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ABSTRACT                
 

Branched Chain amino acids (BCAAs) play an essential role in cell metabolism 

supplying both carbon and nitrogen in pancreatic cancers, and their increased levels have 

been associated with increased risk of pancreatic ductal adenocarcinomas (PDACs). It 

remains unclear how stromal cells regulate BCAA metabolism in PDAC cells and how 

mutualistic determinants control BCAA metabolism in the tumor milieu. In chapter 1, we 

present an overview of PDAC biology, tumor microenvironment (TME), altered cancer 

metabolism and BCAA metabolism. In chapter 2, we uncover differential gene 

expression of enzymes involved in BCAA metabolism accompanied by distinct catabolic, 

oxidative, and protein turnover fluxes between cancer-associated fibroblasts (CAFs) and 

cancer cells with a marked branched-chain keto acids (BCKA)-addiction in PDAC cells. 

In chapter 3, we showed that cancer-induced stromal reprogramming fuels this BCKA-

addiction. We then show the functions of BCAT2 and DBT in the PDAC cells in chapters 

3 and 4. We identify BCAT1 as the BCKA regulator in CAFs in chapter 5. In chapter 6, 

we dictated the internalization of the extracellular matrix from the tumor 

microenvironment to supply amino acid precursors for BCKA secretion by CAFs.  We 

also showed that the TGF-β/SMAD5 axis directly targets BCAT1 in CAFs in chapter 7. 

In chapter 8, we validate the in vitro results in human patient-derived circulating tumor 

cells (CTCs) model. Furthermore, the same results were also validated in PDAC tissue 

slices, which recapitulate tumor heterogeneity and mimic the in vivo microenvironment 

in chapter 9. We conclude this manuscript with chapter 10 in which we propose future 



 xix 

studies and present directions towards pancreatic cancer research. In summary, our 

findings reveal therapeutically actionable targets in stromal and cancer cells to regulate 

the symbiotic BCAA coupling among the cellular constituents of the PDAC 

microenvironment. 



 1 

Chapter 1 Introduction 
 

1.1 Pancreatic ductal adenocarcinoma (PDAC) 
 

Pancreatic cancer has a high propensity for spreading to nearby organs, and it is 

seldom detected in its early stages [1]. The aggressive biological nature of pancreatic 

cancer makes it the most lethal digestive cancer and the fourth leading cause of cancer-

related deaths in the United States. Treatment strategies for pancreatic cancer have 

mainly focused on only the malignant cells in the tumor. However, in recent years, 

surrounding stroma in the tumor microenvironment is essential for tumorigenesis, as 

evidenced by several studies. The goal of my research is to understand the metabolic 

interaction between tumor stromal cells and cancer cells to target these interactions for 

therapeutic benefit. 

Pancreatic cancer has an unusually high propensity to spread to nearby organs and 

is seldom detected in its early stages. Due to its aggressive phenotype, pancreatic cancer 

is the most lethal digestive cancer and the fourth leading cause of cancer-related death in 

the United States. The median survival rate of pancreatic cancer patients with metastatic 

disease is 6-9 months, for them with the locally advanced is one year. For the resected 

disease, it is about two years [1]. It is estimated that in 2020, 57,600 adults (30,400 men 

and 27,200 women) in the United States will be diagnosed with pancreatic cancer. It is 

also estimated that 47,050 deaths (24,640 men and 22,410 women) will occur from 
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pancreatic cancer this year [1]. The estimated global mortality rate of pancreatic cancer at 

the beginning of the twenty-first century was a dismal 98%, and a recent study predicts 

that by the year 2030, the annual number of deaths will reach 88,000 in the USA. It is 

projected to become the second leading cause of cancer-related deaths in the United 

States by 2030 [2]. The only potentially curative therapy that currently exists is surgical 

resection followed by adjuvant treatment. However, only 20% of patients have resectable 

disease. [2]. Therefore, there is an urgency to investigate and develop novel strategies for 

pancreatic cancer treatment. 

1.1.1 Causes of pancreatic cancer 

Pancreatic cancer can originate from pancreatic acinar, ducts, and islets. 

Pancreatic tumors that arise from pancreatic ductal epithelium are the most common. 

Pancreatic ductal adenocarcinomas occur more frequently in the pancreatic head. The 

tumors located in the head of the pancreas are mostly hard and have no apparent 

boundaries with healthy pancreatic epithelial tissues, and can be widely infiltrated in the 

tissues around the pancreas. Pathological sections show a marked increase in fibrotic 

tissue, which is similar to the pathological features of chronic pancreatitis. Pancreatic 

cancer is a disease caused by multiple factors, such as smoking, chronic inflammation, 

and large amounts of secretion of certain inflammatory factors that can cause disease [3].  

Most pancreatic cancers have some gene alterations, such as amplifications, 

deletions, translocations, inversions, frameshifts, and substitutions. Disruptions of several 

genes in pancreatic cancer are almost universal and are present in 70%–98% of patients 

[4]. The mutation of genes can either enhance the function of the protein, sometimes 

making it even constitutively active or diminish the function completely. Subsequently, 
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the changes in protein functions can cause uncontrolled proliferation, migration, invasion, 

and adhesion of cells, protection from apoptosis and other types of cell death, DNA 

repairing, microsatellite instability, and other processes, which further lead to the 

development, growth, and spread of cancer. It has been proven that KRAS, TP53, and 

SMAD4 genes play an essential role in the development of pancreatic cancer [5]. 

1.1.2 Genetic mutations 

1.1.2.1 KRAS  

More than 90% of pancreatic cancer patients have KRAS gene mutations in their 

bodies, indicating that KRAS plays an essential role in the pathogenesis of pancreatic 

cancer [6]. The pathways involved in the KRAS gene are rough as follows: Under normal 

conditions, Ras binds to GDP, extracellular signals act on growth factor receptors to 

dissociate the two, and Ras binds to GTP encoded by KRAS. Ras-GTP active conjugate 

will gradually decrease with the hydrolysis of GTP. When the KRAS gene is activated 

and mutated, the Ras protein's GTPase activity is lost, and its signal continues to be 

amplified, thereby enabling several signaling pathways, including the phosphoinositide 

three kinase PI3K-AKT signaling pathway, Raf/MAPK, etc. [7]. 

1.1.2.2 SMAD4 

In the later stage of pancreatic cancer lesions, SMAD4 deletion may occur, and 

SMAD4 protein has been shown to play a critical role in the process of transmitting 

extracellular signals through the TGF-β signaling pathway. TGF-β is an important tumor 

suppressor gene in normal cells, which can regulate cell proliferation and differentiation. 

The signal pathways involved are as follows: type I or III serine/threonine kinase receptor 
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binds to TGF-β ligand and dimerizes the receptor, and the phosphorylated Smad2/Smad3 

protein binds to SMAD4 protein and transfers to the nucleus. Combined with 

transcription cofactors to regulate the cell cycle, differentiation, and growth [8]. The loss 

of SMAD4 in patients with pancreatic cancer lesions interrupts the above signaling 

pathways, making it lose its regulatory effect on cells. 

