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ABSTRACT

Clostridium difficile is a major cause of healthcare-associated infections in the United States.

A C. difficile infection can lead to a range of outcomes including diarrhea, intensive care unit

admission, abdominal surgery, or death. Pathogenesis is mediated by the release of toxin

from C. difficile cells growing in the intestines. Some patients are more vulnerable to infec-

tion, including those with previous antibiotic exposure and advanced age. Host factors can

affect the likelihood of infection but also the severity of infection. Additionally, infection

severity can be influenced by the genome of the infecting strain(s). Host-pathogen interac-

tions are extremely complex and very little is known about the interplay between host factors

and C. difficile genomic variation with respect to infection likelihood and outcomes. With

the recent deluge of whole genome sequencing data, the contribution of bacterial genomic

variation to infections can be more comprehensively evaluated than ever before. The work

described in this dissertation used two different approaches to test for associations between

C. difficile genomic variation and clinically relevant phenotypes.

In the first approach we implemented and applied a novel convergence-based bacterial

genome-wide association study (bGWAS) algorithm for quantitative traits. We introduce

the algorithm using a set of data generated in silico to realistically model bacterial genome

variation and phenotypes under various evolutionary regimes. When the algorithm was

applied to C. difficile genomic variants and toxin activity our bGWAS identified known

toxin regulatory genes associated with toxin activity, supporting the value of our approach.

Besides identifying key cis-regulatory variants in the toxin-producing locus, we observed

x



several associations that connect toxin activity to a complex network of trans-regulatory

genes. Many highly associated variants occur in flagellar genes and indicate coregulation

of toxicity and motility. We propose new variants associated with toxin activity for future

functional validation. This study focused on a complex phenotype, toxin activity, within a

highly controlled in vitro system.

We next investigated the impact of bacterial genetic variation on human infections. The

increased complexity of this human-pathogen interaction justified a different association

approach to better understand the independent contribution of bacterial genomic variation to

infection. In a set of clinically derived isolates, we tested for the association between variants

in trehalose metabolism operons and infection severity while incorporating and controlling

for infection severity-modulating patient characteristics. Trehalose utilization variants were

recently proposed to modulate C. difficile infections in a mouse model. Interestingly, we

observed that this in vivo result did not translate to our clinical cohort as we found no

evidence of an association between any of the trehalose utilization variants and patient

infection outcomes. Taken together, these results demonstrate the utility of applying multiple

approaches for identifying genomic variants associated with clinical outcomes that account

for either bacterial population structure or host factors.
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Chapter 1

Introduction

1.1 Motivation

Many factors contribute to the clinical outcomes of bacterial infections including host, bacte-

rial, and environmental characteristics. This thesis focuses on the contribution of Clostridium

difficile genomic variants to clinically relevant in vitro phenotypes and clinical infection out-

comes. C. difficile genomic variants that affect infection outcomes may someday be included

in diagnostic testing so that patients can be stratified for specialized treatments to improve

outcomes. Additionally, these same genomic variants may also provide additional targets

for future C. difficile treatments and provide insights into the nature of human-pathogen

interactions. Discovering these clinically-important variants is possible through multiple ap-

proaches, including both phylogenetically aware genome-wide association studies (GWAS)

and association methods that control for host factors.

1.2 C. difficile infection, pathogenesis, and metabolism

C. difficile is a healthcare-associated bacterial pathogen. C. difficile was first recognized

to cause antibiotic-associated diarrhea in 1977[1]. Today, C. difficile is the most common

healthcare-associated infection in the US and costs associated with C. difficile hospital-
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onset infections reach $1 billion annually[2]. C. difficile prevalence is slowly decreasing in

hospitals but is not declining in the community[2]. In 2017, C. difficile caused 223,900

infections in hospitalized patients and 12,800 deaths[2]. The C. difficile species is diverse

and contains strains with and without the ability to produce toxin. Only toxin-producing

C. difficile strains cause clinically important manifestations. Infections with toxin-producing

C. difficile can be asymptomatic or symptomatic (Figure 1.1)[3]. Clinical manifestations of

C. difficile infection include diarrhea, fever, abdominal pain, and colitis[3]. In more severe

cases C. difficile infection may lead to shock, toxic megacolon, intestinal perforation, peri-

tonitis, and death[3]. After infection resolution, some patients may suffer from additional

C. difficile infections that are either novel infections or a recurrence of the same infecting

strain[3].

Figure 1.1: Model of a typical C. difficile infection

A) Antibiotic treatment disrupts gut microbiota. B) Patient ingests C. difficile spores. C)
Spores germinate into vegetative cells in the intestines and secrete toxin. D) Patient may
have (i) an asymptomatic infection, (ii) a mild infection, or (iii) a severe infection. E)
Infection may recur after initial resolution.

C. difficile is a Gram-positive, obligate anaerobic bacterium. It survives aerobic condi-

tions in its spore form (Figure 1.2). Spores are released in the stool of colonized or infected

people. Patients swallow C. difficile by touching spores on contaminated surfaces or con-

taminated people. Dormant spores are resistant to the alcohol in hand disinfectants which
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contributes to the persistence of C. difficile in healthcare settings and even hand washing

can fail to remove spores[3]. Transmission to patients in healthcare settings can be reduced

by the use of personal protective equipment by medical staff (gowns and gloves), isolating

patients in individual rooms, and judicious use of antimicrobials that are associated with in-

creased risk of C. difficile infections. Patients with increased risk for C. difficile infection may

have been recently treated with proton pump inhibitors or certain antibiotics, particularly

with clindamycin, fluoroquinolones, or cephalosporins. Additionally, advanced age, prior or

lengthy hospitalization, residence in a long-term care facility and certain comorbidities may

increase risk for developing a C. difficile infection.

Figure 1.2: C. difficile life cycle

A) Vegetative cell living in colon. B) In low nutrient conditions the vegetative cell asym-
metrically divides to create a mother cell and a forespore. C) Mother cell lyses to release
the spore. D) The spore is resistant to oxygen, heat, and ethanol. Upon ingestion the spore
may germinate in the presence of primary bile acids.

The US Centers for Disease Control and Prevention designated C. difficile as an urgent

antibiotic resistant threat because patients receiving antibiotics are at increased risk for in-
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fection[2]. The rapid spread of C. difficile in the US has in part been due to the emergence

and spread of the epidemic lineage ribotype 027 (RT027) which took on global prominence

in the 2000s [4, 5]. RT027 harbors resistance to fluoroquinolones [4, 5]. C. difficile treat-

ment includes switching from the currently-prescribed antibiotic to either metronidazole or

vancomycin, to which C. difficile is commonly susceptible[6].

The pathogenesis of C. difficile is mediated by the release of toxin into the gut lumen.

Disease-causing C. difficile must produce at least one toxin, but may produce up to three

toxins. The three toxins are: Toxin A (tcdA), Toxin B (tcdB), and binary toxin (encoded

by two genes cdtA and cdtB)[7]. Toxin A and Toxin B are secreted by C. difficile cells

and enter host intestinal cells through receptor-mediated endocytosis. Toxins A and B form

a pore in the endosome, secrete a glycosyltransferase that binds to and deactivates Rho

family GTPases. Deactivation of these GTPases causes improper functioning of the actin

cytoskeleton and cell-cell junctions leading to cell rounding and apoptosis. The damage to

the intestinal cells leads to inflammation and immune cell recruitment thus causing common

clinical manifestations of C. difficile infection including diarrhea and colitis. More severe

symptoms are caused by extensive tissue damage which can allow bacteria from the gut to

infect the bloodstream and cause sepsis.

Toxins A and B are located in the pathogenicity locus (PaLoc; Figure 1.3). The PaLoc

is 19.6kB and contains five genes: tcdR, tcdB, tcdE, tcdA, and tcdC [8]. tcdR encodes a RNA

polymerase factor and positively regulates toxin gene expression[8]. tcdR may be negatively

regulated by tcdC [8]. tcdE encodes a holin-like protein and is implicated in toxin secretion[8].

Toxins A and B each contain four domains: 1) glucosyltransferase, 2) autoprotease, 3) pore-

forming, and 4) C-terminal combined repetitive oligopeptides[9]. Many systems and genes

outside of the PaLoc influence toxin regulation including growth phase, access to certain

metabolites, sporulation, quorum sensing, and certain flagellar proteins[10]. In particular,

toxin production depends on the regulator TcdR which in turn depends on the presence of
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specific sugars, amino acids, and fatty acids[11]. C. difficile is able to use several different

carbon sources including but not limited to arbutin, glucose, glucosamine, leucine, mannitol,

mannose, melezilose, salicin, tagatose, and trehalose[12]. Trehalose is of recent interest in

the media because of a report suggesting that human consumption of trehalose may have

contributed to the spread of two epidemic lineages of C. difficile, RT027 and RT078 [12].

We explore this idea further in chapter four.

Figure 1.3: C. difficile pathogenicity locus

1.3 C. difficile evolutionary history and genomic vari-

ation

1.3.1 Evolutionary history

There are 8 recognized monophyletic clades of C. difficile (Figure 1.4)[13]. Clade C-III is

estimated to have emerged 48 million years ago, while the ancestor to clades 1-5 emerged as

recently as 4 million years ago[14]. The PaLoc has had an eventful evolution. A phylogenetic

tree built from whole genome sequences suggests frequent gains and losses of the PaLoc and

a phylogenetic tree built from just PaLoc sequences suggests that clades 1-5 acquired the

PaLoc multiple times[15].

C. difficile strains have variable antibiotic resistance patterns and their resistance de-

pends in part on location and local antibiotic use practices. The majority of clinical C. difficile

isolates are resistant to multiple antibiotics, commonly cephalosporins, fluoroquinolones, ery-

thromycin, and/or clindamycin[6]. Typically, C. difficile infections have been treated with

5



Figure 1.4: C. difficile phylogeny

Reproduced from Knight et al.[14]. Red dates refer to inferences made by BactDating while
blue dates refer to BEAST estimates. The phylogeny was built from concatenated multilocus
sequence typing genes.

metronidazole or vancomycin and rates of resistance to these antibiotics remains low[6].

RT027, an epidemic lineage of C. difficile in Clade 2, is thought to have risen to prominence

in part because it acquired resistance to fluoroquinolones and expanded greatly with their

increased clinical use[16]. Analyses in chapters three and four of this thesis focus on genomes

from clades 1-5 and include, among other strains, RT027 isolates.
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1.3.2 Genomic variation

The variation observed across C. difficile genomes is due to multiple causes including but

not limited to horizontal gene transfer, a large pangenome, and mutations. Horizontal gene

transfer is the movement of genetic material from one organism to another where the recip-

ient is not the offspring of the donor. The C. difficile genome is shaped by horizontal gene

transfer; for example, the reference genome CD630 is 11% mobile genetic elements[17]. Due

to high levels of this lateral genomic transfer it is particularly critical in C. difficile studies

to mask recombinant sections of the genome from analysis prior to building phylogenetic

trees[18]. Genomes include mobile genetic elements such as transposable elements, bacterio-

phages, and CRISPR-cas elements[13]. A single C. difficile genome contains approximately

3,700 genes[14]. Those genes are a subset of the C. difficile pangenome. Pangenome es-

timates vary depending on the bioinformatic tool used, but range between approximately

17,000-33,000 genes[14]. The core genome is approximately 1,300 – 2,200 genes[14]. The

low level of genome conservation across C. difficile suggests that the accessory genome is a

rich source for genomic variation. When focusing on just the core genome, the relatedness

of two genomes can be described by the ANI metric, which is a calculation of the average

nucleotide identity of all of the orthologous genes shared by the genomes in question. ANI

values within C. difficile clades is high ( 98-99%) while between clades ANI sometimes dips

as low as 89%, which is well below the species threshold of 96%[14]. Such low ANI values

indicate a highly diverse species and have prompted discussions of splitting C. difficile into

multiple species.

Variation between C. difficile isolates can be described at various levels of resolution. For

example, ANI comparisons require whole genome sequencing of core genes, while the tree

shown in Figure 1.4 only required sequencing a set of seven genes used in multilocus sequence

typing. Another common method to categorize and compare C. difficile isolates is ribotyping.

