glycosphingolipid GM3 into the 

envelope165, which is later recognized by CD169/Siglec-1 on dendritic cells (DCs) to 

enhance trans-infection of CD4+ T cells166-169. The Gag proteins aggregate, causing 

curvature in the plasma membrane and initiation of budding161,170.  

The SU and TM trimers of heterodimers are incorporated via contacts between the 

cytoplasmic tail of TM and the N-terminus of Gag171-175, although there are likely additional 

mechanisms involved176. HIV incorporates Vpr into virions at a high level, roughly 
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equimolar with Gag. The recruitment of Vpr into virions requires the Gag p6 domain, 

although the function of Vpr remains unclear177-179. Host proteins are also incorporated 

into virions180, including Cyclophilin A181, which has many different effects on Gag 

stabilization and disassembly and can promote or reduce retroviral infectivity depending 

on the experimental context, but is generally considered an essential host cofactor of 

HIV182-184.  

The proper packaging of the gRNA represents a challenge for retroviral assembly, 

as the gRNA comprises only a small fraction of the total cytoplasmic RNA in the host cell, 

and many viral subgenomic RNAs are also present and must be excluded from the 

assembling virion185. The gRNA is packaged as a dimer, which is usually a homodimer of 

two identical gRNAs, except in rare cases where co-infection or expression of an 

endogenous retrovirus causes packaging of an RNA heterodimer186. Packaging is 

mediated by the Psi (Y) sequence in the 5’ UTR187, which interacts specifically with the 

NC subunit of the Gag precursor188,189. In the absence of a Psi signal, virions package a 

random sampling of host mRNAs, and non-gRNAs can be packaged if they are 

engineered to contain a Psi sequence10. HIV-1 splices the Psi sequence out of the 

subgenomic RNAs to prevent packaging interference with the gRNA. Psi functions via 

cis-acting structural elements of the RNA, including stem loop structures containing 

purine-rich loops. For HIV-1, stem-loops 1 and 3 (SL1 and SL3) are especially important 

for packaging190,191.  

 

Dimerization of the genome 
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Dimerization of the two packaged gRNAs is mediated by interactions in a 

complementary sequence near the 5’ end of the genome called the dimerization initiation 

site (DIS)192,193. For HIV, the DIS is in SL1194. The DIS and gag start codon are both near 

the 5’ end of the viral RNA and determine whether the RNA dimerizes for packaging as a 

gRNA or is translated to produce Gag or Gag-Pol proteins195-198. When the DIS of two 

gRNAs bind, they form the dimer linkage structure (DLS). The NC subunit of the Gag 

precursor protein binds the DLS with high specificity, initiating Gag multimerization and 

assembly11. These interactions are more specific than the generic affinity of NC for 

RNA199, ensuring that dimerized gRNAs are packaged200. Other domains of the Gag 

precursor may be involved in this interaction as well201,202. The dimerized gRNAs are non-

covalently associated and do not form significant base-pairing interactions203, and 

dimerization is stabilized during virion maturation after release from the producer 

cell204,205. HIV-1 dimerization initiates in the cytoplasm. 

Dimerization has several purported benefits for retroviral replication. Nicks in the 

gRNA are common, and proper completion of reverse transcription would be impossible 

from a single nicked genome. Co-packaging a second copy can greatly increase the 

fidelity of reverse transcription by increasing the likelihood that an intact template exists 

for each region of the genome. Dimerization also distinguishes the gRNA from spliced 

mRNA, as only dimerized gRNA has the DLS as a signal for Gag recruitment and 

assembly. Furthermore, recombination can drive evolution, as there are approximately 3-

15 strand transfers per replication cycle206-208. Retroviruses have higher rates of 

recombination than other RNA viruses, which may contribute to the adaptability of the 

virus77,209.  
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Budding and maturation 

Gag precursors assemble at the plasma membrane, inducing membrane curvature 

and initiating the budding process210. The p6 domain of the HIV-1 Gag precursor recruits 

the endosomal sorting complexes required for transport (ESCRT) machinery by binding 

to TSG101 and ALIX211,212, and the NC domain of Gag may be involved in ESCRT 

recruitment as well213. ESCRT machinery is responsible for release of the immature 

virion214-216.  

Upon virion release, the viral PR enzyme cleaves itself out of its precursor form217. 

PR acts as a homodimer218 and subsequently cleaves the remaining Gag and Gag-Pol 

precursors in hydrophobic regions219,220, triggering a number of events that generate the 

mature, infectious virion221,222. Prior to PR processing of the precursors, retroviral virions 

are immature and non-infectious221,223-225. Thus, mutations to or inhibition of PR can 

prevent retroviral infection. 

 

Processing of Gag precursor 

The MA protein remains bound to the inner face of the membrane via the N-

terminal myristyl group160,161. It interacts with TM for proper incorporation of Env trimers 

into the virion171-175, and is referred to as p17 in HIV-1. The CA protein contains the major 

homology region and is conserved among all retroviruses226. Upon cleavage, CA 

undergoes a dramatic rearrangement that is visible by electron microscopy, forming the 

condensed inner capsid core227. The shape of the capsid core depends on the individual 

virus, but it is made up of CA-CA interactions that form primarily hexamers and some 
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pentamers17. For HIV-1, the CA protein is called p24. The NC protein is small, highly 

basic, and contains two highly conserved zinc-finger domains that coordinate a zinc ion, 

with a few exceptions in the retrovirus family228,229. After release from the Gag precursor, 

the basic NC coats the entire gRNA230, with each NC protein bound to 5-8 nucleotides231-

236. NC acts as an RNA chaperone, and this binding is essential for reverse 

transcription237. NC enables RT to proceed through regions with significant secondary 

structures, and also facilitates the various strand transfers that take place. NC processing 

results in pbs remodeling, exposing the 18 nucleotides with perfect complementarity to 

the 3’ end of the primer tRNA and allowing binding of the primer tRNAs to the pbs of each 

gRNA233,238-240. This sets the stage for reverse transcription upon infection of a new target 

cell. For HIV-1, NC is referred to as p7.  

The Gag-Pol precursor is processed by PR into RT, IN, and the same mature 

subunits of Gag.  

 

Innate Immune Response to Retroviral Infection 

 

As retroviruses have been circulating in vertebrates throughout evolutionary 

history, the host species have evolved a number of innate mechanisms to defend against 

retroviral infections. Likewise, retroviruses have evolved to counteract these defense 

mechanisms, which is the role of many of the accessory proteins encoded by the complex 

retroviruses. This evolutionary race determines the tropism of the retroviruses, as each 

species is able to prevent infection by all but a few specific viruses that have evolved to 

overcome these restrictions in a species-specific manner (see reviews241-243). 
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The APOBEC3 family of host proteins are packaged into retroviral virions in a NC- 

and RNA-dependent manner244,245 and restrict multiple retroviruses, including HIV, by 

inducing hypermutation246-249. Although APOBEC3G is the most widely studied, other 

APOBEC3 family members, including 3B, 3D, 3F, and 3H are also active against HIV. 

APOBEC3G is a cytidine deaminase that deaminates cytidine nucleotides, generating 

uracil in the minus-strand ssDNA after RNA degradation but before plus-strand synthesis, 

resulting in a G-A mutation in the plus-strand DNA250-252. It is expressed at high levels in 

human CD4+ T cells and macrophages, the primary targets of HIV infection253. This may 

explain the presence of the central ppt of HIV-1, which hastens positive-strand synthesis 

and reduces the exposure of the minus-strand DNA to APOBEC3254. Vif, an accessory 

protein encoded by almost all lentiviruses247, counteracts APOBEC3 proteins by inducing 

their polyubiquitination and proteasomal degradation255,256, preventing their packaging in 

budding virions246,257.  

During cytoplasmic reverse transcription, retroviruses can generate RNA-DNA, 

ssDNA, and dsDNA in the cytoplasm of the host cell, none of which are present in the 

cytoplasm during normal host cell processes. As with other viruses, many sensors of 

retroviral nucleic acids have been described, including cGAS and IFI16. Cytosolic DNA is 

detected by cGAS, which interacts with STING to signal the production of interferon-b 

(IFN-b) via IRF3258. HIV evades cGAS, however, by recruiting the host TREX1 protein to 

degrade viral DNA products that are susceptible to sensing by cGAS259,260. IFI16 also 

senses cytoplasmic DNA, acting via STING to induce IFN-b 261. For HIV-1, this pathway 

may contribute to loss of CD4 cells and progression to AIDS, as pyroptotic CD4+ cell 

death following abortive HIV-1 infection requires IFI16262,263.  
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SAMHD1 is a host protein that restricts HIV-1 in some cell types, such as DCs, 

macrophages, and resting CD4+ T cells, by depleting the cellular pool of dNTPs needed 

for cDNA synthesis264-267. HIV-2 and SIV overcome this restriction by encoding the 

accessory protein Vpx, which recruits the E3 ubiquitin ligase DCAF1-DDB1 to induce 

degradation of SAMHD1266,267. Vpx is absent in HIV-1, allowing SAMHD1 to reduce HIV-

1 infection of SAMHD1-expressing cells, including DCs268, resting CD4+ T cells269 and, to 

a lesser extent, macrophages265.  

SERINC3 and SERINC5 were recently discovered as membrane-bound restriction 

factors of HIV-1, which are incorporated into the virion to reduce particle infectivity270,271. 

HIV-1 counteracts this restriction with the accessory protein Nef, which redirects 

SERINC3 and SERINC5 away from the cell surface via the endolysosomal system to 

prevent their incorporation into virions270-272. Nef also facilitates HIV-1 infection in a 

number of other ways, including redirecting MHC-I to the lysosome for degradation to 

prevent antigen presentation to CD8+ T cells273-277 and internalizing CD4 from the cell 

surface to prevent superinfection and Env interactions with CD4 during virion budding, 

which are described in more detail below278. 

The TRIM5a protein, which was previously called Ref1 and Lv1, binds to the 

retroviral capsid core and accelerates uncoating in a proteasome-dependent manner, 

inhibiting reverse transcription and formation of a functional PIC279-283. Trim5a proteins 

vary from species to species, and the species-specificity of primate lentiviruses is largely 

determined by their ability to evade restriction by TRIM5a in their native host species, but 

not in other primates279-282,284.  
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Tetherin, also known as BST2, tethers budding retroviral virions to the cell surface, 

preventing virion release and leading to internalization and degradation285,286. HIV-1 

overcomes the tetherin restriction with the accessory protein Vpu, which prevents tetherin 

from reaching the cell surface and leads to its degradation285-288. HIV-2 and SIV do not 

encode Vpu, but SIV Nef facilitates the AP-2-dependent internalization of tetherin at the 

cell surface289,290, while the HIV-2 Env protein is sufficient for HIV-2 to overcome tetherin 

restriction291,292.  

Other restriction factors that have recently been described for HIV-1 include 

MxB/Mx2, which is IFN-inducible and binds CA to inhibit nuclear import or uncoating293-

296, and IFITM1, which is a plasma membrane protein preventing fusion and entry297. The 

precise mechanisms of action for these recently discovered restriction factors are still 

being elucidated. ZAP was recently discovered as restriction factor that detects CG 

dinucleotides in cytoplasmic RNA. Given that vertebrate genomes demonstrate marked 

CG suppression, this enables antiviral defense by distinguishing CG-rich viral genomes 

from CG-poor host mRNA. HIV evades ZAP by mimicking the CG suppression of the 

human genome298. 

 

Acquired Immunodeficiency Syndrome (AIDS) 

 

By far the most significant retroviral disease burden in humans is the acquired 

immunodeficiency syndrome (AIDS), which is caused by untreated infection with either 

HIV-1 or HIV-2. AIDS was first recognized in the United States in 1981299, a series of 

investigators from 1983-1984 identified that retroviruses may be the cause of AIDS300-303, 
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and by 1986 these retroviruses were identified as HIV304, which was subsequently named 

HIV-1 upon the discovery of HIV-2. HIV-2 has only 45% sequence homology to HIV-1. 

HIV-2 differs from HIV-1 in that it encodes Vpx, which counteracts SAMHD1266,267,305. In 

addition, HIV-2 lacks Vpu, which downregulates tetherin and CD4, although HIV-2 has 

evolved to use other viral proteins to mediate these effects, and is less pathogenic than 

HIV-1306. HIV-1 is separated into 4 groups: M, N, O, and P, of which M is responsible for 

the majority of infections worldwide307. Group M is separated into 9 subtypes, of which 

subtype B is most common in Europe and North and South America, while subtype C is 

by far the most prevalent subtype worldwide. HIV-2 is divided into 8 groups, named A-

H308. Most clinical HIV research is done on HIV-1, group M, subtype B viruses.  

HIV is transmitted primarily through sexual contact or exposure to blood, such as 

during blood transfusions or intravenous drug use309,310. It can also be transmitted 

perinatally between mother and child during pregnancy, labor, or breastfeeding311. During 

acute infection, some individuals can experience flu-like symptoms312,313. After an initial 

peak in plasma viremia is established within a few weeks of exposure, immune responses 

primarily dependent on HIV-specific CD8+ T cells begin to control the virus, suppressing 

the plasma viral load to the viral set point, but failing to completely prevent viral replication 

or clear the infection314-317. The viral load averages roughly 104-105 particles per mL of 

plasma, with approximately 1010 new virions produced each day and infected cells having 

a half-life of about 2 days318-320. 

The virus requires its receptor, CD422,321,322, plus a co-receptor, either CCR5323-327 

or CXCR423, to enter cells. Thus, the virus replicates primarily in CD4+ T cells, which 

express high levels of CD4. HIV-1 can also infect cells with lower levels of CD4, including 
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macrophages, as infected macrophages have been found in the brain328, lymph nodes26, 

and urethra329, and hematopoietic stem and progenitor cells in the bone marrow28-32,330. 

Infection of CD4+ T cells leads to cell death263, and persistent viremia leads to a steadily 

decreasing CD4+ cell count during the course of infection326,327. This depletion occurs 

gradually during a prolonged asymptomatic phase of infection, which can last for several 

years331. AIDS is associated with a suite of rare opportunistic infections and tumors that 

are typically suppressed by normal immune responses, and these opportunistic infections 

and tumors are responsible for most AIDS-related deaths. 

In addition to infecting and depleting CD4-expressing cells, HIV infection can affect 

other cell types as well. CD8+ T cells and B cells can both be killed by bystander 

activation332. While dendritic cells (DCs) aren’t productively infected by HIV-1, as they 

express high levels of SAMHD1 to restrict the infection, they are susceptible to infection 

by HIV-2 and SIV, which encode Vpx to counteract SAMHD1266,267. In the context of HIV-

1, DCs can still contribute to infection through trans-infection of T cells, in which DCs 

capture viral particles, maintain their infectivity, and transfer them to T cells at the 

virological synapse. Initial studies implicated DC-SIGN and similar receptors as essential 

for trans-infection via DCs333, although recent studies have shown that GM3 incorporated 

in the HIV-1 envelope is recognized by CD169/Siglec-1 to facilitate trans-infection166-

169,334. DCs can also produce interferon during acute infection, and are especially 

sensitive to HIV-2, where DC infection proceeds sufficiently for cGAS recognition of viral 

DNA36,335. 

Throughout the world, and even within a single individual, HIV demonstrates 

tremendous genetic diversity336. This genetic diversity allows the virus to rapidly evolve 
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to evade host adaptive immune responses, as well as antiretroviral monotherapies. The 

RT enzyme has a particularly low fidelity among DNA polymerases, which is likely the 

major contributor to HIV mutagenesis71. HIV is especially variable in the exposed regions 

of the envelope protein337,338. This variability likely benefits the virus in evading the host 

humoral response, which is directed predominantly against exposed residues of gp120 

(SU) and gp41 (TM)151.  

 

Adaptive Immunity to HIV 

 

Humoral immunity 

Humoral immunity to HIV-1 and SIV is observed, with both neutralizing and non-

neutralizing antibodies generated against the virus within the first 2 weeks of infection, 

although these fail to suppress viral replication339,340. Neutralizing antibodies 

predominantly target the HIV-1 Env receptor binding domains: the V1, V2, and V3 loops 

and the CD4-binding domain of the HIV-1 gp120 (SU) and interfere with the ability of the 

virus to interact with the receptor and prevent entry into the target cell341. As V1, V2, and 

V3 are hypervariable regions of gp120, the virus rapidly evolves to avoid these 

neutralizing antibody responses, which fail to control spread and suppress viral loads. 

HIV may also evade the humoral response through the activity of Nef, which can be 

secreted by infected CD4+ T cells and taken up by B cells, where it can inhibit class-

switching to more functional IgA and IgG isotypes342. Neutralizing antibodies isolated from 

an infected individual often successfully neutralize previous isolates of virus from that 

individual, but fail to neutralize the virus that is currently circulating151,340,343,344. Non-
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neutralizing antibodies can mediate antibody-dependent cell cytotoxicity (ADCC) and 

facilitate killing of infected cells by NK cells and macrophages, although the significance 

of this mechanism in controlling viral replication is poorly understood345.  

Some neutralizing antibodies that have undergone extensive somatic 

hypermutation following years of exposure to high viral loads have developed the capacity 

to neutralize a broad range of HIV isolates and are known as broadly neutralizing 

antibodies (bNAbs)346-349. Passive transfer of broadly neutralizing antibodies can offer 

protection from infection in a SHIV model350 and can suppress viral load351,352 or delay 

rebound upon therapy interruption353 in humans. However, after initial suppression of 

viremia, resistance mutations that evade neutralization are rapidly detected in many 

individuals, indicating that bNAbs do not entirely suppress viral replication351-353. While 

the existence of broadly neutralizing antibodies offers some promise for HIV-1 vaccine 

development, as broad neutralization may be effective to prevent transmission prior to 

robust infection and selection for escape variants, various vaccination strategies have 

failed to elicit these responses due to their rarity and high degree of somatic 

hypermutation354. This is an area of intense ongoing research, and one bNAb with 

minimal somatic hypermutation was isolated from an infant, offering some promise that 

similar responses could be elicited by vaccination355.  

 

Cytotoxic T lymphocytes (CTLs; CD8+ T cells) 

CD8+ T cells, commonly referred to as cytotoxic T lymphocytes (CTLs) for their 

cytolytic activity, represent the primary antiviral effectors of cellular adaptive immunity, 

and massive HIV-specific CTL responses are observed shortly after the initial detection 
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of HIV RNA in the plasma317,356,357. While these responses shape the viral landscape358, 

correlate with the viral set point317, and motivate viral evolution359,360, they are unable to 

successfully control the infection in most individuals, and fail to clear the virus 

entirely317,357. These CTLs eventually become exhausted, losing their ability to control the 

evolution and spread of the virus361,362. Exhaustion is likely in part mediated by the 

upregulation of inhibitory receptor ligands PD-L1 and PD-L2 on the surface of HIV-

infected cells and the secretion of IL-10363,364. Upregulation of PD-L1 can also directly 

protect HIV-infected cells from CTL killing365. HIV-1 and HIV-2 also encode the accessory 

protein Nef, which redirects newly-synthesized MHC-I away from the surface of infected 

cells to prevent presentation of viral peptides and recognition by HIV-specific CTLs366.  

CTLs recognize virally-infected cells by responding to peptide antigens presented 

in the context of major histocompatibility complex class-I (MHC-I) on the surface of 

infected cells367. Each CTL expresses a unique T cell receptor (TCR), positively- and 

negatively-selected in the thymus for moderate affinity for self MHC-I but low affinity for 

MHC-I presenting self-peptides, respectively368. High-affinity interactions between the 

TCR and cognate peptide antigens presented by MHC-I on the surface of a target cell 

lead to the formation of the immune synapse and the subsequent killing of the target 

cell369. Killing is mediated by the release of lytic granules containing perforin and 

granzyme, which induce apoptosis in the target cell370-374.  

MHC-I is both polygenic, with genes encoding HLA-A, -B, -C, -E, -F, and -G, and 

polymorphic, with remarkable allelic variation particularly in HLA-A, -B, and -C375. 

Polygeny allows for functional separation of MHC-I genes. HLA-A and -B, and to a lesser 

extent -C, are responsible for presenting peptides to CTLs. HLA-A and HLA-B are 
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expressed at 5-20-fold higher levels than HLA-C on B cells and peripheral blood 

leukocytes376, and this likely contributes to the fact that most CTLs are restricted to HLA-

A or HLA-B377. HLA-C also presents a narrower range of peptide antigens378, although 

when HLA-C-restricted CTL responses do arise, they have similar functionality to those 

restricted to HLA-A or -B379-381. Allelic variation in the MHC-I loci responsible for antigen 

presentation contributes to population-level protection from diverse pathogens through 

the presence of alleles that are optimized for presentation of a wide spectrum of 

peptides382. Beyond presenting peptide antigens to CTLs, the MHC-I proteins HLA-C383, 

-E384, and -G385 interact with inhibitory receptors on natural killer (NK) cells, which 

recognize cells with a combination of low MHC-I, a signal of viruses or tumors evading 

CTL responses386, and elevated natural killer cell activating ligands387.  

A small subset of individuals, known as elite controllers (ECs) or long-term non-

progressors (LTNPs), naturally suppress HIV-1 viral load and prevent progression to 

AIDS, and this control is due to their unusually effective CTL responses388-391. Many 

studies have attempted to describe the factors that promote elite control of HIV. In 

genome-wide association studies, the most common correlates with HIV control or 

unusually rapid progression to AIDS are alleles of HLA-B. While these alleles are enriched 

in EC cohorts, many individuals possessing these protective alleles do not successfully 

suppress viral replication, and many ECs do not possess a protective allele392-394. A 

recent study demonstrated that ECs possess CTL responses, particularly 

immunodominant responses, directed against peptide epitopes in the HIV genome that 

are highly networked. Highly networked amino acid residues are predicted to be critical 

to maintaining the structure of the folded protein and are thus mutationally constrained. 
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Protective alleles preferentially present highly networked peptides, and risk alleles tend 

to present less networked peptides. Regardless of HLA allele, the presence of CTL 

responses within an individual that were directed against highly networked peptides was 

predictive of elite control of HIV391. CTLs from LTNPs also do not upregulate PD-1 or 

display exhaustion phenotypes, as CTLs from progressors do361,395. Yet, despite 

spontaneous control of the virus, elite controllers are not cured and the virus persists 

throughout life, except in one recently-described possible exception396.  

Most of the disease burden of HIV resides in lymphoid tissues, but most studies of 

HIV-specific CD8+ T cells responses survey circulating lymphocytes in the blood. Tissue 

resident memory T cells (TRM) express the surface markers CD69 and CD103, reside in 

the tissues, rarely enter circulation, and are the primary effectors of memory responses 

in tissues397,398. Human lymphoid tissue TRM cells were recently described, and elite 

controllers had increased HIV-specific TRMs in the lymph node399. Elite controller CD8+ 

TRM cells in the lymph node also have a distinct transcriptional profile, with reduced 

expression of inhibitory markers and cytolytic molecules, and increased expression of 

cytokines compared to chronic progressors, suggesting that control may not be 

associated with cytolytic activities of CD8+ T cells. However, it is not clear if this is a result 

of the reduced viral load in controllers as compared to progressors, which could reduce 

apparent cytolytic activities as a result of having fewer infected targets to respond to in 

vivo400. Regulatory T cells (Treg) can suppress antigen-specific effector T cell functions 

and have increased prevalence in some HIV-infected patients401. Increased Treg 

frequencies in lymphoid tissues correlates with disease progression402, and elite 

controllers may have fewer Treg or express HLA alleles that are less susceptible to Treg-
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mediated suppression401,403. Thus, inducing the suppressive effects of Tregs may be an 

important mechanism of immune evasion for HIV. 

 

Pursuit of an HIV Cure 

 

Antiretroviral therapy (ART) 

The HIV/AIDS pandemic has been radically transformed by the development of 

effective combination antiretroviral therapy (ART, see reviews404,405). While HIV rapidly 

evolves to evade antiretroviral monotherapy406, combination therapy is effective in 

suppressing viral load and dramatically prolonging survival, allowing infected individuals 

to live relatively healthy lives with an infection that until recently meant almost certain 

death407-409. As of 2019, 67% of people living with HIV are accessing ART, which is 

estimated to have prevented 12 million AIDS-related deaths in the last decade1. Different 

classes of antiretroviral drugs target various stages of the viral life cycle, from entry to 

proteolytic maturation.  

Entry inhibitors interfere with the interactions between HIV Env (gp120) and the 

coreceptor CCR5 by binding directly to CCR5, preventing associations with either natural 

ligands or gp120410,411. Fusion inhibitors are alpha-helical peptides that block the fusion 

step of viral entry by mimicking a critical domain of gp41, which must form a homodimer 

to mediate entry412. Nucleoside analogs (NRTIs) function as reverse transcriptase 

inhibitors through their capacity to be incorporated by RT during DNA synthesis. Since 

these nucleoside analogs lack the 3’-OH, DNA synthesis cannot proceed upon NRTI 

incorporation413,414. Resistance to NRTIs occurs when mutations are accumulated that 
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either confer the ability to excise the NRTI from the nascent strand415-417 or increase the 

efficiency of incorporation of the natural substrates relative to the nucleoside analog418,419. 

While the NRTIs inhibit reverse transcription by mimicking the natural substrates of RT, 

non-nucleoside reverse transcriptase inhibitors (NNRTIs) function as small, hydrophobic 

molecules that inhibit RT by an allosteric mechanism75,420,421. NNRTIs are only effective 

against RT from subtypes B and C of HIV-1, as most retroviral RT enzymes, including 

those of HIV-1 group O, HIV-2, and SIV, lack the NNRTI binding pocket and are naturally 

resistant422-424. Even in HIV-1 subtypes B and C, resistance mutations to NNRTIs develop 

easily425,426. Integrase strand transfer inhibitors (INSTIs) target HIV integrase, preventing 

successful integration of the viral DNA genome and promoting the formation of non-

productive intermediates, such as 2-LTR circles427. INSTIs are broadly active against HIV-

1 subtypes and HIV-2428,429. Protease inhibitors mimic the transition state for normal HIV 

protease substrates and block the enzyme active site430. These inhibitors, however, carry 

particularly burdensome side effects, and thus are not utilized in first-line ART in most 

cases. New classes of antiretroviral drugs are in development, including inhibitors of CA 

such as GS-CA1431 and the derivative GS-6207, which act by hyperstabilizing the capsid 

core to prevent disassembly432. 

 

HIV Latency 

 
Despite the success of ART, it does not represent a cure, and infected individuals 

must remain on ART for the remainder of their lives. Although viral loads are suppressed 

below clinically detectable levels, viral rebound occurs within a few weeks of cessation of 

ART. Thus, despite the capacity of ART to virtually eliminate the pool of replicating virus 
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in an individual, latent reservoirs of the virus exist in which an integrated provirus remains 

transcriptionally silent, evading detection by host immune responses433,434. These latent 

reservoirs are established early during the course of infection and are continuously re-

seeded with circulating virus until the time of therapy initiation435. Studies characterizing 

the half-life of the latent reservoir indicate that the virus will persist for the duration of 

life436, representing a major barrier to curing HIV-infected individuals437,438. SIV RNA and 

DNA is detected in a broad range of tissues distal from the initial site of infection within a 

few days of first exposure439. Latent HIV DNA capable of generating rebound viremia is 

present even following early initiation of ART during acute infection437. Initiation of 

treatment during hyperacute infection may be beneficial in individuals where infection is 

detected early, as it could contribute to a reduced latent reservoir440,441, delayed rebound 

upon treatment interruption442,443, and enhanced functionality of anti-HIV T cell 

responses444, although humoral responses may be blunted if viral replication is blocked 

before they are generated445. 

The majority of HIV DNA in optimally-treated individuals is defective and unlikely 

to replicate as a result of major deletions or hypermutation, and these defective proviruses 

accumulate during ART446,447. Nevertheless, replication-competent proviruses do persist, 

and the presence of full-length HIV genomes that are resistant to induction represent 

major barriers to the goal of eliminating replication-competent HIV from the body448.  
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Fig. 1.5: Dynamics of the latent reservoir of HIV during antiretroviral therapy (ART). ART blocks HIV 
replication and prevents the infection of new cells, but latent proviruses can reactivate spontaneously to 
contribute to residual viremia. Cells harboring latent provirus can maintain the reservoir through proliferation 
and clonal expansion of the virus. Red represents a transcriptionally active provirus; green represents a 
transcriptionally silent latent provirus. 
 

Cellular reservoirs of latent HIV 

CD4+ T cells are the primary cellular target of HIV, and they likewise represent the 

most abundant cellular reservoir of latent HIV proviruses433,449. Latency is not equally 

prevalent in all subsets of CD4+ T cells and is particularly enriched in quiescent resting 

memory T cells, especially central memory T cells (TCM)450. TCM can also proliferate to 

clonally expand the HIV reservoir without reactivating latent HIV451. In general, 

quiescence has been shown to correlate with HIV latency, although quiescence is a term 

that is loosely defined452-454, and less-quiescent T effector memory cells (TEM) may be 

enriched for replication-competent HIV455.  

Notably, an assessment of whole-body HIV burden in an SIV model suggests that 

the T cells harboring HIV may primarily be located in lymphoid and other tissues rather 

than circulating in the blood456. CD4+ TRM cells in the cervical mucosa represent the major 

reservoir of latent HIV in cervical tissue457, and latent reservoirs are detectable in tissues 

throughout the body, including gut-associated lymphoid tissue (GALT)458,459, central 

nervous system (CNS)460, genital tract461, and especially lymph nodes462. The lymph 
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nodes are a particularly critical reservoir of latent HIV, as many CD4+ T cells reside in 

lymph nodes, and the B cell follicle is a privileged immune site where T follicular helper 

cells (TFH) infected with HIV may be protected from CD8+ T cells463-465. TFH may also 

contribute disproportionately to residual viremia during ART and are enriched for 

replication-competent provirus, which may result from their anatomical segregation from 

anti-HIV CTLs that gradually eliminate accessible cells harboring full-length 

provirus466,467. 

Although CD4+ T cells are the primary target of HIV-1 infection and the main 

cellular reservoir of latent HIV during ART, HIV can infect other cell types that express 

CD4 and CXCR4 or CCR5. Latent proviruses can be found in circulating and tissue-

resident macrophages26,27,468,469 as well as hematopoietic stem and progenitor cells 

(HSPCs)29-32. Importantly, several studies have failed to attribute residual viremia in 

treated patients exclusively to T cell reservoirs, suggesting these alternative cellular 

reservoirs may be critical to HIV persistence and rebound viremia upon ART 

interruption470,471. One study indicated that the GALT is not the major source of rebound 

viremia upon ART interruption472, and a recent work demonstrated that proviruses 

isolated from HSPCs are a key source of residual viremia during ART330.  

HSPCs reside in the bone marrow and are responsible for generating the 

hematopoietic cell compartment throughout the life of an individual. The most stem-like 

HSPCs, hematopoietic stem cells (HSCs), exist in a quiescent state and are long-lived 

and capable of self-renewal473,474. HSCs undergo asymmetric cell division, yielding 

daughter cells that are more lineage-committed progenitors, which in turn continue to 

differentiate and give rise to the entire repertoire of mature hematopoietic cells475. While 
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several publications had described HIV-1 infection of HSPCs, both in vitro and from 

patient bone marrow29-32, other studies had failed to detect HIV-1 provirus in HSPCs from 

ART-treated individuals476,477. Two recent publications seem to have definitively 

established that HSPCs can be productively infected with HIV in vivo. Sebastian et al. 

shed light on the discrepancy, demonstrating that prior negative studies lacked the 

necessary statistical power to reliably detect HIV DNA from HSPCs, which have 

significantly lower abundance of HIV DNA than T cells. Through rigorous statistical 

analyses accounting for CD3+ T cell contamination, Sebastian et al. observed the in vivo 

expansion of HSPC-derived defective HIV proviruses in differentiated hematopoietic 

progeny cells. Due to the defective nature of the clonal genomes, this observation could 

not have been attributed to coincident infection with identical virus, pointing to the 

existence of an infected parental progenitor cell as the source of these cells28. Further 

evidence supporting this conclusion was provided by Zaikos et al., who demonstrated 

that proviruses found in HSPCs are clonally expanded, harbor replication-competent 

provirus, and contribute to residual plasma viremia in optimally treated individuals. Thus, 

there is substantial evidence supporting the conclusion that HSPCs form a critical 

reservoir of HIV in vivo and must be accounted for in cure efforts focused on eliminating 

the replication-competent HIV responsible for rebound viremia after ART interruption. 

 

Shock and Kill 

 

The major barrier to an HIV cure is the persistence of transcriptionally silent , 

replication-competent HIV DNA that can reactivate to cause rebound viremia upon ART 
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interruption, even after decades of ART. Thus, the current approaches to developing a 

cure for HIV involve reactivating the latent reservoirs of replication-competent HIV in a 

so-called “shock and kill” approach478. First, the previously latent proviruses are “shocked” 

with a therapeutic agent that induces HIV gene expression from proviruses that were 

previously transcriptionally silent. With the induction of HIV gene expression, the cells 

harboring reactivated provirus begin to produce HIV proteins and epitopes, rendering 

them susceptible to being “killed” by viral cytopathic effect or by the host immune system 

while ART prevents infection of new cells from reseeding of the latent reservoir. In order 

to successfully achieve a cure, every replication-competent provirus that could ever be 

induced to express HIV gene products must be reactivated and killed before proliferating 

and returning to latency.  

 

 

Fig. 1.6: Shock and kill strategy to reduce the HIV reservoir. Maintenance of ART throughout blocks 
HIV replication and prevents the infection of new cells. A therapeutic “shock” induces HIV gene expression 
from latent proviruses. Expression of viral genes generates HIV epitopes enabling the clearance of 
reactivated cells by natural killer cells (NK cells) or cytotoxic T lymphocytes (CTLs). Red represents a 
transcriptionally active provirus; green represents a transcriptionally silent latent provirus. 
 

Latency Reversal Agents 

 
Given the aforementioned heterogeneity of the cellular and anatomical reservoirs 

of latent HIV, latency reversal agents (LRAs) will have to be broadly effective, and their 
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ability to reactivate proviruses in every relevant reservoir must be assessed479. A large 

body of literature has attempted to characterize and define the mechanisms regulating 

the establishment and maintenance of HIV latency in various cell culture models, though 

these almost exclusively focus on studying the CD4+ T cell reservoir using immortalized 

cell lines or various manipulations to encourage latency in primary cells480. Many 

mechanisms that can contribute to latency have been identified, and these are 

accompanied by therapeutic approaches to reactivate latent proviruses (see review481).  

As with cellular genes, the promoter in the 5’ LTR of HIV is heavily regulated by 

epigenetic influences on gene expression. Many LRAs target epigenetic factors with the 

aim of enhancing transcription. Multiple studies have indicated that the silencing effects 

of methyl-cytosine in CpG islands is associated with HIV latency in cell culture models 

and in vivo, and heavily methylated HIV promoters can be induced with the DNA 

methylation inhibitor 5-aza-2’deoxycytidine (aza-CdR)482,483. DNA methylation does not 

entirely explain latency in vivo nor does it account for every aspect of latency reversal, as 

aza-CdR synergized with activators of NFkB482, and alternative LRAs can overcome 

hypermethylation483. Histone acetylation, counteracted by histone deacetylases 

(HDACs), specifically class-1 HDACs, can also enhance HIV gene expression, and the 

lack of histone acetylation is associated with latency484-486. HDAC inhibitors, such as 

vorinostat487,488 and romidepsin489-491, are among the most widely-used and promising 

LRAs, which are believed to achieve reactivation through chromatin remodeling, 

increasing histone acetylation and improving accessibility for RNA polymerase II (Pol II). 