1.1.2.3 TP53  

Up to 85% of pancreatic cancer patients have inactivated TP53, and it also plays 

an essential role in regulating cell cycle and apoptosis [9]. The regulatory pathways 

involved in TP53 are as follows: DNA damage activates the TP53 gene to promote p21 

transcription, which is related to cyclin-CDK complex binds and stops the cell cycle in 

the G1 phase. It has been reported that germline mutations are also associated with 

familial pancreatic cancer, including the DNA mismatch repair gene MLH1 [10], the 

positive trypsinogen gene PRSS1 [11], and the target genes INK4A and LKB1 of sure 

tumor suppressors [12]. Recent evidence shows that the interaction of epithelial, stroma 

and extracellular matrix proteins plays an important role in the process of pancreatic 

cancer. It can be seen that PDAC development is a complex process, and the molecular 

pathway mechanism needs to be clarified. 

1.1.3 Signaling pathways 

1.1.3.1 TGF-β signaling pathway 

The human transforming growth factor TGF-β family includes TGF-β subtypes, 

kinetin, bone morphogenetic proteins (BMPs), growth, and differentiation factors (DGFs) 

total of 33 Members [13]. The role of TGF-β has two-phase specificity, which can inhibit 
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tumor growth in the stage of tumorigenesis and can promote tumor invasion and 

metastasis in the late stage of the tumor. The mechanism of action of TGF-β is to form 

heterotrimers by binding to cell membrane surface receptors, activate R-Smad protein to 

transmit signals into the cell, R-Smad binds to Co-Smad and transfers to the nucleus, and 

binds to target genes to regulate protein synthesis. The TGF-β family can regulate cell 

growth, survival, differentiation, and invasion, and plays an important role in embryo 

development and maintaining tissue homeostasis [14, 15]. TGF-β family members are 

involved in the occurrence and development of many diseases, including fibrosis, 

autoimmune diseases and cancer [16]. Epithelial-mesenchymal transition (EMT) refers to 

the ability of epithelial cells to transform into stromal cells and obtain migration 

morphologically. The tumor microenvironment, including tumor-associated 

macrophages, dendritic cells, and regulatory T cells, produces TGF-β1 that can 

effectively induce cell EMT [17]. Studies have also shown that overexpression of TGF-

β1 can cause chronic pancreatitis in mice [18], and TGF-β1-induced EMT is a bridge 

connecting inflammation and cancer [19]. Overexpression of TGF-β1 in the 

inflammatory microenvironment promotes the EMT process of chronic pancreatitis to 

pancreatic cancer by down-regulating miR-217, and miR-217 promotes this process by 

inhibiting the expression of SIRT1 [20]. During the development of EMT, the Wnt 

signaling pathway provides EMT ability to epithelial cells, and the TGF-β/BMP family 

provides a suitable micro-environment for EMT, and the two synergistically induce EMT 

[21]. In cancer, many stem cell pathways, such as Wnt, Ras, SHH (sonic hedgehog), and 

Notch (Notch homolog) signaling pathways are highly activated and provide tumor cells 

with EMT capabilities. Immune infiltrating cells secrete TGF-β1, IL8, IL6, MMPs and 
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TNF-α and other EMT promoting factors to induce EMT in the tumor microenvironment 

[20]. 

SMAD4 is the main effector of the TGF-β signaling pathway, in more than 50% 

of pancreatic cancer patients lose their activity [21]. The inactivation of SMAD4 alone 

cannot lead to the cancelation of the pancreas, and it is also optional for the development 

of normal pancreas [22]. Inactivation of the TGF-β signaling pathway leads to the up-

regulation of TGF-α expression, and SMAD4 inactivation coordinates the up-regulation 

of TGF-α expression to promote pancreatic fibrosis and promote pancreatic 

intraepithelial neoplasia, leading to the transformation of chronic pancreatitis into 

pancreatic cancer [23]. The hallmark of chronic pancreatitis is the fibrosis of pancreatic 

tissue, and the continuous activation of stellate cells is an important reason for promoting 

pancreatic fibrosis. 

1.1.3.2 JAK/STAT pathway  

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) 

signaling pathway mediate multiple cytokine signal transduction pathways. It is widely 

involved in regulating cell proliferation and other biological processes such as 

differentiation, apoptosis and immune response. The activation of the JAK/STAT 

pathway is included in the occurrence and development of various diseases, including 

solid tumors, lymphomas, leukemias, chronic inflammation and other diseases [24]. The 

basic transmission process of the JAK/STAT signaling pathway is: cytokines and their 

receptors cause the dimerization of the receptor molecules, which makes the JAKs 

coupled to the receptors approach each other and are activated by interactive tyrosine 

phosphorylation. JAKs catalyzes the phosphorylation of the tyrosine of the receptor itself 
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and form the corresponding docking site of STATs, allowing STATs to bind to the 

receptor through the SH2 domain and achieve their phosphorylation activation under the 

action of JAKs. Then STATs form homo/heterodimerization, it enters the nucleus and 

combines with the promoter of the target gene to activate the transcription and expression 

of the corresponding gene. 

STAT3, as an important molecule in the inflammatory signaling pathway, also 

plays an important role in tumor development and invasion. The activation of the 

JAK/STAT pathway can inhibit apoptosis and promote tumor cell proliferation and 

invasion. Activated STAT3 can damage the extracellular matrix to different degrees and 

cause the degradation and destruction of the tissue basement membrane, providing a 

suitable environment for early metastasis of tumor cells. Also, STAT3 can promote the 

EMT process and promote the transformation of chronic inflammation into cancer. A 

recent study found that the Regenerating Family Member 3 Alpha (REG3A) high 

expression and SOCS3 methylation can up-regulate the JAK/STAT3 pathway and 

promote the malignant proliferation of human pancreatic cancer cells [25]. IL-6 can also 

activate the JAK/STAT pathway to promote the malignant transformation of chronic 

inflammation, leading to the occurrence of various malignant tumors [26]. Further 

research found that the mechanism of action of REG3A is similar to IL-6. In the 

inflammatory environment induced by IL-6, REG3A promotes the proliferation of 

pancreatic cancer cell lines by up-regulating the expression of JAK2/STAT3 pathway, 

while highly expressed STAT3 can positively Feedback upregulates the expression of 

REG3A, thereby forming a positive feedback loop to continuously promote the malignant 

proliferation of pancreatic cancer cells [27]. 
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1.1.3.3 MAPK pathway  

The MAPK signaling pathway chain is composed of MAPK, MAPK kinase 

(MAPKK) and MAPKK kinase (MAPKKK), and is one of the important pathways in the 

signal transmission network of eukaryotes. It plays a key role in cytoplasmic functional 

activities and participates in the processes of cell proliferation, differentiation, migration 

and apoptosis. The MAPK signal transduction pathway uses a highly conserved tertiary 

kinase cascade to transmit signals: extracellular signals activate MAPKKK, which in turn 

activates MAPKK; then, MAPK is activated by phosphorylation of specific tyrosine and 

serine residues in the MAPK molecule. There are four subfamilies in the MAPK family, 

including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun amino-terminal 

kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), and extracellular 

signals Regulate kinase 5 (ERK5). 