Ribotyping is a simple, PCR-based typing method that amplifies the spacer region between

7



Figure 1.5: C. difficile ribotyping scheme

Ribotyping is a PCR-based assay wherein the region between the 16S and 23S genes in the
rRNA operon is amplified and the banding pattern produced determines the isolate’s identity.
The circle represents the CD630 reference genome, black lines indicate genomic locations for
rRNA operons. In the callout red arrows indicate the binding locations of ribotyping PCR
primers.

the 16S and 23S rRNA genes (Figure 1.5)[19]. C. difficile has 9-12 genomic copies of the

rRNA operon, and the size of the 16S-23S spacer region can vary operon to operon [20]. A

ribotype is a group of C. difficile isolates with identical PCR banding patterns. Ribotyping,

and other methods, can differentiate strains with different clinical properties (toxin presence,

antibiotic resistance, etc..). The identities of ribotypes highly prevalent in clinical settings

depends on location, but ribotypes that are frequently high prevalence include RT027 (Clade

2), RT014-020 (Clade 1), RT078 (Clade 5), and RT106 (Clade 2)[21]. Different regions have

different relative proportions of ribotypes in the environment, community, and healthcare

setting and the prevalence of individual ribotypes changes over time[22]. Ribotypes have been

shown to transmit globally and, for example, there is evidence of multiple introductions of

RT027 from North America to other continents[16].

Multiple studies suggest that RT027 infections lead to more severe infection outcomes in
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clinical settings compared to other ribotypes[23]. RT027 quickly rose to epidemic prominence

in North America and Europe in the early 2000s[16]. This ribotype is resistant to fluoro-

quinolones, encodes binary toxin, and secretes high levels of toxins A and B possibly due to a

frameshift deletion in tcdC [23, 24]. RT014-020 can produce Toxin A and Toxin B but is bi-

nary toxin negative. RT078 has similar disease severity as RT027[25]. It can produce Toxin

A, Toxin B, and binary toxin[22]. RT078 is more commonly associated with community

acquired infections and infections occur in younger populations than in RT027[26].

1.4 Associating genomic variation with phenotypic vari-

ation

This thesis investigates the contribution of C. difficile genomic variants to clinically rele-

vant in vitro phenotypes, such as toxin activity, and clinical infection outcomes via multiple

approaches. Previously, researchers have used ribotype as a factor in models predicting

C. difficile infection risk or severity with some success. Our work expands on these studies

by using more nuanced whole genome sequence data from collections of clinical C. difficile

samples to define genomic variation. There exist many methods, including genome-wide

association studies (GWAS), to find statistical associations between genomic variation and

phenotypic variation. We can capitalize on diverse collections of bacterial isolates by ap-

plying such methods to the existing genomic variation and identify genotype-phenotype

associations. Using the naturally occurring variation in bacterial collections is an important

approach because it has certain advantages over traditional microbiological methods. Bacte-

rial GWAS (bGWAS) are particularly attractive for use in bacterial species that are hard to

genetically modify. C. difficile is a fairly intractable bacterial species and while knock-outs

and knock-ins are possible, these experiments are performed in laboratory adapted strains

such as CD630, are laborious and difficult to implement[27, 28]. Additionally, bGWAS allows
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researchers to examine clinical phenotypes such as C. difficile infection outcome rather than

just those phenotypes that can be measured in vitro or in vivo. While in vitro and in vivo

experiments are essential to expanding our understanding of bacterial mechanisms, findings

derived from laboratory research do not always translate into clinically relevant applications.

1.5 Thesis outline

This thesis investigates the interplay of C. difficile genomic variation with in vitro toxin

activity and clinical infection outcomes. In chapter two I introduce three methods to char-

acterize the association between bacterial genomic variation with phenotypic variation. In

chapter three I present preliminary results from a bGWAS examining the relationship of

C. difficile genomic variation and in vitro toxin activity. In chapter four I demonstrate a

lack of association between the presence of trehalose utilization variants and severe C. difficile

infection outcomes in a clinical patient cohort. Finally, in chapter five, I discuss implications

of these results and sketch out future directions for related work.
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Chapter 2

Hogwash: Three Methods for Genome-Wide Association Studies

in Bacteria

2.1 Preamble

This chapter provides motivation for and describes the implementation of three bacterial

genome-wide association methods (bGWAS). It applies these methods to sets of syntheti-

cally generated data that model specific aspects of bacterial evolution relevant to modifying

bGWAS performance. The next chapter applies this method to a set of clinical C. difficile

isolates and their in vitro phenotypes.

2.2 Impact statement

We introduce hogwash, an R package with three methods for bGWAS. There are two methods

for handling binary phenotypes, including an implementation of PhyC[29], as well as one

method for handling continuous phenotypes. We formulate novel indices quantifying the

relationship between phenotype convergence and genotype convergence on a phylogenetic

tree. These indices shape an intuitive understanding for the ability of hogwash to detect

significant intersections of phenotype convergence and genotype convergence and how to

interpret hogwash outputs.
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2.3 Introduction

2.3.1 Bacterial genome-wide association studies

bGWAS infer statistical associations between genotypes and phenotypes. Seminal bGWAS

papers identified novel variants associated with antibiotic resistance in Mycobacterium tuber-

culosis and host specificity in Campylobacter [29, 30]. Since then, there have been numerous

applications of bGWAS that have further highlighted the potential of this approach to iden-

tify genetic pathways underlying phenotypic variation and provide insights into the evolution

of phenotypes of interest. Association studies can use various genetic data types including

single nucleotide polymorphisms (SNPs), k-mers, copy number variants, accessory genes,

insertions, and deletions. To improve the power and interpretability of bGWAS inclusion

criteria or weighting can be applied to these variants based on predicted functional impact,

membership in pathways of interest, or other user preferences[31, 32]. Differences between

human and bacterial GWAS have been reviewed extensively by Power et al.[33]. Of note,

clonality and horizontal gene transfer complicate the application of human GWAS method-

ology to bacteria. However, bGWAS approaches can leverage unique features of bacterial

evolution, including frequent phenotypic convergence and genotypic convergence, to identify

phenotype-genotype correlations.

2.3.2 bGWAS software

Several different variations of bGWAS approaches have been applied, including methods

for SNPs, accessory genes (Scory)[34], or k-mers (pyseer)[35], methods using regression (py-

seer)[35, 36] or phylogenetic convergence (PhyC, treeWAS)[29, 37], and methods designed for

humans (PLINK)[38] or specifically for bacteria[35, 37]. Differences between standard and

convergence-based bGWAS were expertly reviewed by Chen and Shapiro[39]. Convergence-

based methods identify events where a genomic mutation arises independently on differ-
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ent edges of a phylogeny more often in the presence of the phenotype of interest than ex-

pected by chance (Figure 2.1C). Convergence-based methods can yield higher significance

with a smaller sample size, but may fail to identify some statistical associations that tra-

ditional GWAS approaches would identify when the population is clonal[39]. Additionally,

convergence-based methods are limited to smaller data sets because of their large memory

requirements and computational time relative to traditional methods[40], but can surmount

issues of clonality.

Figure 2.1: Hogwash workflow, tree nomenclature, and convergence example

A) Software workflow. B) In this example phylogenetic tree N1 is the root. Tree nodes are
labeled N1 – N3. Tree tips are labeled T1 – T4. N1 is a parent node to N2 and N3. N2
is a child of N1 and a parent to T1 and T2. Edges are lines connecting a parent node to
a child node or a parent node to a tip. C) A conceptual example of a phylogenetic tree
with a phenotype that has arisen under two different scenarios. In the left tree antibiotic
resistance, encoded by pink edges, arises once and therefore does not converge on the tree.
In the right tree antibiotic resistance arises four times and therefore converges. Each colored
star represents a unique genomic variant, such as single nucleotide polymorphism (SNP),
that arises. Stars on edges indicate the time at which the SNP is inferred to have arisen.
The stars at each tip indicate the accumulated variants found in each sample. In both trees
the blue variant occurs in 4/4 antibiotic resistant isolates and 0/8 antibiotic sensitive isolates.
Convergence-based association methods could only ascertain the relationship between the
blue variant and antibiotic resistance in the right tree.
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2.3.3 Objective

As the popularity of bGWAS increases there is a need for more widely available software

that addresses specific aspects of bacterial evolution and is appropriate for various kinds

of data sets. This work introduces two novel methods for convergence-based bGWAS with

these needs in mind: the Synchronous Test and the Continuous Test. Users can implement

these methods using hogwash, a new R package available on GitHub. Hogwash also contains

an implementation of PhyC which is a bGWAS algorithm introduced by Farhat et al.[29].

The Synchronous Test is a stringent variation of PhyC, requiring a tighter relationship

between the genotype and phenotype. We describe the algorithms and evaluate them on

a set of simulated data. The hogwash wiki contains further explanation of bGWAS, a

more conceptual introduction to these three algorithms and specific user instructions for

hogwash on a set of data provided with the software package https://github.com/katiesaund/

hogwash/wiki.

2.3.4 Grouped genotype analysis

Some phenotypes are not well correlated with commonly occurring genomic variants. In these

cases, rare variants may provide some additional explanation for trait variability. There are

multiple approaches to studying rare variants including various burden testing methods which

can group loci into meaningful groups, such as mapping SNPs to genes[41, 42]. Analyzing

aggregated loci can improve both the interpretability of GWAS results and improve power

to detect associations[41, 42, 43, 44]. Hogwash implements two such grouping approaches to

improve convergence detection for related but weakly penetrant genotypes.
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2.3.5 Data simulation

We evaluate hogwash results on simulated data generated to capture aspects of bacterial

evolution pertinent to these bGWAS approaches. We simulated data with a range of phylo-

genetic signals and convergence distributions to highlight the critical impact of these features

on bGWAS results. The simulated data are publicly available and could be used to compare

the impact of convergence patterns within phenotypes, genotypes, and their intersection

when bench-marking various convergence-based bGWAS methods.

2.4 Package description

We developed hogwash to allow users to perform three bGWAS methods, including an open

source implementation of the previously described PhyC algorithm[29], and aggregate geno-

types by user-defined groups of mutations. The hogwash function minimally requires a

phenotype, a phylogenetic tree, and a set of genotypes. An optional argument may be

supplied to facilitate grouping genotypes. The genotypes and tree can be prepared from

a multiVCF file by the variant pre-processing tool prewas[45]. Hogwash assumes that the

genotype is encoded such that 0 refers to wild type and 1 refers to a mutation and that

binary phenotypes are encoded such that 0 refers to absence and 1 refers to presence.

In brief, the hogwash workflow (Figure 2.1A) begins with the user supplying a phenotype,

a set of genotypes, and a tree. Hogwash performs ancestral state reconstruction for the

phenotype and genotypes to assign phenotype and genotype values to each tree edge (Figure

2.1B). The interaction of the phenotype with the genotypes is uniquely defined for each of

the three association tests. To establish the significance of the interaction the genotypes are

permuted and their intersection with the phenotype is recorded as a null distribution. Finally,

we introduce an additional metric, ε, to capture the interaction between the convergence of

the phenotype and genotypes.
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2.4.1 Definitions

To describe the association algorithms, we introduce terms to characterize phenotypes, geno-

types, and their interactions. We evaluate node values in a phylogenetic tree through an-

cestral state reconstruction. β is vector where each element corresponds to an edge in this

tree.

• β̇p is a binary vector indicating phenotype presence, with a value of 1 for exactly the

edges with a child node with value 1 and otherwise 0.

•
 !
βp is a binary vector indicating phenotype transitions, with a value of 1 for exactly

the edges where the parent differs from the child and otherwise 0.

• β̂p is a continuous vector that has value ∆edge = |phenotypeparent node−phenotypechild node|

for each edge, where ∆edge values are normalized from 0 to 1.

• ~βig is a binary vector indicating a genotype arising on the tree. It has a value of 1 for

exactly the edges where the parent node has value 0 and the child node has value 1,

for each genotype i in the set of all genotypes.

•
 !
βig is a binary vector indicating genotype transitions, with a value of 1 for exactly the

edges where the parent differs from the child and otherwise 0, for each genotype i in

the set of all genotypes.

• We define the elementwise sum of β as
∑
β.

Our three methods use different combinations of βp and βg. PhyC is concerned with

presence and appearance (β̇p, ~β
i
g). The Synchronous Test is concerned with transitions (

 !
βp ,

 !
βig ). The Continuous Test is concerned with deltas and transitions (β̂p,

 !
βig ).

The interaction of the phenotype and genotypes are summarized as N for each method.
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• We define the number of edges where both a genotype arises and the phenotype is

present as N i
PhyC =

∑ ~βig ∧ β̇p, for each genotype i in the set of all genotypes.

• We define the number of edges where both a genotype changes and the phenotype

changes as N i
Synchronous =

∑ !
βig ∧

 !
βp , for each genotype i in the set of all genotypes.