Extensive clinical trials of histone deacetylase inhibitors have shown some evidence of 

increased HIV RNA expression, but no reduction in the proviral reservoir492-494. 
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Several key transcription factors can regulate HIV gene expression by binding 

directly to the LTR promoter. NFkB is essential for efficient transcription from the promoter 

in the HIV 5’ LTR112. Canonical NFkB consists of the p50/p65 heterodimer, which is 

sequestered by IkB, enabling activation of the pathway via IkB phosphorylation. The non-

canonical NFkB pathway culminates with the activation of the RelB/p52 heterodimer by 

inducing alternative processing of the precursor p100495. Canonical NFkB signaling can 

be induced by TNFa stimulation30 or protein kinase C (PKC) activation with agonists such 

as bryostatin-1496 or ingenols497. While PKC agonists are among the most promising 

LRAs in vitro480,498, they are generally considered too toxic for clinical use, and bryostatin-

1 showed little effect on HIV gene expression at tolerable levels in vivo499. Smac mimetics 

like ciapivir can activate the non-canonical NFkB pathway to reactivate latently infected 

cells in vitro500 and in vivo in a humanized mouse model501 with no effect on T cell 

activation, indicating that these compounds may have fewer associated toxicities in 

patients than activators of the canonical NFkB pathway.  

After recruitment of Pol II to the HIV promoter, efficient elongation requires the 

interaction of HIV Tat with P-TEFb.120,502. Tat binds to the TAR element, a secondary 

structure near the 5’ end of the nascent viral RNA119. When bound to the TAR element, 

Tat recruits activated P-TEFb, composed of cyclin T1 and phosphorylated CDK9, which 

increasing the processivity of Pol II by phosphorylating the Pol II C-terminal domain120,121. 

The low level of phosphorylated CDK9 in resting CD4+ T cells contributes to HIV 

latency503. P-TEFb can also be held in an inactive state by the 7SK snRNP complex504,505, 

but can be released from this complex and activated following treatment with the LRA 

HMBA, inducing HIV gene expression506.  
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Combinations of LRAs targeting diverse mechanisms that can contribute to HIV 

latency have demonstrated increased efficacy in vitro484,500,507-509. Despite the robust body 

of literature and reproducible evidence that these agents can induce HIV gene 

expression, to date none of these approaches have proved successful in significantly 

reducing the size of the latent reservoir and substantially delaying rebound upon 

cessation of ART492,493,510-516. This suggests possible failures in reactivating all or even a 

large proportion of the replication-competent reservoir, failures in killing the cells 

harboring induced proviruses before the virus returns to latency, or both. 

To address the inability to reactivate the entirety of the replication-competent 

reservoir, it will be essential to identify reactivation strategies that are likely to be broadly 

effective in reversing latency, given the heterogenous nature of the reservoir in vivo. Thus, 

it is of critical importance to develop in vitro models of HIV-1 latent infection that reflect 

the true nature of the cells harboring provirus in vivo, including their quiescent state. While 

latent HIV-1 infection has been observed in several in vitro systems480, these are all 

focused exclusively on latency in T cells, and there is notable absence of primary cell 

models in which HIV-1 preferentially establishes a latent infection in quiescent cells. 

Furthermore, the treatments that were most effective in many of these models are the 

same approaches that have failed to reduce the viral reservoir in vivo, reaffirming the 

need to develop better cell culture models to predict LRA efficacy492,493,498,510-512.  

Chapter 2 of this dissertation details the development of a primary cell model of 

HIV latency in quiescent HSPCs, which can provide key insights into the mechanisms 

regulating the establishment and maintenance of HIV latency and the efficacy of LRAs in 

quiescent primary cells.  
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Nef-Mediated Immune Evasion Impairs CTL Killing 

 

In addition to improving shock therapies to achieve maximal reactivation of latent 

HIV from heterogenous cellular reservoirs, the cells harboring reactivated provirus will 

need to be eliminated before proliferating or returning to latency. CTLs are the primary 

effectors responsible for killing cells expressing HIV proteins, presented as HIV-derived 

peptides by MHC-I. While evidence suggests a single molecule of peptide:MHC-I can be 

sufficient to induce CTL-mediated killing517,518, many studies have shown a proportional 

relationship between the abundance of peptide:MHC-I on the target cell surface and the 

potency of CTL-mediated activation or clearance519-523. MHC-I is loaded in the 

endoplasmic reticulum (ER) with peptides that were first generated by cytoplasmic 

proteasomal processing and subsequently actively imported into the ER. Peptide-loaded 

MHC-I transits from the ER and is processed through the cis-, medial- and trans-Golgi, 

exits via the trans-Golgi network (TGN), and ultimately proceeds through the secretory 

pathway via secretory vesicles until it reaches the plasma membrane. Upon reaching the 

plasma membrane, peptide:MHC-I complexes can interact with CD8+ T cells expressing 

a TCR with high affinity for both the allele of MHC-I and the peptide being presented524.  

The HIV accessory protein Nef interferes with the proper trafficking of MHC-I by 

first binding to the cytoplasmic tail of MHC-I early in the secretory pathway525. Binding of 

Nef to the MHC-I cytoplasmic tail stabilizes an interaction between a tyrosine residue 

(Y320) in the MHC-I tail and the tyrosine-binding pocket in the µ subunit of clathrin adaptor 

protein 1 (AP-1), exposing a cryptic AP-1 sorting signal that is not present in the absence 
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of Nef273,274. AP-1 is a heterotetrameric complex consisting of µ1, b1, s1, and g subunits, 

which recognizes Yxxφ or [D/E] xxxLL sorting signals and induces clathrin coat 

formation526. Formation of the AP-1:Nef:MHC-I complex mediates the redirection of MHC-

I into the endolysosomal trafficking pathway via clathrin-coated vesicles in an ADP-

ribosylation factor-1 (ARF-1)-dependent manner, and trafficking proceeds until MHC-I is 

delivered to the lysosome, where it is degraded. An alternative model proposed that Nef 

promoted the internalization of MHC-I from the cell surface527, which was purported to 

occur via a pathway involving PACS-1, PI3K, and ARF6528. The contributions of this 

model to MHC-I downregulation, however, have not been reproducible275,529. The direct 

contacts between Nef, MHC-I, AP-1, and ARF-1, on the other hand, have been confirmed 

by X-ray crystallography530 and cryo-electron microscopy analyses531, elucidating the 

structural basis for these interactions and confirming this as the essential mechanism by 

which Nef induces degradation of MHC-I in the lysosome532.  

The lysosome is the organelle responsible for the degradation of proteins within 

the cell. Lysosomal proteases are the effectors of lysosomal degradation, and their 

proteolytic activity is only activated in an acidic environment, preventing premature 

degradation of host proteins prior to successful delivery of the proteases to the 

lysosome533. Lysosomal acidification is maintained by the vacuolar H+-ATPase (V-

ATPase), a rotary proton-pumping motor534 consisting of two domains, an integral domain 

(V0) and a cytoplasmic domain (V1). V-ATPase maintains acidic intracellular 

compartments by using the energy from the hydrolysis of ATP, catalyzed by V1, to pump 

H+ ions against a pH gradient, which is catalyzed by V0.  
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Nef does not exclusively downregulate MHC-I, and in fact hijacks host trafficking 

adaptor proteins to promote the degradation of many host proteins in the lysosome (see 

review532). Nef is expressed early in the viral life cycle and is conserved among primate 

lentiviruses, although some functional differences exist, as SIV Nef can downregulate 

CD3 and tetherin535. Nef is anchored to membranes via myristoylation of the N-terminal 

glycine536 and additional key residues at the N-terminus of Nef537, although the majority 

of Nef protein remains cytoplasmic rather than associated with membranes538. While 

dimers and trimers of Nef can be detected in cells, and oligomerization of Nef was 

believed to be critical for all Nef functions due to the deleterious effects of mutations to 

the D123 domain involved in oligomerization539, the myristoylated form of Nef that 

associates with membranes predominantly exists as a monomer538, and myristoylation is 

also essential for all Nef functions540-543. Nef downregulates CD4544 via internalization 

from the cell surface via the clathrin adaptor protein 2 (AP-2) complex278,545,546. 

Downregulation of CD4 likely prevents superinfection, which is assisted by concomitant 

downregulation of CCR5547, and protects infected cells from antibody-mediated cell 

cytotoxicity548-550. One of the original and elusive activities of Nef is its critical role to 

enhance virion infectivity551,552. This activity was recently mapped to the restriction factors 

SERINC3 and SERINC5, which are internalized from the cell surface and degraded in the 

lysosome in the presence of Nef270-272. HIV-1 Nef also downregulates the T cell 

costimulatory molecule CD28553, interacts with Src family kinases554, modulates T cell 

activation555-557 and promotes survival through activation of PAK, which activates PI3-

kinase to inactivate the pro-apoptotic Bad protein558. Though Nef interacts with many host 

proteins, the mechanism of recruiting AP-1 at the TGN is, to date, unique to MHC-I. 



 50 

 

Fig. 1.7: Nef alters the trafficking of MHC-I and CD4 and prevents the recognition of HIV-infected 
cells by cytotoxic T lymphocytes. Left panel: a cell infected with a virus successfully presents a virus-
derived peptide to a virus-specific CTL. Right: HIV-infected cells express Nef, reducing cell-surface MHC-I 
and evading CTL recognition. Nef also downregulates CD4 by a different mechanism, as indicated. 
 

With recruitment of AP-1 to the cytoplasmic tail of MHC-I mediated by Nef, newly 

synthesized MHC-I that could be loaded with virus-derived peptides is redirected away 

from the cell surface in HIV-infected cells. The resulting loss of MHC-I presenting HIV-

derived peptides reduces the efficiency of HIV-specific CTLs, protecting a portion of Nef-

expressing cells from CTL clearance277. Nef binds specifically to the cytoplasmic domains 

of HLA-A and -B, but not HLA-C and -E. This selective targeting is the result of alterations 

in the key binding residues Y320, A324, and D324 in the cytoplasmic tails of HLA-C and 

-E274. The preservation of HLA-C and -E on the cell surface is thought to provide a 

selective advantage, given the NK inhibitory properties of HLA-C and -E. This 

differentiation from HLA-A and-B, which play a larger role in presenting peptides to CTLs 
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and are strongly targeted by Nef, may optimize evasion of both CTL and NK cell 

responses and is conserved across primate lentiviruses559-561. The existence of HLA-C-

restricted CTL responses to HIV would seem to challenge this framework379-381. The 

recent discovery that HLA-C is downregulated by the Vpu proteins from some primary 

isolates of HIV-1, and by the Vif protein of HIV-2, suggests that HIV can evolve to evade 

HLA-C-restricted CTL responses in settings where these exert stronger selective 

pressures than NK cells562-564. Predictably, downregulation of HLA-C involves 

evolutionary tradeoffs, since downregulation of HLA-C by Vpu does indeed sensitize HIV-

infected cells to NK cell-mediated clearance565. 

The urgent need for a therapeutic Nef inhibitor is evident given that 1) shock alone 

is insufficient to induce killing of reactivated cells harboring HIV proviruses, 2) CTLs are 

the primary effectors of immune control of HIV, and 3) Nef protects some HIV-infected 

cells from even potent HIV-specific CTLs. In fact, the identification of a potent inhibitor of 

Nef that restores MHC-I to the surface of HIV-infected cells may be an essential step 

toward the goal of efficiently clearing HIV reservoirs following therapeutic latency reversal. 

While previous studies have identified compounds that inhibit some activities of Nef in 

vitro, they have not been shown to dramatically and reproducibly restore MHC-I to the 

surface of Nef-expressing cells566-568. Thus, their effects on CTL killing of HIV-infected 

cells are predictably small, necessitating the discovery of compounds that can potently 

restore MHC-I to the surface of Nef-expressing cells567,569.  

Natural products continue to represent the most prosperous source of lead-drug 

candidates570. Continued interest in natural products discovery originates from the 

plethora of clinically relevant biological activities exhibited by these compounds. The 



 52 

Actinobacteria genera Streptomyces represents one of the most well studied families of 

bacteria as a source of bioactive metabolites, as natural products isolated from this family 

are estimated to account for approximately 30% of all identified bioactive metabolites571-

573. The enormous potential for chemical diversity has inspired the assembly of diverse 

microbial natural products extract (NPE) libraries for screening against a variety of 

disease targets. This methodology has been historically successful, with approximately 

60% of all approved drugs between 1981 and 2014 identified as natural products, natural 

product-derived, or inspired by natural products574. Despite this extensive history of 

success, only a select few examples of natural products used in the treatment of HIV 

have been described to date575-577. 

Chapter 3 of this dissertation details the discovery that the plecomacrolide family 

of natural products are potent inhibitors of HIV Nef that restore MHC-I to the surface of 

HIV-infected cells and can enhance the elimination of HIV-infected cells by HIV-specific 

CTLs. 
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CHAPTER 2 

Quiescence Promotes Latent HIV Infection and Resistance to Reactivation From 

Latency With Histone Deacetylase Inhibitors3 

 

 

Abstract 

 

Human immunodeficiency virus type-1 (HIV-1) establishes transcriptionally silent latent 

infections in many cell types, including resting memory T cells and hematopoietic stem 

and progenitor cells (HSPCs), which allow the virus to persist in infected individuals 

despite antiretroviral therapy. Developing in vitro models of HIV-1 latency that recapitulate 

the characteristics of latently infected cells in vivo is crucial to identifying and developing 

effective latency-reversing therapies. HSPCs exist in a quiescent state in vivo, and 

quiescence is correlated with latent infections in T cells. However, current models for 

culturing HSPCs and for infecting T cells in vitro require that they be maintained in an 

actively proliferating state. Here, we describe a novel culture system in which primary 

human HSPCs cultured under hypothermic conditions are maintained in a quiescent 

state. We show that these quiescent HSPCs are susceptible to predominantly latent 

 
3 Portions of this chapter were published previously: 
 
Painter MM, Zaikos TD, Collins KL. Quiescence promotes latent HIV infection and resistance to 
reactivation from latency with histone deacetylase inhibitors. Journal of virology. 2017;91(24):e01080-
01017. 
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infection with HIV-1, while actively-proliferating and differentiating HSPCs obtain 

predominantly active infections. Furthermore, we demonstrate that the most primitive 

quiescent HSPCs are more resistant to spontaneous reactivation from latency than more 

differentiated HSPCs, and that quiescent HSPCs are resistant to reactivation by histone 

deacetylase inhibitors or P-TEFb activation but are susceptible to reactivation by PKC 

agonists. We also demonstrate that inhibition of HSP90, a known regulator of HIV 

transcription, recapitulates the quiescence and latency phenotypes of hypothermia, 

suggesting that hypothermia and HSP90 inhibition may regulate these processes by 

similar mechanisms. In summary, these studies describe a novel model for studying HIV-

1 latency in human primary cells maintained in a quiescent state. 

 

Introduction 

 

Human immunodeficiency virus type-1 (HIV-1) is known to establish a latent 

infection in some cells, in which the viral genome is integrated into the host cell genome 

but remains as a transcriptionally silent provirus1,2. Such latent infections are believed to 

contribute to the phenomenon in which HIV-1 infections in individuals treated with 

antiretroviral therapy that suppresses plasma viral load below detectable levels will 

rebound if therapy is interrupted1,3. The primary cellular target of HIV-1 is CD4+ T cells, 

and the most abundant reservoir of latent HIV proviruses is also likely to reside in these 

cells1,3. Notably, latency in CD4+ T cells is observed most frequently in quiescent resting 

memory T cells, and quiescence has been shown to correlate with HIV latency4,5. While 

T cells are the primary target of HIV-1 infection, other cell types have also been shown to 
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be infected, including macrophages and hematopoietic stem and progenitor cells 

(HSPCs), and non-T cell sources of residual viremia in treated patients have been 

described6-13.  

Reactivation of transcriptionally silent proviruses and subsequent killing of cells 

harboring these proviruses by immune-mediated clearance or viral cytopathic effect is 

one approach to eliminating the residual virus present in individuals receiving 

antiretroviral therapy. Expression of HIV-1 genes is known to be regulated by a number 

of mechanisms that can be targeted for reactivation in vitro. NFkB is essential to efficient 

transcription from the HIV LTR14, and NFkB signaling can be induced by TNFa 

stimulation12 or protein kinase C (PKC) activation with agonists such as bryostatin15. In 

addition to NFkB, P-TEFb, which is composed of cyclin T1 and CDK9, acts with HIV Tat 

to promote RNA polymerase elongation during HIV-1 gene transcription16,17. P-TEFb is 

held in an inactive state by 7SK snRNP, but can be released from this complex and 

activated following treatment with HMBA18. Thus TNFa, bryostatin, and HMBA each have 

the potential to reactivate latent HIV-1 infections, as has been demonstrated 

previously12,19. Other latency-reversing agents have also been proposed, including 

histone deacetylase (HDAC) inhibitors, such as vorinostat20,21 and romidepsin22-24, which 

are believed to achieve reactivation through chromatin remodeling.  

Heat shock protein 90 (HSP90), a molecular chaperone of the heat shock family 

of proteins, is a known positive regulator of HIV-1 transcription. A growing body of 

literature supports the role of HSP90 in regulating HIV-1 gene expression, and the 

mechanisms of this effect are likely pleiotropic. HSP90 has been implicated in the 

activation of the NFkB pathway25, the formation of stable P-TEFb complexes26,27, and the 
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formation of RNA Pol II complexes in the cytoplasm28. Hyperthermia has been shown to 

increase HIV-1 gene expression in persistently-infected cell lines in an HSP90-dependent 

manner, increasing the colocalization of HSP90 with the HIV-1 promoter29-32. Inhibition of 

HSP90 with the specific inhibitor 17-AAG can prevent viral rebound in an HIV-1-infected 

humanized mouse model30, and HSP90 inhibition is also linked with cell cycle arrest, 

similar to that which occurs in quiescent cells33,34. Thus, emerging evidence suggests that 

HSP90 may be a useful target in strategies to eliminate the latent reservoir of HIV-1.  

To determine which reactivation strategies are most likely to be successful in vivo, 

it is important to develop in vitro models of HIV-1 latent infection. These in vitro systems 

must recapitulate the in vivo nature of the latent HIV-1 reservoir, including the diverse cell 

types that can harbor latent infections and the quiescent state of many cells that contain 

transcriptionally silent proviruses. While latent HIV-1 infection has been observed in 

several in vitro systems19, there is notable absence of primary cell models in which HIV-

1 preferentially establishes a latent infection in quiescent cells. Furthermore, treatments 

that were effective in many of these models have failed to reduce the viral reservoir in 

vivo35-40. 

HSPCs reside in the bone marrow and are responsible for generating the 

hematopoietic cell compartment throughout the life of an individual. While both active and 

latent HIV-1 infection of HSPCs in vitro and from patient bone marrow have been 

described by some investigators10-13, others have been unable to detect HIV-1 provirus 

in HSPCs from optimally treated HIV-infected donors41,42. Helping to resolve this apparent 

discrepancy, a recent publication by Sebastian et al. demonstrated that the frequency of 

HIV genomes in HSPCs from people is significantly lower than in T cells and that prior 
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negative studies lacked the necessary statistical power for reliable detection. Additionally, 

Sebastian et al. provided clear in vivo examples of infected HSPCs passing clonal 

defective genomes to differentiated progeny. Because the clonal genomes were 

defective, this observation could not have been attributed to coincident infection.43. Thus, 

there is evidence supporting the possibility that HSPCs form a reservoir of HIV in vivo. 

The most primitive HSPCs, hematopoietic stem cells (HSCs), exist in a quiescent 

state and are long-lived and capable of self-renewal44,45. HSCs differentiate into more 

mature progenitor cells, which in turn continue to differentiate and give rise to the entire 

repertoire of mature hematopoietic cells46. Differentiation from the most primitive to more 

mature HSPCs can be determined by expression of cell surface antigens, including 

CD133 and CD3447-49. In HSPCs purified from human cord blood, the most primitive 

progenitors, including most stem cells, express both CD133 and CD34, whereas 

intermediate progenitors, such as CMPs and MEPs, express reduced levels of CD133 

but remain CD34+, making these surface markers a suitable choice to assess HSPC 

differentiation43.  

HSPCs cultured in vitro differ from those in vivo in that the viability of the cells is 

dependent on the presence of growth factors in the culture medium. For this reason, 

previous work investigating latent infection of primary human HSPCs in vitro has been 

performed with cells cultured at 37°C in the presence of growth factors including 

thrombopoietin, stem cell factor, insulin-like growth factor-1, and FLT3L12,50. Here, we 

demonstrate that cells cultured under these conditions are actively proliferating and 

differentiating, and thus do not recapitulate the quiescent state of HSPCs in vivo. 

Furthermore, we show that while latent infections are observed, these cells are 
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susceptible to predominantly active infections with HIV-1. In contrast, we show that cells 

cultured in the presence of the same growth factors at 30°C are maintained in a quiescent 

state with no loss in viability, and these cells harbor predominantly latent HIV-1 infections. 

Additionally, we demonstrate that latent infections in the most primitive quiescent HSPCs 

are resistant to spontaneous reactivation and remain in a latent state for extended periods 

in culture. We further demonstrate that differentiation to more mature progenitors 

correlates with spontaneous reactivation from latency, and some stimuli that are sufficient 

for reactivation from latency in proliferating and differentiating HSPCS are not effective in 

quiescent HSPCs. Latency in this system is dependent on the active maintenance of 

latently infected cells in a quiescent state and is regulated post-integration. We have also 

shown that inhibition of HSP90 at standard temperatures recapitulates the quiescence 

and latency phenotypes observed under hypothermic conditions. In all, we identify and 

characterized two distinct models of HIV-1 latency using primary human HSPCs 

maintained in a quiescent state in vitro. We further implicate HSP90 as an important 

modulator of HIV latency, and we provide evidence to suggest that quiescent cells may 

be more resistant to reactivation than previously believed.  

 

Results 

 

HSPCs cultured at hypothermic conditions maintain a quiescent state 

To develop conditions that simulate the quiescent state typical of HPSCs in vivo, 

we examined the effect of hypothermic culturing conditions, which we hypothesized could 

slow cellular proliferation and differentiation. Cellular proliferation was measured using 
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PKH26, a membrane-binding dye that is diluted with each cell division, as depicted in Fig. 

2.1A. We found that HSPCs cultured at 37°C proliferated at a significantly higher rate 

than those cultured at 30°C (Fig. 2.1B and C). Cells initially maintained at 37°C and 

switched to 30°C also proliferated consistently less than those maintained at 37°C 

throughout the 6 days in culture, suggesting that switching to 30°C after initial culture at 

37°C could halt proliferation (Fig. 2.1B and C). Furthermore, cell counts were also 

measured after 3 days of culture at 37°C and 30°C, and the cells expanded significantly 

more at 37°C (4.6-fold) than at 30°C (1.5-fold), reflecting what was observed with PKH26 

staining (Fig. 2.1D, p<0.0001, Wilcoxon signed-rank test). Thus, HSPCs cultured at 30°C 

are maintained in a more quiescent state in which proliferation and expansion in culture 

are dramatically reduced, with no loss in viability (Fig. 2.1E). 

HSPC proliferation is often linked to differentiation. To determine whether 

hypothermia also maintains HSPCs in an undifferentiated state, we stained cells for the 

HSPC markers CD133 and CD34. As HSPCs differentiate and become more mature 

progenitors, expression of CD133 is lost, followed by loss of CD34 expression in the most 

mature cells43. We found that HSPCs maintained at 30°C from the time of isolation 

remained undifferentiated based on expression of both CD133 and CD34 (Fig. 2.1F and 

G). In contrast, HSPCs cultured at 37°C for as little as 2 days began to lose expression 

of CD133, and by day 6 post-isolation approximately half of the cells no longer expressed 

CD133 (Fig. 2.1F and G). Thus, reduced proliferation and expansion of HSPCs at 30°C 

is also accompanied by reduced differentiation.  
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Fig. 2.1: HSPCs cultured in vitro under hypothermic conditions are maintained in a quiescent state. 
(A) Schematic demonstrating the experimental process for (B,C F and G). (B) Representative histogram 
from one donor demonstrating the intensity of PKH26 staining in HSPCs following 6 days of culture as 
assessed by flow cytometry, where dilution of the PKH26 stain represents proliferation. Day 0 = cells 
harvested immediately following PKH26 stain prior to any dilution. Unstained = cells never stained with 
PKH26 and harvested 6 days post-isolation. (C) Summary graph of flow cytometric data from 3 independent 
experiments as in (B) where the median fluorescence intensity of PKH26 is normalized to that of condition 
A. (D) Summary graph depicting the fold-change in cell number at each temperature over a three-day 
culture period (**** = p<0.0001, Wilcoxon signed-rank test). (E) Summary graph depicting viability of HSPCs 
calculated as percent of events falling within both FSC/SSC and 7-AAD viability gates following 6 days of 
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culture at the respective temperatures. (F) Representative flow cytometric analysis of HSPCs cultured as 
in (A) and stained for the indicated surface markers. (G) Summary graph of flow cytometric data from 3 
experiments as in (F), demonstrating the frequency of each of the indicated cellular subsets in the whole 
population. Mean values are shown with error bars indicating standard deviation. (H) Schematic 
demonstrating experimental process for (I-K). (I) Summary graph of flow cytometric data from 3 
experiments, demonstrating the frequency of each of the indicated cellular subsets in the whole population 
of HSPCs cultured at 30°C or 37°C post-expansion. Mean values are shown with error bars indicating 
standard deviation. (J) Summary graph of flow cytometric data from HSPCs cultured as in (H) and harvested 
on day 4. HSPCs were stained with DAPI and the frequency of each cell cycle phase was determined using 
FlowJo software (* = p<0.05, Mann-Whitney tests). Each symbol represents an independent experiment 
using cells from a unique donor. (K) Summary graph of normalized flow cytometric data from (J) displaying 
the ratio of cells in G1:S phase of the cell cycle (* = p<0.05, Mann-Whitney test). 

 

Only a small number of CD133+CD34+ cells can be isolated from a single donation 

of human cord blood, requiring an initial expansion of the cells to acquire sufficient cell 

numbers for downstream experiments. To verify that a quiescent state could be induced 

after HSPCs had been actively expanding, we performed a temperature shift experiment 

in which cells initially cultured at 37oC were shifted to the lower temperature (Fig. 2.1H). 

We found that switching HSPCs to 30°C after initially expanding them at 37oC effectively 

halted differentiation at the time of the switch (Fig. 2.1I). In contrast, HSPCs maintained 

at 37°C continued to differentiate; the frequency of CD133- CD34- cells was significantly 

higher than at 30°C (Fig. 2.1I, Day 4 p<0.05, Day 6 p<0.01, Day 8 p<0.01, Mann-Whitney 

tests) and the frequency of CD133+ CD34+ cells was significantly lower than at 30°C (Day 

4 p<0.05, Day 6 p<0.05, Day 8 p<0.01, Mann-Whitney tests). These data support the 

conclusion that HSPCs cultured at 37°C will continue to differentiate and proliferate, while 

HSPCs cultured at 30°C will enter a sustained quiescent state even after 4 days of 

expansion. Thus, this expansion phase was employed for the remainder of the 

manuscript, as it allowed us to acquire sufficient cell numbers for downstream analyses. 

To further characterize the quiescent state of HSPCs cultured at 30°C in vitro, we 

asked whether hypothermia led to arrest at a specific stage of the cell cycle. We found 
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that HSPCs cultured at 37°C had significantly fewer cells in G1 phase and significantly 

more cells in S phase than HSPCs cultured at 30°C (Fig. 2.1J, p<0.05, Mann-Whitney 

tests). After normalization, the ratio of G1:S phase cells is 2.2-fold higher in HSPCs 

cultured at 30°C than at 37°C (Fig. 2.1K, p<0.05, Mann-Whitney test). Taken together, 

these data demonstrate that primary human HSPCs cultured at 30°C in vitro are 

maintained in a quiescent state with minimal proliferation, differentiation, and cell cycle 

progression. 

 

Quiescence promotes HIV-1 latency in HSPCs  

To determine whether quiescence affected the frequency of active and latent 

infection with HIV-1, we used a previously-published system that efficiently detects the 

rate of latent infection in HSPCs established with a single round GFP reporter virus (Fig. 

2.2A)12. In this assay system, infected cells expressing viral proteins are detectable by 

expression of a GFP-envelope fusion protein, while uninfected or latently infected cells 

remain GFP-negative. At the time of infection, HSPCs were split to 37°C or 30°C as in 

Fig. 2.2B, and 3 days post-infection actively infected, GFP+ cells were removed by FACS. 

The integrase inhibitor raltegravir was added immediately after FACS sorting to prevent 

de novo integration. 24 hours post-sort, cells were harvested, and the frequency of 

inducible latent infection was determined by subtracting the frequency of GFP+ cells in 

the raltegravir-only sample, defined as spontaneous reactivation, from the frequency of 

GFP+ cells in a TNFa-stimulated condition (Fig. 2.2B and 2C). To ensure that reactivation 

was truly the result of integrated genomes that were not producing viral proteins 3 days 
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post-infection, we verified that raltegravir was indeed capable of completely blocking 

infection of HSPCs at both 37°C and 30°C (Fig. 2.2D).  

 

Fig. 2.2: Assessing post-integration latency in HSPCs. (A) Schematic depicting the NL4-3-DGPE-E-
GFP HIV-1 viral construct expressing GFP in the env open reading frame. (B) Schematic of experimental 
setup for Fig. 2.3. (C) Representative flow cytometric plots of the latency reactivation assay used in Fig. 2.3 
in which HSPCs infected at the indicated temperature were sorted to remove actively infected cells and 
treated with TNFa or a solvent control in the presence of raltegravir to ensure the assay exclusively 
measures post-integration latency reactivation. (D) Representative flow cytometric plots from HSPCs 
infected as in (B) with addition of raltegravir at the time of infection. Numbers in lower right-hand corner 
represent frequency of GFP+ cells 3 days post-infection. 

 

We found that HSPCs cultured at 30°C had a significantly lower frequency of active 

infection than inducible latent infection (Fig. 2.3A; 5.4-fold, p<0.0001, Wilcoxon signed-

rank test) whereas the reverse was true for cells cultured at 37°C (Fig. 2.3A, p<0.001, 
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Wilcoxon signed-rank test). Correspondingly, the frequency of active infection was 

significantly higher at 37°C than at 30°C (Fig. 2.3B; 4.9-fold, p<0.0001, Wilcoxon signed-

rank test), and the frequency of inducible latent infection was significantly higher at 30°C 

than at 37°C (Fig. 2.3B; 1.8-fold, p<0.0001, Wilcoxon signed-rank test). Thus, 

hypothermia promotes latent HIV infection in HSPCs.  

To further define the latency observed in HSPCs cultured at 30°C, we compared 

the frequency of spontaneous reactivation from latency that occurs in the absence of 

additional stimuli under these two conditions. To facilitate comparison across multiple 

experiments, these results were normalized to the maximal reactivation induced by TNFa. 

At 37°C, 42% of the reactivation that can be induced with TNFa reactivated 

spontaneously within 24 hours. Notably, at 30°C, only 15% of inducible proviruses 

reactivate spontaneously within 24 hours (Fig. 2.3C, p<0.0001, Wilcoxon signed-rank 

test). 
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Fig. 2.3: Quiescent HSPCs are susceptible to predominantly latent HIV-1 infections in vitro. (A) 
Summary graph of flow cytometric data from 15 experiments as in Fig. 2.2, where active infection is the 
frequency of GFP+ cells 3 d.p.i. and inducible latent infection is the frequency of GFP+ cells 4 d.p.i. following 
24 hours of TNFa and raltegravir treatment. For this analysis, the frequency of spontaneous reactivation 
occurring in control cells treated with raltegravir and run in parallel was subtracted. (*** = p<0.001, **** = 
p<0.0001, Wilcoxon signed-rank test). (B) Summary graph of flow cytometric data as in Fig. 2.2 comparing 
total frequency of active and inducible latent infection in HSPCs cultured at the indicated temperature (**** 
= p<0.0001, Wilcoxon signed-rank test). (C) Summary graph depicting the frequency of spontaneous 
reactivation in raltegravir-only samples normalized to the frequency of inducible infection resulting from 24 
hours of TNFa stimulation (**** = p<0.0001, Wilcoxon signed-rank test). (D) Summary graph showing 
spontaneous reactivation normalized as in (C) in each subset of HSPCs at the indicated temperature. 
Numbers above the symbols indicate fold reduction in spontaneous reactivation frequency (**** = p<0.0001, 
Wilcoxon signed-rank test). N = 15 for (D-G). 
 

Differentiation is associated with spontaneous reactivation from latency 

Although increased latency was observed in HSPCs maintained at 30°C, it is 

important to note that this represents a heterogeneous population of various 

hematopoietic progenitor cells, which can be identified as primitive or mature based on 
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expression of the surface markers CD133 and CD3443. To determine whether the 

differentiation state of the cell influenced active versus latent infection, we analyzed cells 

infected and sorted as in Fig. 2.2B and compared the frequency of spontaneous 

reactivation for each differentiation subset. To facilitate comparison across independent 

experiments, the frequency of spontaneous reactivation was normalized to the frequency 

of TNFa-inducible infection in a sample treated in parallel. This analysis revealed that in 

each subset, proviruses in HSPCs maintained in hypothermic conditions were 

significantly less likely to reactivate spontaneously than those in actively proliferating 

HSPCs maintained at 37°C (Fig. 2.3D; p<0.0001 for each, Wilcoxon signed-rank tests). 

However, we also observed that amongst those cells cultured at reduced temperature, 

not all differentiation subsets were equally susceptible to spontaneous reactivation. The 

most undifferentiated progenitors (CD133+ CD34+) were almost 5-fold less likely to 

reactivate spontaneously at 30°C than at 37°C, while more differentiated progenitors were 

about 2-fold less-likely to reactivate spontaneously. These data show that the most 

primitive progenitors harbor the latent proviruses that are least likely to reactivate in 

quiescent cells absent additional stimulation.  

 

Resistance to reactivation is reversible with temperature shift 

 Resistance of latent infection to spontaneous reactivation in quiescent HSPCs 

could be the result of permanent differences established during integration in quiescent 

or proliferating cells, such as a preference for different integration sites in the different 

populations. However, it is also possible that latency is maintained by differences in 

quiescent and proliferating cells post-integration, and thus can easily be reversed when 
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a cell exits a quiescent state. To determine which of these possibilities contributed to the 

differences in latency observed in quiescent HSPCs compared to proliferating HSPCs, 

we performed a series of temperature shifts (Fig. 2.4A). After performing a FACS sort to 

isolate latently infected GFP- cells, cells were split to 37°C or 30°C for reactivation. As 

demonstrated previously, cells maintained at 37°C had a higher frequency of 

spontaneous reactivation than cells maintained at 30°C (Fig. 2.4B, p<0.01, Mann-Whitney 

test). Cells infected at 37°C and switched to 30°C for reactivation, however, had a 

significantly reduced frequency of spontaneous reactivation compared to cells maintained 

at 37°C throughout, suggesting that a more stable form of latency could be established 

by allowing the cells to enter a quiescent state (Fig. 2.4B, p<0.01, Mann-Whitney test). 

Conversely, cells infected in a quiescent state at 30°C and subsequently switched to a 

proliferating state at 37°C had dramatically higher spontaneous reactivation frequencies, 

which were not significantly different from cells infected and reactivated at 37°C. Thus, 

under the conditions of our assay, the relative frequency of spontaneous reactivation is 

determined, at least in part, by post-integration cellular conditions that are readily 

reversible. 
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Fig. 2.4: Post-integration latency in quiescent cells is sustained for extended culture periods but 
easily reversible with removal from the quiescent state. (A) Schematic representation of experimental 
workflow for (B). (B) Summary graph of the frequency of spontaneous reactivation 24 hours after isolating 
GFP- cells by FACS normalized to TNFa-inducible reactivation run in parallel as shown in (A) (n=5-6 distinct 
donors, ** = p<0.01, Mann-Whitney tests). (C) Schematic representation of experimental workflow for (D). 
(D) Summary graph depicting frequency of inducible latent infection in HSPCs treated as in (C). For this 
analysis, the frequency of spontaneous reactivation occurring in control cells treated with raltegravir (NT, 
no treatment) and run in parallel was subtracted. 
 