Early studies reported that ERK1/2 is the main regulatory pathway for the 

activation and proliferation of pancreatic stellate cells [28, 29]. Platelet-derived growth 

factor (PDGF) can stimulate the activation of pancreatic stellate cells, and its stimulation 

depends on the activation of the ERK1/2 pathway. ERK pathway inhibitor PD98059 

blocks the proliferation of pancreatic stellate cells after acting on pancreatic stellate cells 

and can inhibit the migration of pancreatic stellate cells by up to 50% [29]. Also, the 

inhibition of pancreatic stellate cells by hydrogen sulfide (H2S) donor NaHS is achieved 

through the ERK1/2 pathway [30]. Angiotensin II can induce the proliferation of 

pancreatic stellate cells, and it can activate JNK and ERK1/2 while promoting the 

proliferation of pancreatic stellate cells, suggesting that angiotensin II may achieve the 

proliferative effect on pancreatic stellate cells through JNK and ERK [31]. JNK inhibitor 
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SP600125 can inhibit the activation of JNK and AP-1 while inhibiting PDGF-induced 

pancreatic stellate cell activation, indicating that the activation of the JNK pathway can 

promote the activation of pancreatic stellate cells [32]. In a mouse model of chronic 

pancreatitis, BMP inhibits the activation of pancreatic stellate cells by inhibiting the 

TGF-β/Smad2 and p38MAPK pathways, and plays a role in reversing pancreatic tissue 

fibrosis [33]. Studies have reported that high glucose uptake can significantly activate the 

proliferation of rat pancreatic stellate cells, and the p38MAPK blocker SB203580 can 

reduce the expression of α-SMA, indicating that high glucose environment-induced 

pancreatic stellate cells proliferation is mediated through the p38MAPK pathway [34]. 

1.1.3.4 NF-κB pathway  

Nuclear transcription factor kappa B (NF-κB) is an important type of 

transcriptional activation factor that exists in various eukaryotic cells and is widely 

involved in a series of biological processes, including immune response, cell proliferation 

and apoptosis. It is closely related to the occurrence and development of various tumors. 

The NF-κB family includes the five members of the oncogenes C-Rel, NF-κB1 

(p50/p105), NF-κB2 (p52/p100), Re1A (p65) and RelB. Under normal circumstances, 

most of the NF-κB dimer in the cell is inactive in the cell by binding to one of the three 

NF-κB inhibitory proteins (IκBα, IκBβ, IκBε) in the cytoplasm. Recent studies have 

shown that chronic inflammation, NF-κB stimulation, is related to the development of 

cancer [35]. NF-κB shows abnormal activation in both chronic pancreas and pancreatic 

cancer, suggesting its important role in the development of chronic pancreatitis to 

pancreatic cancer [36]. The autocrine of pro-inflammatory factors such as IL-1α can 

induce the activation of NF-κB, and the continuously activated NF-κB promotes the 
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development of pancreatic cancer [37]. Activated NF-κB and downstream target genes 

such as pro-inflammatory factors TNF-α and IL-1 are key factors for the transformation 

of inflammation into tumorigenesis. Studies have reported that the mechanism of aspirin 

in preventing pancreatic cancer is to block the activation of NF-κB in the inflammatory 

response to inhibit the occurrence of pancreatic cancer [38]. IKK2 is an inhibitor of κB 

kinase 2, a member of the NF-κB pathway. IKK2 coordinates the Notch pathway to 

upregulate Notch target genes HES1 and HEY1, inhibits the expression of anti-

inflammatory factors, and promotes the development of pancreatic cancer [39]. Besides, 

NF-κB can also promote EMT by inhibiting the expression of E-cadherin, and NF-κB is 

also necessary for TGF-β1-induced EMT [40, 41]. 

1.1.3.5 TLRs pathway  

Toll-like receptors (TLRs) are a highly conserved family of receptors, including at 

least 12 members. TLRs can specifically recognize pathogen-associated molecular 

patterns (PAMPs), which can not only activate innate immunity but also play an 

important role in regulating acquired immunity. It is a bridge connecting innate immunity 

and acquired immunity. Many immune effector cells, including monocytes/macrophages, 

neutrophils, and dendritic cells, express TLRs. TLRs recognize and bind PAMPs to 

activate downstream signaling molecules, inducing chemokines, interleukins, and other 

costimulatory molecules. Current research indicates that TLRs mediate at least two signal 

cascade amplification pathways, one is the myeloid differentiation factor 88 (MyD88) 

dependent pathway, and the other is the MyD88 independent pathway [42]. 

On the one hand, TLRs play an important role in immunity, and excessive 

activation of TLRs is also crucial in promoting tumor formation and migration. Studies 
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have shown that TLR4 and TLR7 are highly expressed in human and mouse pancreatic 

cancer cells [43, 44]. The continuous activation of TLR in acute and chronic pancreatitis 

models not only aggravates inflammation of the pancreas but also accelerates tumor 

formation in the pancreas [44]. LPS can induce the activation of NF-κB through the 

TLR4/MyD88 pathway, thereby producing a series of biological effects such as 

promoting cell proliferation, migration and invasion [45]. TLR7 is not expressed in 

normal human and mouse pancreatic tissues. Still, in the KRAS mutant pancreatic cancer 

mouse model and human pancreatic cancer samples, whether it is in epithelial cells or 

macrophages, dendritic cells, T/ B cells have extremely high expression levels. In 

pancreatic cancer with obvious inflammation, the activation of TLR7 accelerates the 

formation and deterioration of pancreatic tumors [46]. 

1.1.3.6 The non-coding RNA pathways 

The non-coding RNA pathways have also been shown to involve in the malignant 

transformation of chronic pancreatitis. MicroRNA (miRNA) and long-chain non-coding 

RNA (lncRNA) are non-coding RNAs with post-transcriptional regulatory functions in 

eukaryotic organisms, which play an important role in various biological pathways. It has 

been reported in that in pancreatic cancer, miR-1290, miR-200a and miR-200b showed 

high expression and predicted poor prognosis, and could be used as a diagnostic indicator 

for pancreatic cancer in the future [47, 48].  