• We define the sum of the absolute value of phenotype change on only genotype tran-

sitions edges as N i
Continuous =

 !
βig
>
β̂p, for each genotype i in the set of all genotypes.

2.4.2 PhyC

PhyC is a convergence-based bGWAS method introduced by Farhat et al.[29] that identified

novel antibiotic resistance-conferring mutations in M. tuberculosis. To our knowledge, the

original PhyC code is not publicly available, but the algorithm is well described in the original

paper. The algorithm addresses the following question: Does the genotype transition from

wild type, 0, to mutant, 1, occur more often than expected by chance on tree edges where

the phenotype is present, 1, than where the phenotype is absent, 0? By requiring the overlap

of the phenotype with the genotype transition, instead of genotype presence, associations

are not inflated by clonal sampling and thus this approach controls for population structure.

We implement the PhyC algorithm as described in Farhat et al.[29].

For permutation tests to determine the significance of associations genotype transitions

are randomized on the tree with probability proportional to the branch length. The number

of edges where the permuted genotype mutation intersects with phenotype presence edges

is recorded for each permutation; these permuted N i
PhyC values create a null distribution.

An empirical P -value is calculated based on the observed N i
PhyC as compared to the null

distribution.

Our PhyC implementation (Figure 2.2) has several important differences from the orig-

inal paper. First, multiple test correction in hogwash is performed with False Discovery
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Rate instead of the more stringent Bonferroni correction. Second, hogwash reduces the mul-

tiple testing burden by testing only those genotype-phenotype pairs for which convergence

is detectable; genotypes with
∑ ~βig < 2 are excluded and genotype-phenotype pairs with

N i
PhyC < 2 are assigned a P -value of 1. Third, ancestral state reconstruction for genotypes

and phenotypes is performed using only maximum likelihood. Finally, users sacrifice some

robustness in exchange for ease of use by supplying one phylogenetic tree instead of three.

2.4.3 Synchronous Test

This test (Figure 2.2) is an extension of PhyC but requires more stringent association between

the genotype and phenotype. The Synchronous Test addresses the question: Do genotype

transitions occur more often than expected by chance on phenotype transition edges than

on phenotype non-transition edges? As in PhyC, the Synchronous Test is only appropriate

for binary phenotypes.

Genotypes with
∑ !

βig < 2 are removed, genotype-phenotype pairs with N i
Synchronous < 2

are assigned a P -value of 1, and the remaining genotypes are permuted and a null distribution

of N i
Synchronous is calculated to determine the significance of each genotype.

This test is similar to the Simultaneous Score in treeWAS[37]. The Simultaneous Score is

derived from the number of edges on the tree where the genotype and phenotype transition

in the same direction (both have a parent node of 0 and a child node of 1 or both have a

parent node of 1 and child node of 0). In contrast, our newly developed Synchronous Test

allows for the phenotype and genotype transition directions to mismatch, thus allowing for

a genotype to have opposing effects on a phenotype. Such opposing effects of a genotype

on a phenotype could arise when grouping mutations in the same gene that differentially

impact gene function, or even for an individual mutation whose phenotypic impact may be

dependent on genetic background.
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Figure 2.2: Schematic of PhyC, Synchronous, and Continuous Tests

For all binary trees black indicates 0 and a solid color indicates 1. The Phenotype Re-
construction indicates the ancestral state reconstruction for a simulated phenotype; either
binary for PhyC and Synchronous Test or a range of values for the Continuous Test. The βp
indicates the test-specific βp value taken on each tree edge; 0 or 1 for PhyC and Synchronous
Test or the normalized ∆edge for the Continuous Test. The Genotype Reconstruction column
indicates the ancestral state reconstruction for a simulated genotype; the values are 0 or 1
in all algorithms. The βg indicates the test-specific βg value taken on each tree edge; the
values are 0 or 1 in all algorithms. The Overlap of βp and βg represents the components of
Ntest The variables βg, βp, and Ntest are described in the Definitions section.

2.4.4 Continuous Test

The Continuous Test (Figure 2.2) is a novel application of a convergence-based GWAS

method to continuous phenotypes. The Continuous Test addresses the question: Does the

phenotype change more than expected by chance on genotype transition edges than on geno-
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type non-transition edges?

As above, the genotypes with
∑ !

βig < 2 are removed; the remaining genotypes are

permuted and a null distribution of the N i
Continuous is calculated to determine the significance

of each genotype.

2.4.5 User inputs

The user must provide a phylogenetic tree, a set of genotypes, and a phenotype. The user

may optionally provide a key that maps individual genomic loci into groups in order to use

hogwash’s grouping feature. For a detailed description of the user inputs please see the

Supplementary Package Description.

2.4.6 Hogwash outputs

The package produces two files per test: data (.rda) and plots (.pdf). The data file contains

many pieces of information, including P -values for each tested genotype. The plots are

described in the Results section.

2.4.7 Grouping feature

To identify an association between a genomic variant and a phenotype hogwash requires that

a variant occur in multiple different lineages. Hogwash may classify some causal variants as

independent of a phenotype if they are weakly penetrant. To surmount this issue, related

genomic variants may be aggregated to capture larger trends at the grouped level. For

example, a user may apply this method to group only nonsynonymous SNPs by gene to use

hogwash to detect associations between the mutated gene and the phenotype. Grouping

related variants can improve power through a reduction in the multiple testing correction

penalty. However, the power benefits are dependent on grouping variants with similar effect
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directions.

By default, hogwash implements the grouping features by first performing ancestral state

reconstruction for each individual locus (Figure 2.3). Then those loci are joined as indicated

in the user supplied key. Grouped loci with
∑
βig < 2 are excluded from analysis. After this

point hogwash runs as previously described for non-grouped genotypes. Alternatively, users

may group together related genomic variants prior to ancestral reconstruction (Supplemen-

tary Methods). The two grouping approaches are compared in Figure S1.

2.5 Methods

2.5.1 Data simulation

Trees

We simulated eight random coalescent phylogenetic trees with 100 tips each; four trees were

used for the Continuous Test and four trees were used for the binary tests.

Tree edge filtering Low confidence edges are defined as those edges with low bootstrap

support (default < 70%), those that are more than 10% of the total tree length, or those with

low genotype or phenotype ancestral reconstruction support (maximum likelihood <0.875).

Low confidence edges are ignored during permutation testing.

Phenotypes

Motivation for simulating phenotypes under two evolutionary models For each

tree we simulated phenotypes under different evolutionary models: either Brownian motion

or white noise. A phenotype modeled well by Brownian motion follows a random walk

along the tree. A phenotype modeled well with white noise appears to be independent of

tree structure and may suggest a role for horizontal gene transfer, gene loss, or convergent
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Figure 2.3: Example of hogwash grouping feature on simulated data

In this case, three SNPs are found in the same gene (Gene A). No individual SNP is con-
vergent on the tree. Hogwash performs ancestral state reconstruction on each SNP. The
edges where SNP presence is inferred are colored. Next, hogwash identifies the transitions
for each SNP (colored edges). Finally, hogwash combines the three SNPs transitions to-
gether to create the Gene A transitions (purple edges). When the SNPs are grouped into
Gene A the genotype converges on the tree. In this example, pre-ancestral reconstruction
and post-ancestral reconstruction grouping results are identical. See Figure S1 for scenarios
illustrating differences in the two grouping approaches.

evolution[46]. A white noise phenotype may be better suited to the hogwash algorithms

than a phenotype modeled by Brownian motion given the requirement for phylogenetic

convergence.

Calculation of phylogenetic signal Phylogenetic signal is a metric that captures the

tendency for closely related samples on a tree to be more similar than random samples.
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Phylogenetic signal is calculated by different metrics for continuous and binary traits; con-

tinuous traits are measured by λ while binary traits are measured by D (Figure S2). A

continuous phenotype that is modeled well by Brownian motion has a λ near 1 while a white

noise phenotype has a λ near 0[47]. In contrast, a binary phenotype that is modeled well by

Brownian motion has a D near 0 while a white noise phenotype has a D near 1[48].

Simulation of phenotypes on trees For each tree we simulated four phenotypes fitting

a Brownian motion model and four phenotypes fitting a white noise model. For phenotypes

modeling Brownian motion, binary phenotypes were restricted to −0.05 < D < 0.05 and

continuous phenotypes to 0.95 < λ < 1.05. For phenotypes modeling white noise, binary

phenotypes were restricted to 0.95 < D < 1.05 and continuous phenotypes to −0.05 < λ <

0.05.

Genotypes

For each simulated tree a set of unique binary genotypes were generated. We generated

genotypes that span a range of phylogenetic signals, degree of similarity to the phenotype,

and prevalence.

Genotypes to be used in PhyC and the Synchronous Test First, 25,000 binary

genotypes were generated using ape::rTraitDisc; these genotypes have a range of phylogenetic

signals[49]. Second, these genotypes were duplicated and randomized with the following

approach to reduce their phylogenetic signal: one quarter had 10% of tips changed, one

quarter had 25% of tips changed, one quarter had 40% of tips changed, and one quarter were

entirely redistributed. Third, we removed any simulated genotypes present in 0, 1, N −1, or

N samples. Fourth, we subset the genotypes to keep only unique presence/absence patterns.

Fifth, we subset genotypes to only those within a range of −1.5 < D < 1.5. These filtering

steps reduced the data set size (range 2,214-2,334).
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Genotypes to be in used in the Continuous Test In addition to the five steps above

we added two more data generation steps. First, we made all possible genotypes based on

the rank of the continuous phenotype. Second, we made genotypes based on which edges of

the tree had high ∆edge. The filtering steps reduced the data set size (range 1,234-1,310).

2.5.2 Hogwash on simulated data

We ran hogwash for each of the tree-phenotype-genotype sets. In addition to generating

P -values for each tested genotype, hogwash also reports convergence information. We ran

hogwash with the following settings for single locus analysis: permutations = 50,000; false

discovery rate = 0.0005 (binary), 0.05 (continuous); bootstrap value = 0.70; no genotype

grouping key was provided. For grouped analyses the settings were identical except that a

grouping key was generated, and hogwash was run with both grouping methods (pre- and

post-ancestral reconstruction). For the grouped analyses only PhyC was run on simulated

Brownian motion phenotype 1, simulated genotype 1, and simulated tree 1. The grouping key

assigned each approximately 3 unique simulated variants to each created “gene;” resulting

in approximately one-third as many input genotypes when compared to the single locus

analysis.

Calculation of ε

We introduce ε to quantify the degree of shared phenotype convergence and genotype con-

vergence. Low values of ε indicate a lack of overlap in the edges where the phenotype and

genotype converge. High values of ε indicate many instances of overlap in the edges where

the phenotype and genotype converge. By reducing these patterns of convergence into a

simple number, ε, we can more easily contextualize convergence-based bGWAS results. We

define an ε for each algorithm.
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• εiPhyC =
2×N i

PhyC∑ ~βi
g+

∑
β̇p

, for each genotype i in the set of all genotypes.

• εiSynchronous =
2×N i

Synchronous∑ !
βi
g+

∑ !
βp

, for each genotype i in the set of all genotypes.

• εiContinuous =
N i

Continuous∑ !
βi
g+

∑
β̂p−N i

Continuous

, for each genotype i in the set of all genotypes.

• For each ε, 0 ≤ ε ≤ 1 .

2.5.3 Data analysis

Statistical analyses were conducted in R v3.6.2[50]. The R packages used can be found in

the simulate data.yaml file on GitHub[49, 51, 52, 53, 54, 55] and can be installed using

miniconda[56].