Latency in quiescent cells persists for extended culture periods 

To assess whether the increased latent infection observed in HSPCs at 30°C is 

stable over longer culture periods, latently infected cells were maintained at their 

respective temperatures in the presence of raltegravir until 7 days post-infection, at which 

point some were stimulated for 24 hours with TNFa (Fig. 2.4C). Indeed, we found that 

hypothermia-induced latency continued to be detectable at a higher frequency than when 

infected cells were cultured under standard conditions even at this extended time point in 

four of four donors (Fig. 2.4D). These data suggest that proviruses in quiescent cells will 
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maintain latency for extended periods, but will readily produce viral proteins upon 

stimulation with TNFa or removal of the quiescent state. 

 

Preferential establishment of latency under hypothermic conditions is not due to 

deficient expression of NFkB 

Given that TNFa is a potent reactivator of latent proviruses in HSPCs and acts by 

activating NFkB, we asked whether a deficiency in steady-state NFkB expression could 

explain the reduced HIV protein expression in HSPCs at 30°C. However, we found that 

expression and nuclear localization of NFkB p65 were identical in HSPCs as assessed 

by western blot following culture at 37°C or 30°C as in Fig. 2.1H, harvesting at day 4 

following the temperature split (Fig. 2.5A, quantified in Fig. 2.5E). Additionally, HSPCs at 

37°C and 30°C showed no differences in steady-state activity or responsiveness to 

TNFa by p65 DNA-binding ELISA (Fig. 2.5B). This suggests that baseline levels of NFkB 

activity and responsiveness of the NFkB signaling pathway to activation are identical in 

HSPCs cultured at 30°C and 37°C. Taken together, these data suggest that while NFkB 

activation is sufficient for reactivation from latency, differences in NFkB expression, DNA-

binding capacity, and nuclear localization are not responsible for the increased 

susceptibility to latent infection in quiescent HSPCs. 
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Fig. 2.5: Expression and cellular localization of P-TEFb, NF�B, and HSP90 fail to explain latency in 
quiescent HSPCs in vitro.4 (A, C and D) Representative western blots of lysates from HSPCs cultured at 
the indicated temperatures for 4 days post-expansion. The antibody to pCDK9 recognizes the activating 
phosphorylation at Thr 186 (n=4, distinct donors in separate experiments). p84 and GAPDH serve as 
controls for separation of the nuclear and cytoplasmic fractions, respectively. Where indicated, fractions 
were loaded as a serial dilution for enhanced comparison. (B) Summary data from NFkB p65 DNA-binding 
ELISA using whole cell lysates from HSPCs cultured at the indicated temperature for 4 days post expansion 
receiving no treatment (NT) or stimulated with TNFa for 6 hours (n=2-3). Each symbol represents an 
independent experiment using cells from a unique donor. (E) Summary graphs of western blot band 
intensity quantifications from western blots as in (A, C, and D). The average pixel density of the band was 
normalized to the pixel density of the loading control for that sample, and subsequently normalized to the 
relative intensity of the 37°C condition. Each symbol within a condition represents a band from a different 
gel from a distinct donor (n=3-4 donors).  
 

Preferential establishment of latency under hypothermic conditions is not due to 

deficient expression of P-TEFb 

P-TEFb, composed of CDK9 and cyclin T1, also plays an important role in 

expression of HIV genes through regulation of transcriptional elongation by RNA 

polymerase II16,17. However, no differences in the level of expression or cellular 

localization of cyclin T1 and an activated phosphorylated form of CDK9 (Thr 186) were 

observed in HSPCs cultured at 37°C or 30°C (Fig. 2.5C, quantified in Fig. 2.5E). These 

data suggest that a deficiency in P-TEFb is not responsible for regulating the increased 

susceptibility of quiescent HSPCs to latent infection with HIV-1. 

 

HSP90 protein expression is unchanged in hypothermic HSPCs 

 Heat shock protein 90 (HSP90) is a heat-sensitive chaperone that is known to 

promote HIV gene transcription. This effect is likely pleiotropic, as several mechanisms 

for this activity have been described, including via activation of the NFkB pathway, 

stabilization of the P-TEFb complex, or formation of the RNA Pol II complex in the 

cytoplasm26-31,33,34. In response to the growing body of literature supporting the role of 

 
4 Zaikos TD contributed to generating the data in Fig. 2.5B. 
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HSP90 in promoting HIV gene transcription, we hypothesized that diminished HSP90 

activity in response to hypothermia may be regulating quiescence and latency in this 

model. As an initial assessment, we measured HSP90 protein expression in cytoplasmic 

and nuclear fractions of HSPCs cultured at 37°C or 30°C and observed no significant 

difference (Fig. 2.5D, quantified in Fig. 2.5E). This result, however, did not exclude the 

possibility that HSP90 activity was reduced at the lower temperature despite similar 

abundance of HSP90 protein. 

 

Inhibition of HSP90 recapitulates hypothermia-induced quiescence 

Despite the lack of change in HSP90 protein levels, it remained possible that 

hypothermia reduced HSP90 functional activity. Thus, we asked whether inhibition of 

HSP90 with 17-AAG (tanespimycin) recapitulated the effects of hypothermia on the 

quiescent cell state of HSPCs. Remarkably when we assessed the effect of HSP90 

inhibition on cellular proliferation, differentiation and viability, we found that 17-AAG 

treatment achieved a similar degree of quiescence in HSPCs at 37°C as in HSPCs at 

30°C. Inhibition of HSP90 reduced proliferation as assessed by PKH26 dilution after 2 

and 4 days of culture (Fig. 2.6A, upper panels). These results were significant when 

compiled across three independent experiments (Fig. 2.6A, lower panels, p<0.05 for all 

comparisons, Mann-Whitney tests). Moreover, inhibition of HSP90 with 17-AAG limited 

the expansion of cells in culture to a similar degree as hypothermia; HSPCs cultured at 

37°C in the absence of 17-AAG expanded dramatically, and this expansion was 

significantly greater than that observed in the presence of 17-AAG or under hypothermic 

conditions (Fig. 2.6B, p<0.001 for each, Mann-Whitney tests).  
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Fig. 2.6: Inhibition of HSP90 with 17-AAG recapitulates latency and quiescence phenotypes of 
hypothermia. (A) Representative flow plots (upper panel) and summary graphs (lower panel) of PKH26 
staining following 2 (left) or 4 (right) days of culture at the indicated temperature plus or minus 17-AAG as 
indicated. For the summary graph, values were normalized to the 30oC, plus 17-AAG condition (p<0.05 for 
all comparisons, Mann-Whitney tests, MFI = median fluorescence intensity). (B) Summary graph depicting 
the fold-change in cell number at each condition over a three-day culture period (*** = p<0.001, Mann-
Whitney tests). (C) Summary plots of flow cytometric data depicting frequency of viable cells after 2 or 4 
days at each condition based on inclusion in both a FSC/SSC and a 7-AAD viability gate. Each symbol 
represents an independent experiment using cells from a unique donor. (D) Summary graph of flow 
cytometric data from 3 experiments demonstrating the frequency of each of the indicated cellular subsets 
in the whole population after 3 days at the corresponding conditions. Mean values are shown with error 
bars indicating standard deviation. (E-F) Summary graphs of frequency of spontaneous reactivation for 
cells cultured at the indicated temperature for three days and treated for 24 hours as indicated. Values were 
normalized to the amount of inducible infection by dividing the frequency of GFP+ cells in solvent control by 
the frequency in TNFa-stimulated cells run in parallel. (E) Connecting lines indicate samples from the same 
donor (n=5-6). (F) Comparison of the effect of 24-hour treatment with 17-AAG or hypothermia on 
spontaneous reactivation. Temperature switch performed as in Fig. 2.4A (n.s. = not significant, ** = p<0.01, 
Mann-Whitney tests). 
 

Importantly, we demonstrated that treatment with 17-AAG was minimally toxic over 

the course of 4 days (Fig. 2.6C). In addition, we found that inhibition of HSP90 activity 
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resembled the effect of hypothermia in that it slowed differentiation of HSPCs at 37°C, 

leading to a significant increase in the proportion of the most undifferentiated progenitors 

(CD133+ CD34+) and a significant decrease in the proportion of the most differentiated 

progenitors (CD133- CD34-) after 3 days (Fig. 2.6D, p<0.01, Wilcoxon signed-rank test). 

Taken together, these data suggest that inhibition of HSP90 at standard temperatures is 

sufficient to recapitulate the quiescence observed in HSPCs cultured at hypothermic 

temperatures. 

 

Inhibition of HSP90 suppresses spontaneous but not TNF-induced reactivation 

from latency 

Having determined that HSP90 inhibition was sufficient to recapitulate the 

quiescent cellular state observed in hypothermic HSPCs, we asked whether this 

correlated with reduced spontaneous reactivation from latency. We found that, similar to 

what was observed under hypothermic conditions, 17-AAG reduced spontaneous 

reactivation from latency in 4 of 5 donors at 37°C, although this trend was not statistically 

significant (Fig. 2.6E, p=0.07). Consistent with hypothermia and 17-AAG acting on the 

same factor, we found that spontaneous reactivation from latency at 30°C remained low 

and was not significantly affected by inhibiting HSP90 (Fig. 2.6E). While the frequency of 

spontaneous reactivation was higher at 37°C with HSP90 inhibition than at 30°C, it was 

not significantly different from that observed in cells infected at 37°C and shifted to 30°C 

for the 24 hour reactivation period, as in Fig. 2.4A (Fig. 2.6F, p=0.42), suggesting that 

quiescence following inhibition of HSP90 is similar to hypothermia in suppressing post-

integration spontaneous reactivation of latent proviral genomes. 
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Latently infected quiescent HSPCs are resistant to reactivation from latency by 

Histone deacetylase inhibitors (HDACi) and HMBA 

As latently infected cells likely exist in a quiescent state in vivo, it was important to 

assess whether quiescent cells differed from actively-proliferating cells in their sensitivity 

to reactivation by chemical latency reactivators currently being used in therapeutic trials. 

Indeed, we observed minimal reactivation by the HDACi vorinostat and romidepsin and 

by the P-TEFb activator HMBA under hypothermic conditions, whereas there was potent 

reactivation with these compounds at 37oC (Fig. 2.7A). In a compiled analysis of data 

from multiple independent experiments, vorinostat, romidepsin and HMBA were 

inefficient at reactivating latency at 30oC. Indeed, romidepsin and HMBA did not 

significantly reactivate above the solvent control at 30oC despite potent activity at 37°C 

(Fig. 2.7B). (To facilitate comparison across multiple experiments, the frequency of 

inducible genomes (GFP+ cells) observed under each condition was normalized to the 

frequency of TNFa-inducible proviruses observed in paired samples. For this analysis, 

the frequency of spontaneous reactivation observed in a paired solvent control sample 

was subtracted prior to normalization.) These results suggest that latent genomes in 

quiescent cells differ dramatically from those in proliferating cells in their ability to respond 

to HDACi and P-TEFb stimulation.  
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Fig. 2.7: Latent HIV-1 infections in quiescent HSPCs are resistant to reactivation by HDAC inhibitors 
and HMBA but can be reactivated with bryostatin. (A) Representative flow cytometric plots of latently 
infected HSPCs treated for 24 hours with the indicated latency-reversing compounds as in Fig. 2.2. 
Frequency of GFP+ HSPCs is depicted in bold in the bottom-right of each plot, with mean fluorescence 
intensity (MFI) of GFP in the GFP+ cells shown below in italics in the top-right (n = at least 4 experiments). 
(B) Summary graphs of flow cytometric data as in (A). Spontaneous reactivation as assessed by the 
frequency of GFP+ cells in the solvent control was subtracted prior to normalization to the frequency of 
GFP+ cells in the TNFa-stimulated sample (n.s. = not significantly different from solvent control, **** = 
p<0.0001, Mann-Whitney tests). (C) Summary graphs of flow cytometric data as in (A) depicting the GFP 
MFI in the indicated GFP+ gate for each condition normalized to that of TNFa-stimulated HSPCs (* = p<0.05, 
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** = p<0.01, **** = p,0.0001, Mann-Whitney tests). (D) Western blot of lysates from HSPCs cultured at the 
indicated temperatures for 3 days post-expansion and treated with DMSO (solvent) or vorinostat and lysed 
at the indicated time post-treatment. (E) Quantification of bands in (D) by measuring the pixel density of 
each band for acetylated Histone H4 and dividing by that of total Histone H4 for each sample. Data are 
normalized to the baseline proportion of acetylated Histone H4 2 hours post-treatment with solvent control 
for the respective temperature. (F) Schematic of experimental setup used for (G). (G) Summary graph of 
flow cytometric data from cells treated as in (F) and stimulated with the indicated reactivation regimen for 
24 hours, adjusted for spontaneous reactivation and normalized as in (B). Columns indicate means, and 
error bars indicate standard deviation (n=at least 4, n.s. = not significant, * = p<0.05, **** = p<0.0001, Mann-
Whitney tests). Solvent = matched DMSO. 
 

In contrast, bryostatin, which acts by activating PKC and subsequently NFkB, was 

effective under both conditions. Additionally, while HDACi and HMBA were not sufficient 

for reactivation from latency in quiescent HSPCs, they were still capable of enhancing 

reactivation frequency in combination with bryostatin, suggesting that the drugs are 

functional at 30°C (Fig. 2.7A and B).  

The median fluorescence intensity (MFI) of GFP in GFP+ cells was also measured 

and normalized to that in TNFa-treated cells to determine the level of HIV protein 

expression in reactivated cells. This measurement reflects the amount of the protein 

expressed on a per cell basis. Although most treatments had no appreciable effect on 

GFP MFI (Fig. 2.7A, compiled data not shown), we observed that HMBA increased GFP 

expression in combination with bryostatin over that observed with bryostatin or HMBA 

alone, even at 30°C where HMBA alone had no positive effect on reactivation (Fig. 2.7C). 

These data demonstrate that while HMBA was not sufficient for enhancement of protein 

expression in quiescent HSPCs, it was still capable of this activity in combination with 

bryostatin, indicating that the drug had activity at this temperature but was ineffective in 

the absence of additional stimulation.  

Similarly, the failure of vorinostat to reactivate latent genomes in quiescent cells 

was not due to a loss of activity under hypothermic conditions, as treatment of HSPCs 
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with the HDACi vorinostat efficiently induced Histone H4 acetylation with similar kinetics 

in HSPCs at both temperatures (Fig. 2.7D and E). No changes in acetylation were 

observed following treatment with solvent control, confirming that the increased 

acetylation was due to vorinostat HDAC inhibitory activity and verifying that the drug was 

capable of inducing chromatin remodeling at 30oC. Taken together, these data suggest 

that HDACi and HMBA are active at hypothermic temperatures in HSPCs, but their activity 

is not sufficient to induce reactivation from latency in quiescent cells without additional 

stimulation. 

To determine whether the reduced ability of HDACi and HMBA to reactivate post-

integration latency under hypothermic conditions was reversible, we performed 

temperature shift experiments as depicted in Fig. 2.7F. We observed that cells reactivated 

for 24 hours at 30°C responded similarly regardless of whether they were infected at 37°C 

or 30°C, with low responsiveness to HDAC inhibitors or HMBA and high responsiveness 

to bryostatin. In comparison, cells reactivated at 37°C in a proliferative state were 

responsive to all reactivation treatments, regardless of whether they were infected at 37°C 

or 30°C (Fig. 2.7G). These data suggest that mechanisms preventing reactivation with 

HDACi or HMBA in quiescent cells respond rapidly to changes in the quiescent state of 

the cell and are regulated post-integration. 

 

Quiescence mediated by HSP90 inhibition also prevents reactivation with HDACi 

and HMBA 

 We further hypothesized that quiescence induced by inhibition of HSP90 at 37°C 

would recapitulate the reactivation profile of hypothermia-induced quiescence. Indeed, 
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HSPCs reactivated with these approaches in combination with 17-AAG yielded a similar 

reactivation profile to that at 30°C (Fig. 2.8). Addition of 17-AAG significantly reduced the 

effects of vorinostat, romidepsin, and HMBA at 37°C, but had no effect on reactivation 

with bryostatin (Fig. 2.8, p<0.01, Mann-Whitney). In contrast, addition of 17-AAG to 

HSPCs infected and reactivated at 30°C had no significant effect, maintaining the 

decreased responsiveness to vorinostat, romidepsin, and HMBA compared to HSPCs at 

37°C without affecting reactivation with bryostatin (Fig. 2.8, p<0.01, Mann-Whitney tests). 

Inhibition of HSP90 can therefore recapitulate the reduced frequency of spontaneous 

reactivation and reduced susceptibility to certain reactivation approaches observed for 

latent HIV-1 proviruses at 30°C, supporting the hypothesis that quiescence leads to 

greater resistance to reactivation from latency.  

 

Fig. 2.8: Quiescence following inhibition of HSP90 restricts reactivation in the same way as 
hypothermia-induced quiescence. Summary graph of flow cytometric data from cells cultured at the 
indicated temperature for three days and treated with the indicated latency reactivator for 24 hours as in 
Fig. 2.2. Background reactivation in the DMSO solvent control was subtracted from each sample prior to 
normalization to the frequency of GFP+ cells in the TNFa-stimulated control. Columns indicate means, and 
error bars indicate standard deviation (n=at least 3, n.s. = not significant, ** = p<0.01, Mann-Whitney tests).  
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Discussion 

 

Here we have demonstrated that culturing primary human HSPCs at 30°C 

maintains these cells in a quiescent state characterized by lower rates of proliferation, 

differentiation, and progression beyond the G1 phase of the cell cycle. Furthermore, we 

show that these quiescent HSPCs are susceptible to infection with HIV-1 that is 

predominantly latent, while proliferating and differentiating HSPCs are susceptible to 

predominantly active infections. Thus, culturing HSPCs at 30°C as a means of inducing 

quiescence represents a novel in vitro model of HIV-1 latency using primary human cells. 

We have further shown that latency in this model system is maintained for extended 

periods in culture, is resistant to spontaneous reactivation, and can be reactivated by 

NFkB activation in response to TNFa stimulation. In addition, the most undifferentiated 

progenitor cells found in this model were the most resistant to spontaneous reactivation, 

while differentiation to more mature progenitors correlated with viral protein expression. 

This suggests that primitive HSPCs maintained in a quiescent state without undergoing 

differentiation could harbor latent HIV proviruses for long periods of time. Furthermore, 

the fact that quiescence-induced latency is reversible in this model of post-integration 

latency means that our results can’t be explained by integration site differences. Instead, 

our results support the hypothesis that quiescence-induced latency is maintained by an 

unknown factor with activity that is modulated by the cellular state.  

In an effort to determine the mechanisms regulating the latency observed in this 

model, we have demonstrated that differences in NFkB and P-TEFb expression, 

activation, and cellular localization were not responsible for the increased frequency of 
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latent infection at 30°C. Interestingly, we found that HMBA treatment, which presumably 

activates P-TEFb, and chromatin remodeling with HDAC inhibitors only enhanced viral 

protein expression in quiescent HSPCs when used in combination with bryostatin, a PKC 

agonist, although they are functional in the absence of bryostatin in proliferating cells. 

These data suggest that either a factor downstream of PKC stimulation or a deficiency of 

some factor that can be overcome with PKC stimulation is responsible for maintaining 

latency in quiescent HSPCs, but is functional at some level in the absence of PKC 

activation in proliferating HSPCs. Although NFkB would seem to be a likely candidate, 

we have found no differences in NFkB expression, localization, or activity in HSPCS at 

37°C or 30°C. Future studies will be needed to confirm the existence and identity of such 

a factor and clearly define the mechanism promoting latency in this model. The 

determination of this mechanism may shed light on the factors regulating whether a 

particular cell will maintain a latent infection in vivo and guide the development of targeted 

therapies for inducing HIV gene expression from latent proviruses.  

The observation that quiescent HSPCs are resistant to reactivation by previously 

described latency reversing agents that are effective in actively-proliferating HSPCs calls 

into question whether these therapies will be effective at reactivating latent reservoirs of 

virus in HSPCs in vivo, where the cells harboring latent proviruses tend to be maintained 

in a quiescent state. This model system may allow for more informative testing of latency 

reversing agents in vitro by establishing a higher threshold for reactivation. In fact, the 

reactivation profile observed in hypothermic HSPCs closely resembles that of the Greene 

and Planelles models of HIV latency, which use T cells maintained in a relatively 

quiescent state, while other models behave more similarly to proliferating HSPCs19. 
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Notably, previous clinical trials with HDAC inhibitors vorinostat and romidepsin failed to 

reduce the size of the HIV-1 latent reservoir in vivo, consistent with the inability of these 

compounds to induce reactivation in quiescent HSPCs35,36. Further studies will be needed 

to determine whether the requirements for reactivation in this quiescent model of latency 

more accurately reflect those observed in vivo than other model systems, including those 

using actively proliferating HSPCs cultured at 37°C.  

We also showed that inhibition of HSP90 is sufficient to induce quiescence and 

regulates HIV-1 latency similarly to hypothermia in this model. While differences in HSP90 

protein expression were not observed, it is still possible that a deficiency in HSP90 activity 

in hypothermic conditions is responsible for the observations we have described. HSP90 

has been shown as a positive regulator of HIV gene expression in numerous studies26-34, 

and the mechanism of this activity is likely pleiotropic. Our findings further implicate 

HSP90 as potentially playing an important role in regulating HIV-1 latency, drawing a 

novel connection between quiescence-induced latency and HSP90 inhibition. 

Determining the mechanisms modulating latency downstream of hypothermia and HSP90 

inhibition, which may be identical based on their numerous similarities, warrants further 

investigation. It will be important to determine if these mechanisms are also involved in 

maintaining latency in quiescent resting memory T cells, which would enhance their utility 

as targets for reactivation of the latent reservoir in HIV-infected individuals.  

We observed that latent proviruses in the least differentiated HSPCs at 30°C were 

unlikely to reactivate spontaneously, and that spontaneous reactivation correlated with 

differentiation to more mature progenitors. HSCs are long-lived and are capable of self-

renewal. This leads to speculation that a quiescent HSC in vivo could be infected with 
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HIV-1 and maintain the provirus in a latent state. This latent provirus could remain stable 

without reactivating spontaneously for long periods of time, only reactivating upon 

differentiation into more mature progenitor cells. As primitive HSCs persist without 

differentiating throughout the life of an individual, it is possible that these cells could 

represent a long-lived reservoir of latent HIV-1 infection that is resistant to spontaneous 

reactivation but continues to contribute to the pool of replicating virus as HSC progeny 

differentiate and undergo spontaneous reactivation. The possible existence of HSCs as 

a reservoir of latent virus in HIV-1-infected individuals would represent an additional 

barrier to the development of a cure for HIV, as reactivation-based approaches would be 

required to reactivate latent proviruses in both T cells and quiescent HSCs. While the 

existence of such a reservoir of latent HIV-1 proviruses in HSPCs has been controversial, 

a recent publication from Sebastian et al.43 has provided compelling evidence supporting 

the existence of rare proviruses in bone marrow HSPCs from optimally-treated donors 

that cannot be attributed to T cell contamination. Furthermore, the low rate of infection 

observed explains prior negative studies, which lacked statistical power to reliably detect 

the low frequency of latently infected HSPCs. 

Several future lines of investigation will be of interest to expand on the findings 

presented here. While we used HIV virions pseudotyped with VSV-G to infect HSPCs in 

this study, characterizing the infection of quiescent HSPCs with full-length, wild-type HIV-

1 will be important to better assess how infection of these cells proceeds in vivo. 

Furthermore, while HSPCs likely contribute to the latent reservoir of HIV-1, the major 

reservoir is in resting memory T cells. Determining whether hypothermia or the underlying 

mechanisms regulating latency in quiescent HSPCs can be used to enhance T cell 
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models of HIV-1 latency warrants further investigation. Initial attempts suggest that 

differences in the cell biology of T cells cause them to respond poorly to hypothermia 

(data not shown). The model system described here, in combination with improving 

models of T cell latency, can serve as an important tool to identify effective therapies and 

gain a deeper understanding of the mechanisms regulating the establishment and 

maintenance of latency in quiescent cells. 

 

Materials and Methods 

 

Ethics statement 

Anonymized whole umbilical cord blood (CB) from uninfected donors was obtained from 

the New York Blood Center. 

 

Isolation and culturing of HSPCs from human cord blood 

HSPCs were isolated from whole umbilical cord blood (New York Blood Center) as 

previously described12. Briefly, cord blood mononuclear cells (CBMCs) were isolated from 

cord blood by Ficoll-Paque (GE Healthcare) density gradient centrifugation and either 

frozen in BSA (7.5% in PBS; Gibco) and DMSO (10%; Sigma-Aldrich) in liquid nitrogen 

or used immediately. CBMCs were then adherence depleted in Stemspan II medium for 

2 hours, and non-adherent cells were purified for CD133+ cells by magnetic sort using a 

CD133 Microbead Kit (Miltenyi Biotech) according to the manufacturer’s protocol, with the 

modification that 1.5X the recommended number of beads were added to increase the 

purity of the sort. Purity following the magnetic sort was greater than 92% CD133+ cells, 
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which were also unanimously positive for CD34 expression. Purified HSPCs were then 

maintained in Stemspan II medium supplemented with 100ng/mL stem cell factor, 

100ng/mL thrombopoietin, 100ng/mL Flt3 ligand (all from STEMCELL Technologies), and 

100ng/mL insulin-like growth factor binding protein 2 (R&D Systems), termed STIF 

medium, at 37°C or 30°C with 5% CO2.  

 

Flow cytometry surface staining 

Antibodies with binding specificity for the following surface antigens were used for flow 

cytometry: CD133 (phycoerythrin [PE] conjugated; Miltenyi Biotec), and CD34 

(fluorescein isothiocyanate [FITC] or allophycocyanin [APC] conjugated; Miltenyi Biotec). 

Cells were stained with 2µg/mL 7-aminoactinomycin D (7-AAD; Calbiochem) to exclude 

dead cells. For staining of surface proteins, cells were suspended in FACS buffer (2% 

FBS, 1% human serum, 2mM HEPES, 0.025% sodium azide in PBS) with 7-AAD and 

antibodies (CD34, CD133), incubated on ice for 15 minutes, washed, and then fixed in 

2% paraformaldehyde in PBS. Flow cytometry data were collected with a BD FACS Canto 

cytometer or a BD FACScan cytometer with Cytek 6-color upgrade and analyzed with 

FlowJo software.  

 

PKH26 proliferation assay 

HSPCs were stained with PKH26 cell membrane-binding dye (Sigma-Aldrich) according 

to the manufacturer’s protocol immediately following isolation of CD133+ cells. HSPCs 

were maintained as described above, and intensity of PKH26 staining was assessed by 
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flow cytometry using a BD FACS Canto cytometer. Histograms were generated and 

median fluorescence intensity of PKH26 was calculated using FlowJo software.  

 

DAPI cell cycle analysis 

Total cellular DNA content was assessed by staining HSPCs with DAPI (Thermo 

Scientific) and determining the intensity of DAPI staining by flow cytometry. HSPCs were 

harvested, washed twice with PBS, fixed on ice in 70% ethanol in PBS, washed with PBS, 

permeabilized and stained with 1µg/mL DAPI in 0.1% Triton X 100 (Fisher Biotech) in 

PBS for 30 minutes on ice. Data for the intensity of DAPI staining were collected using a 

BD FACS Canto cytometer, and cell cycle analysis was performed using FlowJo software. 

Following doublet exclusion, DAPI signal intensity was plotted on a linear scale and the 

proportion of singlets in G1, S, or G2/M phase was determined by averaging the results 

from the Watson (pragmatic) and Dean-Jett-Fox models, with the G2 coefficient of 

variation (CV) set to equal the CV of G1. 

 

Viral constructs and HIV-1 infection of HSPCs 

HSPCs were infected with HIV-1 construct NL4-3-DGPE-E-GFP12 after 4 days of 

expansion at 37°C following isolation of CD133+ cells. Infectious viral supernatants were 

produced by transfection of the proviral NL4-3-DGPE-E-GFP plasmid into 293T cells 

using polyethylenimine. Proviral plasmid was co-transfected with a plasmid containing 

vesicular stomatitis virus glycoprotein (VSV-G) to generate VSV-G-pseudotyped viral 

particles and a helper plasmid (p-CMV-HIV), which encodes the necessary structural 

proteins for virion formation that are absent in NL4-3-DGPE-E-GFP. Culture supernatants 
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from these 293T cells were collected 48 to 72 hours post-transfection, filtered through a 

0.4µm syringe filter (GE Healthcare), and frozen at -80°C. 293T cells were cultured in 

Dulbecco’s modified Eagle medium (DMEM; Gibco) supplemented with 10% fetal bovine 

serum (FBS; Gibco), 1 U/ml penicillin, 1 μg/ml streptomycin, 292 μg/ml glutamine (Gibco), 

and 56µg/mL plasmocin (Invivogen), termed D10 medium. 

 

HSPCs were infected by spin inoculation at 1,049 x g for 2 hours at room temperature. 

Mock infected controls were treated with D10 culture medium. Following spin inoculation, 

the viral supernatants were removed and HSPCs were resuspended in STIF medium. 

Cells were then split and maintained at 37°C or 30°C in STIF immediately post-infection. 

 

FACS sort and reactivation studies 

HSPCs infected with NL4-3-DGPE-E-GFP were sorted for GFP- cells by fluorescence-

activated cell sorting (FACS) using a FACSAria III (BD Biosciences) cytometer to remove 

GFP+ (actively infected) cells and obtain a pure population of GFP- (uninfected or latently 

infected) cells. GFP+ and GFP- populations were defined using mock-infected HSPCs.  

 

Following isolation of GFP- HSPCs, 70,000-100,000 cells were immediately resuspended 

in 200µL Stemspan II medium supplemented with 8µM Raltegravir (Selleck Chemicals) 

in all experiments, along with one of the following treatment conditions: 3ng/mL tumor 

necrosis factor alpha (TNFa; R&D Chemicals), 1µM vorinostat (Vor, Cayman Chemical), 

25nM romidepsin (Rom, Selleck Chemicals), 10mM Hexamethylene bisacetamide 

(HMBA, Sigma-Aldrich), 2.5nM bryostatin-1 (Bryo, Sigma-Aldrich), or 750nM 17-N-
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allylamino-17-demethoxygeldanamycin (17-AAG, Selleck Chemicals). Combination 

treatments used the same concentrations of each compound as individual treatments. 

Solvent controls were performed with cells cultured in Stemspan II supplemented with 

raltegravir and either water or DMSO matched to the concentration in the treated 

samples. Reactivation observed in solvent controls was termed spontaneous reactivation 

and was subtracted from calculations of the frequency of inducible latent infection or 

frequency of reactivated cells with different treatments. Treatments were performed 

immediately following the FACS sort, and cells were harvested for flow cytometric 

analysis after 24 hours.  

 

HSPCs cultured for extended periods following the FACS sort were cultured in STIF 

supplemented with 8µM Raltegravir until 7 d.p.i., at which point cells were resuspended 

in Stemspan II supplemented with 8µM Raltegravir and stimulated with TNFa or solvent 

control for 24 hours as described above.  

 

Nuclear and cytoplasmic fractionation and Western blotting 

HSPCs were expanded for 4 days at 37°C, then split to 37°C or 30°C for 4 additional 

days. Cells were harvested and nuclear and cytoplasmic fractions were isolated using a 

Nuclear Extract Kit (Active Motif) according to the manufacturer’s protocol. Nuclear and 

Cytoplasmic extracts were loaded into wells of a polyacrylamide gel for Western blot at 

serial dilutions to enhance comparisons of protein expression levels. Western blotting 

was performed using antibodies directed against the following proteins: NFkB p65 (clone 

572, Invitrogen), pCDK9 (activating phosphorylation on Thr186; Cell Signaling 



 126 

Technology), cyclin T1 (Santa Cruz Biotechnology), GAPDH (Abnova) and p84 (Abcam) 

as cytoplasmic and nuclear protein controls, respectively. HRP-conjugated secondary 

antibodies were used (Invitrogen), and signal was detected using Pierce ECL (Thermo 

Scientific) or Amersham ECL Prime (GE Healthcare).  

 

For acetylated Histone H4 western blots as in Fig. 2.7D-E, whole cell lysates were 

obtained using Blue Loading Buffer (Cell Signaling Technology, 7722S) according to 

manufacturer’s protocol and membranes were probed with primary antibodies against the 

following proteins: Histone H4, pantropic (Millipore, 04-858) and acetyl-Histone H4 (Lys 

12) (Millipore, 04-119). Secondary antibodies and detection reagents were as above. 

 

NFkB p65 ELISA 

Whole cell lysates were obtained from HSPCs after 8 days in culture using a TransAM 

NFkB Kit (Active Motif) according to the manufacturer’s protocol. Protein concentrations 

were determined by Bradford assay, and equal protein amounts were loaded into each 

ELISA reaction. ELISA was performed according to the manufacturer’s protocol in the 

TransAM NFkB Kit (Active Motif) kit. 

 

Cell counts 

For cell counting experiments, CD133+ HSPCs were isolated as described and expanded 

for 4 days in STIF culture medium at 37°C. Cells were then split to 37°C or 30°C, with or 

without 17-AAG (750nM, Selleck Chemicals) added to the STIF culture medium. Cells 
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were sampled two, three, and four days after splitting to these conditions and live cells 

were counted with a hemoctyometer following Trypan Blue (Gibco) staining. 

 

Quantification of Western blots 

Western blotting results were quantified using Photoshop by determining the average 

pixel density in a box of equal size overlayed with each band from a single, unedited film 

displaying a single gel. No quantification comparisons were made from bands on different 

films or gels at any point.  

 

Statistical analyses 

All statistical analyses were performed using GraphPad Prism software as described in 

the figure legends for each experiment.  
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CHAPTER 3 

Concanamycin A Counteracts HIV-1 Nef to Enhance Immune Clearance of 

Infected Primary Cells by Cytotoxic T Lymphocytes5 

 

Abstract 

 

Nef is a human immunodeficiency virus (HIV)-encoded accessory protein that enhances 

pathogenicity by downregulating major histocompatibility class I (MHC-I) expression to 

evade killing by cytotoxic T lymphocytes (CTLs). A potent Nef inhibitor that restores MHC-

I is needed to promote immune-mediated clearance of HIV-infected cells. We discovered 

that the plecomacrolide family of natural products restored MHC-I to the surface of Nef-

expressing primary cells with variable potency. Concanamycin A (CMA) counteracted Nef 

at sub-nanomolar concentrations that did not interfere with lysosomal acidification or 

degradation and were non-toxic in primary cell cultures. CMA specifically reversed Nef-

mediated downregulation of MHC-I, but not CD4, and cells treated with CMA showed 

reduced formation of the AP-1:Nef:MHC-I complex required for MHC-I downregulation. 