 

1.2 Tumor microenvironment (TME) 
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The tumor microenvironment was proposed by Ioannides in 1993 [49]. It 

specifically refers to the local environment in which tumors develop and develop. It 

mainly consists of tumor cells, stromal cells, immune cells and their secreted cytokines, 

and the surrounding extracellular matrix. A unique environment is conducive to tumor 

survival, proliferation, invasion and metastasis [49]. The characteristics of the pancreatic 

cancer tumor microenvironment include abundant matrix, hypoxia, insufficient blood 

supply, and high immunosuppression. It is difficult for traditional radiotherapy and 

chemotherapy to play a therapeutic role. Therefore, finding new therapeutic targets 

through pancreatic cancer tumor microenvironment is a promising research direction.  

1.2.1 Stromal cells and extracellular matrix 

The stromal cells of pancreatic cancer are mainly pancreatic stellate cells and 

cancer-associated fibroblasts. The extracellular matrix mainly includes collagen, 

fibronectin and hyaluronic acid. Stromal cells and extracellular matrix play a vital role in 

the proliferation, invasion and metastasis of pancreatic cancer [50]. The matrix barrier 

formed by their interaction is an important reason for the resistance of pancreatic cancer 

to radiotherapy and chemotherapy. 

1.2.1.1 Pancreatic stellate cells (PSCs) 

Pancreatic stellate cells are one of the primary cells in the microenvironment of 

pancreatic cancer. Under physiological conditions, pancreatic stellate cells are at the 

resting stage and are mainly involved in maintaining the normal structure of pancreatic 

tissues [51]. Pancreatic tumor cells can transform resting pancreatic stellate cells into 

activated myofibroblast-like cells [52]. Transformed pancreatic stellate cells can rapidly 

proliferating and secrete large amounts of extracellular matrix and cytokines, forming a 
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microenvironment that is conducive to tumor growth. PSCs have been shown to promote 

the growth and proliferation of pancreatic cancer. Pancreatic stellate cells and pancreatic 

tumor cells promote each other through "positive feedback." Pancreatic tumor cells 

secrete platelet-derived growth factor, TGF⁃β, fibroblast growth factor, etc. to promote 

the activation of pancreatic stellate cells and recruit them around the tumor cells. 

Activated pancreatic stellate cells rapidly proliferate and secrete TGF⁃β, fibroblast 

growth factor, connective tissue growth factor, etc. in a paracrine manner, which in turn 

promotes the growth and proliferation of pancreatic tumor cells [53]. PSCs can also 

promote the invasion and metastasis of pancreatic cancer. The results of studies on 

pancreatic ductal cancer organoids showed metalloproteinase two secreted by pancreatic 

stellate cells could induce the destruction of the basement membrane structure and 

promote local tumor invasion [54]. Through inhibition of metalloproteinase, two can 

weaken the destruction of pancreatic stellate cells to the basement membrane, retaining 

the organoid duct structure [54]. 

PSCs can also promote chemotherapy resistance. On the one hand, pancreatic 

stellate cells secrete a large amount of extracellular matrix and cytokines to form a 

microenvironment of dense fiber, hypoxia, and insufficient blood supply. Among them, 

occlusion of non-functional blood vessels and an impenetrable fiber barrier make it 

difficult for chemotherapy drugs to enter the tumor tissue through the blood [55]. On the 

other hand, pancreatic stellate cells downregulate the nucleoside transporter that mediates 

the uptake of gemcitabine in tumor tissues by secreting cysteine-rich angiogenin 

inducers, leading to pancreatic cancer resistance to gemcitabine [56]. In recent studies, 

PSCs also showed immunosuppression properties. Nuclear factor κB in pancreatic 
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stellate cells can increase the expression of chemokine ligand 12, thereby reducing the 

cytotoxic T cell infiltration killing effect [55]. Pancreatic stellate cells regulate the 

secretion of various cytokines in T cells and induce the apoptosis of CD4+ and CD8+ T 

cells by overexpressing galectin-1, assisting tumor immune escape [57]. 

1.2.1.2 Cancer associated fibroblasts (CAFs) 

Cancer associated fibroblasts are fibroblasts of mesenchymal origin and an 

important part of tumor stromal cells. There are a large number of cancer associated 

fibroblasts in the pancreatic tumor microenvironment, which mainly promote the 

invasion, metastasis and chemotherapy resistance of pancreatic cancer by secreting 

growth factors, chemokines and extracellular matrix.  Cancer associated fibroblasts have 

been shown to promote tumor stromal barrier and angiogenesis by secreting a large 

amount of extracellular matrix and tumor-associated angiogenesis factors, thereby 

accelerating tumor progression and reducing chemotherapy drug penetration [58]. Cancer 

associated fibroblasts promote tumor proliferation, invasion and metastasis by secreting 

IL⁃6, IL⁃8, chemokine two and chemokine ligand 12 etc. Results show that the use of a 

new vinblastine derivative, Conpholine, can inhibit the activity of cancer associated 

fibroblasts and reduce the synthesis of cytokines, thereby reducing pancreatic cancer 

tissue fibrosis, inhibiting tumor proliferation, metastasis, and increasing the permeability 

of chemotherapy drugs [59]. Cancer associated fibroblasts can also mediate the formation 

of chemotherapy resistance through a variety of signaling pathways and exosome 

pathways. The use of specific inhibitors can improve the efficacy of chemotherapy drugs 

[60]. 
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Some research results show that inhibiting or depleting tumor-related fibroblasts 

in mouse model experiments can delay the progression of pancreatic cancer. Still, the 

same results have not been obtained in clinical trials [61]. There are also research results 

showing that a dense matrix barrier may delay tumor invasion and metastasis, and simply 

eliminating the matrix may lead to tumor progression. Application of curcumin can make 

cancer associated fibroblasts lose the characteristics of mesenchymal cells and transform 

into nearly normal fibroblasts, thereby inhibiting the tumor-promoting effect of tumor-

associated fibroblasts [62]. Therefore, reversing the abnormal cell structure may be a 

feasible strategy for tumor targeted therapy. 

1.2.1.3 Hyaluronic acid 

Hyaluronic acid is highly expressed in various tumors and is closely related to 

tumor progression. On the one hand, hyaluronic acid is deposited in large amounts 

around pancreatic cancer tissue. Its high hydrophilicity leads to the collapse of blood 

vessels and low perfusion, forming a physical barrier that hinders the delivery of 

chemotherapy drugs, stimulating the migration ability of pancreatic cancer cells and 

cancer associated fibroblasts, and participate in the invasion and metastasis of pancreatic 

cancer [63]. Recent results show that the degradation of hyaluronic acid by pegylated 

hyaluronidase can gradually restore the interstitial pressure and microvascular 

abnormalities [64]. The combined use of pegylated hyaluronidase and hyaluronic acid 

synthesis inhibitor can improve anti-tumor drug penetration, thereby delaying tumor 

progression and prolonging patient survival time [65]. Another recent study showed that 

the use of hyaluronic acid synthesis inhibitor 4⁃methylumbelliferone in a mouse 

xenograft model could reduce the hyaluronic acid in the tumor and promote the 
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infiltration of the γδT cells into the tumor tissue, thereby inhibiting tumor growth [66]. 