2.6 Results

2.6.1 Motivation for evaluating hogwash on simulated data

Given our lack of comprehensive knowledge of the genetic variation contributing to any

phenotype, it is not feasible to quantify sensitivity/specificity on real data. We therefore

generated data that simulates genotype and phenotype distributions covering a spectrum of

realistic evolutionary scenarios (spanning Brownian motion to white noise). Our goal is not

to validate the premise of using convergence-based approaches, as these have been previously

shown to provide useful biological insights, but rather to understand how our approach de-

tects convergence for phenotypes with different evolutionary regimes. The following analyses

can guide users in the appropriate use cases and the applicability of this method to their

data. Particularly, these results provide context for interpreting the strength of the observed

associations.
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Figure 2.4: Example output from hogwash PhyC results from simulated data

A) Phenotype reconstruction. Edges with: phenotype presence in red; phenotype absent in
black; low confidence in tree or low confidence phenotype ancestral state reconstruction in
gray. B) Genotype transitions. Edges with: genotype mutations that arose in red; genotype
mutation did not arise in black; low confidence in tree or low confidence genotype ancestral
state reconstruction in gray. C) Null distribution of NPhyC D) Manhattan plot. The genetic
loci were simulated to achieve a range of phylogenetic signals. The left most two-thirds
of genetic loci were simulated under Brownian motion models (mean D = 0.16) while the
remaining third were modeled by white noise (mean D = 0.99). E) Heatmap with tree
edges in the rows and genotypes in the columns. The genotypes are hierarchically clustered.
The genotypes are classified as being a transition edge in black or non-transition edge in
white. The column annotations pertain to loci significance; green indicates the P -value while
blue indicates that the P -value is more significant than the user-defined threshold. The row
annotation classifies the phenotype at each edge; red indicates phenotype presence and white
indicates phenotype absence. Gray indicates a low confidence tree edge; low confidence can
be due to low phenotype ancestral state reconstruction likelihood, low genotype ancestral
state reconstruction likelihood, low tree bootstrap value, or long edge length.
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2.6.2 Hogwash output for simulated data

Hogwash outputs two sets of results: a data file and a PDF file with plots. Each run of PhyC

produces at least three plots: the phenotype reconstruction (Figure 2.4A), a Manhattan plot

(Figure 2.4D), and a heatmap of genotypes (Figure 2.4E). The phenotype presence is high-

lighted on the tree (Figure 2.4A). The Manhattan plot shows the distribution of P -values

from the hogwash run (Figure 2.4D). The heatmap shows the genotype reconstruction and

phenotype reconstruction for each tree edge (rows) and genotype (columns) (Figure 2.4E).

The genotypes are clustered by the presence/absence pattern. Two additional plots are pro-

duced for each genotype that is significantly associated with the phenotype: a phylogenetic

tree showing the genotype transition edges (Figure 2.4B) and the null distribution of NPhyC

(Figure 2.4C). As expected, the two grouping approaches identified different associations as

compared to non-grouped PhyC results (Figure S3).

The Synchronous Test and Continuous Test output plots that reflect their test-specific β

and N definitions (Figure S4, S5). Running hogwash on 100 samples required < 3 hours and

< 2 GB of memory for binary data and < 5 hours and < 2 GB of memory for continuous

data (Figure S6).

2.6.3 Hogwash evaluation on simulated data

To help users identify optimal use cases and also interpret hogwash results we describe the

behavior of hogwash on simulated data. We note that this assessment is not meant to con-

vey performance in the sense of calculating sensitivity and specificity, but rather evaluate

whether hogwash can robustly detect the association between phenotypic and genotypic con-

vergence. To guide our assessment, we compared the relationship between the P -value and

ε values produced by hogwash on sets of simulated data constructed using different evo-

lutionary models (Figure 2.5). ε is a quantification of the relationship between phenotype
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Phenotype
Brownian motion White noise

PhyC 0.91 0.93
Synchronous Test 0.60 0.94
Continuous Test NA 0.08

Table 2.1: Mean Spearman’s rank correlation coefficient for -ln(P -value) versus ε from
hogwash run on simulated data.

The ρ could not be calculated for the results from the Continuous Test on the Brownian
motion phenotypes because, after multiple testing correction, all P -values are identical.

convergence and genotype convergence. Low ε values indicate little to no intersection of

phenotype convergence and genotype convergence, while higher ε values indicate their in-

creased intersection. The ε value is always a fraction between 0 and 1 and therefore obscures

information about the sample size; to account for the number of samples in the tree we

recommend always interpreting ε value for any locus with its P -value.

For binary phenotypes, we observe an overall strong positive association between -ln(P -

value) and ε, demonstrating that as the intersection of phenotype convergence and genotype

convergence increase hogwash predicts that it is less likely that they intersect due to chance

(Table 2.1). In other words, below a certain εbinary threshold (εbinary is εPhyC or εSynchronous),

hogwash attributes the association between the genotype convergence and phenotype con-

vergence to chance; from Figure 2.5 the user can get a sense for the range of this εbinary

threshold under different evolutionary regimes.

For the simulated continuous data an εContinuous threshold that separates meaningful

genotype-phenotype associations from associations by chance is less apparent. Higher ε, low

significance values demonstrate that some overlap of βg and βp is likely by chance given the

data. Low ε, high significance genotype-phenotype pairs demonstrate that sometimes small

amounts of βg and βp overlap are unlikely, however that does not necessarily suggest that

these hits are the best candidates for in vitro follow up. We suspect that these associations are

largely driven by poor exploration of the sampling space, despite running many permutations,
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Figure 2.5: High ε values correlate with increased significance

Each plot is a tree-phenotype pair. Each point represents one genotype-phenotype pair.
Brownian motion and white noise refer to the evolutionary regime modeled by the phenotype.
The genotypes span a range of phylogenetic signals.
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because of the edge-length based sampling probability of the permutation method. Therefore,

it is essential P -values be interpreted within the context of ε. Notably, the Continuous

Test was only able to detect significant genotype-phenotype associations for phenotypes

modeled by white noise, suggesting this method is particularly sensitive to the phenotype’s

evolutionary model. We observe for both the binary and continuous tests that ε is more

tightly correlated with -ln(P -value) for phenotypes characterized by white noise than by

Brownian motion (Table 2.1), indicating that hogwash performs better under a white noise

model. Therefore, we suggest using the report phylogenetic signal function on the phenotype

prior to running hogwash to ascertain the appropriateness of these algorithms for the dataset.

2.7 Discussion

We have developed two algorithms for convergence-based bGWAS that are particularly well

suited for phenotypes modeled by white noise. Hogwash, is straightforward to install in R,

accepts easy-to-format data inputs (described in detail on the wiki), and provides publication

ready plots of the GWAS results. Hogwash also implements grouping features to aggregate

related genomic variants to increase detection of convergence for weakly penetrant genotypes.

Hogwash is best used for datasets comprising binary or continuous phenotypes, phenotypes

fitting white noise models, situations where convergence may occur at the level of genes or

pathways and with datasets whose size can be accommodated given the time and memory

constraints of convergence methods.

The results of running hogwash on simulated data suggest that after a certain ε threshold,

it unlikely that the intersection between phenotype convergence and genotype convergence

occurs by chance, particularly for white noise phenotypes. Given the variability in results

within each method, as shown in Figure 2.5, users may want to contextualize the statistical

significance of the tested genetic loci with the amount of convergence possible for any one
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particular data set; to facilitate this the hogwash output includes both P -values and ε.

The simulated data set presented here is published to serve as a resource or template for

future work focused on benchmarking convergence-based bGWAS software as such a dataset

has not yet, as far as we are aware, been made available[57]. The simulated data set is

available on GitHub and includes convergence information for each phenotype, genotype,

and their intersection.
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2.9 Supplement

2.9.1 Extended package description

User provided inputs

Tree The provided phylogenetic tree may be rooted; unrooted trees will be midpoint

rooted. The tree must be fully bifurcating. We recommend building the phylogenetic tree

with an outgroup using a maximum likelihood framework, root to the outgroup, and then

remove the outgroup prior to running hogwash. We also recommend that trees be built from

recombination-filtered genomic data[18].

Genotype The required structure of the genotype data object is a matrix. The rows cor-

respond to samples and should be ordered to match the tips of the phylogenetic tree. The

row names must exactly match the tree’s tip labels. The columns correspond to individ-

ual genotypes. The matrix should have both row names and column names. Genotypes

can be SNPs (core genome), genes (accessory genome) or other types (indels, pathways,
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etc...). Genotypes must be encoded in binary (0/1). We assume that the user has chosen a

meaningful reference and recoded the reference allele as 0 and variants as 1.

Phenotype The required structure of the phenotype data object is a matrix. The rows

correspond to samples and should be ordered to match the tips of the phylogenetic tree.

There should only be one column, which contains the phenotype data. The matrix should

have both row names and a column name. The row names must exactly match the tree’s tip

labels. The phenotype can either be binary (0/1) or continuous. We assume that the user

has chosen a meaningful reference for binary phenotypes.

Optional: Genotype grouping key To perform grouping, for example of SNPs into

genes, the user must provide a key that maps the individual loci into groups. This matrix

has two columns, where the first column has names of the genotypes included in the provided

genotype matrix. The second column has names for the group to which the item in the first

column belongs. If the individual locus should be mapped to more than one group, the user

should add additional rows for each additional group. Row names are not required. The

column names are used in output plots and therefore must be included.

Filters and checks performed on user-provided inputs

Genotype Hogwash filters will remove genotypes whose variants are present in only 0,

1, N or N − 1 genomes because convergence is not detectable. This removal step occurs

prior to ancestral state reconstruction for the single locus (non-grouped) test and in the

pre-ancestral reconstruction grouping method. This removal step occurs after ancestral state

reconstruction for the post-ancestral reconstruction grouping method. Additionally, variants

with missing information are removed as are variants with fewer than two high confidence

transition edges because otherwise no convergence is detectable (
∑
βg < 2). Any edges
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with low genotype ancestral state reconstruction support (maximum likelihood < 0.875) are

excluded from the analysis.

Phenotype Hogwash filters will exclude any edges with low phenotype ancestral state

reconstruction support (maximum likelihood < 0.875) from the analysis. Hogwash reports

the phenotype’s phylogenetic signal to the user. The user can check the phylogenetic signal

prior to running hogwash with the function report phylogenetic signal.

Tree Hogwash hard filters exclude the following tree edges from analysis: A) low bootstrap

support (default: < 70%) and B) overly long (> 10% of total tree edge length). Overly

long edges are excluded because ancestral state reconstruction accuracy decreases with edge

length[58]. The tree must be fully bifurcating. Unrooted trees are midpoint rooted.

Grouping The user can choose between two grouping methods: either pre- or post-

ancestral reconstruction grouping (Figure S1). Pre-ancestral reconstruction grouping occurs

before the genotype ancestral states are inferred; genotypes are grouped, and then ances-

tral reconstruction is performed. Pre-ancestral reconstruction grouping is fast but is not as

sensitive as post-ancestral reconstruction grouping. Post-ancestral reconstruction grouping

occurs after the ancestral states and genotype transitions are determined for each individual

(un-grouped) genotype.

2.9.2 Supplementary figures

For supplementary figures visit https://www.biorxiv.org/content/10.1101/2020.04.19.048421v2.
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Chapter 3

Genomic Variants Associated with Toxin Activity in Clostridium

difficile

3.1 Preamble

This chapter applies hogwash’s Continuous Test to in vitro toxin activity in a set of C. difficile

samples. We explore these hogwash results. First, we examine the presence of variants in

genes known to modulate toxin production in the set of variants found to significantly as-

sociate with toxin activity. Second, we speculate on the potential role of variants and genes

found to associate with toxin activity that have not been previously described and suggest

potential experiments for functional validation.

3.2 Introduction

Clostridium difficile is a toxin-producing, healthcare-associated pathogen. Infections with

C. difficile infection may manifest as diarrhea, fever, abdominal pain, colitis, shock, intesti-

nal perforation, or death[3]. Disease is caused by secreted toxins, primarily Toxins A (tcdA)

and B (tcdB), which damage the cytoskeletons of intestinal cells causing cell death and

leading to gut inflammation. These two toxins are large proteins with four domains: gluco-

syltransferase, autoprotease, pore-forming, and C-terminal combined repetitive oligopeptides
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(CROPs)[9]. Toxins A and B are colocated within the pathogenicity locus (PaLoc) with three

other genes: tcdR, tcdE, and tcdC. tcdR is a positive regulator of tcdA and tcdB and encodes

an RNA polymerase factor[8]. Mixed evidence suggests that tcdC is a possible negative regu-

lator of tcdR[8]. tcdE encodes a holin-like protein and may contribute to toxin secretion[59].

Many factors and systems are implicated in PaLoc regulation including growth phase, access

to specific metabolites, sporulation, quorum sensing, and some flagellar proteins[10].