 
5 Portions of this chapter were published previously: 
 
Painter MM, Zimmerman GE, Merlino MS, Robertson AW, Terry VH, Ren X, McLeod MR, Gomez-

Rodriguez L, Garcia KA, Leonard JA, Leopold KE, Neevel AJ, Lubow J, Olson E, Piechocka-
Trocha A, Collins DR, Tripathi A, Raghavan M, Walker BD, Hurley JH, Sherman DH, and Collins 
KL. Concanamycin A counteracts HIV-1 Nef to enhance immune clearance of infected primary 
cells by cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences. 
2020;117(38):23835-23846. 
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CMA restored expression of diverse allotypes of MHC-I in Nef-expressing cells and 

inhibited Nef alleles from divergent clades of HIV and SIV, including from primary patient 

isolates. Lastly, we found that restoration of MHC-I in HIV-infected cells was accompanied 

by enhanced CTL-mediated clearance of infected cells comparable to genetic deletion of 

Nef. Thus, we propose CMA as a lead compound for therapeutic inhibition of Nef to 

enhance immune-mediated clearance of HIV-infected cells.  

 

Introduction 

 

The development of combination antiretroviral therapy (ART) has drastically 

altered the course of the HIV epidemic, yet HIV infection remains a lifelong condition for 

which there is no cure. The virus persists despite the presence of HIV-specific cytotoxic 

T lymphocytes (CTLs), the main effectors of cellular adaptive immunity responsible for 

clearing viral infections1,2. While rare elite controllers with particularly potent CTLs or 

CTLs targeting vulnerable antigens can spontaneously suppress the virus, even these 

individuals fail to clear the infection3-5. In controllers or ART-treated patients with 

suppressed viral loads, HIV persists in long-lived latent reservoirs of virus. Approaches 

to clear these reservoirs by reactivating latent viruses have provided evidence that latency 

can be reversed in vivo, but this alone is unlikely to eliminate infected cells6-9. Thus, new 

strategies are needed to enhance the clearance of infected cells following latency 

reversal. 

 CTLs recognize peptide antigens presented in the context of major 

histocompatibility complex class-I (MHC-I) on the surface of infected cells, mediating 
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death of the target cell through perforin and Fas lytic pathways10. MHC-I is both polygenic, 

with genes encoding HLA-A, -B, -C, -E, -F, and -G, and polymorphic, with remarkable 

allelic variation particularly in HLA-A, -B, and -C11. Polygeny allows for functional 

separation, as HLA-A and -B, and to a lesser extent -C, are responsible for presenting 

peptides to CTLs, which recognize non-self-antigens expressed by intracellular 

pathogens. HLA-C, -E, and -G are predominantly responsible for inhibiting the 

responsiveness of natural killer (NK) cells, which recognize cells with low MHC-I12 and 

elevated natural killer cell activating ligands13. Allelic variation in the antigen-presenting 

forms of MHC-I yields alleles that are optimized for presentation of diverse peptides14. 

Some alleles of HLA-B, in particular, are associated with rapid or delayed progression of 

HIV disease, and this may be attributable to whether the optimal peptide repertoire for an 

allele includes vulnerable regions in the HIV genome5,15,16.  

 MHC-I is loaded with peptides in the endoplasmic reticulum and proceeds through 

the secretory pathway to reach the cell surface17. The HIV accessory protein Nef alters 

MHC-I trafficking by binding to the cytoplasmic tail of MHC-I early in the secretory 

pathway, stabilizing an interaction between a tyrosine residue in the MHC-I cytoplasmic 

tail and the tyrosine-binding pocket in the µ subunit of clathrin adaptor protein 1 (AP-

1)18,19. Formation of the AP-1:Nef:MHC-I complex mediates the redirection of MHC-I into 

the endolysosomal trafficking pathway in an ADP-ribosylation factor-1 (ARF-1)-

dependent manner, where it is degraded in the lysosome20,21. Lysosomal acidification, 

which is required for the function of lysosomal proteases responsible for this degradation, 

is maintained by the vacuolar H+-ATPase (V-ATPase), a rotary proton-pumping motor22. 

X-ray crystallography23 and cryo-electron microscopy analyses24 have confirmed the 
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direct contacts between Nef, MHC-I, AP-1, and ARF-1 and described the structural basis 

for these interactions25.  

As a result of these interactions, HIV-infected cells expressing Nef experience a 

loss of cell-surface MHC-I, which protects them from being killed by HIV-specific CTLs26. 

Nef binds specifically to the cytoplasmic domains of HLA-A and -B, but not HLA-C and -

E. Because of their different functional roles, this differentiation optimizes evasion of both 

CTL and NK cell responses and is conserved across primate lentiviruses27-29. The 

identification of a potent inhibitor of Nef that restores MHC-I to the surface of HIV-infected 

cells therefore represents an important and perhaps essential step toward the goal of 

efficiently clearing HIV reservoirs following therapeutic latency reversal. Here we describe 

a novel function for the plecomacrolide family of natural products, in particular 

concanamycin A, which potently counteracts Nef downregulation of MHC-I to enhance 

CTL-mediated clearance of HIV-infected primary lymphocytes.  

 

Results 

 

Screening for natural-product inhibitors of HIV Nef 

To identify a Nef inhibitor capable of reversing MHC-I downmodulation in HIV-

infected cells, we performed a high-throughput flow cytometric screen for compounds that 

increased expression of recombinant HLA-A2 in a CEM T cell line (CEM-A2) expressing 

Nef from a gutted adenoviral vector (Appendix, Fig. 3.S1A)30. HLA-A2 was chosen as a 

representative allele of MHC-I because HLA-A allotypes are strongly targeted by Nef for 

downregulation27, HLA-A2 is abundant in diverse ethnic groups31, and a high-affinity 
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monoclonal antibody selective for HLA-A2 (BB7.2) is available32. Initial screening of over 

200,000 small molecules failed to identify convincing hits. Screening of over 20,000 

natural product extracts33 identified 37 that were positive in the primary screen and 

negative in the counter screen. A secondary screen using CEM-A2 cells infected with a 

VSV-G pseudotyped single-round reporter virus derived from the HIV NL4-3 molecular 

clone (NL4-3-DGPE-EGFP, DGPE, Fig. 3.1A) confirmed that extracts from 11 strains 

inhibit Nef in the context of HIV infection (Appendix, Fig. 3.S1B-C). 

 

Natural product Nef inhibitors are plecomacrolides 

 Natural product metabolites with anti-Nef activity analyzed by NMR and mass 

spectrometry were identified as members of the bafilomycin (Baf) plecomacrolide family 

of natural products (Figs. S2A-C and S3A)34. Baf A1 and C1 purified from our natural 

product extracts by standard fractionation procedures had near identical activity to 

commercial sources of these compounds (Appendix, Fig. 3.S3B-C). Baf A1 dramatically 

increased cell-surface HLA-A2 in CEM-A2 cells expressing Nef from the cytomegalovirus 

promoter in the context of an adenoviral delivery vector (Appendix, Fig. 3.S4A-B) and the 

HIV LTR using DGPE (Appendix, Fig. 3.S4C-D). Nef-dependent HLA-A2 downmodulation 

was reduced by over ten-fold in CEM-A2 cells (Appendix, Fig. 3.S4C-D) and by 18-fold in 

primary T cells transduced with DGPE (Fig. 3.1B).  

 

Plecomacrolides have diverse Nef inhibitory potencies and achieve superior 

restoration of MHC-I compared to recently identified Nef Inhibitors B9 and 

Lovastatin 
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The plecomacrolide family includes the bafilomycins, which have a characteristic 

16-member ring, and the concanamycins, which have an 18-member ring (Appendix, Fig. 

3.S3A). We exposed HIV-infected primary CD4+ T cells to plecomacrolide family 

members and determined that each restored MHC-I to similar levels, but with variable 

potencies (Fig. 3.1C-D). CMA counteracted Nef at the lowest concentrations (EC50 = 

0.07nM), while Baf C1 was most potent among the bafilomycins (EC50 = 0.4nM, Baf B1 = 

1.6nM, Baf A1 = 2.8nM, Baf D = 380nM). We further confirmed that the effects of CMA 

on Nef activity could not be attributed to a reduction in viral gene expression (Appendix, 

Fig. 3.S5). 

For comparison, we also tested recently identified Nef inhibitors B9 and lovastatin. 

Both B935,36 and lovastatin37 have been reported to impair multiple Nef functions, with the 

effects of lovastatin evident only at supratherapeutic concentrations. We observed no 

effect of B9 on Nef-dependent MHC-I downmodulation across a wide range of 

concentrations, including those that had been previously reported to inhibit Nef in cells 

(Appendix, Fig. 3.S4A-F)35,36. For lovastatin, we observed little restoration of MHC-I at 24 

hours post-treatment, but did confirm that lovastatin partially restored MHC-I to the 

surface of Nef-expressing cells after 48 hours of exposure. However, restoration of MHC-

I by lovastatin required 2,000-fold higher concentrations than CMA and failed to achieve 

comparable levels (Appendix, Fig. 3.S4G-H). To confirm that the negative results 

achieved with B9 were not due to receipt of the wrong compound, we independently 

validated that the purchased material matched the published structure of B9 by 1H NMR 

(Appendix, Fig. 3.S6) and mass spectrometry (Appendix, Fig. 3.S7) analysis. Based on 
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these results, we conclude that CMA achieves the greatest magnitude of MHC-I 

restoration and is the most potent Nef inhibitor yet described. 

 

 
 
Fig. 3.1: Plecomacrolides possess distinct potencies for Nef inhibition and cellular toxicity, which 
are separable for CMA6. (A) Schematic representations of viral genomes used throughout the manuscript. 
Deleted genes are in black. (B) Representative flow cytometry plots (n=3) from primary CD4+ T cells 

 
6 Zimmerman GE contributed to data in Fig. 3.1C and 3.1E. Merlino MS contributed to data in Fig. 3.1E. 
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infected with HIV DGPE and treated with Baf A1 as in Appendix, Fig. 3.S1B. Blue histograms are from GFP- 
cells, red histograms are from infected GFP+ cells. Compiled data are in C. (C) Summary graph of flow 
cytometric data from primary CD4+ T cells infected as in B and treated with the indicated plecomacrolides 
(n=3 for Baf A1, B1 and D, n=8 for Baf C1, n=12 for CMA). Nef activity is the fold downmodulation of Nef 
normalized to solvent control as shown in D. (D) Representative flow cytometric plots from experiments 
summarized in C, shown from the donor with results closest to the mean among 12 donors tested. Percent 
restoration, fold downmodulation, and Nef activity were calculated as described in Materials and Methods. 
(E) Summary graph comparing Nef activity as in D after 24 hours (n=3 for Baf A1, n=8 for BafC1, n=12 for 
CMA) and viability as in Appendix, Fig. 3.S8A after 24 hours (n=7 for Baf A1, n=8 for Baf C1, n=15 for CMA) 
and 72 hours of plecomacrolide exposure(n=3 for Baf A1 and Baf C1, n=6 for CMA). Solvent control is 
DMSO. Extra sum-of-squares F test used to compare IC50 values of curves. 
 

CMA restores MHC-I at concentrations that are non-toxic to primary cells 

High-dose plecomacrolide treatment is toxic to cells, and questions remain over 

the safety and utility of plecomacrolides in clinical applications targeting V-ATPase 

activity38-40. We did not observe any notable toxicity with 24-hour exposure to 

plecomacrolides in the above or any subsequent experiments (Fig. 3.1E). However, in 

agreement with published reports, we observed toxicity when primary cells were exposed 

to plecomacrolides at high concentrations for extended periods41,42. Nevertheless, based 

on MTT and flow cytometric viability assays (Appendix, Fig. 3.S8A-B), inhibition of Nef in 

CD4+ primary T cells occurred at concentrations that were non-toxic even with 72 hours 

of direct exposure (Fig. 3.1E). For CMA there was an 11-fold difference between the 50% 

effective and toxic concentrations (EC50 and TC50). This compared with 3.5-fold and 4.8-

fold differences for Baf A1 and C1, respectively (Fig. 3.1E). For subsequent experiments 

in primary CD4+ T cells, we utilized 24-hour incubations with 0.5nM CMA, which 

suppressed Nef activity by 10-fold and maintained 95% viability (Fig. 3.1E).  

We also found that G0/G1 cell cycle arrest, a reported effect of plecomacrolide 

exposure, was minimal even at concentrations well above the EC50 for Nef inhibition 

(Appendix, Fig. 3.S8C)43. CD4+ T cells treated with 0.5nM CMA showed a 1.15-fold 

increase in the proportion of cells in S phase compared to the solvent control, but the 
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corresponding decrease in cells in G2/M was not statistically significant. Given the small 

magnitude of these changes, it is unlikely that cell cycle arrest meaningfully contributes 

to toxicity in cells treated with 0.5nM CMA. Thus, plecomacrolides, and particularly CMA, 

may be promising lead compounds for therapeutic Nef inhibition.  

 

Plecomacrolides have distinct Nef inhibitory and lysosome neutralization 

potencies  

 The toxicity associated with plecomacrolide treatment likely results from their 

inhibition of V-ATPase, which is responsible for many cellular processes, including 

lysosomal acidification44. To determine whether inhibition of lysosomal pH might be 

responsible for reversal of MHC-I downmodulation in Nef-expressing cells, we adapted a 

previously-described method to measure the pH of the lysosome of primary human 

monocyte-derive macrophages (MDMs) by measuring ratiometric fluorescence of an 

endocytosed dextran45 (Appendix, Fig. 3.S9A). We first confirmed that Baf A1 completely 

neutralized lysosomal pH (Appendix, Fig. 3.S9B-C). We then tested each of the 

plecomacrolides over a range of concentrations. Interestingly, the most potent inhibitor of 

Nef, CMA, was not the most potent inhibitor of V-ATPase. Instead, Baf C1 (EC50 = 7.3nM) 

neutralized lysosomes more potently than CMA (EC50 = 12.7nM, p<0.0001), which had 

comparable potency to Baf A1 (EC50 = 18.5nM, p=0.06). (Fig. 3.2A). This evidence 

indicated a qualitative separation between plecomacrolide inhibition of Nef in primary T 

cells and V-ATPase-mediated acidification in MDMs. 

 Because CD4+ T cells did not efficiently endocytose dextran, we assessed 

lysosomal neutralization in these cells with Lysotracker Red dye, which freely crosses cell 
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membranes until it reaches an acidic compartment, where it is protonated and retained. 

As measured by flow cytometry (Fig. 3.2B-C) and confocal microscopy (Appendix, Fig. 

3.S9D), the EC50 for lysosome neutralization by CMA in primary CD4+ T cells (EC50 = 

1.9nM) was significantly higher than the EC50 for Nef inhibition (EC50 = 0.07 nM, 27-fold 

difference, p<0.0001). Taken together, these results indicate that CMA counteracted Nef 

in primary human CD4+ T cells at concentrations that were non-toxic and did not alter 

lysosomal pH. 

 

CMA restores cell-surface MHC-I, but not CD4, in Nef-expressing cells  

Both MHC-I and CD4 are targeted to the lysosome by Nef, but by distinct 

mechanisms. MHC-I is redirected from the trans-Golgi network to the lysosome via the 

AP-1 adaptor complex18,19, while CD4 is internalized from the cell surface and trafficked 

to the lysosome in an AP-2-dependent manner46. Based on the above data, we 

hypothesized that surface restoration of MHC-I was not simply secondary to lysosome 

dysregulation. To explore this hypothesis, we treated pure populations of HIV-infected 

primary cells with a high dose of CMA that neutralizes the lysosome (2.5nM) or a low 

dose that leaves acidic compartments intact (0.5nM). We found that neither dose of CMA 

reversed Nef-dependent downregulation of cell-surface CD4, while downregulation of 

surface MHC-I was reversed equally in both conditions (Fig. 3.2D). This indicated that 

CMA specifically redirects MHC-I, and not all proteins targeted to the lysosome by Nef, 

to the cell surface. 

 



 143 

CMA restores MHC-I in Nef-expressing cells with functional lysosomal protein 

degradation 

We then sought to confirm that CMA restores MHC-I by a mechanism independent 

of its effects on lysosomal degradation by directly observing Nef-mediated lysosomal 

degradation. As expected, both MHC-I and CD4 were degraded in Nef-expressing cells 

(Fig. 3.2E, left). A high dose of CMA, which neutralized the lysosome (Figs. 2B-C, S9D), 

inhibited Nef-mediated degradation of both HLA-A2 and CD4 (Fig. 3.2E, center). Notably, 

high-dose CMA also increased MHC-I expression in uninfected cells, consistent with 

disruption of the steady-state turnover of MHC-I in the lysosome. Low-dose CMA, 

however, did not prevent degradation of CD4 and did not increase steady-state levels of 

MHC-I, indicating that the lysosome was functional for protein degradation. Despite this, 

MHC-I was not degraded in Nef-expressing cells (Fig. 3.2E, right). Thus, low-dose CMA 

treatment selectively alters the transport of MHC-I in HIV-infected primary cells, 

preventing redirection to the lysosome and restoring MHC-I to the cell surface.  

To validate these results, we performed immunofluorescence microscopy on pure 

populations of HIV-infected primary CD4+ T cells. Cells infected with Nef-expressing HIV 

had a dramatic reduction in cell surface and total expression of HLA-A2 compared to 

uninfected cells or cells infected with Nef-deficient HIV (Fig. 3.2F). Exposure to 0.5nM 

CMA restored the appearance of MHC-I staining to that observed in the absence of Nef 

(Fig. 3.2F). High doses (2.5nM) of CMA caused accumulation of HLA-A2 in intracellular 

compartments, consistent with inhibition of lysosomal degradation. Taken together, these 

experiments confirmed that low doses of CMA that do not disrupt lysosomal function 

specifically restore MHC-I to the surface of Nef-expressing HIV-infected CD4+ T cells. 
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These results strongly suggest a role for CMA in this process that is independent of its 

effects on lysosomal pH through its known target, V-ATPase. 

 
 
Fig. 3.2: Lysosome function and acidification remain intact at concentrations of CMA that restore 
MHC-I.7 (A) Summary graph of flow cytometric data from MDMs as in S9A-C, treated with plecomacrolides 
for 1 hour as indicated (n=8 for Baf A1 and Baf C1, n=2 for Baf D, n=6 for CMA). (B) Representative flow 
cytometry histograms of primary activated CD4+ T cells treated for 24 hours with CMA as indicated and 
incubated with Lysotracker Red for 1 hour. (C) Summary graph of flow cytometric data from B comparing 
the normalized median fluorescence intensity (MFI) of Lysotracker Red (n =9) with the normalized Nef 
activity (n=12) and viability (n=15) from Fig. 3.1E in primary CD4+ T cells treated with CMA at the indicated 
concentrations. Arrow indicates concentration of CMA used in primary cells in Fig. 3.4-3.5. (D) 
Representative flow cytometry histograms from primary activated CD4+ T cells infected with HXBePLAP 
(Fig. 3.1A) for 72 hours, sorted for PLAP+ cells, and treated with CMA as indicated for 24 hours. Blue 
histograms represent mock-infected cells, red histograms represent sorted PLAP+ cells infected with 

 
7 Lubow J contributed to experiments in Fig. 3.2A. Zimmerman GE performed experiments and generated 
Fig. 3.2B, 3.2C, and 3.2F. 
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HXBePLAP (WT), and purple histograms represent sorted PLAP+ cells infected with HXBePLAP in which 
Nef was deleted (DNef, representative of 3 independent experiments). (E) Western blot of whole cell lysates 
from CD4+ T cells prepared as described for (D) (representative of 4 independent experiments). (F) 
Representative confocal microscopy images of primary activated CD4+ T cells prepared as described in D, 
stained for HLA-A2. Mock cells are uninfected. All images were captured with identical microscope settings. 
Solvent control is DMSO. Extra sum-of-squares F test used to compare IC50 values of curves. 
 

CMA reduces the association of Nef and AP-1 with MHC-I 

 The observation that CMA selectively affects MHC-I and not CD4 degradation 

suggests that CMA disrupts the formation of the AP-1:Nef:MHC-I complex. To test this 

directly, we used CEM-A2 cells transduced with an adenoviral vector expressing Nef. This 

system has been used to study the formation of the AP-1:Nef:MHC-I complex under 

conditions where ammonium chloride (NH4Cl) prevents lysosomal degradation18. Higher 

concentrations of CMA were required for reversal of Nef activity in CEM cells than in 

primary CD4+ T cells. However, we identified 1.25nM CMA as a non-toxic concentration 

that inhibited Nef without significantly altering intracellular acidification (Fig. 3.3A). Thus, 

we consider this to be functionally similar to 0.5nM CMA treatment in primary CD4+ T 

cells.  

Because both NH4Cl and CMA stabilized HLA-A2 expression to similar levels, we 

were able to compare whether CMA specifically resulted in a reduction in the abundance 

of the AP-1:Nef:MHC-I relative to what is observed under conditions of lysosomal 

neutralization. We found that CMA treatment led to a reproducible reduction in the 

abundance of Nef, AP-1g, and AP-1µ1 subunits associating with HLA-A2 compared to 

cells treated with NH4Cl (Fig. 3.3B). These effects were highly significant when compiled 

across multiple experiments (Fig. 3.3C, p < 0.0001). Control experiments confirmed the 

specificity of the assay, as detection of AP-1g, and AP-1µ1 in pulldowns required both 

HLA-A2 and Nef (Fig. 3.3B, leftmost lanes). In addition, we confirmed that the complex 
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could not reliably be observed in the absence of NH4Cl due to robust HLA-A2 degradation 

and minimal HLA-A2 recovery in the presence of Nef (Fig. 3.3B, leftmost lanes).  

  

 
 
Fig. 3.3: CMA reduces the abundance of AP-1:Nef:MHC-I complexes. (A) Summary graph of flow 
cytometric data comparing the normalized median fluorescence intensity (MFI) of Lysotracker Red (n =4) 
with the normalized Nef activity following DGPE infection as in Appendix, Fig. 3.S1B (n=5) and viability as 
in Fig. 3.S8A (n=5) in CEM-A2 cells treated with a range of CMA concentrations for 24 hours. Arrow 
indicates the concentration of CMA used in remaining experiments with CEM cells. (B) Representative 
western blot depicting three experimental replicates (of 11 total replicates) of whole cell lysates before 
(left panel) or matched samples after (right panel) immunoprecipitation using BB7.2-conjugated beads 
(specific for HLA-A2) from CEM-SS or CEM-A2 cells transduced with Nef-expressing adenoviral vector 
construct or the control vector lacking Nef. NH4Cl = 35mM NH4Cl. CMA = 1.25nM CMA. (C) Summary 
graphs quantifying experimental replicates of western blots for AP-1 subunits (n=11) and Nef (n=8) as in 
B. Band intensities were recorded for each protein from a single exposure in which all bands were visible 
but none were saturated. Band intensity was normalized to the intensity of HLA-A2 for each sample to 
account for differences in HLA-A2 recovery. Results were normalized to NH4Cl, and the mean of NH4Cl 
values was used where multiple replicates were run simultaneously as in B. **** = p < 0.0001, unpaired 
two-tailed t-tests.  
 

To determine whether CMA directly binds to components of the AP-1:Nef:MHC-I 

complex, we performed differential scanning fluorimetry thermal stability assays using a 
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comprehensive panel of purified components of the AP-1:Nef:MHC-I complex (Appendix, 

Fig. 3.S10A) including the AP-1 µ1-C-terminal domain, the MHC-I tail fused with HIV-1 

NL4-3 Nef, the µ1-CTD:MHC-NL4-3 Nef complex, the AP-1 core, the AP-1 trimer 

containing AP-1 core:Arf1-GTP: MHC-NL4-3 Nef complex, and NL4-3 Nef alone 

(Appendix, Fig. 3.S10B-G). No significant changes in Tm were observed with 1-hour 

incubation of any of the samples with CMA compared to solvent control, indicating that 

CMA does not bind directly to any of these members of the ARF-1:AP-1:Nef:MHC-I 

complex in vitro. Furthermore, when GST-tagged MHC-I cytoplasmic tail was immobilized 

on resin, the presence of CMA did not alter pulldown of NL4-3 Nef, SIV Nef, or the AP-1 

µ1-CTD (Appendix, Fig. 3.S10H). In summary, these results demonstrate that CMA 

impairs the formation of the AP-1:Nef:MHC-I complex in cells. However, we did not 

observe direct binding of CMA to known protein components of the complex, implicating 

the existence of an alternative target necessary for Nef-specific MHC-I trafficking. 

 

CMA enhances CTL-mediated clearance of HIV-infected cells comparably to 

genetic deletion of nef 

 There is a large body of literature indicating that increases in cell-surface MHC-I 

on target cells yield proportional increases in CTL-mediated clearance of target cells47-50. 

Given that Nef-expressing CD4+ T cells treated with 0.5nM CMA have near normal 

surface expression of HLA-A2 (Fig. 3.2D), we hypothesized that CMA would eliminate 

Nef-mediated protection of HIV-infected cells from HIV-specific CTLs. To test this directly, 

we performed in vitro flow cytometric CTL killing assays (Appendix, Fig. 3.S11A) with two 

HLA-A2-restricted CTL clones expressing T cell receptors specific for HLA-A2 presenting 
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the Gag SL9 epitope, which is expressed in the HIV molecular clone HXBePLAP (Fig. 

3.1A)26.  

 As previously observed26, PLAP+ primary cells infected with a Nef-deleted virus 

were efficiently eliminated by CTLs (Fig. 3.4A, top row). In contrast, CTL-mediated 

elimination of cells infected with a Nef-competent virus was notably reduced at every 

effector:target (E:T) ratio. Importantly, there was no further elimination of PLAP+ cells 

when the E:T ratio was increased from 5:1 to 10:1, indicating that there was a residual 

population of Nef-expressing cells that were highly resistant to clearance even by a large 

excess of potent HIV-specific CTLs (Fig. 3.4A, middle row). Cells infected with Nef-

competent virus and treated with 0.5nM CMA, however, had restored HLA-A2 expression, 

and the PLAP+ subset was efficiently eliminated by CTLs (Fig. 3.4A, bottom row). The 

effect of CMA on CTL killing of HIV-infected cells was indistinguishable from genetic 

deletion of Nef and was Nef-dependent, as there was no increase in clearance of cells 

infected with Nef-deleted virus (Fig. 3.4B). Importantly, when target cells from a donor 

lacking HLA-A2 were co-cultured with CTLs, there was no reduction in PLAP+ target cells 

regardless of whether they were treated with CMA (Appendix, Fig. 3.S11B), validating the 

specificity of the CTLs and demonstrating that CMA only enhances clearance of HIV-

infected cells in the presence of both Nef and specific anti-HIV CTL responses. Nef-

dependent increases in killing of CMA-treated cells were statistically significant for both 

CTL clones tested (p<0.0001, Appendix, Fig. 3.S11C). These observations confirm that 

low-dose CMA treatment of Nef-expressing cells restores HLA-A2 that is properly loaded 

with an HIV-derived peptide that can be successfully presented to CTLs without impairing 

responsiveness to CTL-derived lytic signals.  
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 Previous reports have indicated that concentrations of CMA greater than 1nM 

could inhibit the effector functions of CTLs, but no such effect was observed at 0.5nM 

CMA51,52. We confirmed these published results using our anti-HIV CTLs. We observed 

no change in the clearance of SL9 peptide-pulsed target cells in the presence of 0.5nM 

CMA (Fig. 3.S11D).  

 

 
 
Fig. 3.4: CMA enhances clearance of HIV-infected cells by HIV-specific CTLs.8 (A) Representative flow 
cytometry plots depicting CTL-mediated killing of primary CD4+ T cells infected with HXBePLAP plus or 
minus Nef (Fig. 3.1A) for 72 hours and treated for 24 hours with 0.5nM CMA or matched DMSO solvent 
control prior to 4-hour co-culture with CTLs. Cells were gated for CD4+ T cell targets as in Appendix, Fig. 
3.S11A. (B) Summary graph of results from A in two independent experiments using two distinct CTL 
clones. Each condition was performed in duplicate, and survival of PLAP+ cells was determined by 
normalizing to the mean of quadruplicate 0:1 samples. Error bars represent standard deviation. WT, 

 
8 Terry VH contributed to experiments in Fig. 3.4. 



 150 

HXBePLAP wild-type; DNef, HXBePLAP in which Nef was deleted; E:T, effector:target ratio, indicates the 
number of anti-HIV CTLs present in the 4-hour co-culture per CD4+ T cell target cell.  
 

CMA reverses Nef-mediated downregulation of HLA-B in primary cells 

Nef downregulates both HLA-A and HLA-B allotypes, and many patients possess 

robust HLA-B-restricted, HIV-specific CTLs53-55. Thus, we sought to determine whether 

CMA would restore HLA-B expression in HIV-infected cells. Sequence differences in 

HLA-B allotypes classify them as either HLA-Bw4 or HLA-Bw6 serotypes. Each serotype 

can be detected with monoclonal antibodies, but these antibodies are cross-reactive with 

some HLA-A (Bw4) and HLA-C (Bw6) allotypes56. As previously reported, we identified a 

donor that was heterozygous for Bw4 (B*51:01) and Bw6 (B*07:02) with no cross-reactive 

HLA-A alleles and minimal cross-reactivity from HLA-C, allowing us to reliably measure 

expression of two HLA-B alleles (Appendix, Fig. 3.S12A)56. We observed significant 

downmodulation of both HLA-B*51:01 and HLA-B*07:02 in cells infected with DGPE, 

which was consistently counteracted by CMA (Fig. 3.5A-C). The effects of Nef and CMA 

on both HLA-B alleles in this donor were similar in magnitude to those observed for HLA-

A*02 in an array of donors (Fig. 3.5B). Thus, we conclude that CMA can potently 

counteract Nef-mediated downregulation of both HLA-A and HLA-B allotypes in primary 

CD4+ T cells. 

 

A primary HIV isolate from an optimally-treated patient downregulates MHC-I and 

is inhibited by CMA 

 Enhancing the clearance of latent reservoirs of virus that persist in optimally-

treated patients, likely following therapeutic reactivation from latency, is an important 

clinical application for a Nef inhibitor. We previously isolated a full-length provirus that 
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was expressed as residual plasma virus in an optimally-treated patient and was further 

shown to be infectious57. We deleted Gag-Pol and introduced GFP, allowing identification 

of infected cells in a single round infection while preserving Nef from the original isolate 

(454-Gag-GFP, Fig. 3.1A). Primary CD4+ T cells infected with 454-Gag-GFP 

demonstrated downregulation of HLA-A*02:01, HLA-B*51:01, and HLA-B*07:02, which 

was Nef-dependent (Figs. 5D and S12B). CMA restored expression of all three allotypes 

of MHC-I in the context of infection with the primary isolate virus (Fig. 3.5D), and this 

result was confirmed in two additional donors for HLA-A*02 (Appendix, Fig. 3.S12C). 

Thus, we have demonstrated that sub-nanomolar concentrations of CMA can potently 

restore MHC-I to the surface of primary cells expressing Nef from a virus isolated from an 

optimally-treated patient. 
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Fig. 3.5: CMA counteracts Nef-mediated HLA-B downregulation in primary cells, including those 
expressing Nef from a primary isolate of HIV.9 (A) Representative flow cytometry plots (n=3 
independent replicates from a single donor) from primary CD4+ T cells infected with NL4-3-DGPE for 48 
hours, treated with 0.5nM CMA for 24 hours, and stained with monoclonal antibodies to Bw4 (B*51:01) 
and Bw6 (B*07:02). Blue histograms are from GFP- cells, red histograms are from infected GFP+ cells. 
(B) Summary graph of data from A plotting the MHC-I MFI from infected GFP+ cells normalized to that in 
uninfected cells treated with solvent control. Data for HLA-A*02 are from independent experiments with 
11 different donors, data for HLA-B*51:01 and HLAB*07:02 are from 3 independent experiments with a 
single donor. (C) Summary graph of data from A depicting the relative Nef activity against the indicated 
HLA-B allotypes in cells treated with a range of CMA concentrations (n=3). (D) Flow cytometry plots from 
CD4+ T cells infected with 454-Gag-GFP (Fig. 3.1A) and treated and stained as in A (n=1 for HLA-B 
allotypes, n=3 for HLA-A*02). Solvent control is DMSO. 
 
 

CMA broadly inhibits nef alleles from diverse clades of HIV and SIV targeting a 

range of MHC-I alleles 

 
9 Zimmerman GE and Olson E contributed to experiments in Fig. 3.5. 
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 Globally, HIV possesses remarkable genetic diversity. To this point, we had only 

investigated the inhibitory activity of plecomacrolides against Nef alleles from NL4-3, HXB 

and the 454 patient molecular clones, all of which are clade B viruses. To determine 

whether plecomacrolides offer broad therapeutic promise against a diverse range of Nef 

sequences, we tested nef alleles from HIV clades A, B, C, D, F, and F/B, as well as one 

from simian immunodeficiency virus (SIV) (Fig. 3.6A) cloned into the MSCV-IRES-GFP 

vector (Fig. 3.1A)58. We observed that CMA restored expression of HLA-A2 in cells 

expressing each nef allele, indicating that plecomacrolides broadly inhibit nef alleles from 

genetically diverse HIV isolates (Fig. 3.6B-D, red bars), and the potency of CMA was 

comparable for each allele (Fig. 3.6C). CMA was able to restore HLA-A2 expression more 

completely for nef alleles that downregulate HLA-A2 to a lesser extent but had the most 

dramatic effect on HLA-A2 expression in cells expressing the most potent nef alleles (Fig. 

3.6D). Similarly, CMA restored surface expression of HA-tagged MHC-I allotypes HLA-

A*02, HLA-B*08, HLA-B*27, and HLA-B*57 expressed in CEM cells. Each allele of Nef 

downregulated each allele of MHC-I, with varying magnitudes, and CMA restored MHC-I 

surface expression in every context (Fig. 3.6E-H). These observations support the 

hypothesis that CMA can enhance cellular adaptive immunity regardless of the initial 

degree of impairment and may provide therapeutic benefit despite HLA and viral diversity. 
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Fig. 3.6: CMA inhibits Nef alleles from diverse clades of HIV and SIV targeting diverse alleles of 
MHC-I.10 (A) Summary of Nef alleles tested and clade of HIV or SIV to which the isolate belongs. (B) 
Representative flow cytometry plots depicting CEM-A2 cells infected with MSCV-IRES-GFP (MIG) alone or 
expressing the Nef allele from clade C HIV isolate 92RW009, the median Nef allele from C, and treated for 
24 hours with 1.25nM CMA. (C) Summary graph of data from B, showing the relative Nef activity of each 
Nef allele after treatment with varying concentrations of CMA (n=3). (D) Summary graph of HLA-A2 MFI 
from experiments shown in B-C. (E-H) Summary graphs of flow cytometric data from CEM cells expressing 
the indicated HA-tagged MHC-I alleles treated as in D. Cell surface MHC-I expression was assessed by 
staining for HA, and the median fluorescence intensity in GFP+ cells was normalized to vector control for 
each cell line. (E-F) n=4; (G-H) n=3. 
 

Discussion 

 
10 Zimmerman GE performed all experiments in Fig. 3.6. McLeod MR contributed to the design of Fig. 
3.6A. 
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In summary, we have identified plecomacrolides as potent inhibitors of HIV Nef-

mediated downregulation of MHC-I. Inhibition of Nef by CMA, in particular, occurs at 

concentrations that are non-toxic to primary T cells and that do not inhibit lysosome 

function. Restoration of cell-surface MHC-I in HIV-infected cells enhances their clearance 

by CTLs comparably to genetic deletion of Nef, confirming that the restored MHC-I is 

functional for presentation of viral antigens. We further demonstrated that CMA inhibits 

nef alleles isolated from diverse clades of HIV, an allele of SIV nef, and an allele of HIV 

nef from an optimally-treated patient. Additionally, we found that CMA restored diverse 

allotypes of MHC-I in HIV-infected cells, and that CMA treatment enhanced antigen 

presentation for all combinations of nef alleles and MHC-I alleles tested. These results 

provide evidence that inhibition of Nef by this mechanism could have broad clinical utility. 