This means that the hyaluronic acid synthesis inhibitor may become an effective 

immunosensitizer. Stromal cells and extracellular matrix play an extremely important 

role in the proliferation, invasion and metastasis of pancreatic cancer. Targeted therapy 

for stromal cells and extracellular matrix is an important direction of pancreatic cancer 

research. Some research results show that simple elimination of stromal cells and 

extracellular matrix may lead to further progress of pancreatic cancer, suggesting that 

stromal cells and extracellular matrix may play a role in inhibiting the progress of 

pancreatic cancer [67]. 

1.2.2 Immune cells 

The immune system plays an important role in removing malignant cells. 

Pancreatic cancer can imbalance the number and function of immune cells with anti-

tumor effects through a variety of ways, thereby creating a highly immunosuppressed 

microenvironment to help tumor cells escape immune surveillance. 

1.2.2.1 Tumor-associated macrophages (TAMs) 

Normal macrophages can differentiate into two phenotypes, M1 and M2, under 

different conditions. M1 type macrophages can promote local inflammation of tumors 

and participate in immune surveillance; M2 type macrophages can secrete IL⁃10, TGF⁃β 

and other cytokines to promote tumor angiogenesis, participate in tissue remodeling, 

suppress the immune response and induce chemotherapy resistance, thereby accelerating 

the proliferation, invasion and metastasis of pancreatic cancer [68]. Pancreatic cancer can 

actively recruit monocytes by secreting macrophage colony-stimulating factor, TGF⁃β, 

IL⁃6, IL⁃10, etc. and promote their transformation into M2 macrophages [69]. The results 
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of a co-injection experiment in mice showed that M2-type macrophages could induce 

tumor cell epithelial-mesenchymal transition, promote tumor growth and peritoneal 

metastasis and confer stronger chemotherapy resistance on tumor cells [70]. In pancreatic 

cancer, specific inhibition of macrophage colony-stimulating factor and chemokine 

ligand two can reduce tumor-associated macrophages, inhibit tumor growth and increase 

the killing ability of effector T cells and improve the efficacy of gemcitabine [71]. 

Furthermore, IL⁃27 can transform M2 type macrophages into M1 type and regain their 

anti-tumor potency [72]. 

1.2.2.2 Regulatory T cells (Tregs) 

Regulatory T cells are a multifunctional subset of T cells that mainly induce 

immune tolerance and exert immunomodulatory effects in normal organisms. They 

mostly play an immunosuppressive role in tumor patients and promote tumors by 

suppressing the killing ability of effector T cells, immune evasion and transfer. TGF⁃β in 

the tumor microenvironment can induce the generation of regulatory T cells, and the 

application of TGF⁃β neutralizing antibodies can inhibit the maturation of regulatory T 

cells [73]. Pancreatic cancer cells can also recruit regulatory T cells to the tumor by 

secreting chemokine ligand 5, vascular endothelial growth factor (VEGF), the application 

of corresponding inhibitors can reduce the infiltration of regulatory T cells in the tumor 

[74]. Regulatory T cells can secrete TGF⁃β to directly inhibit the anti-tumor effect of 

CD8+ T cells and natural killer cells. They can also induce apoptosis of CD8+ T cells and 

natural killer cells by secreting granzyme B and perforin [75]. Regulatory T cells can also 

interact with antigen-presenting cells to inhibit their CD80 and CD86 expression, leading 

to dysfunction of cytotoxic T cells and dendritic cells [76]. Cytotoxic T-lymphocyte-
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associated protein 4(CTLA4) on the surface of regulatory T cells plays an important role 

in the process of immunosuppressive regulation. Neutralizing antibodies can induce the 

apoptosis of regulatory T cells and reduce the inhibitory signal. A small dose CTLA4 

monoclonal antibody can effectively reduce tumor volume, but systemic use of large 

doses will increase the infiltration of secondary lymph node regulatory T cells [77]. 

Gemcitabine can significantly reduce regulatory T cells in peripheral blood, and 

monoclonal antibodies, vaccines, and various combination treatments against regulatory 

T cells have also achieved positive results in animal experiments. 

1.2.2.3 Myeloid-derived suppressor cells (MDSCs) 

Myeloid-derived suppressor cells are a group of immature heterogeneous cells 

derived from bone marrow. Myeloid-derived suppressor cells in pancreatic cancer can 

mediate immunosuppression through a variety of pathways to assist immune escape. 

Myeloid-derived suppressor cells can produce arginase and nitric oxide synthase. 

Arginase can decompose arginine necessary for T cell proliferation, thereby reducing T 

cell production. Nitric oxide synthase can inhibit T cell signaling pathways and induce T 

cell apoptosis, thus inhibiting its cytotoxicity [78]. Myeloid-derived suppressor cells can 

also release reactive oxygen species, causing oxidative stress in surrounding cells, 

thereby promoting tumorigenesis and development. The use of antioxidants to treat 

pancreatic cancer can improve the prognosis of patients [79]. IL⁃10, IFN-γ, and TGF⁃β in 

the tumor microenvironment can activate myeloid-derived suppressor cells. The activated 

myeloid-derived suppressor cells can induce the proliferation of regulatory T cells and 

further mediate immunosuppression [80]. Myeloid-derived suppressor cells have high 

expression of Programmed death-ligand 1 (PD-L1). The myeloid-derived PD-L1 highly 
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expressed on cells can specifically bind to Programmed cell death protein 1(PD-1) to 

inhibit the activation of T cells and reduce the tumor-killing ability of T cells [81]. 

Targeting depletion of Myeloid-derived suppressor cells in pancreatic cancer can reshape 

the tumor matrix, increase the number of CD8+ T cells in the tumor tissue and induce 

tumor cell apoptosis, which may be a way to enhance classic cytotoxicity and adoptive 

immunity based immunotherapy [82]. Tumor-associated macrophages, regulatory T cells, 

and myeloid-derived suppressor cells, etc., create a highly immunosuppressive 

microenvironment through multiple pathways, which is an important reason why 

pancreatic cancer is insensitive to radiotherapy and chemotherapy. The above immune 

cells can not only suppress the immune response in their own way, but also induce 

immunosuppression through a common pathway. 

1.2.3 Summary 

The interaction of various cells and non-cellular components in pancreatic cancer to 

create a microenvironment rich in the extracellular matrix, hypoxia, inadequate blood 

supply, and high immunosuppression is an important reason for pancreatic cancer to be 

insensitive to radiotherapy and chemotherapy. At present, many potential targets based 

on stromal cells or extracellular matrix in the tumor microenvironment have been found. 