Approaches for uncovering regulation and evolution of phenotypes, such as toxin activity,

include in vitro assays, comparative genomics, and bacterial genome-wide association studies

(bGWAS). Knock-out and complementation in vitro assays are frequently informative, but

they only resolve biological questions in the context of a specific strain and in vitro con-

dition. The contextual specificity of such experiments can lead to conflicting reports, such

as the controversial findings about the role TcdE in toxin secretion in C. difficile. Some

experiments point to a plausible involvement of TcdE in toxin export while others suggest

completely TcdE-independent release of toxin from cells[59, 60]. Comparative genomics ap-

proaches are increasingly common in C. difficile studies as thousands of genomes are now

available in public repositories. These comparative reports offer insight into general trends

and evolutionary events such as horizontal gene transfer, which has certainly shaped the

history of the PaLoc[61, 62]. Comparative genomics approaches tend to focus on trends

at the level of strain types and largely ignore individual genomic variants[61]. bGWAS

harnesses the natural variation within a bacterial population and thus surmounts the strain-

dependence of in vitro experimentation and highlights specific variants frequently overlooked

in comparative genomics approaches. bGWAS have been applied to C. difficile populations

to uncover accessory genes associated with specific clades[14] or disease severity in a mouse

model of infection[63]. Some studies have identified putative variants associated with strains

producing higher levels of toxin, such as an adenosine deletion at position 117 in tcdC in

ribotype 027 (RT027); these studies have not taken a genome-wide approach and seem to
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be confounded by population structure[64]. Notably, Lewis et al. used only 33 samples and

both C. difficle bGWAS studies used only accessory genes as genomic variants. To uncover

genomic variants within C. difficile strains that may mediate changes in toxin activity we

performed a genome-wide association study (GWAS). In our approach we include single

nucleotide polymorphisms (SNPs), insertions and deletions (indels), and accessory genes to

capture more of the genomic variation within the study population.

3.3 Methods

3.3.1 Study population and in vitro toxin activity

The University of Michigan Institutional Review Board approved all sample and clinical data

collection protocols used in this study (HUM00034766). Where applicable, written, informed

consent was received from all patients prior to inclusion in this study. Stool samples were

collected from a cohort of 106 Michigan Medicine patients with CDI from 2010-2011, which

included all severe cases during the study period[65]. A clonal spore stock from each patient

was used for ribotyping and in vitro studies. Experiments characterized the toxin activity

of these isolates as well as two laboratory C. difficile strains VPI and CD630[65]. Vero cells

were incubated with C. difficile supernatant; toxin activity was measured as a function of

Vero cell viability compared to viability in the presence of known quantities of purified Toxin

B in ng/ml[65].

3.3.2 Genomic analysis

The spore stocks were grown in an anaerobic chamber overnight on taurocholate-coition-

cycloserine-fructose agar plates. The next day a single colony of each sample was picked and

grown in Brain Heart Infusion medium with yeast extract liquid culture media overnight. The
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vegetative C. difficile cells were pelleted by centrifugation, washed, and then total genomic

DNA was extracted. Genomic DNA extracted with the MoBio PowerMag Microbial DNA

Isolation Kit (Qiagen) from C. difficile isolates (N=108) was prepared for sequencing using

the Illumina Nextera DNA Flex Library Preparation Kit. Sequencing was performed on ei-

ther an Illumina HiSeq 4000 System at the University of Michigan Advanced Genomics Core

or on an Illumina MiSeq System at the University of Michigan Microbial Systems Molecular

Biology Laboratories. Quality of reads was assessed with FastQC[66] Adapter sequences

and low-quality bases were removed with Trimmomatic[67]. Details on sequenced strains

are available in Table S1. Sequence data are available under Bioproject PRJNA594943.

Pangenome analysis was performed with roary[68]. Accessory genes annotations were as-

signed by prokka[69]. SNP and indel annotations were extracted from the reference genome

CD630 (AM180355.1).

3.3.3 Genome-wide association study

GWAS was performed with hogwash v1.2.4[70]. Toxin activity data were log transformed. In-

dividual locus analysis hogwash settings: bootstrap threshold=0.95, and permutations=10,000.

Individual loci for analysis included SNPs, indels, and accessory genes. Grouped locus analy-

sis hogwash settings: bootstrap threshold=0.95, and permutations=10,000, grouping=post-

ancestral reconstruction. For the grouped locus analysis only SNPs and indels were consid-

ered; coding SNPs and coding indels were grouped into the appropriate gene while non-coding

SNPs and non-coding indels were grouped into the intergenic region between the two nearest

genes.
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3.3.4 Variant calling

Variants were identified by mapping filtered reads to the CD630 reference genome (GenBank

accession number AM180355.1) using bwa[71], removing polymerase chain reaction dupli-

cates with Picard[72], and calling variants with SAMtools and bcftools[73]. Variants were

filtered from raw results using GATK’s VariantFiltration (QUAL, >100; MQ, >50; >=10

reads supporting variant; and FQ, <0.025)[74]. Variants were referenced to the ancestral

allele using prewas[45].

3.3.5 Phylogenetic analysis

Consensus files generated during variant calling were recombination filtered using Gub-

bins[18]. The alleles at each position that passed filtering were concatenated to generate a

non-core variant alignment relative to the CD630 reference genome. Alleles that did not pass

filtering were considered unknown (denoted as N in the alignment). Variant positions in the

alignment were used to reconstruct a maximum likelihood phylogeny with IQ-TREE v1.5.5

using ultrafast bootstrap with 1,000 replicates[75, 76]. ModelFinder limited to ascertainment

bias-corrected models was used to identify the best nucleotide substitution model[77]. The

tree was midpoint rooted.

3.3.6 Data analysis

Data analysis in R v3.6.2[50] was performed with following packages: ape v5.3[49], phytools

v0.6-99[52], tidyverse v1.3.0[53], ggtree v2.0.4[78], aplot v0.0.6[79], data.table v1.12.8[80].

pheatmap v1.0.12[81].
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Permutation testing

The empirical P -value for enrichment of toxin variants in the significant individual GWAS

results and flagellar genes and intergenic regions in the significant grouped GWAS results

were generated by permutation testing. The null distribution was generated from random

sampling without replacement repeated in 10,000 trials.

3.4 Results

3.4.1 Individual locus GWAS identifies variants associated with

toxin activity

To identify all loci associated with toxin activity we performed a GWAS. In vitro toxin

activity was assessed in a set of 106 C. difficile strains isolated from stool samples of infected

patients[65]. We used a convergence-based bacterial GWAS approach[70] to control for

population structure. We included SNPs, indels, and accessory genes as sources of genomic

variation. A False Discovery Rate of 3% was applied to the resulting P -values (Figure 3.1).

PaLoc variants We expected that variants located within the PaLoc would be significantly

associated with toxin activity. Consistent with this, we observed PaLoc variants in the pool

of significant results. Of the 134 individual loci significantly associated with toxin activity,

15 occur in tcdB and 1 occurs in the tcdR-tcdB intergenic region (Figure 3.2), which is

a significant enrichment compared to the number of variants within or flanking tcdB that

are expected by chance (P -value=0.0001; median=1; range=0-8). tcdB variants were found

in all four protein domains, but those 15 significantly associated with toxin activity are

mostly found within the autoprotease domain (Figure 3.2). Certain significant missense

variants within tcdB have plausible functional impacts on Toxin B such as the adenosine
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Figure 3.1: Individual locus GWAS identifies significant associations between various types
of genomic variants and toxin activity

A) Left: Phylogenetic tree labeled by ribotype. Center: Heatmap indicating the presence
of individual loci strongly associated with toxin activity (those variants located in the top
right quadrant in C. Right: Toxin activity. B) The Manhattan plot of all individual loci
assigned a P -value in hogwash. Loci are either accessory genes (blue; N=4,671), SNPs (pink;
N=25,668), or indels (green; N=2,895). C) The loci from B are visualized in a dot plot of
P -value vs ε, a convergence metric. The red horizontal line indicates a False Discovery Rate
of 3%. The red vertical line separates low vs high convergence.
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to cytoseine transversion at position 1967 which changes an aspartic acid to alanine; this

mutation occurs near the zinc binding site and could theoretically affect the protein’s ability

to autoprocess within the host cell. Most of the 15 variants occur on the protein’s surface,

but an alanine to glycine mutation at residue 1231 occurs in the middle of a beta-strand in

the pore-forming domain and likely destabilizes the protein. Of the 15 tested variants that

occur within the tcdR-tcdB intergenic region, only 1 was significantly associated with toxin

activity. This variant (C ! T) occurs within a tcdB promoter suggesting a potential role in

modulating sigma factor binding and therefore altering tcdB transcription. A notable lack of

association was observed between an adenosine deletion at nucleotide 117 in tcdC that has

been suggested to cause increased toxin production in RT027[64]. This deletion was found

in 26/26 RT027 samples as well as in 3 additional samples (“Other” ribotype) but did not

reach significance (-ln FDR-corrected P -value=0.56).

Novel variants

This GWAS was performed to generate hypotheses about as yet unknown associations be-

tween genomic variants and toxin activity. The variants that were significant and had high

ε, a metric of shared convergence, are summarized in Tables 3.1 and 3.2. A single ε value

captures the number of tree edges where a genotype mutated and the toxin activity value

had a large fluctuation. ε values close to zero suggest that the genotype mutates on very

few edges where the toxin activity changes drastically.

Novel SNPs There are several variants that may be worth pursuing in follow up functional

studies, to be performed in more genetically tractable bacterial species. Genes of top priority

may include CD630 10170 and CD630 04840 which could potentially contribute to Toxin A

and B secretion. The export process of Toxins A and B is not well understood. tcdE has

been proposed to encode for a potential export protein but these results have been disputed
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Figure 3.2: Genomic locations of PaLoc variants tested in individual locus and grouped locus
GWAS

All PaLoc variants tested by GWAS are plotted in the second and fourth rows of the heatmap
(SNP N=563, Indel N=70). Variants significantly associated in the individual locus test are
plotted in the first and third rows (SNP N=14, Indel N=2). All tested variants were grouped
into the appropriate gene or intergenic region for the grouped locus test. Loci significantly
associated in the grouped locus GWAS are outlined with black boxes. Schematics of the
PaLoc plus adjacent genes cdu1 and cdd1 are shown in the annotations. Top annotation:
protein domains for Toxins A and B[9]. Center annotation: gene. Bottom annotation:
promoter locations[82, 83, 8]
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in another C. difficile strain[59, 60]. CD630 10170 and CD630 04840 are both ATP-binding

cassette (ABC) transport system proteins. ABC transport systems are ubiquitous molecular

importers and exporters. ABC transporters have been known to export toxins such as

hemolysin[84] and therefore could potentially contribute to toxin secretion in C. difficile.

An important caveat to proposed investigations of novel variant is that some of the highly

associated variants are inherited together, having identical presence/absence patterns among

isolates, and therefore perhaps only one in each inherited group, if any, cause changes in toxin

activity.

Novel accessory genes The top set of accessory genes generally lack informative anno-

tation and therefore future work will need to check these putative proteins for homology

to protein domains that could plausibly affect steps in toxin production. Toxin production

relies on sensors, transcriptional regulators, and secretory proteins; accessory genes might

affect any of these three steps in toxin production.