The identification of plecomacrolides as inhibitors of HIV Nef may seem intuitive, given 

that Nef redirects many of its targets for lysosomal degradation and plecomacrolides lead 

to potent lysosomal neutralization and loss of degradative capacities59-64. Yet, we 

determined that CMA restored MHC-I in Nef-expressing primary CD4+ T cells at 

concentrations that were non-toxic and did not alter the function of the lysosome or reduce 

the abundance of acidified intracellular compartments. Thus, we propose that CMA 

specifically alters a step prior to lysosomal degradation. This may be an unrecognized 

activity of the known target, V-ATPase, or the activity of a novel non-V-ATPase target, 

although our data suggest this target is unlikely to be a component of the AP-1:Nef:MHC-

I:ARF-1 complex itself. Inhibition of this putative target activity reduces the capacity of Nef 

to interact with MHC-I and AP-1 in CMA-treated cells but does not alter the ability of Nef 
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to downregulate and degrade CD4. The fact that Nef-MHC-I-AP1 complex formation in 

cells is CMA-sensitive suggests that there may be more subtle pH-dependent steps that 

are unrelated to lysosomal function. Plecomacrolides have previously been shown to alter 

intracellular trafficking, but generally with the effect of reducing the expression of cell-

surface markers rather than increasing them65,66. A subunit of V-ATPase has been 

reported to form a complex with Nef and CD4 to promote endocytosis67-69. However, this 

subunit has not been implicated in Nef-dependent MHC-I trafficking, which occurs by a 

different mechanism that begins in the Golgi rather than at the cell surface18,70. Other 

explanations are also possible. For example, there may be an as yet unidentified target 

of CMA that is required for Nef activity against MHC-I. 

In addition, we demonstrated that the potency of CMA is greater than previously 

published Nef inhibitors, including B9 and lovastatin. B9 failed to restore MHC-I to the 

surface of Nef-expressing cells in any of the assays employed, while lovastatin was able 

to restore MHC-I to a fraction of the levels achieved by CMA with prolonged incubations 

and supratherapeutic concentrations. The explanation for the negative result obtained 

with B9 is unclear. A recent paper showed small but statistically significant effects of B9 

on CTL clearance and the authors claimed these effects were mediated through reversal 

of Nef-dependent MHC-I downregulation36. Because of these reports, we confirmed the 

structure of the commercially-obtained B9 to rule out the possibility that we had received 

the wrong compound. Our results clearly demonstrated that any potential effect of B9 on 

MHC-I downregulation in cells is not biologically meaningful under the conditions of our 

assays. 
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In short-term co-cultures with HIV-specific CTLs, primary CD4+ T cells infected with 

Nef-expressing HIV revealed a residual population of infected cells that could not be 

cleared from the culture, regardless of how many CTLs were present. If the cells were 

treated with CMA or Nef was genetically removed from the virus, this population was 

virtually non-existent. This raises the possibility that Nef activity in a subset of HIV-

infected cells in vivo renders those cells refractory to killing even by highly responsive 

CTLs. Following therapeutic reactivation in a “shock and kill” effort to eliminate the HIV 

reservoir, such cells could escape CTL killing long enough to proliferate and return to 

latency, re-seeding the reservoir with clonally-expanded sequences expressing potent 

alleles of nef. Thus, our co-culture assays demonstrate proof-of-concept that therapeutic 

Nef inhibition with low-dose CMA is sufficient to dramatically enhance the clearance of 

previously hard-to-kill cells when effective CTLs are present.  

The CTL response in vivo is polyclonal, with CTLs responding to a diverse array of 

HIV antigens presented predominantly by HLA-A and HLA-B. Furthermore, MHC-I is 

remarkably polymorphic and HIV sequences are tremendously diverse both within and 

between infected individuals. A CTL-based therapeutic intervention will therefore need to 

function in a wide range of immune contexts. CTL responses restricted to HLA-B are 

predominant in HIV infection, and many MHC-I genes associated with HIV control are 

HLA-B alleles53-55. We observed reversal of Nef downregulation of HLA-A and HLA-B 

allotypes following CMA treatment. Restoration was particularly dramatic when MHC-I 

was targeted most strongly by Nef. Therefore, CMA could facilitate the elimination of 

resistant reservoirs of virus by enhancing the efficiency of both already-effective HLA-B-

restricted and previously-suboptimal HLA-A-restricted CTL responses. In the absence of 
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Nef-mediated protection and in combination with vaccination strategies to increase the 

abundance and breadth of HIV-specific CTLs, antigens that had not experienced strong 

selective pressure to generate CTL-escape mutants prior to the initiation of ART could 

become vulnerable targets for immune-mediated clearance of HIV reservoirs. 

Despite the promising nature of these results, several limitations warrant further 

investigation. CMA restores expression of diverse MHC-I allotypes in HIV-infected 

primary T lymphocytes, but CTL killing was only confirmed for a single MHC-I allotype. In 

addition, we report an 11-fold window between EC50 and TC50 for CMA in primary cells, 

which is encouraging for a lead compound. However, chemical modifications that further 

separate toxicity and activity will likely be necessary for clinical utility. Moreover, additional 

research using animal models is needed to determine the toxicity, accessibility, and 

efficacy of CMA in vivo. Lastly, Nef inhibition alone is unlikely to achieve a cure for HIV, 

as latent reservoirs of virus express neither Nef nor viral-derived peptide antigens. Thus, 

the parallel development of improved latency-reversal agents will be needed to achieve 

a cure. 

In summary, we demonstrated that CMA potently counteracts HIV Nef at sub-

nanomolar concentrations to restore immune-mediated clearance of HIV-infected cells. 

This approach has the potential to broadly enhance anti-HIV immunity in diverse immune 

contexts. Thus, we propose CMA as a lead compound for further development as a 

therapeutic inhibitor of Nef, a crucial addition to current efforts to cure HIV by eradicating 

residual viral reservoirs. 

 

Materials and Methods 
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Ethics statement 

Anonymized leukocytes isolated by apheresis from healthy donors were obtained from 

the New York Blood Center.  

 

For experiments for which the HLA genotype was determined, blood was collected in Ann 

Arbor, MI, USA, with informed consent from healthy donors in accordance with a 

University of Michigan IRB approved protocol (HUM00071750).  

 

Nef inhibitory compounds  

The following compounds were used as described below; B9 (Calbiochem, 

MilliporeSigma, 500653), Lovastatin (MilliporeSigma, PHR1285), Baf A1 (Cayman 

Chemical, 11038), Baf B1 (Cayman, 14005), Baf C1 (Cayman, 19624), Baf D (Cayman, 

19438), CMA (Fermentek, 80890-47-7; Cayman, 11050) 

 

Preparation of primary CD4+ T lymphocytes and monocyte-derived macrophages 

Anonymized leukocytes isolated by apheresis were obtained from the New York Blood 

Center, and peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque 

Plus (GE Healthcare, 17144002) centrifugation using SepMate tubes (Stemcell 

Technologies, 85450) according to manufacturer’s protocol. CD8+ lymphocytes were 

depleted with Dynabeads according to manufacturer’s protocol (Invitrogen, 11147D), and 

the remaining cells were incubated at a density of 2x106 cells/mL in R10 medium and 

stimulated with 10μg/ml phytohemagglutinin (PHA-L, EMD/Millipore Sigma, 431784). 16-
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24 hours post-PHA activation, cells were cultured in R10-50. Primary CD4+ T cells were 

infected via spinoculation or treated for other experiments 48 hours after IL-2 addition.  

 

Genotyping of donor PBMCs was performed as previously described56. 

 

Primary monocyte-derived macrophages (MDMs) were isolated with a CD14 positive 

isolation kit (StemCell Technologies, 17858), stimulated with 50ng/mL each of M-CSF 

and GM-CSF (R&D Systems, 216-MC-025/CF and 215-GM-050), and cultured as 

previously described71. MDMs were used for lysosomal pH measurements 7-10 days 

post-isolation. 

 

Viral constructs and infections 

Infectious supernatants for HIV constructs were prepared by co-transfection of 293T cells 

using polyethylenimine (PEI) as previously described72 with each viral construct, the HIV 

packaging plasmid pCMV-HIV, and pHCMV-G at a mass ratio of 1:1:1. Infections were 

performed by spinoculation. Murine stem cell virus internal ribosome entry site GFP 

(pMIG) constructs containing various nef alleles were generated as previously 

described58. Nef-expressing and control adenoviral vectors were obtained from the 

University of Michigan Gene Vector Core as previously described30.  

 

Flow cytometry surface staining 
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Detailed methodology can be found in the Appendix. In all experiments, cells were gated 

sequentially by forward scatter vs. side scatter for cells, doublet exclusion (forward scatter 

area vs. height) for singlets, and exclusion of viability dye for viable cells. 

 

Lysosensor Yellow/Blue dextran analysis of lysosomal pH 

To measure the lysosomal pH in human monocyte-derive macrophages (MDMs), MDMs 

adhered to 24-well plates were exposed to 500µg/mL Lysosensor Yellow/Blue dextran, 

10,000 MW (Invitrogen, L22460) in R10 for 24 hours. MDMs were then exposed to 

plecomacrolides for 1 hour and harvested with 0.05% Trypsin-EDTA (Gibco, 25300054). 

Cells were washed twice in FACS buffer, and analyzed on a MoFlo Astrios flow cytometer, 

with blue signal excited from a 354nm laser and yellow signal excited from a 405nm laser. 

A standard curve was generated by resuspending MDMs in equilibration buffers of known 

pH as previously described45. The ratio of blue:yellow fluorescence intensity was 

calculated for each cell, the median blue:yellow ratio for the cell population for each 

condition was obtained, and the lysosomal pH in MDMs was calculated for each condition 

using the standard curve.  

 

Lysotracker flow cytometry assay 

Cells were treated with plecomacrolides at a density of 1x106 cells/mL for 24 hours, then 

treated with 100nM LysoTracker Red DND-99 (Invitrogen, L7528) in PBS at a density of 

1x106 cells/mL for 1 hour at 37°C, washed twice in PBS, and fixed in 2% PFA before flow 

cytometric analysis on a BioRad Ze5 flow cytometer.  

 



 162 

Western Blotting 

Detailed methodology can be found in the Appendix. Briefly, sorted PLAP+ CD4+ T cells 

isolated as previously described73 were pelleted and lysed, sonicated, separated by gel 

electrophoresis, and transferred onto PVDF membrane. Membranes were blocked in 5% 

milk prior to probing with target-specific antibodies. Western blotting results were 

quantified using Photoshop by determining the mean pixel density in a box of equal size 

over each band from a single, unedited film displaying a single gel. Background pixel 

density was subtracted. No quantification comparisons were made from bands on 

different films or gels at any point. 

 

Confocal Immunofluorescence microscopy 

For HLA-A2 staining, sorted PLAP+ primary CD4+ T cells isolated as previously 

described73 were attached to Poly-L-lysine (Sigma Aldrich, P4707) coated chambered 

slides (Fisher, 154534), fixed in PBS + 2% PFA and permeabilized in PBS + 0.2% Tween 

20. Staining was performed as previously described18 with primary antibody against HLA-

A2 (BB7.2, 2 µg/mL) and secondary goat anti-mouse IgG2b-AF546 (Invitrogen, A21143, 

1:250). Slides were coated with ProLong Gold Antifade Mountant (Invitrogen, P36930), 

coverslips were added, and images were collected on a Leica SP5 Confocal microscope 

using identical instrument settings for each sample. 

 

HLA-A2 coimmunoprecipitation 

Immunoprecipitation of CEM cell lysates with BB7.2-conjugated beads was performed as 

previously described20. Briefly, 25x106 CEM-A2 cells were transduced with Nef-
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expressing or control adenoviral vectors. 48 hours post-infection, cells were counted and 

resuspended at a density of 1x106 cells/mL R10 supplemented with 35mM NH4Cl, 1.25nM 

CMA, or solvent control for 24 hours. Cells were pelleted, washed twice in PBS, and lysed 

in 1% digitonin lysis buffer (1% digitonin (Wako, 043-21371), 100 mM NaCl, 50 mM Tris, 

pH 7.0, 1 mM CaCl2, and 1 mM MgCl2) as previously described19. 1% of the lysate was 

removed for input controls. After overnight pre-clear with isotype control antibody and 

protein A/G agarose (EMD Bioscience, IP-10), lysates were immunoprecipitated 

overnight with protein A/G agarose cross-linked to BB7.2. After pulldown, resin was 

washed five times in 0.1% digitonin wash buffer, and proteins were eluted by incubating 

in 150mM dithiothreitol (Invitrogen) for 30 minutes at 37°C and analyzed by western blot. 

 

Flow cytometric CTL killing assays 

CTL elimination assays were performed as previously described26 with the following 

modifications: 72 hours post-infection primary CD4+ T cells (target cells) were stained 

with CellTracker Green CMFDA (Fisher, C7025) according to manufacturer’s protocol and 

treated with 0.5nM CMA or solvent control for 24 hours. For each condition, 50,000 target 

cells were resuspended in fresh R10/50 without CMA with the corresponding number of 

effector CTLs to achieve the desired E:T ratio. Following the 4 hours of co-culture, the 

cells were stained with DAPI as a viability dye in addition to anti-PLAP and BB7.2 

antibodies. Viable target cells were separated by gating for cells that were CellTracker 

Green-positive and excluded DAPI. The proportion of PLAP+ cells present in each 

condition was divided by that in the mean of target cells-only conditions (E:T = 0:1) to 

report the proportion of PLAP+ cells surviving in the presence of CTLs. All samples were 
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performed in experimental duplicates, except the target cells-only conditions (E:T = 0:1), 

which were performed in quadruplicate. Flow cytometry data were collected on a Bio-Rad 

Ze5 cytometer. 

 

Calculations  

𝑀𝐹𝐼 = 𝑚𝑒𝑑𝑖𝑎𝑛	𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝑀𝐻𝐶-𝐼  

𝐹𝑜𝑙𝑑	𝑑𝑜𝑤𝑛𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 9:;<=>=?@AB@C
9:;>=?@AB@C

  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑁𝑒𝑓	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = :GHI	IGJKLGIMHNOPGK	9QR-ITUVWX@

:GHI	IGJKLGIMHNOPGK	9QR-ITYXZ@=B
  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = \
𝑀𝐹𝐼PK]^_O^I,aNLbH^ 	−	𝑀𝐹𝐼PK]^_O^I,aGHd^KO
𝑀𝐹𝐼MKPK]^_O^I,aGHd^KO	 − 	𝑀𝐹𝐼PK]^_O^I,aGHd^KO

e ∗ 100	 

 

Statistical Analysis 

All statistical analyses were performed using GraphPad Prism software as described in 

the Fig. 3.legends for each experiment. Curves were generated using GraphPad Prism 

software using [Inhibitor] vs. response with variable slope (four parameters), and the extra 

sum-of-squares F test was used to compare the EC50 for different curves.  

 

 

Supplementary Materials and Methods 

 

Cell Culture 

All cell cultures were maintained at 37°C in 5% CO2 humidified atmosphere. Virus 

producer cells (293T and BOSC cells74) were maintained in D10 medium [DMEM medium 
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(Gibco) supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM glutamine 

(Pen-Strep-Glutamine, Invitrogen), 10 mM HEPES (Invitrogen), 10% fetal bovine serum 

(Sigma, Invitrogen), and 0.022% plasmocin (Invivogen)]. All other cells were maintained 

in R10 medium [RPMI-1640 medium (Gibco) supplemented as D10]. Primary T cells were 

cultured in R10-50 [R10 plus 50IU/mL interleukin-2 (IL-2, Fisher 202IL010)]. CEM cell 

lines expressing recombinant, HA-tagged MHC-I molecules18,75 were maintained in R10 

supplemented with 1mg/mL geneticin (Gibco).  

 

Viral constructs and infections 

(i) HIV constructs: NL4-3-ΔGPE-GFP (DGPE) wild type and HXBePLAP wild type and nef 

mutants have been described previously26,76. 454-Gag-GFP was constructed from a 

molecular clone isolated from a donor who was treated with combination ART and had 

undetectable plasma viral levels57. Briefly, we utilized 454-LTR-GFP, created as 

previously described57, in which gfp was inserted by gene synthesis in frame at position 

809, which corresponded to position 19 in the gag open reading frame and created a 

Gag-GFP fusion protein when expressed. To reconstruct the remainder of the genome, 

we used PCR to generate donor derived sequence from position 4761 in pol through the 

XhoI site at 9255 in nef using the re-constructed near full length 454 genome as a 

template. The PCR product, which contained 11-15 base pair overlaps with 454-LTR-

GFP, was inserted using the GeneArt Seamless Cloning Enzyme Mix (Thermo Fisher 

A14606). Nef mutations were introduced into DGPE and 454-Gag-GFP by filling in a 

unique Xho I site using klenow and re-ligating. 

 



 166 

(ii) HIV infections: Infectious supernatants were prepared by co-transfection of 293T cells 

using polyethylenimine (PEI) as previously described72 with each viral construct, the HIV 

packaging plasmid pCMV-HIV, and pHCMV-G at a mass ratio of 1:1:1. 293T cells were 

maintained and transfected in D10 medium. Infections were performed by spinoculation 

at 1,050xg for 2 hours at room temperature at a density of 1.0x106 cells/mL. Primary cells 

were spinoculated in undiluted infectious supernatants supplemented with 4µg/mL 

hexadimethrine bromide (polybrene, Sigma-Aldrich, H9268). Cell lines were spinoculated 

with infectious supernatants diluted in D10 to achieve the desired MOI (approximately 

50% infection) in the absence of polybrene. Following spinoculation, infectious 

supernatants were replaced with the appropriate culture medium for the infected cell type. 

 

(iii) MSCV: Murine stem cell virus internal ribosome entry site GFP (pMIG) constructs 

containing various nef alleles were generated as previously described58. Retroviral 

supernatants were prepared using BOSC cells transfected with the pMIG constructs 

(5.5µg), the retrovirus packaging vector pCL-Eco (4.0µg)77 and pHCMV-G (0.5µg) using 

PEI as for HIV. Viral supernatants were collected 48 hours post-transfection, clarified by 

centrifugation, stored at -80°C, and transductions were performed as described for HIV 

constructs.  

 

(iv) Adenoviral vectors: Nef-expressing and control adenoviral vectors were obtained from 

the University of Michigan Gene Vector Core (vector clone: Ad-Ef1a.dIE3 #6, Nef clone: 

Ad-EF1 Nef.dIE3 #2) as previously described30. CEM-A2 cells were transduced in serum-
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free R10 medium for 6 hours at a concentration of 1.0x106 cells/mL, then R10 with 20% 

FBS was added to achieve a density of 5.0x105 cells/mL in R10.  

 

Flow cytometry surface staining 

All flow cytometry stains were performed on ice in FACS buffer (2% fetal bovine serum, 

1% human AB serum (Fisher, BP2525), 2 mM HEPES, 0.025% sodium azide (Sigma) in 

PBS). Briefly, cells were resuspended in primary antibody diluted in FACS buffer for 20 

min., washed once in FACS buffer, resuspended in secondary antibody diluted in FACS 

buffer for 15 min., washed once in FACS buffer, and fixed in 2% paraformaldehyde. 

Primary antibodies against the following proteins were used: HLA-A2 (BB7.2 from HB-82 

hybridoma as previously described70, 0.5µg/mL), Bw4 (Bw4-PE (Miltenyi Biotec, 130-103-

847, 1:50), Bw6 (Bw6-APC (Miltenyi Biotec, 130-099-845, 1:50)), pan MHC (w6/32 

(Fisher, MA1-70111, 1:1000), PLAP (PLAP-647 (Santa Cruz Biotechnology, clone 8B6, 

sc47691, 1:1000), CD4 (BD Bioscience, 555344, 1:1000), and HA (HA.11, clone 16B12, 

Covance, MMS-101R 1:100).  

 

Secondary antibody for BB7.2 was goat anti-mouse IgG2b-AF647 or -AF546 (Invitrogen, 

1:2000), secondary antibody for w6/32 was goat anti-mouse IgG2a-PeCy7 (Abcam, 

1:1000), secondary antibody for CD4 was goat anti-mouse IgG1-PE (Invitrogen, 1:1000), 

secondary antibody for HA.11 was goat anti-mouse IgG1-AF647 (Invitrogen, 1:1000).  

 

2µg/mL 7-aminoactinomycin D (7-AAD; Calbiochem) or 4ng/mL DAPI (4′,6-diamidino-2-

phenylindole; Thermo Scientific) viability dyes were included with secondary antibodies 
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in staining protocols. In all experiments, cells were gated sequentially by forward scatter 

vs. side scatter for cells, doublet exclusion (forward scatter area vs. height) for singlets, 

and exclusion of viability dye for viable cells. Flow cytometry data were collected with a 

BioRad Ze5 cytometer, a MoFlo Astrios cytometer (Beckman Coulter), or a BD FACScan 

cytometer with Cytek 6-color upgrade, and all flow cytometry data were analyzed with 

FlowJo software. 

 

Primary screen and counter-screen 

CEM-A2 cells were transduced with an adenoviral vector expressing Nef derived from 

NL4-3 driven from the Ef1a promoter at the minimal multiplicity of infection that 

demonstrated downmodulation of HLA-A2 in at least 90% of cells as assessed by flow 

cytometry, which was determined for each viral prep. Cells were incubated for 48 hours, 

then counted and re-suspended in R10 with only 0.2% FBS at a density of 2.0x106 

cells/mL. Experimental plates were prepared separately using robotic equipment 

provided by the University of Michigan Life Sciences Institute Center for Chemical 

Genomics by delivering 4μL of PBS into each well on a 384 well plate followed by Natural 

Product Extracts (NPEs). CEM T cells transduced with adenoviral vector were then 

dispensed into experimental plates (4μL/well) and incubated overnight at 37°C and 5% 

CO2. 2μL of a 5x antibody solution of 7-AAD and BB7.2-AF488 in 5x FACS buffer (10% 

FBS, 5% Human A/B serum, 5% HEPES and 0.025% sodium azide in PBS) was added 

directly to the cells and culture medium per well and incubated at 4°C for 30 minutes. 

Each sample was then diluted and fixed with 20μL of 1.5% paraformaldehyde (Sigma-

Aldrich) in 1x FACS buffer (2% FBS, 1% Human A/B serum, 1% HEPES ad 0.025% 
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sodium azide in PBS). After fixation, plates were read on an Accuri C6 flow cytometer 

(BD Biosciences, San Jose, CA) within one week. The counter screen was performed 

exactly as the primary screen but with parental CEM-SS T cells that do not express HA-

HLA-A2. 

 

Relative activity among the averaged control samples was set to 100% for control-vector-

transduced cells, and 0% for Nef-transduced cells. Activity was defined as an increase in 

HLA-A2 cell surface expression greater than three standard deviations above the 

negative control samples for each plate, within the entire assay, or greater than 25% 

activity. Wells in which fewer than 25 live cell events were recorded were discarded, 

interpreted as cytotoxic, or considered worthy of re-testing due to potential sampling error. 

Only compounds which tested as hits in a minimum of 2 of 3 replicate wells were counted 

as confirmed hits. Hits from the primary screen were then subjected to the counter screen. 

Any compound that registered as a hit in the counter screen using the same criteria was 

eliminated as a false positive.  

 

Initial screening was performed on the Spectrum library of FDA-approved compounds, 

Chembridge and Maybridge collections of drug-like compounds, and the ChemDiv 

100,000 library of small molecules. We subsequently screened the natural product extract 

library housed in the Natural Products Discovery Core (NPDC) at the University of 

Michigan. This library consists of over 40,000 natural product extracts and over 8,000 

microorganisms from a variety of locations worldwide. Hits that were deemed to be 

confirmed positives in the counter screen were then subjected to secondary screening 
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using NL4-3-ΔGPE-GFP-transduced CEM-A2 T cells. Activity was defined as percent 

inhibition of MHC-I fold downmodulation. 

 

Secondary screen 

CEM-A2 cells were infected with DGPE and maintained in R10 for 48 hours post-infection. 

Cells were counted, re-suspended and plated in a 96-well flat-bottom plate at 1x105 

cells/100μL in R10 with only 0.1% FBS, supplemented with hits from the primary screen. 

After 24 hours, downregulation of HLA-A2 was assessed by BB7.2 staining of viable cells, 

comparing the MFI of HLA-A2 in GFP+ infected cells to that in uninfected GFP- cells to 

obtain the fold inhibition of Nef. 

 

Flow cytometric viability assay 

Primary, PHA-activated CD4+ T cells were treated as in the MTT assay prior to harvest 

after 72 hours of exposure to plecomacrolides. Cells were pelleted and incubated on ice 

in FACS buffer with 2µg/mL 7-AAD for 15 minutes, washed once in FACS buffer, and 

fixed in 2% paraformaldehyde. The frequency of cells excluding the 7-AAD vital dye was 

assessed using a BD FACScan cytometer with Cytek 6-color upgrade and analyzed with 

FlowJo software. 

 

MTT assay 

CD4+ T cells were plated at a density of 1x105 cells in 200µL R10-50 in flat-bottom 96-

well plates 4 days post-stimulation with PHA. Cells were exposed to titrations of 

plecomacrolides or solvent controls for 72 hours in culture, at which point viability was 
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assessed relative to solvent by MTT assay in experimental duplicates. Equal volumes of 

cell culture medium containing CD4+ T cells were pelleted in 96-well round-bottom plates 

and incubated in 4.5mg/mL MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 

Bromide, Fisher, M6494) in R10 with no Phenol Red at 37°C until the purple formazan 

signal was clearly visible. The absorbance of cell pellets resuspended in DMSO was 

measured at 595nm on a Molecular Devices Emax precision microplate reader and 

compared a standard curve of known viable cell numbers to ensure the experimental 

samples fell within the linear range of the assay. 

 

DAPI cell cycle analysis 

DAPI cell cycle analysis was performed as previously described78, and data were 

collected on a BioRad Ze5 cytometer and analyzed with FlowJo software.  

 

LysoTracker fluorescence microscopy 

CD4+ T cells were treated at a density of 1x106 cells/mL in R-10/50 for 24 hours, at which 

point 500,000 CD4+ T cells were incubated in 500 µL of PBS containing 100 nM 

LysoTracker Red DND-99 and 5 µg/mL Hoechst 33342 (Invitrogen, H3570) on a Poly-L-

lysine (Sigma Aldrich) coated chambered slide (ThermoFisher, 154534) for 1 hour at 

37°C. Slides were then fixed in PBS + 2% PFA for 20 minutes at room temperature and 

washed once in PBS. ProLong Gold Antifade Mountant (Invitrogen, P36930) was applied 

before adding coverslips. Images were acquired on a Leica SP5 confocal microscope 

using identical instrument settings for each sample, and maximum projections were 

created using ImageJ. 
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Western blotting 

Sorted PLAP+ CD4+ T cells isolated as previously described73 were pelleted and lysed in 

Blue Loading Buffer (Cell Signaling Technology, 56036S) with DTT according to 

manufacturer’s protocol. Lysates were sonicated with a Misonix Sonicator (QSonica) at 

100 amps for four minutes, boiled at 95°C prior to loading onto Criterion Tris-HCl gels 

(Bio-Rad Laboratories, Hercules CA), and separated by gel electrophoresis. Gels were 

transferred onto PVDF transfer membrane (MilliporeSigma, IPVH00010) for 90 minutes 

at 350 mA. Membranes were blocked in 5% milk (LabScientific Inc., Highlands, NJ) in 

TBS-T (0.05% Tween 20, 0.15M NaCl, 0.01M Tris pH 8.0) for 1 hour. Antibodies against 

the following proteins were used for western blotting: clathrin adaptor protein AP-1 γ 

(Fisher, 610386, 1:100); Nef (2949, AIDS Research and Reference Reagent Program, 

Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Ron 

Swanstrom, 1:500); MHC-I heavy chain (HC.10, prepared as described79); CD4 (Abcam, 

133616, 1:1000); HA (HA.11, Covance), glyceraldehyde-3-phosphate dehydrogenase 

(Abnova, clone 32C, H00002597) and AP-1 μ1 (RY/1, Dr. Linton Traub, University of 

Pittsburgh). The secondary antibody for GAPDH and HA.11 was Rat anti-Mouse IgG1-

horesradish peroxidase (Invitrogen, 18401582). The secondary antibody used for Nef 

2949, CD4, and RY/1 was Goat anti-Rabbit IgG-HRP (Invitrogen, 656120). The 

secondary antibody used for AP-1 γ was Goat anti-Mouse IgG1-HRP (Zymed 

Laboratories Inc.). The secondary for HC.10 was Rat anti-Mouse IgG2a-HRP (Invitrogen, 

046220). 
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Western blotting results were quantified using Photoshop by determining the mean pixel 

density in a box of equal size over each band from a single, unedited film displaying a 

single gel. Background pixel density was subtracted. No quantification comparisons were 

made from bands on different films or gels at any point. 

 

In vitro investigations of AP-1:Nef:MHC-I complexes 

Recombinant protein expression and purification 

The His6- and GST-tagged AP-1 core, mouse AP1µ1 (157-423) (referred as µ1-CTD), 

human Arf1 (17-181)-Q71L, human MHC-I (338-365)-NL4-3 Nef, HIV-1 NL4-3 Nef 

constructs and protein purification were previously described 24,80. For the GST pull down 

assay, codon-optimized human MHC-I (338-365) was subcloned into pGST parallel2 

vector using BamHI/XhoI sites, and fused to an N-terminal GST tag and a TEV cleavage 

site81. PCR encoding HIV-1 Nef or SIVsmm Nef fused with GFP was subcloned into LIC 

2BT vector (Macrolab) and expressed as a TEV-cleavable N-terminal His6 tag and C-

terminal uncleavable GFP tag. 

 

His-NL4-3 Nef-GFP or His-SIVsmm Nef-GFP constructs were expressed in BL21 (DE3) 

star cells (Life technologies, Grand Island, NY), induced with 0.3mM IPTG at 25°C 

overnight. The purification was carried out using Ni-NTA resin. The eluate was subjected 

to a HiLoad 16/60 Superdex 75 column in the buffer of 20mM Tris pH 8, 300mM NaCl, 

0.1mM TCEP. 
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His-MBP tagged µ1-CTD was expressed in BL21 (DE3) star cells and induced with 

0.3mM IPTG at 20°C overnight. The clarified lysate was purified by Ni-NTA resin. The 

protein was eluted with 0.1 M imidazole in 50mM Tris pH 8, 300mM NaCl, followed by 

TEV cleavage at 4°C overnight. The sample was then diluted 2 times by SP buffer A 

(30mM Tris pH 8), and then loaded onto a HiTrap SP HP 5mL column (GE healthcare). 

The SP column elution was performed with a 10 CV linear gradient from 0-1 M NaCl in 

SP buffer A. The sample fractions were pooled together and subjected to a 16/60 

Superdex 75 column in 20mM Tris pH 8, 300mM NaCl, 0.1mM TCEP. 

 

GST tagged MHC-I tail was expressed in BL21 (DE3) star cells by induction at 20ºC 

overnight. The purification was carried out using glutathione-Sepharose 4B resin, the 

elution was then subjected to a HiLoad 16/60 Superdex 75 column in 20mM Tris pH 8, 

150mM NaCl, 0.1mM TCEP. 

 

AP-1:Arf1: MHC-I-Nef complex assembly 

Recombinant AP-1 core was mixed with Arf1-GTP and MHC-I-Nef at a molar ratio of 

1:4:6, then incubated at 4ºC overnight. The mixture was then subjected to a Superose6 

10/100GL column in 20mM Tris pH 8.0, 150mM NaCl, 5mM MgCl2, 0.3mM TCEP. The 

early eluted peak, corresponding to AP-1 trimer assembly, was pooled together and 

concentrated to 25µM. Each AP-1 trimer complex consists of three AP-1 core, three MHC-

I-Nef, and six Arf1-GTP molecules.  

 

Differential Scanning Fluorimetry (DSF) assay 
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DSF assays were performed using a Stratagene Mx3000P RT-PCR machine 

(Stratagene, La Jolla, CA) to monitor protein unfolding by the florescence increasing of 

SYPRO Orange (Invitrogen, Carlsbad, CA). SYPRO Orange (5000x concentration in 

DMSO) was first diluted to 1000x using DMSO, then diluted to 100x using the assay 

buffer. The final volume of the reaction was 20 µl. Protein samples with CMA (6 or 12µM) 

or with the DMSO control were first incubated at 4 ºC for one hour, then mixed with 

SYPRO Orange dye in a 96-well polypropylene plate (Agilent Technologies, Santa Clara, 

CA). DMSO concentration in each well was fixed at 5% (v/v). Final concentrations of the 

proteins were 6µM in the assay buffer (20mM HEPES pH 7.5, 200mM NaCl, 1mM TCEP), 

and the final dye concentration was 8x. The fluorescence intensity was measured using 

the SYBR green filter over the temperature range of 25 to 90ºC in 1 degree/min 

increments. After subtracting fluorescence from the DMSO control reaction without 

protein, the average fluorescence intensities were plotted as a function of temperature. 

Measurements were repeated three times and the data were processed using Origin 

software (OriginLab, Northampton, MA). The fluorescence intensity (before post-peak 

region) was fitted to Boltzmann equation to obtain melting temperature (Tm). 

 

GST pull down assay 

35 µg of recombinant GST-MHC-I tail proteins were incubated with His-MBP tagged µ1-

CTD and HIV-1 NL4-3 Nef-GFP or SIVsmm Nef-GFP proteins (10 µM each), with or 

without CMA (40 µM) at 4°C overnight in 20 mM Tris pH 8, 150 mM NaCl, 0.1 mM TCEP. 

DMSO concentration in each tube was fixed at 2.5%. 30 µl glutathione-Sepharose 4B 

resin was then added into the mixture, which was rocked at 4°C for 2 hours. The beads 
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were washed 4 times, mixed with 60 µl of 2x lithium dodecylsulfate (LDS)/ βME buffer 

and heated at 90°C for 3 min. 28 µl of each sample and 1 µg inputs were subjected to 

SDS/PAGE gel and stained with Coomassie blue. 

 

CTL clones 

CTL clones were isolated by limiting dilution from HIV-1 infected individuals. Clonality of 

the line was established by demonstration of unique T cell receptor usage. The CTL 

clones were maintained in culture with periodic re-stimulation as previously described82,83 

except for the following changes; CTL clones were stimulated with anti-CD3 clone 12F6 

(NIH AIDS Reagent Program) and cultured with IL-2 (NIH AIDS Reagent Program, 

Hoffman-La Roche, 136). Peripheral blood mononuclear feeder cells were isolated from 

leukopaks (New York Blood Center) and X-irradiated with 30 cGy in R10 medium. 

Irradiations were performed using a Kimtron IC 225 (Kimtron Medical) at a dose rate of 

approximately 2 Gy/min in the University of Michigan Comprehensive Cancer Center 

Experimental Irradiation Core (Ann Arbor, MI). CTL clones 115B15 and 161JXA14 both 

recognize HIV gag amino acids 77–85; SLYNTVATL presented by MHC-I HLA-A284.  

 

CTL killing of peptide-pulsed JY cells 

The HLA-A2 expressing B-cell line JY was maintained in R10 medium. Non-peptide 

pulsed cells were labeled with 1µM CellTrace Violet (Invitrogen, C34557) according to 

the manufacturer’s protocol. Cells for gag SL9 peptide loading were labelled with 0.5µM 

CellTracker Green CMFDA (Invitrogen, C7025) in R10 medium for 15 min at 37°C and 

quenched with 5 volumes warm R10 medium. Peptide loading was performed in 10µg/mL 
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gag SL9 peptide in R10 medium for 1 h. Unbound peptide was removed with 3 washes 

of cold R10 medium. Violet (no peptide) and green (peptide-pulsed) cells were combined 

1:1 and 20,000 cells per well were added to CTLs at 5:1 and 10:1 effector:target ratios in 

duplicate. CMA assays included solvent (DMSO, Sigma) or 0.5nM CMA (Cayman 

Chemical). Target cells were gated by light scatter and viability dye exclusion, then plotted 

by violet and green fluorescence to distinguish peptide loaded and peptide negative cells. 