A large number of experimental studies have obtained good results in animal models, but 

some research results suggest that tumor growth was not being restrained. Due to the 

complexity and specificity of the microenvironment of pancreatic cancer, compared with 

single-target therapy, immunotherapy, radiotherapy and chemotherapy combined with 

multi-target therapy, may be a more effective strategy. However, to design an efficient 

and safe joint scheme, we must further understand the mechanism of the tumor 
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microenvironment, and more research is needed to find the synergy and adverse reactions 

between different therapies and different drugs. 

1.3 Circulating tumor cells (CTCs) 
 

Circulating tumor cells (CTCs) are tumor cells that shed from the primary tumor 

tissue into the blood circulation [83]. After the CTCs enter the blood circulation, most of 

them undergo anoikis, blood flow shear stress, immune recognition and killing. The 

number of CTCs that can eventually survive in peripheral blood is very small, usually 

1~10²/mL (the number of white blood cells is 105~106/mL, and the number of red blood 

cells is 109~1010/mL). CTCs and the clusters formed by multiple CTCs play a key role in 

tumor metastasis [84]. The surface antigens, genotypes and pathological characterization 

of CTCs during the transmission process are the main points of the current research on 

the mechanism of cancer metastasis. CTCs based liquid biopsy technology is simple and 

minimally invasive and can better represent tumor heterogeneity. It has been regarded as 

a new type of tumor biomarker. CTCs counts, count changes, subgroup characteristics, 

etc. have been related to patient prognosis and have established more and more links with 

personalized treatment. Using the functional diagnosis results of CTCs to develop a 

personalized cancer treatment plan is an important and reliable way to achieve precise 

drug use for cancer.  

1.3.1 Isolation of CTCs  

The isolation methods of CTCs can be divided into two categories: biological 

method and physical method, according to the isolation principle [85]. Biological 

methods use surface antigens of CTCs that are different from other blood cells (white 
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blood cells, red blood cells, platelets), and physical methods are based on differences in 

density, size, and deformability of CTCs and other blood cells. After the red blood cells 

in the patient's blood sample are lysed, surface-fixed EpCAM antibodies are used to 

recognize and capture the CTCs expressing the EpCAM antigen directly, and the 

obtained CTCs can be subjected to downstream analysis. This isolation method belongs 

to positive enrichment in biological methods. The CELLSEARCH system is the 

representative of this isolation technology and is currently the only CTCs isolation 

system approved by the FDA for the prognosis of metastatic breast cancer, colon cancer, 

and prostate cancer [86-88]. Magnetic beads with leukocyte-specific antibodies are used 

to eliminate leukocytes to obtain an unlabeled CTCs suspension. This method is also 

known as negative enrichment in biological methods [89, 90]. In the physical method, the 

OncoQuick system does not rely on antigen recognition but is separated by the density of 

CTCs and other blood cells [91]. Therefore, both EpCAM positive and negative CTCs 

can be obtained. The technical principle of the MetaCell system is to use CTCs with a 

diameter greater than other blood cells, and the blood sample is filtered through a 

polycarbonate membrane with a pore size of 8um to separate CTCs [92]. Hou et al. 

designed spiral micro-pipes based on the principles of hydrodynamics and isolated CTCs 

and leukocytes by coupling inertial micro-flows with Dean circulation [93]. The same 

group also further designed a microfluidic device that can separate a single CTC base on 

this so that the obtained CTCs can be directly used for downstream molecular biological 

applications [94]. 

At present, there are also reports on the application of nanotechnology in the 

isolation of CTCs. Halo et al. attached single-stranded DNA complementary to specific 
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genes (such as TWIST1 or 2) mRNA in CTCs to the surface of gold nanoparticles [95]. 

When nanoparticles enter CTCs, the two-release fluorescence when they are combined, 

and CTCs can be detected semi-quantitatively according to the fluorescence intensity. It 

should be noted that the detection rate and purity of CTCs in different principles and 

different isolation systems will vary greatly. For example, when the antigen-based 

CELLSEARCH system and the size-based FMSA system were used to detect 

perioperative CTCs, the detection rate of the FMSA system was as high as 93.4%, and 

the average number of CTCs was 22.56/7.5mL The CellSEARCH system is only 26.1% 

and 0.87/7.5mL [96]. Biological methods based on antigen recognition have the 

advantage of high purity, but will miss CTCs that do not express the corresponding 

antigen, and may affect downstream functional detection due to the role of antigen 

antibodies; physical isolation methods based on density and size are not subject to CTCs 

surface antigens. The detection rate is high, but the purity may be lower due to the 

possibility of mixing with other blood cells. CTCs isolation technology has developed 

rapidly, and many more sophisticated systems already have faster sample processing 

speed, higher detection rates, and detection purity. What is urgently needed is the 

corresponding technical specifications and operating standards to standardize and 

standardize clinical application research and experimental research. 

1.3.2 Molecular biological characteristics of CTCs 

With the continuous improvement of CTCs isolation technology, the emergence 

of biological achievements such as genomics, transcriptomics, and proteomics has 

provided the possibility to reveal the molecular biological characteristics of CTCs and 

their role in the development of tumor metastasis. Epithelial-to-mesenchymal transition 
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(EMT) refers to the biological process of transforming epithelial cells into mesenchymal 

phenotype cells through a specific procedure [97]. In this process, tumor cells lose their 

polarity, adhesion and other epithelial phenotypes and transform into mesenchymal 

phenotypes with high movement and invasion ability, thereby greatly improving the 

ability of tumor cells to invade and metastasize [98]. Existing studies have shown that in 

the epithelial cell-derived tumor cells, the expression of E- cadherin protein is inhibited 

by the transcription factors of SNAI1, SNAI2, ZEB1, ZEB2, MMP9, TWIST1, TWIST2, 

EMT then occurs, tumor cells lost polarity, and cell adhesion sheds from tumor tissue and 

enters the circulatory system [99]. Most of the CTCs that enter the circulatory system 

undergo apoptosis or enter a dormant state under the effect of immune editing. Only 

about 0.1% of CTCs are still alive after 24 hours, of which less than 1/10 is still 

tumorigenic [100]. EMT is a complex process regulated by multiple factors and signaling 

pathways, and its specific mechanism still needs to be further clarified. IL-6 has long 

been considered to have the function of promoting EMT of colorectal malignancies. IL-6 

regulates the EMT process through Fos-related antigen 1 (FRA1) and signal transducer 

and activator of transcription 3 (STAT3) [101]. After knocking down the expression of 

STAT 3 or IL-6 by siRNA, EMT, cell migration, invasion and other phenomena are 

hindered. The transcription factor, nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF- κB), regulates a wide range of biological processes, including inflammation, 

cell expansion, and apoptosis. Maier et al. found that when NF- κB is inhibited, 

transforming growth factor β (TGF-β)-induced EMT cannot occur, and after activation of 

NF- κB, cells exhibit vimentin and ZEB1 related EMT features such as up-regulation and 

down-regulation of E-cadherin [102]. Gu et al. found that IL-17 in lung cancer cells have 



 24 

to up-regulate ZEB1 via NF- κB pathway, further inducing EMT [103]. Based on the 

structural analysis of the regulatory signal network of EMT, Chanrion et al. proposed and 

verified that the loss of p53 and Notch activation synergistically induce EMT [104]. Yang 

et al. found that fucosyltransferase can activate P13K/Akt and NF- κB pathways to 

further activate SNAI1 and MMP-9 to induce EMT [105]. Salnikov et al. proved that a 

hypoxic environment would positively regulate EMT-related genes, resulting in 

decreased expression of E-cadherin and increased expression of vimentin [106]. Zheng et 

al. used genetically engineered mice knocked out of Snai1 or Twist, proving that the 

inhibition of EMT does not change the occurrence, spread and metastasis of pancreatic 

ductal adenocarcinoma, but enhanced expression of nucleoside transporters [107]. 