SNP locus P -value ε Reference Variant Variant type Nucleotide position Annotation
CD630 02731 4.469 0.164 G A missense 54 Null or hypothetical protein
CD630 21090-CD630 21100 4.469 0.162 A G intergenic NA Putative anion:Na+ symporter - putative transaldolase C-like
CD630 00340 4.469 0.159 T C missense 994 Putative xylose transporter, sodium:galactoside symporter family
CD630 00470 4.469 0.159 A G missense 283 ispD: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
CD630 01090-CD630 r0130 4.469 0.157 T C intergenic NA nrdG: Anaerobic ribonucleoside-triphosphate reductase-activating protein - 16s rRNA
CD630 29780 4.469 0.156 A C missense 1269 Putative CRISPR-associated Cas3 family helicase
CD630 10170 4.469 0.154 C A missense 1358 ABC-type transport system, multidrug-family ATP-binding protein/permease
CD630 03540 4.469 0.153 C T intron NA Pseudogene: Fragment of putative membrane protein
CD630 04840 4.469 0.151 C T missense 356 ABC-type transport system, ATP-binding protein
CD630 07810 3.842 0.150 C A missense 819 Putative penicillin-binding protein

Table 3.1: Individual locus GWAS results: SNPs

There are 10 SNPs associated with toxin activity. P -values are reported as -ln(FDR corrected
P -value). Nucleotide position refers to position within the gene where applicable. Gene
annotations were taken from the CD630 reference genome.
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Accessory gene P -value ε Annotation
group 134 4.469 0.171 Hypothetical protein
sttH 1 4.469 0.168 NA
group 2326 4.469 0.167 Hypothetical protein
group 1064 4.469 0.165 Helix-turn-helix domain protein
group 688 4.469 0.165 Transposase from transposon Tn916
group 988 4.469 0.165 Excisionase from transposon Tn916
group 1846 4.469 0.161 Hypothetical protein
group 1566 4.469 0.161 Hypothetical protein
group 438 4.469 0.161 Hypothetical protein
mucD 4.469 0.159 Putative periplasmic serine endoprotease DegP-like precursor
group 1142 4.469 0.157 LytTr DNA-binding domain protein
group 1989 4.469 0.156 Putative periplasmic serine endoprotease DegP-like precursor
group 1376 4.469 0.154 Putative transposase DNA-binding domain protein
group 1666 4.469 0.154 Putative licABCH operon regulator
group 1663 4.097 0.194 Putative isomerase YddE
group 4126 3.842 0.185 Hypothetical protein
group 1647 3.842 0.174 Penicillinase repressor
group 1803 3.842 0.167 Hypothetical protein
group 823 3.842 0.163 Hypothetical protein
group 2327 3.842 0.154 Hypothetical protein
group 2712 3.667 0.159 Hypothetical protein
group 1696 3.602 0.163 Helix-turn-helix domain protein

Table 3.2: Individual locus GWAS results: Accessory genes

There are 22 accessory genes associated with toxin activity. Two accessory genes, mucD
and sttH, were assigned known gene names while the remaining accessory genes were given
temporary names and assigned annotations by prokka. P -values are reported as -ln(FDR
corrected P -value).
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3.4.2 Grouped locus GWAS identifies variants associated with

toxin activity

We repeated the GWAS but grouped loci together by gene or intergenic region using the

post-ancestral reconstruction method in hogwash[70]. This second GWAS was performed

to generate hypotheses about as yet unknown associations between genes and intergenic

regions with toxin activity. The grouping approach, a type of burden testing, increases

power by reducing multiple testing penalties and can find patterns of association lost when

penetrance is weak among individual loci. We included only SNPs and indels as sources of

genomic variation. A False Discovery Rate of 0.1% was applied to the resulting P -values

(Figure 3.3). The top 10 associations are shown in Table 3.3.

Figure 3.3: Grouped locus GWAS identifies significant associations between both genes and
intergenic regions and toxin activity

A) The Manhattan plot of all grouped loci assigned a P -value in hogwash. Loci are either
genes (maize; N=3,160) or intergenic regions (blue; N=2,149). B) The loci from A are
visualized in a dot plot of P -value vs ε. The red horizontal line indicates a False Discovery
rate of 0.1%. The red vertical line separates low vs high convergence. C) The data from B
are plotted again, but the PaLoc results are highlighted.

PaLoc variants We expected that PaLoc genes and intergenic regions would be signifi-

cantly associated with toxin activity and we observed both in the pool of significant results.
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Locus tag P -value ε Annotation
CD630 25210 8.352 0.183 leuS: leucyl-tRNA synthetase
CD630 02620 8.352 0.175 flhB: bifunctional flagellar biosynthesis protein FliR/FlhB
CD630 17690 8.352 0.175 Putative CoA enzyme activase
CD630 10160 8.352 0.174 Transcriptional regulator, MerR family
CD630 35570 8.352 0.173 Putative peptidase
CD630 16580 8.352 0.173 gcvPB: glycine decarboxylase
CD630 01820-CD630 01830 8.352 0.173 Hypothetical protein - putative cell wall hydrolase
CD630 35840 8.352 0.173 ABC-type transport system, permease
CD630 17010 8.352 0.173 recQ: ATP-dependent DNA helicase
CD630 14170-CD630 14180 8.352 0.171 Putative ATP-binding protein - putative drug/sodium antiporter, MATE family

Table 3.3: Grouped locus GWAS results: Top 10 results

There are 112 grouped loci with both significant P -value and high ε values. This table shows
the top 10 loci when ranked by P -value and then ε.

Four of the 396 grouped loci significantly associated with toxin activity occur in the PaLoc:

tcdA, tcdB, tcdR, and the cdu1 -tcdR intergenic region (Figures 3.2 and 3.3C). To investigate

the plausibility particularly of the cdu1 -tcdR association we checked for the presence of vari-

ants within the two tcdR promoters. We observed that of the 35 variants that were included

in the cdu1 -tcdR intergenic region 5 SNPs fall into the tcdR promoters which suggests a

possible functional role of these loci in modulating tcdR transcription and therefore affecting

tcdA and tcdB regulation (Figure 3.2).

Flagellar variants While no individual locus within a flagellar gene associated with toxin

activity, in the grouped locus GWAS flagellar genes were frequently associated. Fourteen

of the 396 grouped loci significantly associated with toxin activity were flagellar genes or

intergenic regions adjacent to flagellar genes. This is an approximately threefold enrichment

compared to the number of flagellar regions that are be expected by chance (P=0.0001;

median=4; range=0-13). The second most strongly associated grouped locus was flhB/fliR;

this finding is consistent with a report that a flhB/fliR knockout mutant in CD630 had

significantly reduced toxin activity in an assay of cell rounding (Table 3.3)[85]. Both the

enrichment of flagellar genes in the significant results and the particular relationship to

flhB/fliR are striking, but perhaps not surprising given known co-regulation that occurs
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between flagellar and toxin systems in C. difficile that is mediated in part by SigD, a sigma

factor that binds to a tcdR promoter region and positively regulates tcdR[86, 87]. Note that

no tested variants occurred within the SigD promoter sequence upstream of tcdR.

Novel associations Within the highly ranked grouped results is an ABC transporter,

CD630 35840, which could potentially contribute to toxin secretion. Future work will eval-

uate the 112 strongly associated grouped loci for their plausibility in contributing to toxin

transcriptional initiation, transcriptional regulation or secretion.

3.5 Discussion

These preliminary findings demonstrate the ability of bGWAS to track key genetic events that

modulate toxin activity. In addition to cis-regulatory variants within the PaLoc, there were

numerous strong associations in trans that indicate a complex regulatory network mediating

toxin activity. This regulatory network includes SigD, Agr, and Hfq which all positively

regulate both flagella and toxin genes while Spo0A, SigH, and RstA each negatively regulate

both gene types[87]. The grouped GWAS results are consistent with previous reports of

the co-regulation of toxin flagellar genes, either through the effect of one group of genes on

the other or through third-party mediators. Flagella and toxin genes may be under strong

co-regulation to allow the bacterium to quickly evade the host immune system as products

of both activate the host immune system; flagellin is recognized by Toll-like receptor 5 in

humans and toxins can activate inflammasomes.

3.5.1 Future directions

We have access to additional in vitro phenotype data for the same set of C. difficile isolates

and can perform similar GWAS using these data. The phenotypes include germination effi-
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ciency, maximal growth rate, absolute spore production and spore viability[65, 88]. Studying

additional in vitro phenotypes with this approach could generate lists of novel genomic loci

for investigation. Given a known inverse relationships between sporulation and toxin genes,

particularly evidenced by spo0A which is a regulator that controls both toxicity and sporu-

lation, it may be fruitful to look for overlap between toxin and sporulation GWAS results to

prioritize loci for further characterization in functional validation assays.

While many regulators of toxin activity are well described, mechanisms by which indi-

vidual variants affect toxin activity could be better understood through experimentation.

In particular, there are various assays to investigate the functions of each of the four toxin

domains. We propose that the significant variants identified by this GWAS in tcdB be tested

for their impact on their respective protein domains. Our genomic investigation into the tcdB

variants revealed that there are many frameshift mutations, of which one was significantly

associated with toxin activity. We found that this mutation, at residue 516, is a compen-

satory frameshift that restores tcdB back into reading frame one after a previous deletion

causes a frameshift at residue 337. Additionally, we found that most of the RT027 samples

have a series of frameshift mutations that move the C-terminal region of the protein into

reading frame two. We are unaware of any previous work investigating the functional impact

of this RT027 frameshift on toxin structure or activity.
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Chapter 4

Genetic Determinants of Trehalose Utilization Are Not

Associated With Severe Clostridium difficile Infection Outcome

4.1 Preamble

The previous two chapters have introduced and highlighted the utility of bGWAS in iden-

tifying associations in synthetic and in vitro bacterial datasets. In this chapter we take a

different approach to association testing because the phenotype in question, clinical infection

outcome, is deeply influenced by host factors.

4.2 Introduction

C. difficile infection (CDI) is a health care–associated infection that can result in a range of

patient outcomes. Of greatest concern is the development of severe disease outcome, defined

as intensive care unit admission, intra-abdominal surgery (such as colectomy), and/or death

attributable to the infection[89]. Specific patient factors such as age, antibiotic use, and

female gender have been associated with severe infection outcome. The genetic background

of the infecting C. difficile isolate may also influence clinical outcome. Prior studies have

reported an increased risk of severe infection outcome for ribotypes RT027 and RT078[90,

91]. One recently proposed mechanism for increased virulence of specific C. difficile lineages
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is the differential capacity to utilize the dietary disaccharide trehalose[12]. These authors

observed enhanced trehalose utilization in RT027 strains, identified an additional trehalose

operon in RT078, and demonstrated increased virulence of an RT027 strain in a mouse model

of infection when physiologically relevant quantities of trehalose were given. This report also

noted the coincidence between the introduction of trehalose as a food additive in 2000 and

the global emergence of RT027 and RT078 shortly thereafter.

Subsequently, Eyre et al. examined clinical C. difficile isolates for the ability to use tre-

halose, noting that variants conferring improved trehalose utilization were not confined to

successful epidemic lineages. Moreover, Eyre et al. found no evidence of association between

a trehalose utilization variant and 30-day all-cause mortality in RT015, a ribotype in which

enhanced trehalose utilization is variably present[92]. Here, we set out to more compre-

hensively evaluate the potential contribution of trehalose utilization to clinical outcomes by

quantifying the independent contribution of trehalose utilization variants to infection sever-

ity across ribotypes, when controlling for all clinical factors independently associated with

risk for severe infection outcome.

4.3 Methods

4.3.1 Study population

All subjects signed written consent to participate in this study. This study was approved by

the University of Michigan Institutional Review Board (Study HUM33286). We considered

a cohort of 1144 cases of CDI from hospitalized adults diagnosed with CDI between October

2010 and January 2013 at the University of Michigan Health System[90]. The following

predictors of severe outcome were noted in the window 24–48 hours post–CDI diagnosis:

age, gender, metastatic cancer, concurrent antibiotic use, systolic blood pressure, creatinine,

bilirubin, and white blood cell count. Of the 981 unique patients, 898 had complete clinical
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information. CDI was classified as severe outcome if any of the following outcomes at-

tributable to CDI occurred within 30 days of diagnosis: admission to an intensive care unit,

intra-abdominal surgery, or death[89]. Ribotyping was performed[93], and 137 ribotypes

were identified (Supplementary Table 1). Cases were diagnosed as health care–associated

CDI if symptoms developed >48 hours after admission[90].

4.3.2 Data analysis

Summary statistics, matching, modeling, and imputation were conducted in R, version

3.5.0[50]. The R code is available at: github.com/katiesaund/clinical cdifficile trehalose

variants.

4.3.3 Severe outcome risk score matching

Unique subjects with complete clinical information (n=898) were assigned a severe outcome

risk score based on a logistic regression model with severe CDI outcome as the response vari-

able and the following predictors: age (years), female gender, metastatic cancer, concurrent

antibiotic use, systolic blood pressure (mm Hg), creatinine (>1.5 mg/dL), bilirubin (>1.2

mg/dL), and white blood cell count (cells/µL)[90]. Where possible, isolates were sorted into

strata, each with exactly 1 case (severe CDI outcome) and at least 1 and up to 4 controls

(nonsevere CDI outcome), with control scores within ±0.10 of the case score. The matching

process identified 323 CDI case isolates, of which only 247 C. difficile isolates were success-

fully grown, isolated, and sequenced. Due to growth or sequencing failures, only 235 isolates

were from 59 complete strata (strata with at least 1 control and 1 case). Each stratum

contained 1 case (n=59, severe CDI outcome) and up to 4 controls (n=176, nonsevere CDI

outcome; total n=235). The median number of controls per case (range) was 3 (1–4). There

were 61 RT027 isolates (19/59 cases; 46/176 controls), 5 RT078 isolates (0/59 cases; 5/176
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controls), and only 1 RT015 (1/59 cases; 0/176 controls) in this matched data set.

4.3.4 Conditional logistic regression model for matched samples

Logistic regressions were modeled with severe CDI outcome as the response variable, con-

ditioned on strata, with a trehalose variant as the predictor. Bonferroni-corrected P -values

were reported.