Specific killing was calculated by dividing the percent of viable target cells that were green 

in the sample by the percent observed in the control wells lacking CTLs and subtracting 

from 1. 

 

Natural Product extraction and purification 

Streptomyces sp. (39098-H2N) Fermentation and Extraction  

Streptomyces sp. (39098-H2N) was cultured on R2YE agar85 for 3-5 days until sporulation 

occurred. A 1 x 1 cm2 lawn was inoculated into 2 L of ISP2 (0.4% yeast extract, 1% malt 

extract, 0.4% dextrose, 3% NaCl), and incubated at 28 °C with agitation (175 RPM) for 

48-72 h. Using this growth, nutrient poor media for marine bacteria (0.025% yeast extract, 

0.064% malt extract, 0.025% dextrose, 3% NaCl) was then inoculated with 3% (v/v) seed 

culture. Growths were performed in 50 L batches (300 L total) in baffled 2.8 L Fernbach 

flasks containing 1 L of media per flask, or 10-15 L bioreactors with agitation (175 RPM) 

and filtered air bubbled through solution. All growths were performed at 28 °C for 10 days. 

Completed growths were passed through coffee filters to remove the majority of bacteria 

and cell debris. MeOH-activated Amberlite XAD16N absorbent resin (20% w/v) was 

added to the clarified broth and stirred at room temperature for 24 h. The resin was filtered 
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from the solution and washed with copious amounts of H2O (~80 L). Material was eluted 

by washing with methanol (3 × 3 L), followed by acetonitrile (3 × 3 L). Organic extracts 

were dried via rotary evaporation. Dry material was dissolved in minimal HPLC grade 

methanol and filtered to remove any insoluble material. This solution was subsequentially 

dried yielding 1.573 g of crude extract from 300 L of fermentation.  

 

Streptomyces sp. (39098-H2N) fractionation and dereplication  

The sample was dissolved in a minimal volume of methanol, loaded onto C18 

resin, and dried in vacuo. Flash chromatography was performed using an Isolera One 

(Biotage®) utilizing a pre-packed SiliCycle® reversed-phase C18 column (40 g). Material 

was eluted with a flow rate of 50 mL/min collecting 120 mL fractions. Material was eluted 

using a three-solvent gradient system, consisting of H2O (solvent A), methanol (solvent 

B) and acetonitrile (solvent C). The column was first washed with 10% methanol in H2O 

for 1 CV, followed by a linear increasing gradient from 10% to 95% methanol in H2O over 

12 CV. An isocratic gradient of 95% methanol in H2O was then applied for 5 CV, followed 

finally by an additional isocratic gradient of 95% acetonitrile in H2O for 5CV. Fractions 

were dried into pre-weighed vials using a V10-touch evaporator (Biotage®) coupled with 

a Gilson GX-271 liquid handler. Samples were analyzed in the secondary screen for Nef 

activity. Active fractions (F6-F9) were combined (92.5 mg) for further HPLC purification.  

Purification of active metabolites was accomplished utilizing preparative HPLC 

(Shimadzu LC-20AT), using a reversed-phase Phenomenex Luna 5 μm Phenyl-Hexyl 

100 Å column (250 × 10.00 mm) run at a flow rate of 4 mL/min. Compound elution was 

monitored using a Shimadzu diode array detector (SPD-M20A). The sample was brought 
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up in 1 mL of HPLC grade MeOH (~100 mgmL-1) and injected in 100 µL aliquots (using a 

200 μL loop). Elution was accomplished using H2O + 0.1% formic acid (solvent A) and 

acetonitrile (solvent B). The gradient involved an initial isocratic step of 15% acetonitrile 

for 2 min. This was followed by a linear increasing gradient from 15% to 95% acetonitrile 

over 38 min (40 min total). The column was washed with an isocratic gradient of 95% 

acetonitrile for an additional 10 min (50 min total), finally followed by an isocratic 

equilibration step of 15% acetonitrile for 10 min (60 min total). From this nine peaks with 

similar UV-profiles were collected and immediately dried using the V10-touch evaporator. 

All fractions were identified as active in the Nef inhibition assay. Samples were analyzed 

by HRESIMS and screened against the Antibase 2017 database86, identifying a series of 

ions related to the bafilomycin family of natural products. Ions of interest include: F3 m/z 

667.4085 [M – H + FA]- (bafilomycin A1); F4 m/z 764.4253 [M – H + FA] (bafilomycin C1); 

F5 m/z 814.4410 [M – H]- (bafilomycin B1); F6 m/z 719.4054 [M – H]- (bafilomycin C1); 

F7 m/z 719.4054 [M – H]- (bafilomycin C1); F8 m/z 814.4404 [M – H]- (bafilomycin B1); 

F9 m/z 828.4561 [M – H]- (bafilomycin B2). Preliminary NMR data coupled with MS-

dereplication, strongly suggested the active metabolites to be the bafilomycin family of 

natural products. Due to low yields from Streptomyces sp. (39098-H2N) and access to a 

higher producing strain within the Sherman laboratory, efforts towards isolation of 

bafilomycin analogs shifted to Streptomyces lohii ΔbafY. 

 

Streptomyces lohii ΔbafY fermentation and extraction 

Streptomyces lohii ΔbafY was cultured on R2YE agar for 3-5 days until sporulation 

occurred. A 1 x 1 cm2 lawn was inoculated into 1 L of 2× YT media (1.6% tryptone, 1% 
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yeast extract, 0.5% NaCl), and incubated at 28 °C with agitation (175 RPM) for 48-72 h. 

Bafilomycin production media87 was then inoculated with 3% (v/v) seed culture. Growths 

were performed on 10 L scale in baffled 2.8 L Fernbach flasks containing 1 L of 

bafilomycin production media per flask. Fermentations were conducted at 28 °C with 

agitation (175 RPM) for 7 days. Upon completion of the growth, cells were pelleted via 

centrifugation at 5500 RPM (4°C) for 45 min. The supernatant (containing both aqueous 

and oil layers) was removed from the cell pellet and stored for workup, as described 

below. The cell pellets were combined and extracted into acetone (10 L) for 24 h. Cell 

debris was removed via filtration through coffee filters, and reextracted with acetone (5 

L). Cell debris was removed again via filtration through coffee filters. The acetone layers 

were combined and dried via rotary evaporation until only water remained. Residual oil 

that separated as the acetone was dried off, separated from the final aqueous layer using 

a separatory funnel, and combined with the oil layer from the supernatant produced via 

centrifugation as described above. This aqueous solution was then extracted 3X with 

equal volumes of ethyl acetate, followed by a fourth extraction of an equal volume of 

dichloromethane. The organic layers were combined, dried over anhydrous Na2SO4, 

filtered, and dried via rotary evaporators yielding a viscous, yellow-brown oil.  

 The supernatant, containing the mixture of oil and aqueous broth generated from 

centrifugation, was separated using a separatory funnel. The aqueous broth was 

discarded, and the combined oil layers were extracted 3X with equal volumes of 

methanol. The methanol extracts were combined and dried immediately via rotary 

evaporation to minimize any degradation. This yielded a viscous, yellow-brown oil that 

was combined with the cell extract sample described above, yielding ~6 g of material.  
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Streptomyces lohii ΔbafY: Bafilomycin A1 and C1 purification  

The extract was diluted with an equal volume of acetone and loaded onto minimal 

silica. The loaded silica was dried via rotary evaporation and separated into 4 equal 

aliquots. Aliquots were loaded into separate dry load vessels and run individually. Flash 

chromatography was performed using an Isolera One (Biotage®) utilizing pre-packed 

SiliCycle® normal phase silica columns (40 g). Material was eluted with a flow rate of 50 

mL/min collecting 27 mL fractions. Purification was accomplished using a four-solvent 

gradient system, consisting of hexanes (solvent A), ethyl acetate (solvent B), 

dichloromethane (solvent C), and methanol (solvent D). Initially, the column was washed 

with 1 CV of 5% ethyl acetate in hexanes, followed by a linear increasing gradient of 5% 

to 60% ethyl acetate in hexanes over 13 CV. This was followed by an isocratic gradient 

of 60% ethyl acetate in hexanes over 6 CV. Bafilomycin A1 eluted at approximately 13-

15 CV as a broad peak absorbing at λ = 235 and 285 nm. To purify bafilomycin C1, the 

gradient was switched to dichloromethane and methanol. Material was eluted starting 

with an isocratic gradient of 10% methanol in dichloromethane for 5 CV, followed by a 

final wash of 20% methanol in dichloromethane for 5 CV. Bafilomycin C1 eluted at 

approximately 27-28 CV within the 20% methanol in dichloromethane step as a broad 

peak absorbing at λ = 235 and 285 nm. Fractions were checked by TLC for purity and 

combined yielding bafilomycin A1 and C1 as impure yellow oils.  

Final purification of bafilomycin A1 was accomplished utilizing preparative HPLC 

(Shimadzu LC-20AT), using a reversed-phase Phenomenex Luna 5 μm C18(2) 100 Å 

column (250 × 10.00 mm) run at a flow rate of 4 mL/min. Elution was monitored at 235 
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and 285 nm using a Shimadzu diode array detector (SPD-M20A). The sample was 

dissolved in HPLC grade acetone to a final concentration of 100 mgmL-1. Purification was 

accomplished by injecting 100-180 μL aliquots of this solution (using a 200 μL loop). 

Material was eluted using H2O (solvent A) and acetonitrile (solvent B). The gradient used 

an initial isocratic step of 60% acetonitrile for 2 min. This was followed by a linear 

increasing gradient from 60% to 95% acetonitrile over 38 min (40 min total). The column 

was washed with an isocratic gradient of 95% acetonitrile for an additional 20 min (60 min 

total), finally followed by an isocratic equilibration step of 60% acetonitrile in water for 10 

min (70 min total). Bafilomycin A1 eluted at 28.1 min. All fractions containing the purified 

bafilomycin A1 were combined and dried immediately using a V10-touch evaporator 

(Biotage®). Material was lyophilized for 24 hours yielding 48.7 mg of bafilomycin A1 as a 

white powder; HRESIMS m/z 667.4085 [M – H + FA]- (expected m/z 667.4063). Mass 

spec, elution time and NMR all matched commercial standard.  

Final purification of bafilomycin C1 was accomplished utilizing preparative HPLC 

(Shimadzu LC-20AT), using a reversed-phase Phenomenex Luna 5 μm C18(2) 100 Å 

column (250 × 10.00 mm) run at a flow rate of 4 mL/min. Elution was monitored at 235 

and 285 nm using a Shimadzu diode array detector (SPD-M20A). The sample was 

dissolved in HPLC grade methanol to a final concentration of 100 mgmL-1. Purification 

was accomplished by injecting 250-450 μL aliquots of this solution (using a 500 μL loop). 

Material was eluted using H2O + 0.1% (v/v) formic acid (solvent A) and acetonitrile 

(solvent B) following the same gradient described for bafilomycin A1. Due to instability of 

the bafilomycins in acidic conditions, material was collected into test tubes containing 5 

mL of phosphate buffered saline (pH 7.5). Bafilomycin C1 eluted at 25.1 min. Fractions 
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were combined and the acetonitrile was removed via rotary evaporation. The buffered 

aqueous layer was then extracted 3X with equal volumes of ethyl acetate. The organic 

layers were combined and dried in vacuo, then lyophilized for 24 hours, yielding 6.7 mg 

of bafilomycin C1 as a white powder; HRESIMS m/z 719.4053 [M – H]- (expected m/z 

719.4012). Mass spec, elution time and NMR all matched commercial standards. 

 

Global Natural Products Social Molecular Networking (GNPS) 

The strains Streptomyces sp. (34893-N3I), Streptomyces sp. (54875-N1N), 

Streptomyces sp. (5736-A1I), and Streptomyces sp. (39098-H2N) were cultivated in liquid 

medium and subsequently extracted to be analyzed with HPLC coupled with HRMS and 

automated fragmentation. The resulting MS2 data were factored with media blank and 

analyzed using GNPS34 to generate respective molecular networks consisting of multiple 

nodes, with precursor mass tolerance of 2.0 Da and fragment ion mass tolerance of 0.5 

Da. The obtained data was then visualized and interpreted using Cytoscape 3.6.1. High-

resolution mass spectrometry provided a [M+ Na]+ ion peak at 645.3988 m/z, from which 

the molecular formula of C35H58O9, containing seven degrees of unsaturation, was 

deduced. H1 and C13-NMR comparison along with co-elution LCMS experiment using Baf 

A1 standard confirmed the identity as bafilomycin A1. 
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Fig. 3.S1: Screening of natural product extracts for inhibitors of HIV Nef.11 (A) Schematic 
representation of primary screen assay. Blue histogram represents CEM-A2 cells transduced with Nef-
negative adenoviral vector and treated with solvent control, red histogram represents cells transduced with 
Nef-expressing adenoviral vector and treated with solvent control, purple histogram represents cells 
transduced with Nef-expressing adenoviral vector and treated with a representative positive hit in the 
primary screen. (B) Representative flow cytometry plots from secondary screen assay showing the solvent 
control and a representative positive hit in the secondary screen. Blue histograms are from uninfected, 
GFP- cells, red histograms are from infected, GFP+ cells. Numbers in histograms indicate the fold decrease 
in HLA-A2 MFI in infected cells relative to uninfected cells. (C) Summary of NPE screening results, yielding 
the identification of 11 microbial strains producing Nef inhibitory compounds for further purification.  

 
11 Zimmerman GE, Robertson, AW, McLeod MR, Gomez-Rodriguez L, Garcia KA, Leonard JA, Leopold 
KE, and Neevel AJ contributed to Fig. 3.S1. 
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Fig. 3.S2: Plecomacrolides identified as Nef inhibitors in multiple NPE strains.12 (A) Schematic 
representation of the isolation of a single active compound from a natural product extract by sequential 
fractionation and re-screening. (B) Fractionation from one strain yields a single HPLC peak that possesses 
activity, and NMR identifies Bafilomycin A1. (C) MS/MS molecular networking reveals Baf A1 in 3 of 4 lead 
candidate extracts.   

 
12 Robertson AW, Gomez-Rodriguez L, and Tripathi A contributed to Fig. 3.S2. 
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Fig. 3.S3: Natural product extract-derived plecomacrolides mirror commercially available 
compounds.13 (A) Chemical structures of plecomacrolides. (B-C) Summary graphs of flow cytometric data 
from the secondary screen assay (as in Fig. 3.S1B) using the indicated compounds. NPE Bafs were isolated 
as in Fig. 3.S2 (n=1). 
  

 
13 Robertson AW generated Fig. 3.S3A. Robertson AW and Zimmerman GE contributed to Fig. 3.S3B-C. 
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Fig. 3.S4: B9 fails to restore MHC-I in cell line screens and HIV-infected primary cells, while 
lovastatin restores less effectively than CMA. (A) Representative flow cytometry histograms and (B) 
summary graph (n=6 for controls, n=3 for experimental samples) from CEM-A2 cells treated with B9 and 
Baf A1 in the primary screen as in Fig. 3.S1A. (C) Representative flow cytometry plots and (D) summary 
graph (n=3) from CEM-A2 cells infected with DGPE and treated with B9 and Baf A1 in the secondary screen 
as in Fig. 3.S1B. Blue histograms are from GFP- cells, red histograms are from infected GFP+ cells. (E) 
Representative flow cytometry plots from primary activated CD4+ T cells infected with DGPE and analyzed 
as in the secondary screen in Fig. 3.S1B. Blue histograms are from GFP- cells, red histograms are from 
infected GFP+ cells. (F) Summary graph of assays performed as in E using the indicated compound. 
Percent restoration of HLA-A2 is calculated as described in Materials and Methods and normalized to 
percent restoration achieved at 50nM Baf A1 (n=3). (G-H) Representative flow cytometry plots from DGPE-
infected (G) CEM-A2 cells and (H) primary CD4+ T cells, treated side-by-side with the indicated compound 
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for the indicated time. Numbers in histogram panels indicate percent restoration of HLA-A2 (n=3). Error 
bars indicate standard deviation, MFI = median fluorescence intensity. Solvent control is DMSO. 
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Fig. 3.S5: CMA does not counteract Nef by reducing HIV gene expression in primary CD4+ T cells.14 
Summary graph of flow cytometric data analyzing the mean fluorescence intensity (MFI) of GFP in the GFP+ 
cells gate of CD4+ T cells infected with the indicated GFP-expressing viral constructs and treated with CMA 
as in Fig. 3.1. Dots represent biological replicates with independent donors. 

 
14 Zimmerman GE contributed to the data collection and analysis in Fig. 3.S5. 
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Fig. 3.S6: Confirmation of B9 structure.15 
(A) 1H-NMR of B9 in DMSO-d6 (600 MHz). (B) 13C-NMR of B9 in DMSO-d6 (125 MHz).  

 
15 Robertson AW generated Fig. 3.S6. 
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Fig. 3.S7: Confirmation of B9 structure, continued.16 
LCMS trace of standard B9 illustrating (A) diode array detector (DAD) trace (Rt = 12.25 min) and (B) mass 
spectrum at 12.15 – 12.41 min. All confirm that the structure of commercially-acquired B9 matches the 
published structure.  

 
16 Robertson AW generated Fig. 3.S7. 



 201 

 

 
Fig. 3.S8: Plecomacrolide toxicity is consistent between assays and cell cycle arrest requires higher 
concentrations than Nef inhibition.17 (A) Gating strategy and representative flow cytometric plots for data 
in Fig. 3.1E. (B) Comparison of MTT and flow cytometric viability assays, showing comparable results in 
primary CD4+ T cells incubated with the indicated compounds for 72 hours. Summary graph of data from 
flow cytometric (circles, orange, as in A) and MTT assay (triangles, purple) assessing the viability of CD4+ 
T cells treated with titrations of the indicated plecomacrolides for 72 hours (n=3 for Baf A1 and C1, n=6 for 
CMA). Data are normalized to viability of cells treated with matched DMSO solvent control. (C) Summary 
graph of DAPI flow cytometric cell cycle data from primary CD4+ T cells treated with CMA or matched 

 
17 Merlino MS contributed to generating data for Fig. 3.S8A-B. 
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DMSO solvent control for 24 hours as indicated (n=5). All error bars represent standard deviation. (** = p < 
0.01, * = p < 0.05, Dunnett's multiple comparisons test, compared to solvent)  
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Fig. 3.S9: Supplement to lysosome and trafficking studies in Fig. 3.2.18 (A) Flow cytometric data 
derived from primary monocyte-derived macrophages (MDM) incubated with Lysosensor Yellow/Blue 
dextran, 10,000 MW for 24 hours and analyzed in buffers of known pH as indicated. The ratio of blue:yellow 
fluorescence was calculated for each cell, and the median ratio for each sample was used to generate a 
standard curve to calculate lysosomal pH. (B-C) Representative flow cytometric plot (B) and summary graph 
(C) describing the lysosomal pH of primary monocyte-derived macrophages (MDM) treated with 50nM Baf 
A1 for 1 hour after incubation with Lysosensor Yellow/Blue dextran, 10,000 MW as in A (n=8). Lysosomal 
pH was calculated using a standard curve generated for each donor as in A. (D) Representative confocal 
microscopy max projections from multiple z-stack images of primary CD4+ T cells treated for 24 hours with 
CMA as indicated and incubated with Lysotracker Red and Hoechst 3342 for 1 hour. All images were 
captured with identical microscope settings (representative from 3 independent experiments).  

 
18 Lubow J contributed to experiments in Fig. 3.S9A-C. Zimmerman GE performed experiments and 
generated Fig. 3.S9.  
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Fig. 3.S10: CMA does not directly alter the interaction between the MHC-I tail, AP-1, and Nef.19 (A) 
SDS PAGE gel of protein samples used in DSF assay in Fig. 3.3D-I, which was visualized by Coomassie 
blue staining. (B-G) CMA does not affect the AP-1:Nef:MHC-I interaction in vitro. Differential scanning 
fluorimetry (DSF) plots of protein thermal stability with or without CMA treatment. Reaction mixtures 
contained SYPRO orange and 2-6 µM proteins in the presence or absence of 2-12 µM CMA. SYPRO 
orange fluorescence intensity was plotted as a function of temperature for (B) µ1-CTD domain, (C) MHC-I 
tail fused with HIV-1 NL4-3 Nef (MHC-NL43 Nef), (D) µ1-CTD: MHC-NL43 Nef, (E) AP-1 core, (F) AP-1 

 
19 Ren X generated Fig. 3.S10. 
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trimer containing AP-1 core: Arf1-GTP: MHC-NL43 Nef, and (G) NL43 Nef alone. DMSO concentration in 
each reaction was fixed at 5%. Measured fluorescence intensity (before post-peak region) was fitted to 
Boltzmann equation to obtain melting temperature (Tm). The error bars represent the corresponding 
standard deviation among three replicates. (H) The effect of CMA in µ1-CTD:MHC-I tail:Nef interaction 
analyzed by GST pull down assay. Glutathione sepharose beads were used to immobilize GST tagged 
MHC-I tail and subsequently pull down MBP tagged µ1-CTD and Nef-GFP in the presence or absence of 
40µM CMA. The pull-down results were visualized by SDS-PAGE and Coomassie blue staining.  
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Fig. 3.S11: Supplement to CTL killing assay as in Fig. 3.4.20 (A) Gating strategy for results in Fig. 3.4. 
Representative flow cytometric plots from CD4+ T cells infected with HXBePLAP (Fig. 3.1A) and co-cultured 
with increasing ratios of HIV-specific CTLs. CD4+ T cell target cells are stained with CellTracker Green dye 
(CT Green) 24 hours before co-culture to distinguish the CD4+ T cell targets from CTL effectors. DAPI is 
used as a viability dye, and PLAP marks infected cells. Data for summary graphs in B are generated from 
PLAP vs. FSC plots as indicated. (B) Summary graphs for assays described in Fig. 3.4A-B, where 
elimination of PLAP+ cells is only observed for HLA-A2+ target cells. WT = HXBePLAP, DNef = HXBePLAP 
with Nef deletion, A2neg = target cells derived from a donor lacking the HLA-A2 allele of MHC-I infected 

 
20 Terry VH contributed to all experiments in Fig. 3.S11 and generated all data for Fig. 3.S11D. 
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with HXBePLAP with Nef deleted, NT = no treatment (matched DMSO solvent control), CMA = 0.5nM CMA. 
(C) Summary graphs of flow cytometric data as in Fig. 3.4 in which the 5:1 and 10:1 E:T ratios were pooled 
into a single condition where CTL killing was saturated, yielding four individual replicates within each 
experiment (unpaired t test, **** = p<0.0001, n.s. = not significant). (D) Summary graphs of flow cytometric 
data from co-culture experiments of CTL clones with Gag SL9 peptide-pulsed JY cells, reporting specific 
elimination of peptide-pulsed JY target cells relative to unpulsed target cells, which were differentially dyed. 
Co-cultures were performed in the presence or absence of 0.5nM CMA and the solvent DMSO. Viable cells 
were identified by light scatter and viability dye exclusion, and specific killing was calculated by dividing the 
frequency of viable cells that were peptide-pulsed observed in the sample by the frequency observed in the 
control and subtracting from 1. Individual points represent experimental duplicates from each of two 
independent biological replicates (unpaired t tests, n.s. = not significant).  
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Fig. 3.S12: Supplemental information for primary cell experiments with HLA-B and 454-Gag-GFP.21 
(A) HLA genotypes for the donor used in Fig. 3.5. Only A*02:01:01:01 reacts with BB7.2. Only 
B*51:01:01:01 reacts with Bw4. Both B*07:02:01 and C*07:02:01:03 react with Bw6, although B*07:02:01 
is expected to contribute the majority of the staining, since HLA-B is expressed at 6-fold higher levels than 
HLA-C54. (B) Representative flow cytometry plots (n=3 independent replicates from a single donor) from 
CD4+ T cells infected with Nef-deleted 454-Gag-GFP for 48 hours, treated with 0.5nM CMA for 24 hours, 
and stained with monoclonal antibodies to Bw4 (B*51:01) and Bw6 (B*07:02), and monoclonal antibody 
BB7.2 (HLA-A*02:01). Blue histograms are from GFP- cells, red histograms are from infected GFP+ cells. 
(C) Summary graph of data from B and Fig. 3.5D plotting the HLA-A*02 MFI normalized to that in uninfected 
cells treated with solvent control. Data are from independent experiments with 3 donors for 454-Gag-GFP, 
2 donors for 454-Gag-GFP-DNef. 

 
21 Zimmerman GE and Olson E contributed to Fig. 3.S12. 
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CHAPTER 4 

Discussion and Future Directions 

 

The findings presented in Chapters 2 and 3 represent meaningful advances in both 

arms of the “shock and kill” approach to an HIV cure. In order for this approach to be 

successful, the shock will need to potently reactivate every replication-competent provirus 

in every cell in the body, including those found in a multitude of cell types residing in 

diverse tissues. While resting CD4+ T cells likely make up the majority of the replication-

competent reservoir, hematopoietic stem and progenitor cells (HSPCs) also harbor 

replication-competent proviruses in optimally-treated individuals, and these may 

contribute disproportionally to residual viremia during ART. Even if all proviruses from 

CD4+ T cells were eliminated, replication-competent viruses residing in HSPCs could 

likely re-establish infection, and thus the latent reservoir in HSPCs represents a critical 

barrier to an HIV cure. Understanding the mechanisms regulating latency in HSPCs is 

essential to developing effective latency reversing therapies targeting this critical 

reservoir. The discoveries detailed in Chapter 2 begin to characterize which latency 

reversal agents (LRAs) may be capable of reactivating quiescent HSPCs and provide a 

path forward to identify mechanisms contributing to latency and latency reversal in 

quiescent primary cells.  

In the event that a potent shock or sequential shocks successfully induce HIV gene 

expression in every cell harboring a replication-competent provirus, these cells need to 
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be rapidly killed before the latent reservoir can be reseeded. While most HIV-infected 

individuals generate effective anti-HIV cytotoxic T lymphocytes (CTLs), the expression of 

Nef in reactivated cells will protect some cells harboring HIV from even the most effective 

CTLs. Thus, in addition to strategies to enhance the breadth of the CTL repertoire and 

increase cytolytic functionality, pharmacologic inhibition of Nef may be an essential step 

in pursuit of the elimination of the latent HIV reservoir. The identification of concanamycin 

A (CMA) as a potent inhibitor of HIV Nef, detailed in Chapter 3, represents a critical first 

step in the development of kill-enhancing therapeutics. 

 

Latent HIV in Quiescent HSPCs: Barrier to a Cure 

 

 HSPCs reside in the bone marrow in a quiescent state, where they are long-lived, 

capable of self-renewal, and give rise to daughter cells that will differentiate to maintain 

the entire hematopoietic system through the life of an individual1,2. Quiescence is a key 

feature of HPSCs and other cells that comprise the latent reservoir of HIV, such as resting 

CD4+ T cells3-5. Thus, latency reversing agents (LRAs) will need to be effective in 

quiescent cells to achieve meaningful reactivation in vivo. Despite the urgent need, no in 

vitro models were known to keep primary cells in a quiescent state that maintained 

susceptibility to HIV infection or promoted HIV latency, as HIV infection of T cells in vitro 

requires that they be activated at the time of infection4,6,7. Chapter 2 described the 

simultaneous discovery that hypothermia, established by culturing cells at 30°C instead 

of 37°C, and pharmacologic inhibition of HSP90 by 17-AAG were both able to induce 

quiescence in HSPCs. Quiescence was associated with decreased proliferation based 
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on dilution of a membrane dye, decreased expansion of cells in culture, halted 

differentiation to less stem-like progenitors, and enrichment in the G0/G1 phase of the cell 

cycle. 

 

Fig. 4.1: Summary diagram of results presented in Chapter 2. Blue cells represent a heterogenous 
population of cord blood-derived hematopoietic stem and progenitor cells (HSPCs). HSPCs can be cultured 
in two states, proliferating and differentiating or quiescent. Quiescent cells preferentially establish latent 
infections, and these latent infections are resistant to spontaneous reactivation and reactivation by HDAC 
inhibitors and P-TEFb activators. Red represents a transcriptionally active provirus; green represents a 
transcriptionally silent latent provirus. Grey text represents mechanisms that are inefficient for reactivation. 
 

Importantly, we observed that quiescent HSPCs remained susceptible to HIV 

infection, and that infection of quiescent cells with HIV was significantly skewed to favor 

latent rather than active infection, whereas HSPCs that were actively proliferating and 

differentiating were significantly more likely to harbor transcriptionally-active HIV 

proviruses. Furthermore, latent proviruses under quiescent conditions were significantly 

less likely to reactivate spontaneously during extended culture periods, indicating that 

latency was maintained and not simply the result of delayed kinetics of active infection at 

the reduced temperature. Latent HIV proviruses in quiescent HSPCs were, however, 
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inducible following TNFa stimulation, which acts by potently activating NFkB to induce 

transcription at the promoter in the HIV 5’ LTR. Taken together, the findings described in 

Chapter 2 represent a significant advance to the study of HIV latency, providing an in vitro 

system where inducible post-integration latency is established in quiescent primary cells 

(Fig. 4.1).  

 One key aspect of this experiment setup is the addition of raltegravir after removing 

actively infected cells, which ensures that all subsequent investigations of latent provirus 

represent true post-integration latency rather than delayed integration or transcription 

from labile, unintegrated forms of the HIV genomic DNA. The experimental approach also 

uses a single-round infection with a defective reporter virus for which fluorescence of GFP 

is used as the readout for active infection, ensuring that cells that are deemed to be 

actively infected have sufficient RNA expression to produce viral proteins. This increases 

the likelihood that sufficient virus-derived epitopes to trigger CTL-mediated clearance are 

present in the cells that are deemed to be actively infected based on GFP expression. 

 All models have limitations and it is impossible to know in advance whether the 

findings in the model system will translate to the clinical setting. Nevertheless, this model 

offers reasonable hope of being valuable due to the preferential establishment and 

maintenance of latency in quiescent primary cells, with particular focus on an under-

studied reservoir that exists in a quiescent state in vivo. The development of this model 

system to study the dynamics of HIV latency in quiescent HSPCs enabled us to begin 

making fundamental observations about the nature of latency and latency reversal in 

these cells. One initial observation was that, in quiescent HSPCs, loss of stemness was 

associated with a higher frequency of spontaneous reactivation from latency. Thus, we 
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concluded that differentiation into increasingly more lineage-committed cell types could 

correlate with reactivation from latency.  

This points to the hypothesis that a long-lived, quiescent, stem-like progenitor cell 

could be infected with HIV, establish a latent infection, and maintain it in a 

transcriptionally-silent state for decades. As a cell undergoes asymmetric cell division, 

daughter cells that maintain stemness will remain in a quiescent state, associated with 

stable and enduring latency. The presence of daughter cells that differentiate into 

increasingly lineage-committed progenitors, however, could lead to reactivation of a 

clonal provirus. As opposed to terminally-differentiated resting memory T cells, this 

provides a mechanism by which the HSPC reservoir can spontaneously and continuously 

contribute to residual and rebound viremia. While this is unlikely to be the sole source of 

viremia during ART or ART interruption due to the low proportion of infected HSPCs8, 

Zaikos et al. demonstrated that plasma virus during ART is disproportionally identical to 

HSPC-derived provirus9. Taken together, recent in vivo studies and the results obtained 

from the in vitro model described in Chapter 2 support a model where HSPCs are a long-

lived reservoir of HIV capable of contributing to the clonal expansion of replication-

competent HIV as well as residual viremia during ART. 

Another interesting aspect of the studies described in Chapter 2 was the 

observation that the relationship between HIV proviral latency and quiescence is an 

ongoing process, requiring the active maintenance of the quiescent state. HIV latency 

could be regulated at two levels: establishment and maintenance. Upon integration, the 

provirus may immediately enter a transcriptionally-silent latent state, as is observed in 

HSPCs in Chapter 2, or could actively transcribe HIV genes initially before becoming 
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latent, as is observed in some T cell models of latency4,6,7. This initial fate decision can 

be described as the establishment of latency. The maintenance of latency, however, 

could be a dynamic and active process, or a semi-permanent result of the events that 

occur at establishment. For instance, if quiescent cells show an integration site bias for 

HIV, where the chromosomal location of integration is permanently unlikely to result in 

activation of the viral promoter, this would be regulated primarily at the time of latency 

establishment.  

We infected HSPCs in a quiescent or proliferating state with HIV, removed actively 

infected cells, and prevented new integrations with raltegravir. Thus, we were studying 

only post-integration latent proviruses in each cellular state. We subsequently maintained 

some of the cells in their original state while switching others to the alternative. We 

observed that the frequency with which HIV proviruses reactivate spontaneously was 

determined by the current state of the cell rather than the state of the cell at the time of 

integration. These findings were confirmed whether quiescence was induced via 

hypothermia or inhibition of HSP90. Thus, the increased frequency of latent HIV infection 

in quiescent cells is not the result of differences in integration site or other factors 

established at the time of integration, but rather is an active and dynamic interplay 

between the provirus and the cellular state. We did not investigate the possibility that 

inducing cellular quiescence could cause an actively infected cell to revert to latency, but 

did demonstrate that inducing quiescence can cause latent proviruses to enter a more 

stable form of latency with a low likelihood of spontaneous reactivation, and that exiting 

the quiescent state causes formerly-stable latent proviruses to spontaneously reactivate 

at a high frequency. This has direct ramifications for targeting HIV proviruses in quiescent 
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cells in vivo, which are unlikely to exit the quiescent state and therefore represent long-

lived, stable latent reservoirs. 

With the goal of determining whether leading LRAs could stimulate reactivation of 

latent proviruses in quiescent cells, we tested a panel of common drugs capable of 

inducing HIV gene expression in T cell models of latency. TNFa was used as a positive 

control, as robust reactivation was observed in both quiescent and proliferating cells 

following TNFa stimulation. The PKC agonist bryostatin-1 was able to reactivate an 

equivalent proportion of the inducible latent reservoir in both proliferating and quiescent 

HSPCs, suggesting that the susceptibility of a latent provirus to NFkB stimulation is not 

altered by the cellular state. Alternatively, while the histone deacetylase (HDAC) inhibitors 

vorinostat and romidepsin and the P-TEFb activator HMBA were able to reactivate a 

portion of the inducible latent HIV in proliferating HSPCs, these were significantly less 

effective in quiescent HSPCs. This was not a result of the drugs being inactive at lower 

temperatures, as they were able to synergize with bryostatin at 30°C, and vorinostat led 

to histone acetylation with the same magnitude and kinetics in HSPCs at 37°C and 30°C.  

Similar to what was observed for spontaneous reactivation from latency, sensitivity 

to LRAs was determined by the current state of the cell rather than the state at the time 

of integration. Proviruses that were established in a latent state at 37°C were susceptible 

to reactivation by HDAC inhibitors or HMBA at 37°C but not at 30°C or in the presence of 

17-AAG, and proviruses that were established at 30°C were susceptible to HDAC 

inhibitors or HMBA if they were reactivated at 37°C. These findings confirm that the 

susceptibility to reactivation following treatment with a given LRA is reversible, related to 

the current cellular state, and is not permanently established at the time of integration. A 
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provirus may be rendered more or less susceptible to a given stimulus as the cell 

harboring that provirus exits or enters a quiescent state, further validating the need for 

LRAs or combinations of LRAs that can broadly induce HIV gene expression, particularly 

in quiescent primary cells. The model system described in Chapter 2 enables more 

informative testing of latency reversing agents in vitro by establishing a higher threshold 

for reactivation that is associated with quiescence in primary cells, representing the state 

of many cells that make up the latent HIV reservoir in vivo. In fact, the susceptibility to 

various LRAs observed in quiescent HSPCs closely resembles that for the Greene and 

Planelles models of HIV latency, which use T cells maintained in a relatively quiescent 

state, while other models respond to LRAs in a manner that is more similar to proliferating 

HSPCs7. 