Suppression of EMT increases the sensitivity and overall survival rate to the 

chemotherapy drug gemcitabine [107]. 

1.3.3 Survival mechanism of CTCs 

Entering the blood system, CTCs will be inactivated by blood shear stress and 

immune cell killing. During the transmission process, CTCs adopt multiple mechanisms 

to protect themselves, including using platelets as a protective barrier and avoiding 

immune recognition. Tumor cells polymerize with platelets in the blood and resist the 

shear stress of blood flow. Zheng et al. found that platelets and tumor cells express the 

main receptor of fibrinogen and β-integrin [108]. Fibrinogen can bridge the two types of 

cells, strengthen the combination of the two, and promote the protection of CTCs. 

Heparin and chemical derivatives can inhibit the binding of fibrinogen and β-integrin and 

have the potential to develop into anti-cancer metastasis drugs. In terms of 

immunorecognition, CD47 is a widely expressed transmembrane protein, which can bind 
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to the single regulatory protein α expressed by macrophages and dendritic cells to inhibit 

its phagocytosis. Willingham et al. systematically analyzed CD47 expression of 

malignant tumor cells from various parts of the human body (including ovary, breast, 

colon, bladder, prostate, etc.), CD47 expression of tumor cells was found to be about 3.3 

times that of corresponding normal cells on average [109]. The same study found that 

CD47 mRNA levels were negatively correlated with the patient's progression-free 

survival (PFS), and anti-CD47 antibodies restored phagocytosis, further proving that high 

expression of CD47 can reduce the immune system's killing of CTCs. 

Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that can attract 

immune cells such as natural killer cells (NK) and memory T lymphocytes and is related 

to tumor growth and diffusion. Mardani et al. analyzed and compared the MCP-1 

concentration in the serum samples of healthy volunteers and patients with 

benign/malignant salivary gland tumors, and found that the MCP-1 concentration in the 

blood samples of patients with high progression was low, and believed that low 

concentration MCP-1 provided favorable conditions for the tumor diffusion [110]. NK 

cells are a type of cells that directly kill tumor cells through perforated proteins and 

granzymes or indirectly eliminate tumors by regulating factors such as interferon γ (IFN- 

γ), tumor necrosis factor-alpha (TNF-α) and other factors, and their activation depends on 

a variety of protein receptors. Rocca et al. found that the expression of CD16. NKG2D, 

DNAM-1, CD161, NKp46, NKp30 and other activated receptors on the surface of NK 

cells in peripheral blood were negatively regulated. In contrast, inhibitory receptors such 

as CD85j and NKG2A were positively regulated; these regulations reduce the 

cytotoxicity of NK cells and the amount of IFN- γ secretion [111]. It is speculated that 
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during the spread of cancer, the decrease in NK cell activity leads to enhanced survival of 

tumor cells in the circulatory system. The overexpression of protease-activated receptors-

1 (PAR-1) on the surface of breast cancer, prostate cancer, melanoma cells is also related 

to its enhanced metastatic ability. Villares et al. found that PAR-1 negatively regulates 

the level of Maspin, and the latter can increase the apoptosis of tumor cells and reduce 

tumor angiogenesis [112]. After fully understanding the molecular-level mechanism of 

CTCs to avoid immune system attacks, it is possible to use human autoimmunity to 

intervene in the occurrence and development of tumor metastasis. 

1.3.4 Heterogeneity   

Tumor tissue has heterogeneity (such as different mutation sites and different cell 

phenotypes). CTCs not only have the same heterogeneity but also may become an 

effective tool for studying tumor heterogeneity. Li et al.  stained CTCs of gastric cancer 

patients with keratin 8, 18, 19, and EpCAM as epithelial (E) markers, and vimentin and 

TWIST as mesenchymal (M) markers. Then categorize patients into five categories (E, 

E>M, E=M, E<M, M), it was found that most (31/35) samples contained two or more 

CTC states, that is, between epithelial cells and mesenchymal cells [113]. Another study 

compared the nucleus size of 304 prostate cancer CTCs and their host cancer metastasis 

and found that CTCs can be divided into large nuclei (>14.99 pm), small nuclei 

(8.54~14.99um), and extremely small according to the size of the nuclei. Nuclei (<8.54 

um), the number of small and very small CTCs is significantly related to cancer 

metastasis, and the number of very small CTCs is significantly related to visceral 

metastasis [114]. Due to factors such as EMT and environmental induction, CTCs may 

acquire mutations that are different from tumors in situ, making them different from 
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tumors in situ and richer in heterogeneity. CD24 is a ubiquitous marker on the surface of 

breast epithelial cells. Rostoker et al. isolated CD24+ and CD24- cells from breast cancer 

cell lines proving that CD24+ cells are easier to aggregate into microspheres, and CD24+ 

tumors grow faster and are easier to metastasize [115]. They also found that about 70% of 

the tumors that grew from CD24+ cells were CD24. Pavese et al. used CTCs cell lines 

produced by orthotopically transplanted prostate cancer mice to conduct cell invasion, 

migration, colony formation, xenotransplantation and other experiments, and compared 

the doubling time, cell morphology, and migration of CTCs compared with orthotopic 

tumor cells. There was no obvious change in the ability and the size of the induced tumor, 

while the invasion ability increased by 50%, and the number of metastatic tumor cells 

increased [116]. Further studies have shown that the MMP-2 and EMT-related proteins of 

CTCs have increased in quality and show a slightly different drug sensitivity (increased 

resistance to mitoxantrone) from tumor cells in situ. Pailler et al. detected Proto-