4.3.5 Genomic analysis

Genomic DNA extracted with the MoBio PowerMag Microbial DNA Isolation Kit (Qiagen)

from C. difficile isolates (n=247) was prepared for sequencing using the Illumina Nextera

DNA Flex Library Preparation Kit. Sequencing was performed on either an Illumina HiSeq

4000 System at the University of Michigan Advanced Genomics Core or on an Illumina MiSeq

System at the University of Michigan Microbial Systems Molecular Biology Laboratories.

Quality of reads was assessed with FastQC[66]. Adapter sequences and low-quality bases were

removed with Trimmomatic[67]. Details on sequenced strains are available in Supplementary

Table 1. Sequence data are available under Bioproject PRJNA561087. For variant calling

details, see the Supplementary Methods. Pangenome analysis was performed with roary[68],

and the insertion putatively conferring enhanced trehalose utilization was inferred based on

the presence of 4 genes: treA2, ptsT, treX, and treR2 (Supplementary Data).

4.4 Results

Given the limited clinical data regarding the potential contribution of trehalose utilization

variants to CDI severity, we set out to test for an association between trehalose utilization

across all strains of C. difficile–causing infection while comprehensively controlling for patient

factors associated with severe outcome. Patient factors associated with CDI severity in our
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clinical cohort (n=1,144) were age, female gender, metastatic cancer, concurrent antibiotic

use, systolic blood pressure, creatinine, bilirubin, and white blood cell count[90]. To quantify

the independent contribution of trehalose utilization variants to severe patient outcomes, we

implemented a retrospective, matched case–control study to control for these patient factors.

Each C. difficile episode was assigned a severe outcome risk score utilizing variables available

around the time of diagnosis, which is the patient’s predicted probability of having severe

CDI outcome, based on a logistic regression model of CDI built from the 8 patient factors.

Unique patients were grouped into strata based on their risk score.

We identified the presence of reported trehalose utilization variants: 2 amino acid sub-

stitutions in the transcriptional repressor, treR (TreR C171S and TreR L172I), and a set of

4 accessory genes, called the 4-gene trehalose insertion, that contain an additional phospho-

trehalase enzyme and transcriptional regulator[12, 94]. Consistent with previous reports,

we found TreR C171S in all 4 RT017 isolates and 3 closely related ribotypes (Figure 4.1).

Similarly, we found TreR L172I in all 61 RT027 isolates and in 7 closely related ribotypes.

However, in contrast to Collins et al., who found the 4-gene trehalose insertion only in

RT078, we identified the insertion in 25 isolates that were broadly distributed across the

phylogeny[12, 92].

To investigate if trehalose utilization variants were individually associated with severe

CDI outcome, we performed unadjusted logistic regressions conditioned on severe outcome

risk strata (Supplementary Table 2). The presence of the TreR L172I trehalose utilization

variant was associated with an increased, but not statistically significant, odds of severe

CDI outcome (OR, 1.60; 95% CI, 0.84–3.05; P=0.52). The presence of the 4-gene trehalose

insertion was associated with decreased, but not statistically significant, odds of a severe

CDI outcome (OR, 0.35; 95% CI, 0.09–1.32; P=0.52). None of the other 4 amino acid

substitutions observed in TreR were significantly associated with severe CDI outcome (Sup-

plementary Table 2). Due to low prevalence (n=7), we did not test for an association between
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Figure 4.1: Comparative analysis of trehalose genetic variants in C. difficile.

A maximum-likelihood phylogeny was constructed (n=235) using variants identified in the
genome (scale in mutations per site in the whole genome). Trehalose variants are either point
mutations in treR (C171S empty orange circle, L172I empty blue circle) or the presence of
the 4-gene trehalose insertion (empty black circle). A severe infection outcome is indicated
by a red triangle. Ribotype is indicated by the filled circles.

the presence of the TreR C171S trehalose utilization variant and severe CDI outcome.

To evaluate the overall effect of the 3 previously described trehalose utilization variants on

CDI outcome, we combined the 3 variants into a single predictor of severe CDI outcome and

performed a logistic regression conditioned on severe outcome risk strata. When combined,

the presence of any of the 3 trehalose utilization variants does not significantly affect the odds

of severe CDI outcome (OR, 1.10; 95% CI, 0.61–1.99; P=0.86). To evaluate whether these

results translated to the original unmatched cohort, we also tested for associations between

trehalose utilization variants and severe infection outcome using severe outcome risk score
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as a covariate rather than a matching criterion. To infer trehalose utilization genotypes

in the larger cohort for which genomic data were unavailable, we performed an imputation

where the presence of trehalose utilization variants (TreR C171S, TreR L172I, and the 4-

gene trehalose insertion) was assumed to have the same distribution across ribotypes as was

observed in the matched cohort (Supplementary Methods). We then performed a logistic

regression modeling severe outcome with presence of any of the 3 trehalose utilization variants

as a predictor and severe outcome risk score as a covariate. When combined, the presence

of any of the 3 trehalose utilization variants did not significantly affect the odds of severe

CDI outcome (median OR [range], 0.99 [0.87–0.99]; median P [range] =0.97 [0.64–0.99];

n=586). Note that using this logistic regression framework we were powered to recapitulate

the original finding in Rao et al., that RT027 is significantly associated with severe outcome

when not conditioning on risk score (OR, 2.22; 95% CI, 1.20–4.04; P=0.01).

4.5 Discussion

The ability to predict the clinical outcome of C. difficile infection based on patient and

pathogen characteristics could help guide therapy for this important nosocomial infection.

An enhanced ability to utilize trehalose was shown to be associated with increased virulence

in mice, prompting us to evaluate this relationship using a case–control study performed

with a large clinical data set. Our controlled analysis, in patients from a diverse set of

ribotypes, failed to detect a significant association between any of the previously described

trehalose utilization variants and severe CDI outcome. Although it is possible that an effect

may be observed in a larger cohort, this is not supported by the odds ratio being close to

1 both in our matched analysis and when imputing to the larger cohort. We also note that

while the TreR L172I variant alone has an odds ratio >1, the tight association between this

variant and RT027 leave unclear its independent contribution to worse outcomes in patients
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with RT027 infection. Our results are consistent with Eyre et al.’s study of patients infected

with RT015, which observed a lack of association between the 4-gene trehalose insertion

and 30-day all-cause mortality. We also confirmed Eyre et al.’s observation that the 4-gene

trehalose insertion is not exclusive to RT078, but rather is found throughout the C. difficile

phylogeny[92].

The lack of association between trehalose utilization variants and severe CDI outcome

in hospitalized patients emphasizes the need to incorporate clinical results earlier into the

genetic variant discovery pipeline. Indeed, a more relevant hypothesis-generating process

could begin by identifying genetic loci of interest first through comparative genomic analysis

of clinical isolates, followed by validation in lab strains with molecular and animal studies.

A critical component of this discovery work is to control for both patient factors and strain

background, as both may confound analysis, which we did above in separate analyses using 2

distinct modeling strategies. Given the association between ribotype, recent acquisition, and

CDI outcome, controlling for patient factors is critical for identifying the genetic variants

associated with severe CDI outcome[95].

Although these clinical data cannot rule out a potential role of trehalose utilization

variants in the success of hypervirulent C. difficile lineages, they do emphasize the differ-

ence between human infection and murine models. More broadly, generating hypotheses in

controlled laboratory systems and having them generalize to genetically and clinically het-

erogeneous human populations will limit insights to only the most penetrant phenotypes.

With increasing availability of electronic health record and microbial genomic data, it is now

becoming feasible to flip the script and generate hypotheses through analysis of human data,

which can subsequently be tested in appropriate animal and in vitro systems with a priori

knowledge of relevance to human disease.
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4.7 Supplement

4.7.1 Methods

Variant calling

Variants were identified by mapping filtered reads to the CD630 reference genome (Gen-

Bank accession number AM180355.1) using bwa[71], removing polymerase chain reaction

duplicates with Picard[72], and calling variants with SAMtools and bcftools[73]. Variants

were filtered from raw results using GATK’s VariantFiltration (QUAL, >100; MQ, >50;

>=10 reads supporting variant; and FQ, <0.025)[74]. Of the single nucleotide polymor-

phisms identified in treR, all were biallelic and only nonsynonymous variants were analyzed.

Phylogenetic analysis

Consensus files generated during variant calling were recombination filtered using Gub-

bins[18]. The alleles at each position that passed filtering were concatenated to generate a

non-core variant alignment relative to the CD630 reference genome. Alleles that did not pass

filtering were considered unknown (denoted as N in the alignment). Variant positions in the

alignment were used to reconstruct a maximum likelihood phylogeny with IQ-TREE v1.5.5
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using ultrafast bootstrap with 1,000 replicates[75, 76]. ModelFinder limited to ascertainment

bias-corrected models was used to identify the best nucleotide substitution model[77]. The

tree was rooted on a cryptic clade C. difficile isolate as the outgroup (Run: ERR232398,

Sample: C00007672, Bioproject: PRJEB1483).

Imputation of trehalose utilization variants for non-sequenced isolates

To assign trehalose utilization variants to isolates that were either not sequenced or not

matched the set of 1,144 isolates was subset to include only unique individuals and to ex-

clude (1) isolates with a ribotype classified as unique, other or missing and (2) isolates whose

ribotype was not found in the sequenced, case-control study. Imputation of trehalose utiliza-

tion variants was performed on N=351 (6 cases; 345 controls) non-sequenced isolates based

on N=165 (43 cases; 122 controls) sequenced isolates. In the imputation steps described

below, the process was applied to cases and controls separately (sequenced cases were used

to impute variant presence in only non-sequenced cases and sequenced controls were used

to impute variants presence in only non-sequenced controls). For each ribotype found in

the sequenced, case-control isolates the percentage of isolates that had any trehalose uti-

lization variant (C171S, L172I, and/or four gene trehalose insertion) was calculated. Each

non-sequenced isolate was assigned imputed trehalose utilization variants as a function of the

proportion of trehalose utilization variants within the sequenced members of the ribotype.

Assignment of variants was performed with 1,000 replicates.

Statistical analysis on imputed isolates combined with sequenced isolates

Statistical analyses were performed on the matched isolates (N=235) combined with the

imputed isolates (N=351; total N=586). Logistic regressions were modeled with severe CDI

outcome as the response variable, severe outcome risk score as a continuous covariate, and

a trehalose variant as the predictor. Each regression was performed once per imputation
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(1,000 total tests) and summary statistics were reported.

Data analysis

Data analysis in R was performed with following packages: ape 5.3[49], seqinr 3.4-5[96],

survival 2.44-1.1[97], and tidyverse 1.2.1[53].

Files and tables

Supplementary files and tables may be accessed at https://academic.oup.com/ofid/article/

7/1/ofz548/5696590.
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Chapter 5

Discussion

5.1 Major thesis contributions

The previous chapters focus on the detection of genotype-phenotype associations with data

derived from in silico, in vitro, and clinical settings. Chapter one described the implemen-

tation of three bGWAS methods in hogwash, a software package, and demonstrated the

package’s utility on in silico data. This chapter introduced two metrics, N and ε, to quan-

tify the relationship between phenotype convergence and genotype convergence on a given

phylogenetic tree. Finally, it generated an in silico dataset of phenotypes and genotypes

with a range of convergence and phylogenetic signals to be used for future convergence-

based GWAS benchmarking studies. Chapter two validated hogwash’s continuous algorithm

on in vitro toxin activity data from a clinical cohort of C. difficile isolates. The GWAS

results found significant associations between toxin activity and variants in both flagellar

genes and the PaLoc. The strong associations observed between tcdB variants and toxin

activity particularly suggest that hogwash is a robust method for genome-wide association

studies. Chapter three applied an alternative genotype-phenotype association method that

controlled for patient factors rather than tree structure. This method found no statistically

significant association between three trehalose utilization variants proposed to contribute to

poor C. difficile infection outcomes.
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5.1.1 Implementation of existing and novel convergence-based bG-

WAS methods

As whole genome bacterial sequences are increasingly available due to plummeting costs and

improved bioinformatic pipelines there is a demand for more bacteria-specific software. In

response, we developed a bGWAS software package that leverages bacterial whole genome

sequence data and incorporates aspects of bacterial evolution. Hogwash implements three

bGWAS methods, two burden testing approaches, and describes a novel index, ε, that quanti-

fies the relationship between phenotype convergence and genotype convergence. The burden

testing methods provide two choices for combining genomic variation into biologically mean-

ingful groups that may potentially surmount the stringent requirements for convergence in

the individual locus test. When users combine the ε metric with the P -value they are more

likely to identify associations of highest interest as the two values together contextualize the

penetrance and non-randomness of genotype-phenotype associations. The investigation of

genotype-phenotype associations in the in silico dataset demonstrated several features of

hogwash. When comparing the individual locus test to a grouped locus test, the grouped

results revealed associations that were masked in the individual locus test. The novel find-

ings of the grouped test seem to be due to lower penetrance of genotype convergence at

the individual variant level that is overcome by aggregation of multiple genotypes together.