In addition to its utility for testing the efficacy of proposed LRAs or LRA 

combinations in quiescent primary cells, the model described in Chapter 2 will also be 

useful to understand the precise mechanisms regulating HIV latency in quiescent cells. 

We were able to determine that quiescent HSPCs are more likely to establish latent 

infections, less likely to spontaneously reactivate from latency, and were less susceptible 

to reactivation in response to certain stimuli. Understanding the cellular mechanisms 

regulating these effects could inform the development of targeted latency reversing 

approaches in the future. We began by taking a hypothesis-driven approach to interrogate 

possible mechanisms influencing HIV gene expression in quiescent HSPCs.  

First, since both TNFa and bryostatin could reactivate quiescent HSPCs, we 

hypothesized that these cells may have a deficiency in NFkB expression or activation 

relative to their proliferating counterparts. Yet we failed to detect any differences in the 
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abundance of NFkB p65 in either the cytoplasm or the nucleus of quiescent HSPCs when 

compared to proliferating HSPCs. Furthermore, the steady-state level of activated NFkB 

capable of binding to DNA, which represents the pool of NFkB capable of driving 

transcription, was identical in quiescent and proliferating HSPCs, as was the induction of 

activated NFkB following TNFa stimulation. We also assessed the translocation of NFkB 

to the nucleus following TNFa stimulation as determined by ImageStream analysis and 

found no defect in quiescent HSPCs. Thus, while robust NFkB activation is able to 

overcome the restrictions on HIV gene expression in a portion of quiescent cells, a 

deficiency in NFkB is not responsible for the association between quiescence and 

latency. This could be explained by robust NFkB activation compensating for a deficiency 

in a different activating factor, overcoming the activity of a repressive factor, or 

overcoming a chromatin environment that is generally unfavorable to transcription. 

The fact that HMBA was unable to induce reactivation led to the hypothesis that 

steady-state levels of P-TEFb may be low in quiescent HSPCs, as HMBA cannot 

stimulate P-TEFb activity if it is not present in the cell. Levels of cyclin T1 and an activating 

phosphorylated form of CDK9 in both the cytoplasm and the nucleus, however, were 

unchanged when comparing quiescent and proliferating HSPCs. With deficiencies in 

NFkB and P-TEFb failing to explain the association between quiescence and latency, we 

considered the possibility that quiescence induced by hypothermia was causing broader 

defects in the expression of cellular or viral genes. This system allowed us to take 

advantage of the fact that GFP is expressed in the env open reading frame, and thus GFP 

fluorescence intensity is a proxy for HIV protein production. Within the GFP+ subset of 

cells, there was no decrease in GFP MFI in quiescent cells, either in the context of initial 
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active infection or upon latency reversal. This observation suggests that the effect on viral 

gene expression in quiescent cells is strictly limited to the likelihood that a given provirus 

is transcribed, but does not alter the level of expression from proviruses that do become 

activated.  

We also quantified GAPDH protein expression per cell equivalent and observed 

no deficiency of GAPDH expression at 30°C. Furthermore, in qPCR experiments on cell-

associated RNA from HSPCs, we observed no deficiency of Pol2a mRNA expression at 

30°C. Throughout the study, TNFa was capable of inducing GFP expression and NFkB 

activation at 30°C in the same time frame as at 37°C, suggesting de novo transcription 

and translation of GFP and NFkB activation pathways are not delayed at 30°C. Even 

more, vorinostat induced histone acetylation with the same kinetics and to the same 

extent at 30°C as 37°C, demonstrating that protein modification is not delayed at 30°C. 

Taken together, these results demonstrate that mRNA transcription and protein 

translation and turnover are not reduced at 30°C in HSPCs, and broad effects on viral 

and host gene expression do not appear to explain the relationship between quiescence 

and latency. 

Some studies have suggested that HIV latency is almost exclusively a product of 

stochastic activation of a Tat-driven positive feedback loop. Expression of HIV gene 

products is inefficient in the absence of Tat, yet Tat itself is an HIV gene product with Tat-

dependent transcription. Thus, initial activation of the HIV promoter requires a low-level 

expression of Tat that can subsequently facilitate high levels of expression for all of the 

viral genes10,11. If this framework is taken as a hypothesis to explain the relationship 

between quiescence and latency, the expectation would be that quiescent cells have 
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broadly lower levels of transcription, and thus are less likely to stochastically express 

sufficient levels of Tat to establish an active infection. This hypothesis aligns in an 

intriguing way with the observation that latent proviruses in proliferating HSPCs are 

significantly more likely to reactivate spontaneously in the absence of additional stimuli 

when compared to those in quiescent HSPCs. The evidence thus far does not support 

the hypothesis that quiescent cells have lower transcriptional activity, however, as 

quiescent and proliferating HSPCs produce virus-derived GFP with the same magnitude 

and kinetics and show the same steady-state levels of host RNA and proteins. A model 

based exclusively on the likelihood of stochastic Tat activation also fails to account for the 

differential sensitivity of proviruses in quiescent and proliferating HSPCs to HDAC 

inhibitors and HMBA. In summary, though the importance of the stochastic Tat 

mechanism has not been disproven in the model described in Chapter 2, it is unlikely to 

be the sole contributor to the observed relationship between quiescence and latency. 

 

Future directions: mechanisms regulating latency in quiescent cells 

Although clear mechanistic answers have thus far remained elusive, this model of 

HIV latency in both proliferating and quiescent HSPCs will enable us to interrogate four 

critical questions about the mechanisms regulating HIV latency: 1) Why do some cells in 

a given state, either proliferating or quiescent, establish active infections while other cells 

establish latent infections? 2) Why are some cells in a given state, either proliferating or 

quiescent, responsive to a given LRA while others are unresponsive? 3) Why are 

quiescent cells particularly likely to establish latent infections? 4) Why are HIV proviruses 

in quiescent cells responsive to a narrow range of stimuli? Within each of these questions, 



 220 

the effects of differentiation and loss of stemness on HIV latency in a heterogenous pool 

of progenitor cells is also of interest.  

Four potential mechanistic categories could be contributing to or solely responsible 

for explaining the divergent outcomes for proviruses at the levels articulated in each of 

those four questions (Fig. 4.2). First, it is possible that cells harboring proviruses that 

become activated possess an activating factor that is lacking in cells that harbor 

proviruses that remain transcriptionally silent. This difference could manifest at the level 

of the transcription or translation of the activating factor, or through post-translational 

modifications rendering the factor more active in cells with active HIV or less active in 

cells with latent HIV. Second, the same could be said about the existence of a negative 

factor that suppresses gene expression from the HIV promoter. Third, genome-wide 

epigenetic differences affecting chromatin accessibility could influence the efficiency of 

HIV gene expression, either through changes in activating or suppressive epigenetic 

modifications of histones or DNA. Lastly, epigenetic differences specific to the HIV 5’ LTR 

or the region of HIV integration could specifically enhance or repress the transcription of 

HIV genes.  

 

Fig. 4.2: Diagram of possible mechanisms contributing to HIV latency in quiescent cells. Red 
represents a transcriptionally active provirus; green represents a transcriptionally silent latent provirus.  
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With the failure to elucidate the mechanisms behind any of these questions using 

bulk analyses testing specific hypotheses, the need for unbiased approaches with single-

cell resolution has become abundantly clear. HSPCs isolated from cord blood and 

cultured as described in Chapter 2 yield a heterogenous population of progenitor cells. 

While this heterogeneity can obscure population-level analyses, approaches with single-

cell resolution can leverage the existing heterogeneity to identify parameters associated 

with divergent outcomes, in this case transcriptional activation or silencing of the HIV 

promoter. 

 

Future directions: single-cell transcriptomic and epigenomic approaches 

 Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-

accessible chromatin sequencing (scATAC-seq) can together provide transcriptomic and 

epigenomic data with single-cell resolution. In collaboration with Maria Virgilio and 

members of Joshua Welch’s lab, in particular Chen Li, we have begun to perform scRNA-

seq and scATAC-seq experiments on proliferating and quiescent HSPCs infected with 

HIV. A critical technical advancement enabling these studies was the development of a 

dual-reporter HIV construct by Valeri Terry. Named VT1, this construct expresses GFP 

driven by the constitutive promoter from spleen focus-forming virus and mCherry driven 

from the promoter in the HIV 5’ LTR. With this construct, we are able to isolate pure 

populations of both latently infected and actively infected cells, which was not possible in 

the experiments described in Chapter 2. The use of VT1 significantly improves the ability 

to accurately interrogate the mechanisms driving HIV latency by enabling single-cell 

analysis of definitive populations of actively- and latently infected cells. 
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 Our aim is to use single-cell transcriptomic and epigenomic data from purified 

actively- and latently infected primary HSPCs in both quiescent and proliferating cells for 

unbiased approaches to identify parameters associated with HIV latency. The general 

experimental setup is presented in Fig. 4.3. Quiescent and proliferating HSPCs will be 

infected with VT1, pure populations of actively- and latently infected cells will be isolated, 

and scRNA-seq and scATAC-seq will be performed. Since the transcriptomic data can be 

used to identify cells expressing HIV RNA, we elected to pool actively- and latently 

infected cells 1:1 as a cost-saving measure, while performing scATAC-seq on pure 

samples of either actively- or latently infected cells. From this experiment we will obtain 

epigenomic data from proliferating cells with active infections, proliferating cells with latent 

infections, quiescent cells with active infections, and quiescent cells with latent infections. 

We will also have transcriptomic data for a sample of 50% actively- and 50% latently 

infected cells for both quiescent and proliferating HSPCs, which can be segregated in 

silico into the same four populations based on HIV RNA expression.  

These data will be analyzed with a priority on identifying differences that correlate 

with the likelihood that a cell harbors an active or latent provirus. In addition to looking at 

the expression of single host genes, we will also identify gene expression patterns 

characteristic of the activity of known transcription factors or signaling pathways. 

Mechanisms identified by the unbiased approaches described here will have to be tested 

directly for their influence on latency in HSPCs through knockout and overexpression 

experiments, and pharmacologic stimulation or inhibition where possible.  
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Fig. 4.3: Summary diagram of future directions for sc-RNAseq and sc-ATACseq. Blue cells represent 
a heterogenous population of cord blood-derived hematopoietic stem and progenitor cells (HSPCs). HSPCs 
can be cultured in two states, proliferating and differentiating or quiescent. Quiescent cells preferentially 
establish latent infections, but pure populations of both actively- and latently infected cells can be isolated 
using the novel dual-reporter virus VT1. These populations can be pooled at a 1:1 ratio for scRNA-seq, as 
transcriptomic data will enable them to be distinguished, while ATAC-seq samples are kept pure. Red 
represents a transcriptionally active provirus; green represents a transcriptionally silent latent provirus.  
 

 Given the heterogeneity of the HSPC population and the observation that 

differentiation correlates with reactivation from latency, as described in Chapter 2, cells 

will likely cluster by transcriptomic and epigenomic profiles according to their 

differentiation state, and some of these clusters will be more or less associated with HIV 

latency. Indeed, preliminary observations support this hypothesis. This allows for multi-

layered analysis of the data to identify key differences regulating HIV gene expression. 

First, if cells of a certain profile are strongly enriched for latency or active infection, the 
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parameters that most clearly define that cluster of cells from the rest of the heterogeneous 

population are likely to contain clues about mechanisms regulating latency in HSPCs. 

Furthermore, even if a certain profile is enriched for latent infections, there will likely be 

some similar cells that harbor a transcriptionally-active provirus. The differences between 

otherwise similar cells that differentiate between active and latent cells will be another key 

point of comparison to identify possibly latency-regulating aspects of the host cell biology. 

Thus, both inter- and intra-cluster differences are likely to provide critical information 

toward the identification of the mechanism or mechanisms regulating latency in quiescent 

HSPCs. 

 Actively infected cells express high levels of viral RNA and thus, in time, produce 

high levels of the viral proteins. Expression of viral proteins is necessary for reactivation 

of sufficient magnitude to drive killing and is thus essential to the success of a shock and 

kill strategy. For this reason, it is generally a strength of our studies that we use 

fluorescent protein expression as a readout for active infection or reactivation, as these 

fluorescent proteins are expressed from the viral promoter and likely represent high-level 

production of the other viral proteins as well. The experiments described in Chapter 3 

support this understanding, as expression of GFP or PLAP reporter genes is universally 

associated with downregulation of MHC-I and CD4 from the cell surface, hallmarks of Nef 

activity. Latently infected cells, on the other hand, do not express viral proteins. Thus, in 

addition to whatever differences caused a cell to actively transcribe HIV genes, many 

differences associated with the activities of the HIV proteins themselves will be different 

in actively- and latently infected cells. This represents a major obstacle to the successful 

identification of mechanisms responsible for the activation or silencing of the HIV 
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promoter, as many of the differences identified from the analyses described above will be 

consequences of HIV protein expression rather than causes that preceded the expression 

of HIV genes. Without a way to distinguish causes from consequences of HIV expression, 

time and resources will be spent exploring mechanisms with no veritable relationship to 

latency. 

 A key preliminary result sheds light on previously enigmatic results described in 

Chapter 2 and may offer a path forward to resolve this problem. In Chapter 2, when 

proliferating cells infected at 37°C harboring latent proviruses were transferred to 30°C or 

treated with 17-AAG, inducing quiescence, the frequency of spontaneous reactivation 

from latency was suppressed. However, the frequency was not suppressed to the levels 

of latent proviruses from cells that had always been kept in a quiescent state at 30°C, 

instead producing an intermediate phenotype. This was perplexing, especially given the 

result that responsiveness to LRAs was not intermediate, but instead completely mirrored 

cells that had been at 30°C from the time of infection. Surprisingly, when we analyzed the 

scRNA-seq results from HSPCs at 37°C, which had been sorted by FACS and re-pooled 

to have 50% actively- and 50% latently infected cells based on HIV protein expression as 

reported by mCherry, we observed that over 50% of the cells were expressing HIV 

transcripts. A similar result was not observed at 30°C, where cells have a low frequency 

of spontaneous reactivation.  

Although this observation needs to be repeated in an experiment where the 

submitted samples are analyzed to confirm 50% expression of mCherry protein, these 

preliminary results lead me to hypothesize that, since the frequency of spontaneous 

reactivation is high at 37°C, a proportion of the population of cells is always in the state 
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of having been recently reactivated and thus having produced HIV RNA but not yet having 

translated large quantities of HIV proteins. This could explain the intermediate 

suppression of spontaneous reactivation when switching cells to a quiescent state, as a 

portion of those GFP-negative cells were already transcribing the HIV genes at the time 

of the switch and could not be suppressed. These cells appeared latent, as they were not 

yet expressing sufficient levels of GFP protein to be detected by flow cytometry, but were 

in fact actively infected at the time of the sort. Thus, the switch to the quiescent state likely 

halted all de novo reactivation but did not halt the expression of viral proteins from 

already-reactivated cells. 

This hypothesis could be tested by repeating the experiments in Chapter 2 that 

yielded intermediate effects on spontaneous reactivation, but sorting again for GFP- cells 

after an additional 24 hours. After the sort, cells that had spent the previous 24 hours in 

a quiescent state could be returned to the same culture conditions as before, either 30°C 

or in the presence of 17-AAG. If this hypothesis is correct, the frequency of spontaneous 

reactivation will now match the low frequency observed in cells that have always been at 

30°C, as any cells that had been transcriptionally activated at 37°C would by now be 

sorted away.  

Should this hypothesis prove true, the implications for attempts at distinguishing 

between consequences and causes of HIV reactivation are substantial. In our preliminary 

experiments, we observed a greater-than-expected ratio of active:latent proviruses at the 

level of HIV RNA expression when compared to what was observed by measuring HIV 

protein expression. This would imply that some cells that are negative for HIV proteins, 

and thus not experiencing the multitude of consequences that result from the activity of 
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these proteins, are indeed actively transcribing HIV RNA. The existence of these cells 

would resolve the major obstacle described above. Comparing HIV RNA-positive, protein-

negative cells to HIV RNA-negative cells eliminates the confounding differences that are 

consequences of HIV protein expression and focuses solely on the differences in the host 

cell that may be regulating HIV gene expression. If we avoid re-pooling cells after sorting, 

we will yield three populations of interest: RNA+protein+ (actively infected), RNA+protein- 

(recently reactivated), and RNA-protein- (latently infected). Since our goal is to identify the 

differences responsible for the initial activation of HIV expression, the comparison most 

likely to reveal the key parameters is between recently reactivated and latently infected 

cells. That said, it could also be informative to identify features that are shared between 

actively infected and recently reactivated cells, but different from latently infected cells, 

so long as the expression of HIV proteins does not interfere with the mechanisms that 

initially led to reactivation.  

While these studies are of great interest and will likely be useful to identify the 

mechanisms regulating latency in the quiescent primary cell model described in Chapter 

2, several further questions will remain. Should we succeed in identifying the mechanisms 

regulating latency in the in vitro system, it will be of great interest to determine whether 

these mechanisms may be contributing to latency in HSPCs in vivo. For instance, if the 

absence of an activating factor seems critical for maintaining the latent state, it would be 

important to determine the level of expression and activation of that factor in HSPCs in 

the bone marrow. Furthermore, though the latent reservoir of HIV in HSPCs is likely to be 

important to persistence and will need to be eliminated for the success of a shock and kill 

cure strategy, the primary reservoir of latent HIV resides in quiescent, resting CD4+ T 
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cells. Thus, it will also be of great interest to determine whether the mechanisms 

regulating latency in our in vitro model of quiescent primary cells are also involved in 

regulating latency in quiescent CD4+ T cells in vivo.  

Lastly, should the mechanisms regulating latency in quiescent cells be identified, 

there will be great interest in designing therapeutics aimed at reactivating latent 

proviruses by targeting these mechanisms. The model system describe in Chapter 2 will 

be a vital resource in testing possible targeted LRAs in quiescent primary cells. The 

results in Chapter 2 demonstrate that HIV expression can be induced in quiescent cells 

in this model by a narrower panel of stimuli compared to proliferating cells. Notably, 

combination therapies of bryostatin, which is effective in quiescent cells, with agents that 

did not induce reactivation independently, such as HDAC inhibitors and HMBA, resulted 

in robust reactivation greater than bryostatin alone. Thus, in addition to single targeted 

therapies aimed at counteracting the mechanisms maintaining latency in quiescent cells, 

combination therapies should be considered to achieve maximal reactivation in the 

broadest possible range of cells that make up the heterogeneous reservoir of HIV in vivo. 

 

The Role of CTLs in Reservoir Clearance: Open Questions 

 

 In the event that the approaches described above successfully identify therapeutic 

approaches capable of achieving robust and broad reactivation of the latent reservoir of 

HIV, this will only guarantee one branch of the shock and kill approach to an HIV cure. 

Upon reactivation from latency, cells harboring reactivated provirus need to be killed 

before they can proliferate, leading to clonal expansion of the provirus and/or return to 
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latency, potentially as a result of the host cell returning to a more quiescent state. This is 

particularly pertinent, given that the estimated half-life of HIV-infected cells in vivo is 

approximately 2 days12-14, but activated T cells can proliferate in as little as 6-8 hours15-

17. Thus, proliferation and clonal expansion of the virus may theoretically outpace decay 

in some circumstances in the absence of efficient killing mechanisms that reduce the half-

life of HIV-infected cells. 

 HIV-specific CTLs are the effectors of the adaptive immune system most 

responsible for the clearance of virus-infected cells. Robust CTL responses are induced 

early in HIV infection18-20 and exert notable selective pressures on the virus21-23, though 

they are not sufficient to control the infection in the vast majority of individuals19,20. With 

antiretroviral therapy suppressing viral replication, however, effective anti-HIV CTLs may 

play a key role in clearing reactivated viral reservoirs as part of a shock and kill strategy 

to cure HIV.  The efficacy of anti-HIV CTLs on clearance of the reactivated HIV reservoir 

is an area of ongoing investigation. A recent study from Huang et al. demonstrated that 

cells harboring replication-competent latent HIV proviruses are intrinsically less 

susceptible to CTL killing24. This study aimed to explore the capacity of a patient’s CTLs 

to eliminate their autologous latent reservoir of HIV in an ex vivo co-culture system known 

as the HIV eradication (HIVE) assay, in which the replication-competent reservoir is 

measured by a quantitative viral outgrown assay. Using the HIVE assay in donors whose 

latent virus did not possess mutations to escape their immunodominant CTL responses, 

they observed that co-culture of CD8+ T cells with ex vivo CD4+ T cells stimulated with 

potent LRAs resulted in a reduction in HIV proviral DNA, but no reduction in the inducible 

replication-competent reservoir. This was observed despite the fact that the CTLs were 
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capable of killing autologous CD4+ T cells infected in vitro with the exact virus that 

emerged in the HIVE assays. Thus, the cells harboring latent provirus in vivo appear to 

be intrinsically resistant to CTL killing. 

 The authors discuss two possible mechanisms that could contribute to these 

observations. First, it is known that CTLs exert selective pressures that shape the HIV 

proviral reservoir, suggesting that the cells harboring provirus have already undergone 

selection for those cells that are most resistant to CTL-mediated clearance21,24. This 

hypothesis is supported by other recent findings focused on the expression of the anti-

apoptotic factor BCL-2. In two independent studies, Cummins et al. demonstrated that 

BCL-2 expression protects HIV-infected CD4+ T cells from the cytopathic effects of 

infection, and that antagonism of BCL-2 reduces HIV persistence in vitro25,26. By 

performing transcriptomic profiling of the peptide-pulsed ex vivo CD4+ T cells that evaded 

CTL killing in a co-culture assay, Ren et al. identified BCL-2 overexpression as being 

associated with survival27. They proceeded to show that HIV-specific CTLs preferentially 

eliminate BCL-2low cells, and that replication-competent HIV proviruses are enriched in 

BLC-2high cells ex vivo. The BCL-2 antagonist ABT-199 was unable to drive reductions in 

the intact reservoir ex vivo, even in combination with the potent LRA bryostatin, although 

this combination did lead to reservoir reduction in an in vitro latency model, as observed 

by Cummins et al. However, when co-cultured with CTLs, ABT-199 and bryostatin led to 

a modest reduction in the inducible reservoir of HIV, which was more striking when 

bryostatin was replaced by potent T cell activating stimulation using anti-CD3/CD28 

antibodies. This study demonstrates that BCL-2 is one barrier to the CTL-mediated 

clearance of cells harboring the latent reservoir of HIV after reactivation, although even 
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potent reactivation and BCL-2 antagonism did not overcome every obstacle to clearance. 

This indicates that other mechanisms likely contribute as well, possibly including Nef-

mediated downregulation of MHC-I.  

 Importantly, Ren et al. demonstrated that the efficiency with which CTLs eliminate 

the reactivated reservoir of HIV is dependent on the LRA used to induce reactivation. 

Robust reactivation resulting in antigen presentation sufficient to induce detectable CTL-

mediated clearance generally requires the use of agents that cause T cell activation, such 

as bryostatin, PMA and ionomycin, or anti-CD3/CD2824,27. HDAC inhibitors, while failing 

to induce high levels of HIV gene expression, also have suppressive effects on CTL 

function. HDAC inhibitors were shown to reduce IFNg production and impair the cytolytic 

functions of CTLs, reducing their ability to successfully eliminate cells harboring 

reactivated HIV provirus28. Furthermore, HDAC inhibitors were shown to induce HIV gene 

expression, but did not generate spliced HIV transcripts or promote expression of HIV 

proteins, and thus did not lead to an increase in virus production29. As expected, the lack 

of splicing and virion production was associated with a lack of antigen presentation, as 

cells reactivated with HDAC inhibitors failed to induce degranulation from HIV-specific 

CTLs. This finding is in line with our observations in quiescent HSPCs, in which HDAC 

inhibitors fail to induce GFP expression, which would be produced from the singly-spliced 

env transcript. In combination with the negative effects of HDAC inhibitors on CTL 

function, the use of these agents to achieve reactivation may directly prevent successfully 

killing of cells harboring reactivated provirus.  

Jones et al. investigated a wide panel of single agents to determine their ability to 

promote degranulation of HIV-specific CTLs, a readout of successful antigen 
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presentation. This study determined that HDAC inhibitors and HMBA failed to induce HIV-

specific CTL activation, consistent once again with our findings that these agents do not 

induce potent reactivation and HIV protein expression in quiescent HSPCs30. 

Alternatively, they observed that reactivation using PKC agonists can induce CTL 

responses. However, a very recent report shows that reactivation using PKC agonists, 

such as bryostatin, increases the activity of BCL-2 and protects reactivated cells from 

elimination31, and thus these agents may need to be used in combination with BCL-2 

inhibitors. In addition to PKC inhibitors, Jones et al., determined that IL-15, IL-15 

superagonists such as ALT-803, IL-2, a TLR2-ligand could also reactivate latent 

proviruses and promote CTL recognition of cells harboring reactivated provirus. They 

focused particularly on ALT-803, which did not induce T cell activation, did induce HIV 

RNA expression, and was able to promote modest clearance of HIV-infected cells in CTL 

co-cultures30. The modest nature of CTL clearance of reactivated reservoirs may reflect 

the presence of Nef, as higher expression of viral proteins and subsequent presentation 

of abundant viral peptide antigens will be accompanied by higher expression of HIV Nef 

and greater reductions in cell-surface MHC-I. In the absence of therapies to counteract 

Nef, other approaches are being investigated to enhance CTL responsiveness to HIV-

infected cells. Priming CTLs prior to reactivation has also been shown to enhance 

clearance of reactivated reservoirs in vitro, indicating that vaccination strategies to prime 

HIV-specific CTLs in patients prior to shock may aid in reservoir clearance32, although 

inhibition of Nef would also likely be beneficial in restoring antigen presentation to these 

primed CTLs. 
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In contrast to the doubts about the efficiency of CTL-mediated clearance of 

reactivated HIV reservoirs, CD8+ T cells are known to be important in the control of SIV 

infection and the maintenance of undetectable viral loads during antiretroviral therapy in 

SIV models33-36. Antibody-mediated depletion of CD8+ T cells leads to rebound viremia 

even if ART is maintained, suggesting that the ongoing activity of CD8+ T cells is essential 

even for the efficacy of ART37,38. However, two independent studies used mathematical 

modeling of plasma viral decay upon re-initiation of ART to assess the lifespan of HIV-

infected cells, and saw no increase in lifespan when CD8+ T cells were depleted39,40. The 

authors and many in the field have taken this to indicate that the cytolytic activities of 

CD8+ T cells are not responsible for exerting control over HIV and SIV, but rather other, 

non-cytolytic functions. This is supported by the well-characterized observation that CD8+ 

T cells exert a suppressive effect on HIV replication in vivo and in vitro independent of 

cytolytic functions, though the specific mechanism by which this occurs has remained 

elusive41-49.  

However, an alternative interpretation of the observation that the lifespan of virus-

producing cells is not reduced by the presence of CD8+ T cells is that by the time a cell is 

producing virus, it is protected from CTL killing, likely through the activity of some viral 

gene product. In this hypothesis, cytolytic functions of CD8+ T cells are important for the 

clearance of a portion of HIV-infected cells before infection has proceeded to the stage 

of virion production. Once sufficient viral gene expression to produce virus has been 

achieved, however, the virus is able to evade cytolytic responses by CTLs. The activity 

of the viral accessory protein Nef, which downregulates MHC-I in productively-infected 

cells, could explain this phenomenon. Indeed, Nef also downregulates CD4 from the cell 
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surface, and the majority of HIV virions are produced by CD4- CD8- T cells, indicating that 

Nef is already active and offering protection to virus-producing cells50. Of note, while they 

did not observe an increase in the lifespan of virus-producing cells after CD8+ T cell 

depletion, both studies observed a higher initial level of plasma virus, suggesting that 

more virus-producing cells were present at the time of ART-initiation in the absence of 

CD8+ T cells, and thus that CD8+ T cells may kill some HIV-infected cells prior to virion 

production39,40. In summary, it remains likely that the cytolytic activities of CD8+ T cells 

are important for eliminating some infected cells before they are able to produce virus, 

but subsequent protection by Nef allows virus-producing, CD4- cells to evade CTL killing.  

 

The Need for a Nef Inhibitor 

 

Given that Nef has a multitude of functions that aid viral replication and persistence 

and many of the key resides of Nef are essential for several of these processes, the study 

of genetic mutants of Nef provides only limited understanding of the contributions of MHC-

I downregulation to HIV fitness or reservoir dynamics. The existence of a potent inhibitor 

of HIV Nef would allow this alternative hypothesis to be tested directly. If true, Nef 

inhibition would lead to faster kinetics of viral load suppression upon ART initiation, 

reflecting a reduction in the lifespan of virus-producing cells that are no longer protected 

by Nef, and this effect would be dependent on the presence of CD8+ T cells.  

B9 was identified as an inhibitor of Nef-mediated activation of Src-family kinases, 

although it also inhibited Src-family kinases in the absence of Nef, calling into question 

the conclusion that this activity is truly Nef-specific51. B9 was later shown to interfere with 
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dimerization of Nef and to bind directly to the dimerization interface, as the mutants at 

N126 abrogated B9 binding to Nef by surface plasmon resonance, and they demonstrated 

that these mutants at N126 were able to activate Src family kinases equivalently to wild-

type Nef. Intriguingly, the authors neglected to perform the critical experiment 

demonstrating that these mutants, which do not bind B9, are not susceptible to B9-

mediated inhibition of Src family kinase activation, an experiment that would have been 

exceedingly simple in the context of the other experiments that were performed. They 

went on to clearly demonstrate that B9 reduces Nef dimerization in cells, but do not 

correlate this with any functional activity of B951. A recent paper showed small but 

statistically significant effects of B9 on CTL clearance and the authors claimed these 

effects were mediated through reversal of Nef-dependent MHC-I downregulation52. 

However, the authors failed to demonstrate restoration of MHC-I to the surface of Nef-

expressing cells, a simple experiment that was dubious to exclude, and the CTL killing 

assays lacked a control without CTLs added, rendering any attribution of the effects of B9 

to CTL-mediated killing impossible. 

It has been proposed that Nef acts as a dimer to perform its various functions within 

host cells, but the requirement for dimerization in MHC-I and CD4 downregulation and 

enhanced viral replication was based on the impacts of mutations in the dimerization 

interface of Nef53,54. Crystal structures of Nef in complex with MHC-I, however, indicate 

Nef present as a monomer. Interestingly, the residues believed to be important for 

dimerization were making important contacts with residues on other proteins within the 

structure, supporting the hypothesis that previous experiments may have been 

overinterpreted in attributing the defects associated with mutations in these residues to 



 236 

deficiencies in dimerization55,56. Moreover, the myristoylated form of Nef exists primarily 

as a monomer57, and myristoylation is essential for all functions of Nef58-61. This brings 

clarity to the observation in Chapter 3 that B9 fails to restore MHC-I to the cell surface, as 

it is proposed to function as an inhibitor of Nef dimerization, which may not be involved in 

this process.  

Alternatively, we were able to confirm the recent report that Lovastatin, which was 

not proposed to affect Nef dimerization, does restore MHC-I to the surface of Nef-

expressing cells62. However, Lovastatin is over 1,000-fold less potent than CMA and 

requires supratherapeutic concentrations, acts with slower kinetics, and does not achieve 

comparable levels of MHC-I restoration. Thus, the discovery of concanamycin A (CMA) 

as a potent inhibitor of HIV Nef is a major development in the study of the effects of Nef 

on CTL-mediated clearance of HIV. Our evidence indicates that CMA is a selective 

inhibitor of MHC-I downregulation by Nef, as the lysosome remains functional and CD4 

is internalized and degraded in a Nef-dependent manner.  

Studies with CMA will be able to interrogate the importance of MHC-I 

downregulation to the survival of HIV-infected cells upon ART initiation, as described in 

the SIV models above39,40. Indeed, as detailed in Chapter 3, we confirmed previous 

studies and observed that Nef protects a significant portion of HIV-infected cells from CTL 

killing. Even though Nef was already highly-expressed in these cells, treatment with CMA 

restored killing and led to the elimination of virtually every HIV-infected cell. Thus, it is 

reasonable to predict that CMA could enhance the clearance of even hard-to-kill virus-

producing cells that already express high levels of Nef, presuming functional CTLs 

recognizing autologous viral epitopes are present. 
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The notion that, due to the activity of Nef, HIV-infected cells are only susceptible 

to clearance by CTLs during a narrow window after the initiation of viral gene expression 

but before virion production has interesting implications for the dynamics of HIV 

persistence in lymph nodes, where the majority of HIV DNA and HIV RNA is found63. In 

particular, HIV RNA is detected in B cell follicles in both SIV and HIV infection, even during 

ART64-66. This points to the importance of T follicular helper cells (TFH), which are the 

dominant T cell population in B cell follicles and are more susceptible than other CD4+ T 

cell subsets to HIV infection in vitro67, as critical sources of the latent reservoir of HIV68. 

Ongoing RNA expression during ART causes TFH to contribute disproportionately to 

residual viremia, similar to HSPCs69,70. The B cell follicle may represent a sanctuary for 

HIV, as only cells expressing CXCR5 enter the follicle, and thus few CTLs are present 

despite the relatively large number of cells expressing HIV RNA71. Elite controller 

monkeys with potent CTLs still show ongoing replication in TFH72, further confirming the 

inability of CTLs to control HIV in the follicle. Some CTLs do enter the follicle during SIV 

and HIV infection, although there is disagreement over whether these cells have a 

regulatory phenotype that suppresses anti-HIV responses73 or have especially potent 

cytolytic function, which thus requires further investigation74,75.  

Nonetheless, the reservoir of HIV in TFH represents an additional barrier to a cure, 

as CTL-based kill strategies will likely require cytolytic CXCR5+ CTLs to enter the follicle. 

The relative lack of CTLs in the B cell follicle may allow TFH cells beginning to express 

HIV RNA sufficient time to express high levels of Nef and downregulate MHC-I before 

encountering an HIV-specific CTL. Interestingly, ALT-803, the IL-15 superagonist that 

reactivates latent HIV, was shown to enhance the proliferation and activation of CTLs and 
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increased their expression of CXCR5, leading them to accumulate in the B-cell follicle. 

This led to reductions in the number of SIV RNA+ and DNA+ cells in the lymph nodes of 

elite controller macaques treated with ALT-803. While SIV RNA was reduced, it was not 

eliminated, suggesting that other mechanisms, including possibly the expression of Nef, 

enable TFH cells to evade even potent CTL responses in elite controller monkeys. The 

discovery of CMA as the first potent inhibitor of HIV Nef will enable the exploration of the 

contributions of MHC-I downregulation to HIV persistence in lymph nodes. 

The identification of CMA as a potent Nef inhibitor also makes it possible to 

determine the contributions of MHC-I downregulation by Nef to the observed inefficiency 

of CTL-mediated clearance of cells harboring induced HIV proviruses following latency 

reversing treatments24,27. While other mechanisms described above may contribute to 

these effects, such as off-target effects of the selected LRA28-30 or the expression of the 

inhibitory molecule BCL-225,27, Nef could also play an important role. The use of CMA in 

HIVE assays is thus an area of intense interest moving forward, with the aim of 

determining the optimal combination therapy to simultaneously achieve potent 

reactivation with single or combinations of LRAs, such as ALT-803, and maximize CTL-

mediated clearance, with CMA restoring antigen presentation and BCL-2 inhibitors, such 

as ABT-199, supporting apoptosis. 

 

Concanamycin A (CMA): A Promising Lead Compound for Enhancing CTL-

Mediated Clearance of HIV Reservoirs 
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 As described in Chapter 3, we performed high-throughput screening of large 

libraries of small molecules and natural products with the goal of identifying potent 

inhibitors of HIV Nef that could restore MHC-I to the surface of Nef-expressing cells. The 

screen was designed to provide the greatest likelihood of identifying a bona fide Nef 

inhibitor, as hits emerging from the secondary screen would have demonstrated 

restoration of MHC-I in cells expressing Nef both from and adenoviral delivery vector and 

in the context of integrated HIV infection, eliminating compounds that would reduce Nef 

expression at the transcriptional level. The screen also guaranteed a minimal tolerability 

of any identified compounds in cells, as the cells would have to tolerate 16-hour exposure 

to the drug without losing the capacity to restore MHC-I to the cell surface. 

 After a library of known small-molecules yielded no hits, we established a 

collaboration with Dr. David Sherman’s lab at the Life Sciences Institute. This allowed us 

access to their library of natural product extracts, among which we found 11 strains 

producing Nef inhibitors. The Nef inhibitory activity in several of these strains was 

attributed to a single family of molecules known as the plecomacrolide antibiotics. In 

response to this discovery, we tested a small panel of plecomacrolide family members, 

including several of the bafilomycins, which have a 16-member ring, and concanamycin 

A (CMA), which has an 18-member ring. Though the screen was performed in the CEM 

T cell line, which is a useful model of the activated CD4+ T cells that are the primary 

targets of HIV infection, we proceeded to assess the efficacy of the plecomacrolides in 

primary CD4+ T cells infected with HIV. While all of these compounds were able to inhibit 

Nef, CMA had the greatest potency, with an extremely low 50% effective concentration 

of 70pM.  
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 While CMA was by far the most potent inhibitor of Nef ever described and the most 

potent in our panel, the goal of identifying a therapeutic Nef inhibitor requires not only 

potent anti-Nef activity, but also tolerability. Thus, we assessed the toxicity of 

plecomacrolide family members in primary human CD4+ T cells. In contrast to Nef 

inhibition, which occurs rapidly in the first 24 hours of plecomacrolide treatment, toxicity 

to primary cells required sustained exposure. However, after 3 days of culture, we 

observed marked toxicities with sufficient concentrations of each plecomacrolide tested. 

Importantly, however, the 50% toxic concentration for CMA was 11-fold higher than the 

50% effective concentration for Nef inhibition, providing a small but essential therapeutic 

window in which Nef is inhibited without notable toxicity in primary cells. Thus, CMA was 

identified as a promising lead compound for further development as a therapeutic inhibitor 

of Nef, based on its exceedingly high potency and ability to counteract Nef at non-toxic 

concentrations. 

 

CMA mechanism of action: summary of results and hypotheses to explore 

 Though the plecomacrolides had never been described as inhibitors of HIV Nef 

capable of restoring antigen presentation in HIV-infected cells, the molecules are well-

known inhibitors of the vacuolar-type H+ ATPase (V-ATPase), the enzyme responsible 

for acidifying intracellular organelles, particularly the lysosome76. Bafilomycins were the 

first plecomacrolides identified as potent and selective inhibitors of V-ATPase77, and the 

concanamycins were subsequently determined to be even more potent than the 

bafilomycins78, although this original study may have overstated the degree to which 

concanamycins are more potent as inhibitors of V-ATPase79. Plecomacrolides likely 
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inhibit V-ATPase through direct, high-affinity binding to the V0 subunit80, ultimately 

resulting in the neutralization of the lysosome in cells, disrupting its degradative 

functions81. A structurally-related molecule, elaiophylin, has no effect on V-ATPase at 

all78. Thus, comparisons between elaiophylin and CMA could yield informative 

mechanistic insights regarding the requirement for V-ATPase inhibitory activity. 

Nef downregulates MHC-I by redirecting it from the trans-Golgi network (TGN) into 

the endolysosomal system, from which it transits to the lysosome and is degraded82,83. 

Thus, we hypothesized that restoration of MHC-I to the surface of Nef-expressing cells 

following CMA treatment must somehow be a consequence of inhibiting V-ATPase, 

neutralizing the lysosome and preventing MHC-I degradation. We were surprised, then, 

to discover that the concentrations of CMA needed to neutralize the lysosomes of primary 

monocyte-derived-macrophages or intracellular compartments in primary T cells were 

much higher than those that were required to restore MHC-I. This led us to assess 

lysosomal function directly, as the maintenance of an acidic lysosome is necessary for 

degradation of lysosome-targeted proteins.  

For this we took advantage of the fact that Nef directs both CD4 and MHC-I to the 

lysosome for degradation, though by different mechanisms. Nef recruits AP-1 to the MHC-

I cytoplasmic tail in the TGN, forming the AP-1:Nef:MHC-I complex that promotes transit 

of MHC-I in an ARF1- and b-COP-dependent manner through late endosomes and 

ultimately to the lysosome82-85. Alternatively, Nef binds both CD4 and AP-2 at the plasma 

membrane, leading to CD4 internalization from the cell surface in clathrin-coated vesicles, 

from which CD4 also transits through late endosomes and ultimately to the lysosome86-

88. Based on assays using Lysotracker Red staining intensity to assess the neutralization 
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of intracellular organelles in T cells, we predicted that 2.5nM CMA would neutralize the 

lysosome, while 0.5nM would not. Importantly, while both concentrations of CMA restored 

MHC-I to the cell surface, CD4 was not restored with either treatment, indicating that not 

all lysosome-targeted proteins have mechanisms for re-establishing surface expression 

after CMA treatment. We subsequently observed that degradation of both CD4 and MHC-

I was blocked by 2.5nM CMA, while 0.5nM CMA prevented MHC-I degradation without 

blocking CD4 degradation. These experiments definitively demonstrated that MHC-I is 

restored to the cell surface and avoids degradation in cells that have functional 

lysosomes. We conclude that CMA specifically alters Nef-mediated trafficking of MHC-I 

but not CD4, such that CD4 transit to the lysosome via AP-2 is unaffected, and CD4 is 

degraded upon arrival in a functional, acidified lysosome, while MHC-I never reaches the 

lysosome and instead goes to the cell surface, avoiding degradation. 

Since the effect of CMA is unique to MHC-I and not CD4, we focused on the 

differences in the trafficking pathways hijacked by Nef for targeting these two proteins. 

Coimmunoprecipitation experiments of HLA-A2 confirmed that both Nef and components 

of the AP-1 complex show significantly and reproducibly reduced association with the 

MHC-I cytoplasmic tail in cells treated with CMA. Given that the formation of this complex 

is necessary for MHC-I trafficking to the lysosome, this observation is sufficient to explain 

the restoration of MHC-I to the cell surface. However, questions remain about precisely 

how CMA interferes with the AP-1:Nef:MHC-I complex. Despite the specific effect on this 

the AP-1:Nef:MHC-I complex, CMA does not show signs of binding directly to AP-1, MHC-

I, Nef, or ARF-1 in vitro, either as individual proteins or in complexes. These in vitro 

assays with purified recombinant proteins do not definitively prove that CMA does not 
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interact with these proteins or complexes in living cells, and further investigation of CMA 

binding partners in cells is warranted. Nevertheless, the absence of evidence of direct 

binding points to alternative hypotheses to explain the mechanism by which low-dose 

CMA that maintains lysosomal degradative functions reduces the prevalence of the AP-

1:Nef:MHC-I complex in cells and results in successful trafficking of properly-loaded 

MHC-I to the cell surface. 

Since plecomacrolides, especially CMA, are known to be extremely potent and 

selective inhibitors of V-ATPase, it remains possible that the target of CMA is the V-

ATPase complex, even if the lysosome is not ultimately neutralized. Preliminary data 

indicate that Nef inhibitory potency correlates with neutralization potency among different 

plecomacrolide family members, although this association is not perfect. Furthermore, 

diphyllin, a V-ATPase inhibitor that is structurally unrelated to plecomacrolides, also 

counteracts Nef to restore MHC-I to the cell surface (data not shown), supporting the 

hypothesis that plecomacrolides inhibit Nef through interactions with their known high-

affinity binding partner, V-ATPase. Additionally, exposing cells to high concentrations of 

NH4Cl, though toxic, partially restores MHC-I to the cell surface (data not shown). NH4Cl 

functions as a weak base, neutralizing organelles within the cell without interacting with 

V-ATPase. While these results are preliminary and certainly not definitive, they 

collectively support the hypothesis that plecomacrolides inhibit Nef through a mechanism 

that involves V-ATPase and organellar acidification. This, however, is puzzling, as the 

experiments presented in Chapter 3 clearly and definitively demonstrate that primary 

CD4+ T cells treated with low-dose CMA restore MHC-I in Nef-expressing cells where the 

lysosome remains acidified and capable of degrading lysosome-targeted proteins.  
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This opens a series of questions regarding the possible roles of V-ATPase in MHC-

I trafficking. If V-ATPase is being inhibited in a way that impacts Nef function, why is the 

lysosome not being neutralized? And why would V-ATPase or acidification affect Nef-

mediated trafficking of MHC-I? A deep exploration of the protein trafficking and V-ATPase 

literature, which has been extensively reviewed elsewhere89-93 begins to shed insights on 

these questions that point to a testable hypothesis moving forward.  

First, b-COP binding to the Golgi membranes was shown to require myristoylated 

ARF and occurs temporally after ARF binding, and ARF binding requires an additional 

membrane protein that was not identified94. Furthermore, recruitment of ARF to 

membranes from the cytoplasm is pH-dependent and requires the activity of V-ATPase95. 

b-COP also associates with endosomal membranes in a pH-dependent manner and is 

required for transport from early to late endosomes96. An additional study confirmed that 

association of COP proteins with endosomes requires acidic endosomal pH and is 

dependent on ARF1, which is the factor responds to endosomal pH and renders COP 

association pH-dependent. The association of ARF1 and COP proteins with endosomal 

membranes is critical for the formation of transport intermediates destined for late 

endosomes97.  

Fitting with this observation, several studies have shown that plecomacrolide 

treatment interferes with transport from early to late endosomes. Baf A1 did not interfere 

with internalization from the plasma membrane or recycling back to the plasma 

membrane, but caused morphological changes in early endosomes and blocked 

trafficking from early endosomes to late endosomes98. Bafilomycin was also found to 

block transport from early to late endosomes after receptor-mediated endocytosis99. 
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Another study showed that Baf A1 causes a lysosomal protease to be secreted into the 

media. Thus, a protein that would normally be targeted to the lysosome was redirected 

through the secretory pathway and released at the cell surface, similar to what we observe 

for MHC-I in primary T cells treated with low-dose CMA100. 

Other studies give results that are more difficult to interpret and associate with the 

observation that plecomacrolide treatment restores trafficking of MHC-I from the ER, 

through the Golgi, and to the cell surface. Concanamycin B blocks intra-Golgi and Golgi 

to plasma membrane transport without affecting ER to Golgi transport. Trafficking to the 

plasma membrane was delayed, and glycosylation was modified to a lesser extent than 

in cells without V-ATPase inhibition, showing that concanamycin B interfered with 

processing in the Golgi and reduces transport to the plasma membrane101. Baf A1 can 

also block the endocytic pathway after internalization and blocks recycling between the 

plasma membrane and the TGN, which would seem to reduce the likelihood of MHC-I 

trafficking from the TGN to the cell surface102. 

In addition to being essential for b-COP recruitment to Golgi membranes, ARF1 was 

also found to be essential for AP-1 recruitment103. Taken together, the literature supports 

a model in which V-ATPase acidifies Golgi and early endosomal compartments, and this 

low pH is required for ARF1 and subsequently b-COP association with endosomal, and 

perhaps Golgi membranes95,96,104. If the lumen of these compartments is neutralized, an 

unknown membrane-spanning factor responsible for relaying information about the 

luminal pH discourages ARF1 binding, which would subsequently reduce the recruitment 

of both AP-1 and b-COP to these membranes, preventing trafficking to late endosomes 

and ultimately to the lysosome. This pathways could be altered by neutralizing the luminal 
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pH of a critical compartment in the trafficking pathway, or by directly binding to and 

interfering with any of the key players, including the yet-to-be-identified pH sensor that 

transmits information to ARF1. CMA was not observed to bind directly to ARF1, AP-1, 

Nef, or MHC-I, but the pH sensor could theoretically be a target of CMA.  

V-ATPase itself has been implicated as a pH sensor with both transmembrane (V0) 

and cytoplasmic (V1) domains. During endocytosis at the plasma membrane, association 

of ARF6 and ARNO with endosomes is pH-sensitive and dependent on a transmembrane 

protein to relay luminal pH information, akin to ARF1 and b-COP105-107. Hurtado-Lorenzo 

et al. identified V-ATPase as the protein complex required to relay luminal pH information 

to ARNO and ARF6. The a-subunit of V0, specifically the a2 isoform, which is specifically 

targeted to early endosomes, associated with ARNO. The c-subunit of V0 associated with 

ARF6. The interaction between a2 and ARNO was pH-dependent and essential for 

downstream events after endocytosis from the plasma membrane, with bafilomycin 

treatment specifically impairing the pathway leading to protein degradation rather than 

recycling to the plasma membrane108. This opens the possibility that the unidentified pH 

sensor relaying pH information via ARF1 could be a component of the V0 subunit of V-

ATPase, and a generalizable mechanism by which V-ATPase could serve as the pH 

sensing protein has been proposed109. Thus, CMA could target V-ATPase to disrupt the 

luminal pH itself, or possibly to disrupt the recruitment of ARF1 to membranes even when 

acidic pH is maintained. That diphyllin achieves equivalent MHC-I restoration to CMA in 

Nef-expressing cells while NH4Cl has only a partial effect could support either 

mechanism.  
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Since MHC-I is normally transported to the plasma membrane in the absence of AP-

1 recruitment, disruptions in the ARF1:AP-1:b-COP axis that prevent AP-1 recruitment in 

Nef-expressing cells could explain the restoration of cell surface MHC-I. The results 

described in Chapter 3, however, clearly demonstrate that low-dose CMA does not 

reduce the abundance of acidic compartments within the cell by Lysotracker staining 

intensity and does not impair the degradative capacity of the lysosome, suggesting the 

acidic pH is maintained. How, then, could a pH-sensitive pathway be responsible for the 

Nef inhibitory activity of CMA?  

The secretory and endolysosomal pathways are made up of a series of organelles 

possessing increasingly acidic luminal pH as proteins are transported toward the 

lysosome, either from the ER or the plasma membrane110,111. V-ATPase is the primary 

host complex responsible for establishing the acidic environment in each of these 

organelles, and thus the lysosome is not the exclusive organelle into which V-ATPase 

actively pumps H+ ions to maintain an acidic pH. Yet, in spite of this fact, not all organelles 

are as acidic as the lysosome. The Na+/H+ exchangers (NHEs) are integral membrane 

proteins that exchange H+ for Na+ to regulate pH at the plasma membrane (NHE1-5) or 

in organelles (NHE6-9)112. The organellar NHEs have a particularly important role in fine-

tuning the pH of organelles by counteracting V-ATPase. Each organellar NHE is localized 

to the membrane of a distinct organelle: NHE6 is found in early recycling endosomes113, 

NHE7 in the TGN114, NHE8 in the mid- and trans-Golgi, and NHE9 in late endosomes115. 

Overexpression of the NHE proteins causes the neuralization of their respective 

compartments to the cytosolic pH, and knockdown leads to acidification equivalent to 

what is seen in the lysosome, supporting the hypothesis that a delicate balance between 
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V-ATPase and NHE activities regulates pH in the secretory and endolysosomal 

pathways115-117.  

Considering the activity and distribution of the NHE proteins, it is possible that a 

slight but incomplete impairment of V-ATPase activity at low doses of CMA could disrupt 

the delicate balance of H+ flow that maintains the pH through the Golgi apparatus, the 

TGN, and the early and late endosomes without affecting the pH of the lysosome, since 

the lysosome does not have any NHEs counteracting V-ATPase. If the majority or entirety 

of LysoTracker staining is attributed to lysosomes rather than organelles with slightly 

acidic pH, organellar acidification could appear intact by that assay under conditions that 

neutralize a key trafficking compartment, such as the TGN or early endosomes. 

Neutralizing of these compartments could thus impair the recruitment of AP-1 to MHC-I, 

as we observed by coimmunoprecipitation, as a consequence of reduced pH-dependent 

ARF1 association with membranes (hypothesis in Fig. 4.4).  
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Fig. 4.4: Untested hypothesis that Nef inhibition by low-dose CMA is mediated by partial 
inhibition of V-ATPase. Left panel: a cell infected with HIV expresses Nef, and Nef recruits AP-1 to redirect 
MHC-I to the lysosome. AP-1 recruitment requires the acidification of organelles in the secretory and 
endolysosomal pathways, which is mediated by the activity of V-ATPase and balanced by the 
counteractivity of NHEs. Right: low-dose CMA partially but incompletely impairs V-ATPase, leaving the 
lysosome acidified but neutralizing organelles that express NHEs. Neutralization leads to reduced Nef and 
AP-1 binding to MHC-I, which reaches the cell surface to successfully present HIV-derived peptides to 
CTLs. Nef also downregulates CD4 by a different mechanism, as indicated, which is unaffected by low-
dose CMA. Color gradient: yellow = low pH, blue = high pH. 

 

This model warrants further exploration by a number of different approaches. First, 

the pH of organelles throughout the secretory and endolysosomal pathways should be 

determined in primary T cells treated with low-dose CMA. If no alterations in organellar 

pH are observed, then the mechanism by which CMA alters Nef-mediated trafficking of 

MHC-I is likely to be pH-independent. These assays may be challenging in primary T 

cells, as past approaches have required either an active endocytic pathway118 or the 

expression of transgenic fusion proteins targeted to certain organelles110,111,119. 
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Knockdown or overexpression of NHEs may be a more informative and feasible approach 

to test this hypothesis. If low-dose CMA functions by increasing the pH of a key trafficking 

compartment, then knockdown of NHEs should prevent restoration of MHC-I by low-dose 

CMA, requiring complete rather than partial inhibition of V-ATPase to achieve 

neutralization, and thus shifting the curve of Nef inhibitory activity to the right. 

Alternatively, overexpression of NHEs will neutralize the compartment in the absence of 

CMA treatment, leading to a lesser degree of Nef-mediated downregulation in these cells 

and no effect of CMA on MHC-I expression. The organelle-specific localization of each 

NHE protein would also enable the identification of the organelle or organelles in which 

acidic pH is critical for Nef-mediated downregulation of MHC-I. As a means to test these 

hypotheses, we are developing an HIV construct that will enable the overexpression of 

individual NHE genes, or any gene, from an IRES element in the context of Nef-

expressing HIV infection (Fig. 4.5).  

 

Fig. 4.5: Schematic of HIV construct to be used for overexpressing NHE genes.  
 

If the mechanism by which low-dose CMA counteracts Nef requires the 

neutralization of key organelles and a subsequent defect in clathrin-mediated trafficking 

through association of ARF1, AP-1, and COP with membranes, then MHC-I is unlikely to 

be the only host protein that experiences aberrant trafficking in cells treated with low-dose 

CMA. The observation that CD4 is still internalized from the plasma membrane and 

degraded in the lysosome supports the conclusion that clathrin coat formation, 
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endocytosis, transport from early endosomes to late endosomes, and transport from late 

endosomes to the lysosome are not impaired. Mannose-6-phosphate receptors (M6PRs) 

are the canonical host factors sorted by AP-1 along the pathway hijacked by Nef to target 

MHC-I to the lysosome120. Experiments to determine the effects of low-dose CMA on the 

trafficking of M6PRs in primary T cells are of critical importance. First, 

immunofluorescence experiments can determine the localization of M6PRs in primary T 

cells treated with low-dose CMA compared to control cells. Alterations in localization 

would indicate that the effects of CMA are not specific for Nef and MHC-I but affect AP-

1-mediated trafficking more broadly. It is of interest to determine whether M6PRs also 

appear on the cell surface, as this is where MHC-I is delivered in Nef-expressing cells 

treated with low-dose CMA. Assays measuring the successful sorting of cathepsin D by 

M6PRs, as previously published, could be used to further determine whether CMA 

impairs M6PR function121-124.  

There is also the possibility that different V-ATPase isoforms may be expressed in 

different cell types or in different organelles within a cell. In this case, different isoforms 

could have different roles in trafficking and organellar acidification, as V-ATPase has 

many isoforms with little known about their functional differences125. Though this is 

speculative, the identification of isoforms unique to primary T cells or unique to the 

secretory pathway could explain the observations that primary T cells are uniquely 

sensitive to low-dose CMA and that Nef-mediated trafficking can be disrupted without 

affecting the lysosome, respectively. Proteomic and transcriptomic analyses of primary T 

cells will be necessary to determine which isoforms of V-ATPase are present under the 

conditions of our experiments. Should multiple or unique isoforms be detected in primary 
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T cells, this line of investigation will warrant further study. If the activity of low-dose CMA 

does not appear to be mediated by alterations in pH or any of the aforementioned 

mechanisms, unbiased proteomic analyses will be necessary to determine whether V-

ATPase subunits function in Nef-specific trafficking independent of effects on pH or to 

identify other non-V-ATPase host factors that interact with CMA in primary T cells. 

 

CMA restores cellular adaptive immunity to HIV-infected cells and shows broad 

therapeutic promise 

Although the precise mechanism by which CMA restores MHC-I to the cell surface 

requires further investigation, results in Chapter 3 provide many clues regarding the 

biology and processing of MHC-I in cells treated with low-dose CMA. While restoration of 

MHC-I to the cell surface was likely to correlate with increased CTL responsiveness to 

Nef-expressing target cells126-130, it remained possible that this MHC-I may not be properly 

loaded with HIV-derived peptides. To address this question functionally, we performed 

co-culture assays of HIV-infected primary T cells with HIV-specific CTLs. CTLs efficiently 

eliminated cells infected with a virus in which Nef was genetically deleted but failed to 

eliminate a portion of cells infected with Nef-competent HIV. Thus, we confirmed that 

downregulation of MHC-I by Nef offers protection to at least a subset of HIV-infected cells, 

posing a major obstacle to the success of shock and kill approaches to eliminate the latent 

HIV reservoir. Impressively, low-dose CMA enhanced the killing of HIV-infected cells 

equivalent to genetic deletion of Nef, while providing no enhancement to the killing of cells 

infected with a Nef-deleted virus. The increase in CTL-mediated clearance of infected 

cells was complete despite the fact that restoration of MHC-I to the surface was 
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incomplete when compared to Nef-negative cells. This suggests that CTLs required a 

certain threshold of MHC-I expression to achieve efficient killing in these assays, and that 

CMA successfully increased MHC-I expression above the threshold for these CTLs. 

Furthermore, CTLs did not kill HIV-infected cells from an HLA-mismatched donor in the 

presence or in the absence of CMA, confirming that the observed killing was due to 

specific recognition of peptide:MHC-I by CTLs. Taken together, these results provide 

proof-of-concept that Nef can protect HIV-infected cells from even potent CTLs, and that 

CMA can reverse this to aid in the elimination of these hard-to-kill cells. 

These findings clearly demonstrate that the cell-surface MHC-I that is restored in 

Nef-expressing cells is properly loaded with HIV-derived peptides. This indicates that the 

trafficking pathway is not altered too radically from what occurs in the absence of Nef, 

such that MHC-I would not be exposed to HIV-derived peptides or would not retain 

peptides as it migrates toward the cell surface. This also confirms that CMA does not 

interfere with the generation of peptide antigens from HIV proteins that are suitable for 

MHC-I presentation. Thus, the cytoplasmic proteasome and peptide importing machinery 

in the ER are unlikely to be affected. Furthermore, low-dose CMA did not impair the 

responsiveness of primary T cells to the lytic signals from CTLs, which would work directly 

against the goal of enhancing killing of these cells and has been observed for some 

LRAs29.  

Chapter 3 concludes with a series of experiments demonstrating that CMA works 

to counteract Nef in diverse contexts, pointing to the broad therapeutic potential of CMA. 

Studies of MHC-I are rendered difficult by the tremendous diversity of HLA alleles present 

in the human population131, and antibodies targeting specific alleles without cross-
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reactivity to other alleles are rare132. Nonetheless, capturing the impacts of this diversity 

is essential for the therapeutic development of any drug aimed at MHC-I, as it must be 

broadly active on a wide array of HLA alleles to be useful in more than a small subset of 

patients. While we focused predominantly on HLA-A2, as it is the most common allele of 

MHC-I in many populations133-137 and is recognized by the highly specific BB7.2 

monoclonal antibody138,139, we aimed to determine whether CMA could enhance antigen 

presentation in the context of other alleles of MHC-I, particularly alleles of HLA-B. Nef 

downregulates both HLA-A and HLA-B83, but HLA-B alleles are the most strongly 

associated with control or accelerated progression of HIV infection140-142.  

Using a donor with minimal HLA cross-reactivity with the antibodies recognizing 

the Bw4 and Bw6 epitopes, we were able to interrogate the effects of Nef and CMA on 

two alleles of HLA-B, B*51:01 and B*07:02, in primary CD4+ T cells infected with HIV. 

Both alleles of HLA-B were downregulated by Nef and restored by CMA with similar 

magnitude and over a similar range of concentrations. This result confirmed that the 

results obtained using HLA-A2 were likely to be broadly conserved across HLA-A and -B 

alleles in primary CD4+ T cells. These experiments employed the lab-adapted HIV strain 

NL4-3. We expanded these findings by infecting primary cells from the same donor with 

a primary isolate of HIV. This isolate is of particular interest in the context of the work 

presented in Chapters 2 and 3, as it was isolated from the residual plasma virus of an 

optimally-treated patient and is associated with a provirus found in bone marrow HSPCs9. 

Thus, this isolate represents precisely the source of HIV that, following reactivation of the 

HSPC reservoir, may require enhanced CTL responsiveness to facilitate clearance. This 

virus downregulated HLA- B*51:01, -B*07:02, and -A*02:01 with impressive magnitude, 
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and CMA strongly counteracted Nef from this virus to restore all three alleles of MHC-I. 

This confirms that Nef from proviruses residing in long-lived cells in the bone marrow can 

downregulate both HLA-A and HLA-B and is likely to offer protection from CTLs, based 

on the data from the CTL killing assay described above. In summary, CMA was able to 

enhance antigen presentation by diverse alleles of HLA-A and HLA-B in primary cells 

targeted by both lab-adapted and a primary isolate of HIV from a patient’s latent reservoir. 

To extend these findings, we used a vector derived from the murine stem cell virus 

that allows expression of individual Nef alleles in CEM cells. Using this system, we tested 

a panel of Nef alleles derived from diverse clades of HIV and one Nef allele from simian 

immunodeficiency virus (SIV) targeting 4 alleles of MHC-I: HLA-A*02, HLA-B*08, HLA-

B*27, and HLA-B*57. All 4 alleles of MHC-I were downregulated by each allele of Nef, to 

varying degrees. CMA counteracted every allele of Nef targeting each allele of MHC-I, 

with more complete restoration of MHC-I in cells expressing weaker Nef alleles, but a 

greater magnitude of MHC-I restoration in cells expressing stronger Nef alleles. This 

suggests that CMA is likely to enhance CTL responses in every clinical setting, regardless 

of whether Nef is offering a small or large degree of protection to HIV-infected cells. CMA 

was also active with the same potency against each allele of Nef, indicating that variations 

in Nef even across clades of HIV do not alter sensitivity to CMA. These results indicate 

that CMA is likely to have broad therapeutic utility despite the tremendous diversity of 

both HIV and MHC-I sequences in the population. These findings are important because 

CTL responses in an individual are polyclonal and restricted to multiple HLA alleles 

presenting a diverse array of peptides. Furthermore, the diversity of HIV is high even 

within a single individual, and escape mutations often develop to evade immunodominant 
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CTL responses. Thus, enhancing CTL responses broadly is likely to improve the overall 

cellular adaptive immune response to HIV as a means of enhancing clearance of 

reactivated latent reservoirs. 

Despite the many promising findings, some limitations exist that will require further 

investigation. First, CMA is known to target V-ATPase with high affinity, which is 

associated with many off-target effects unrelated to restoration of MHC-I. We clearly 

demonstrated that the 50% effective concentration was 11-fold lower than the 50% toxic 

concentration (therapeutic index). This is acceptable for a lead compound for further 

development, but may not be feasible for clinical use without making modifications to the 

compound to widen the separation between active and toxic effects. A recent inhibitor of 

HIV CA protein, for instance, shows a 1,000,000-fold separation between activity and 

toxicity143. CMA used in the clinic would likely require extremely careful dosing and clinical 

monitoring. We also demonstrated a significant separation between inhibition of the 

lysosome and restoration of MHC-I in Nef-expressing primary T cells. While this is also 

encouraging for CMA as a lead compound, increasing the specificity of the compound for 

Nef inhibition relative to V-ATPase inhibition is another priority of derivatization 

approaches.  

CMA is also a known inhibitor of CTL functions, a critically important off-target 

effect that would counteract any efforts to use CMA as part of a combination therapy to 

achieve shock and kill. The possibility that CMA could affect CD8+ T cell function was 

addressed in Chapter 3. While at higher concentrations CMA has been reported to inhibit 

the perforin-mediated cytolytic activity of CTLs144, inhibition of CTL-mediated lysis was 

not observed with CMA concentrations less than 1nM144,145. We confirmed these findings, 
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demonstrating that we observed no reduction in the specific killing of peptide-pulsed cells 

by CTL clones in the presence of 0.5 nM CMA. While this once again suggests that Nef-

mediated downregulation of MHC-I is more sensitive to CMA than other known off-target 

effects, the separation between these two activities is small, and the development of 

modified compounds that promote antigen presentation without risking impaired CTL 

functionality may be essential. 

It will be of great interest to perform structure-activity studies for the plecomacrolide 

family of compounds comparing their effects on toxicity, lysosomal neutralization, and Nef 

inhibition in primary CD4+ T cells. These studies will provide information on two fronts. 

First, they will help define the key components of the structure of concanamycin that 

enhance activity relative to other plecomacrolides, as well as various modifications that 

can improve or decrease these activities. This work will help to define the pharmacophore 

for plecomacrolides targeting Nef and will reveal whether this is different from the 

pharmacophore for inhibition of V-ATPase. Second, to that end, these studies will reveal 

whether there are significant separations between the potency of these activities for 

different plecomacrolide compounds. If V-ATPase is the target responsible for Nef 

inhibition, lysosomal degradation, and toxicity, then the relationship between these three 

activities will likely be comparable for all plecomacrolides, and structural modifications will 

be unlikely to substantially improve the therapeutic index. Based on the results of 

structure-activity studies, it will be paramount to attempt guided derivatization of CMA 

with the aims of improving potency of Nef inhibition, reducing toxicity, increasing the 

therapeutic index, decreasing negative effects on CTL function, and making CMA readily 

bioavailable for easier use in the clinic.  
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Taken together, the results in Chapter 3 strongly support the conclusion that CMA 

is a potent and broad inhibitor of HIV Nef that restores CTL-mediated clearance of HIV-

infected cells in primary cell cultures. The success of CMA in primary cells in vitro 

necessitates the completion of in vivo studies to determine the tolerability and efficacy of 

CMA in the context of a living organism. Toxicity studies in vitro provide valuable 

information, but it is possible that CMA is more or less toxic to other cell types than it is 

to primary T cells. For instance, data presented in Chapter 3 indicate that much higher 

concentrations of CMA are required to neutralize the lysosomes of primary monocyte-

derive-macrophages than primary T cells. Encouragingly, initial dosing studies indicated 

that mice could tolerate sequential injections of CMA at two-day intervals for 18 days. 

Mice were sacrificed 2 hours after the final injection, and CMA levels in plasma and lymph 

nodes were determine by mass spectrometry. Despite the fact that no toxicity was 

observed in the mice based on weight or the appearance of fur, CMA concentrations in 

both plasma and lymph nodes were above those that were required to achieve Nef 

inhibition in vitro. Furthermore, plasma from mice injected with CMA inhibited Nef in our 

primary cell cultures with potency equivalent to what would have been predicted based 

on the concentration as determined by mass spectrometry (data not shown). Taken 

together, early in vivo studies somewhat surprisingly indicate that CMA can be tolerated 

in vivo at concentrations that can inhibit Nef. Further studies using immunodeficient mice 

injected with HIV-infected human PBMCs or HSPCs will be necessary to determine 

whether CMA administered by injection can indeed increase the expression of MHC-I on 

the surface of HIV-infected cells circulating in a living animal.  
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Even a potent inhibitor of Nef will not be able to cure HIV in isolation. CMA alone 

will not reactivate latent reservoirs, necessitating the development of effective LRAs 

capable of inducing the entire replication-competent reservoir of HIV despite its cellular 

and proviral heterogeneity, as described above. These LRAs will also need to induce HIV 

gene expression to levels sufficient to produce enough HIV peptide epitopes for CTL 

recognition28,29. Furthermore, while a Nef inhibitor can enhance antigen presentation to 

CTLs and thus improve the efficiency of CTL-mediated clearance of cells harboring 

reactivated proviruses, this depends on the presence of functional CTLs within the 

individual. CTLs in HIV-infected individuals can often become exhausted146,147, reducing 

their functionality and providing an obstacle to enhanced killing following Nef inhibition. 

The latent reservoir of HIV can sometimes contain escape mutants that evade 

immunodominant CTLs148. These barriers will likely necessitate approaches to prime 

CTLs prior to shock and kill32, even in the presence of a Nef inhibitor like CMA. Checkpoint 

inhibitor therapies may at least temporarily restore function to exhausted CTLs, and 

vaccine strategies should be developed to simultaneously prime existing CTL responses 

and enhance the breadth of the anti-HIV CTL repertoire to counter reservoir viruses with 

escape mutants evading already-present CTLs, preferably by targeting highly-networked 

epitopes associated with elite control149. Additionally, as described above, the cells that 

make up the latent reservoir of HIV may be particularly hard to kill, due to the expression 

of BCL-2 and potentially other mechanisms24,27. Together, the parallel development of 

each of these approaches could collectively comprise a combination shock and kill 

therapy to achieve an HIV cure. Even if all of these approaches were to be successful, it 

is unlikely that a single round of latency reversal will truly eliminate every replication-
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competent provirus from the body. Thus, successive bursts of CTL priming followed by 

latency reversal in the presence of a Nef inhibitor, all while maintaining ART, will likely be 

necessary to have any hope of truly achieving a cure.  

 

Concluding Statements 

 

 Collectively, the work presented here describes recent advancements in the study 

of HIV persistence and therapeutic approaches to achieve a cure for HIV. Particular focus 

was given to 1) the mechanisms contributing to HIV latency in quiescent cells, which 

represent a major reservoir of HIV in optimally-treated people and may be resistant to the 

approaches to reactivate latent viruses that are currently in development, and 2) 

enhancing the clearance of the cells harboring reactivated virus by HIV-specific cytotoxic 

T lymphocytes through the inhibition of the accessory factor Nef. This work represents a 

significant contribution to the field of HIV persistence and the search for a shock and kill 

approach to an HIV cure. The findings herein were presented in the broader context of 

retroviral biology and HIV persistence, with discussion of the limitations to the work as 

currently constituted and future directions that lie ahead.  

Although ART has radically altered the trajectory of the HIV pandemic, 700,000 

people died in 2019 as a result of being infected with this virus, joining the millions whose 

lives have been taken too soon, and the millions more currently living with the stigma 

associated with HIV infection. While this work does little for the needs of these people 

today, I humbly offer this small contribution in the hopes that one day, through the 

dedicated of countless scientists, we will reach the goals outlined in these pages.  
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