Additionally, the in silico dataset reveals that hogwash is better able to identify associations

between genotypes and phenotypes when the phenotypes are modeled better by white noise

than by Brownian motion; this performance difference is likely because of the increased con-

vergence in white noise modeled phenotypes. The in silico modeled phenotypes, genotype,

and phylogenetic tree dataset may serve as a resource for future work benchmarking var-

ious convergence-based bGWAS methods. In particular, this dataset contains phenotypes

and genotypes with a range of convergence and phylogenetic signals that can highlight the
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conditions wherein each method has the highest ability to discriminate genotype-phenotype

associations.

5.1.2 bGWAS on in vitro toxin activity underscores utility of hog-

wash method and suggests co-regulation of toxin and flagel-

lar proteins

We applied hogwash to in vitro toxin activity, a clinically relevant phenotype, in a set of

clinical C. difficile isolates. Toxins are encoded by tcdA and tcdB and their activity is

known to be controlled by the regulator tcdR. We observed significant associations between

variants in the PaLoc and toxin activity. Individual variants within tcdB were significantly

associated with toxin activity as were variants grouped into tcdR, tcdA, tcdB, and in the

cdu1 -tcdR intergenic region. These associations suggest the plausibility of hogwash as a

reliable bGWAS method. Additionally, flagellar proteins were overrepresented in the group-

based hogwash results suggesting a potential evolutionary relationship between toxin and

flagellar genes as well as their coregulation. Finally, the bGWAS results point to specific

variants and genomic loci to investigate in studies to uncover novel mechanisms of toxin

regulation in C. difficile.

5.1.3 A case-control study found no statistically significant as-

sociation between trehalose utilization variants present in

C. difficile strains and the development of severe infection

outcome

Recent reports suggested that trehalose utilization variants reported to be present in the

epidemic strains RT027 and RT078 may contribute to these strains’ success and virulence.
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We evaluated the contribution of three trehalose utilization variants (TreR L172I, TreR

C171S, and a four-gene insertion) independently and in aggregate on severe infection outcome

in a cohort of clinical patients. This analysis was performed while controlling for eight

patient factors independently associated with increased risk of severe infection outcome in

order to tease out the contribution specifically of the trehalose utilization variant. The

conditional logistic regression suggests no significant association between the presence of

the trehalose utilization variants, either independently or in aggregate, and severe infection

outcome. We observed that the four-gene insertion was not limited to the epidemic RT078

strain but found in a diverse set of isolates. This investigation was prompted by an in

vitro screen of carbon sources on in vitro C. difficile growth. While these in vitro studies

have uncovered a previously unknown relationship between trehalose utilization in certain

C. difficile strains and murine infection severity, they have yet to translate to human clinical

outcomes. Perhaps a more relevant pipeline for identifying genomic variants in C. difficile

that could better stratify and predict infection outcomes would be to identify those genomic

variants commonly found in only patients with severe infection outcomes and then follow up

with in vitro and in vivo experiments to determine if these variants are plausibly causal of

such outcomes and, if so, reveal the mechanisms of increased virulence. In particular, this

approach could be highly specialized to account for patient factors and therefore identify

just those genomic factors most likely to be independently contributing to severe infection

outcome.

5.2 The future of bGWAS

This thesis developed and tested a bGWAS software tool on toxin activity and applied a

conditional logistic regression to test the independent contribution of trehalose utilization

variants on clinical infection outcomes. We hope that future work will expand upon both
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approaches by incorporating methods to identify causal variants from bGWAS results, con-

trasting available convergence-based bGWAS software, integrating rich patient data into

regression approaches, and including more complex genotypic variation in association test-

ing. Such potential research directions could improve the utility of association results for

clinical applications.

5.2.1 Identifying plausible causal variants

bGWAS studies have repeatedly identified genomic variants significantly associated with

phenotypes and some have demonstrated causal relationships through functional validation

experiments. To our knowledge, no bGWASs have used methods common in human GWASs

to refine lists of associated genomic variants associated to those most likely to be causal, such

as fine-mapping and colocalization studies. While certain aspects of bacterial genomes may

limit the use of these approaches in all cases, we propose the adoption in certain scenarios.

Fine-mapping Fine-mapping is a family of methods that attempt to identify which of

the significant SNPs from a GWAS causes a peak in association at a specific locus and is

applied when many variants are significantly associated with the phenotype of interest[98].

Fine-mapping is a challenging process because variants are not inherited independently and

there are an unknown number of truly associated variants. Current approaches often define

a credible set which is a set of significantly associated variants that contain a causal variant

with a certain probability[98]. The application of fine-mapping in bGWAS could prioritize

the order of and ideally reduce the number of in vitro experiments required to validate

necessity and sufficiency of a variant’s effect on phenotype by winnowing the pool of potential

variants to just those within a sufficiently small credible set. Fine-mapping has not caught

on in bGWAS, perhaps because of the focus of bGWAS on those bacterial species with high

linkage disequilibrium. Fine-mapping is best applied to bacterial species with low linkage
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disequilibrium such as Streptococcus pneumoniae[36].

Colocalization A genetic locus may be associated with two or more phenotypes, such

as a clinical outcome, gene expression, and/or protein expression. Genetic colocalization

between a clinical outcome and an intermediate phenotype can help narrow down the genes

or pathways involved in mediating the clinical outcome and reduce the pool of variants

included in downstream functional testing. Summary statistics of GWAS can be combined

with gene expression data to detect associations between genes and phenotypes[99, 100, 101]

or with protein level data to detect association between proteins and phenotypes[102, 103,

104]. Transcriptome-wide association studies and proteome-wide association studies have yet

to be applied to bacteria, but these approaches could help move the field past associations

with simple phenotypes such as antibiotic resistance into more complex, quantitative traits.

In particular, transcriptome and proteome data may overcome the barrier imposed by linkage

disequilibrium to interpretation of bGWAS results in those species with particularly high

levels of linkage disequilibrium.

Given the particular characteristics of the dataset in question and the availability of

transcriptomic or proteomic data, either fine-mapping and/or colocalization may be helpful

tools for refining lists of variants associated with complex bacterial phenotypes to just those

most likely to be causal. Smaller sets of variants for functional testing may reduce the burden

posed by these follow on studies and increase rates of experimental successes.

5.2.2 Benchmarking convergence-based bGWAS methods

There are several convergence-based bGWAS methods available (treeWAS[37], hogwash) but

their relative performance has yet to be compared. Regression based bGWAS methods have

been benchmarked for their performance on datasets with a range of linkage disequilibrium

values[57]. A thorough comparison would evaluate F1 score, recall, precision, speed, and
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memory usage on various simulated datasets that include a) genomes with a range of linkage

disequilibrium values, b) genotypes and phenotypes that span a large range of phylogenetic

signals, c) a range of sample sizes. A major obstacle to overcome for such an undertaking is

the large computational time required for even moderately sized datasets to be analyzed by

both treeWAS and hogwash. An objective comparison of current convergence-based bGWAS

tools will aid researchers as they select a tool most appropriate for their dataset and analysis

goals.

5.2.3 Integration of host, environmental, and bacterial factors into

infection risk scores

The analysis in chapter four examined the potential for associations between a set of genomic

variants and severe C. difficile infection outcome. This approach controlled for only eight

patient factors known to be associated with severe infection outcome. We propose that

integrating more and richer data sources could lead to more accurate and actionable infection

risk scores for important bacterial pathogens. While such infection risk scores have already

been implemented, only a small number consider a wide range of data sources or big data.

Studies have proposed risk scores that predict the likelihood, severity, or recurrence of

C. difficile infection. Model predictors may include host and environmental factors derived

from electronic health records[105, 106], C. difficile ribotype information[90], or pre-infection

microbiome features[107]. Rarely, models are designed to be used in real-time to aid in clin-

ical decision making[106]. We propose moving towards better models of C. difficile infection

likelihood, severity, and recurrence through the integration of electronic health records, mi-

crobiome data prior to C. difficile infection onset, and the genomic features of C. difficile

strains isolated from diagnosed patients. Patients identified to be at high risk for C. difficile

infection by such models can be targeted for infection prevention efforts such as antibiotic
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use review and educational efforts[108]. More comprehensive approaches may lead to more

accurate models and therefore direct healthcare resources efficiently.

5.2.4 Innovation in genotypic measurements for bGWAS

Genomic variants used in bGWAS are typically SNPs, indels, genes, pathways, k-mers, or

unitigs. Many studies simplify the genomic information input to the association test by

removing more nuanced genetic information such as plasmids, large structural variants, or

copy number variants. Copy number variants can be used to weight genomic variants in

regression based bGWAS approaches. The increasing accessibility and application of long

read sequencing technology from companies such as Oxford Nanopore Technologies and

Pacific Biosciences to bacterial species may increase the ability of the field to examine more

nuanced genomic information. For example, structural variants can be more accurately

resolved from long sequencing reads than from short sequencing reads [109].

The genomic loci found to associate significantly with a phenotype in a bGWAS can often

be hard to interpret as loci may fall within intergenic regions or unannotated, hypotheti-

cal proteins. While model organisms such as Escherichia coli are highly annotated, even

clinically relevant species such as C. difficile have only ∼ 50% of the proteins in the main

reference genome annotated with known functions[110]. More comprehensive annotation

projects are necessary to interpret bGWAS hits and to prioritize genomic loci for functional

validation studies.

Genome sequences for bGWAS are collected through a labor intensive process of isolating

individual clonal strains of bacteria and then growing each strain to sufficient quantity for

genomic DNA extraction. In the clinical studies used in chapters three and four a single strain

of C. difficile was isolated from each infected patient, but this is a simplified representation

of the infection as C. difficile patients are known to be infected with two or more ribotypes

in as many as 16% of infections [111]. The choice to isolate only a single colony was in
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part due to the logistical and budgetary burden of isolating multiple strains from a single

patient sample. A population sequencing approach, wherein bacteria of a certain species

are enriched through culturing and then sequenced as a mixed population, could capture

all of the genomic variation occurring in a multi-strain infection. Additionally, a population

sequencing approach would remove the colony picking step in protocols, thus saving time

and labor costs. Population sequencing not only results in genomic information for multiple

strains, whether or not a patient has a multi-strain infection itself is information that can

be input to risk score algorithms as multi-strain infections have been shown to be correlated

with recurrent infection[112]. Population sequencing can retain some of the nuanced genomic

information previously discussed if tools such as chromosome conformation capture (3C) and

long read sequencing are used in place of or in addition to short read sequencing. 3C is a

method to capture the interactions of DNA strands in 3-D space, and if used in cells prior to

lysis can link plasmids with the specific genomes in which they co-occur, thus surmounting

a potential loss of information from population sequencing [113].

Increasing the annotation of bacterial genomes and capturing more genomic variation in

the form of copy number variants, structural variants, plasmids, and bacterial populations

will improve the ability of bGWAS to find the most robust and biologically interpretable

associations to phenotypes.

5.3 Conclusion

This thesis work was motivated by a desire to improve outcomes for patients infected with

C. difficile and focused on the potential for C. difficile genomic variation to affect infections.

We hope that one day patients infected with C. difficile strains will be tested for the still-

to-be-identified risky genomic variants during infection. These test results, when combined

with patient information, could be used to stratify patients into different treatment regimes
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in order to yield the best possible clinical outcomes. Many host, pathogen, and environ-

mental factors may contribute to infection outcomes. The field can build to such a nuanced

understanding of C. difficile infection and the interplay of host and pathogen by developing

increasingly comprehensive models of the infection process.

In the previous chapters, hogwash was introduced and then its validity explored using

C. difficile toxin activity data. Additionally, a specific set of variants proposed to affect

infection outcome were not found to be significantly associated with severe infection outcome.

We hope that by using phylogenetically aware bGWAS methods or approaches that control

for patient factors we can move on to studies that attempt to identify C. difficile genomic

variants that strongly associate with severe infection outcomes; these variants may eventually

play a role in tailoring patient interventions to improve clinical outcomes.
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