Oncogene 1 (ROS1) rearranged CTCs in patients with non-small cell lung cancer and 

found that the average and standard deviation of ROS1 copy number was significantly 

higher than that of tumor tissue cells, proves CTC has higher heterogeneity [117].  On the 

one hand, CTCs usually exhibit richer heterogeneity than clinically acquired local tumor 

tissues, and can provide strong support and guidance when formulating medication 

regimens based on the patient's genotype and phenotype; on the other hand, CTCs may be 

more Tumor tissue cells accumulate additional gene mutations, and they need to be 

cautious when using their molecular biological properties as a window to observe tumor 

tissue. 
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1.3.5 Application of CTCs in diagnosis and staging 

Difficulties in early diagnosis and lack of effective individualized treatment are 

important reasons for the poor prognosis of pancreatic cancer. About 80% of pancreatic 

cancer patients have had peripheral tumor invasion or distant metastasis at the time of 

diagnosis and cannot be treated with surgery [118]. CA19-9 is the most important clinical 

serum biomarker for pancreatic cancer. Still, the sensitivity and specificity are only 80% 

and 82%. In contrast, some patients with pancreatic cancer do not have elevated CA19-9 

levels, and some patients with benign diseases (such as pancreatitis, biliary obstruction) 

will have false positives elevated CA19-9 levels [119]. Therefore, it is necessary to find 

new and effective biomarkers, which can be used not only for the early diagnosis of 

pancreatic cancer but also to monitor the efficacy and guide clinical treatment. As an 

important part of liquid biopsy, CTCs are the hot spots of clinical research. The venous 

blood of the pancreas first flows back to the liver through the portal vein system and then 

reaches the systemic circulation. The peripheral blood CTCs are significantly less than 

those of breast cancer, prostate cancer and other tumors. Pancreatic cancer is rich in the 

stroma, and the proportion of tumor cells is limited, so the CTCs in peripheral blood are 

also less than those of colorectal cancer and gastric cancer that also return through the 

portal vein [120]. Some studies failed to draw meaningful conclusions due to the low 

detection rate of pancreatic cancer CTCs and the low CTCs count per unit of blood 

sample [121]. 

Kulemann et al. found that 75.0% of early pancreatic cancer patients (AJCC stage 

≤ IIB) were positive for CTCs, and 71.4% of advanced patients (AJCC stage ≥ III) were 

positive for CTCs [122]. Therefore, CTCs not only appear in patients with metastasis or 
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advanced stage but can appear in different stages of pancreatic cancer. Zhang et al. used 

Pan-CK, CD45, DAPI, and CEP8 (chromosome centromere probe 8) as markers to detect 

CTCs from 22 cases of pancreatic cancer, 3 cases of solid pseudopapillary tumors, and 6 

cases of benign pancreatic tumors and 30 healthy volunteers [123]. They found when 

Pan-CK+, CD45+, DAPI+ and CEP ≥ 2 were used as the criteria for pancreatic cancer 

CTCs, and the CTCs count ≥ 2/3.75mL had a sensitivity and specificity of 68.18% and 

94.87% for the diagnosis of pancreatic cancer, respectively [123]. Zhou et al. detected the 

expression of C-MET, h-TERT, CK20 and CEA genes in pancreatic cancer CTCs at 

80%, 100%, 84% and 80%, respectively, and 0, 0, 6.7% and 0 in normal somatic cells 

[124]. If the above four gene expressions are used as the standard for pancreatic cancer 

CTCs at the same time, the sensitivity and specificity of diagnosis can reach 100%. 

Ankeny et al. detected the CTCs from 72 patients with pancreatic cancer and 28 patients 

with other pancreatic diseases. They showed that the positive rate of CTCs in stage Ⅰ to Ⅱ 

patients was 54.84% (17/31), and the positive rate of stage Ⅲ was 78.57% (11/14), the 

positive rate of stage Ⅳ was 96.30% (26/27), while only 1 of 28 patients with other 

pancreatic diseases detected one CTCs [125]. They show that CTCs ≥3/4mL can be used 

as the criterion for stage Ⅳ pancreatic cancer diagnosis. CTCs are expected to become 

biological markers for the diagnosis and staging of pancreatic cancer. 

1.4 Cancer metabolism  

1.4.1 The glycolysis and TCA cycle 

In the 1920s, Warburg et al. observed that tumor tissue consumes glucose faster 

than surrounding healthy tissue, and cancer cells can rely on rapid glycolysis and 

mitochondrial respiration at the same time [126, 127]. Since this discovery, glycolysis 
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and other metabolic pathways related to tumor metabolism have been extensively 

explored. The glycolytic metabolic pathway begins with the uptake of extracellular 

glucose from the environment surrounding the cell and subsequent intracellular 

processing of glucose in the cytosol to yield pyruvate along with numerous other 

products eventually. Glycolytic metabolism is a relatively inefficient pathway for the 

generation of cellular ATP, netting only two molecules of ATP per unit of glucose. 

Energy metabolism is the process of energy generation, release, conversion and 

utilization of energy in the process of organism metabolism. Normal cells are mainly 

powered by aerobic oxidative phosphorylation of glucose, and glycolysis is the main 

method in an anoxic environment. The energy metabolism characteristics of tumor cells 

are different. Even in the case of sufficient oxygen supply, tumor cells still actively take 

up glucose and perform glycolysis, while producing a large amount of lactate. This is the 

pioneer theory of the tumor energy metabolism-Warburg Effect [126]. Although 

glycolysis has low productivity, it is necessary for rapidly proliferating tumor cells. It not 

only provides ATP for tumor cells quickly but also provides a variety of biological 

macromolecules for the construction of new cells, thereby giving them growth advantage. 

The special energy metabolism pattern of tumor cells has become a new tumor sign 

phenomenon [128]. In recent years, research on tumor energy metabolism has become a 

hot research direction of scientists and even pharmaceutical companies. With the 

deepening of its research, targeted energy therapy of tumors will also usher in new 

opportunities. Since the tumor is a heterogeneous disease, the heterogeneity of cells and 

structure gives it a complex energy metabolism phenotype.  
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Although tumor cells have different energy metabolism methods, in general, the 

glycolysis phenotype is still dominant and dependent on glutamine consumption. The 

study found that even if the tumor tissue is rich in oxygen, its glycolysis is still at a 

productivity advantage, but oxidative phosphorylation is relatively inhibited [129]. This 

reprogramming of energy metabolism may be related to the following factors. 

1.4.1.1 Hypoxia 

With the increase in the number and volume of tumor cells, the original blood 

vessels have been difficult to meet the supply of nutrients and oxygen, and the number of 

new blood vessels is insufficient, the framework is disturbed, the self-regulation ability is 

poor, and there is a lack of vasomotor structure and physiological drug receptor. This also 

further affects the transportation of oxygen and nutrients. Besides, there are blood 

rheology changes in tumors. These factors will lead to the formation of a hypoxic 

environment with chronic diffusion disorders in tumors [130]. 

There are two reasons for hypoxia to cause the glycolysis energy metabolism 

phenotype of tumor cells. First, hypoxia stimulates the expression of hypoxia inducible 

factor-1 (HIF-1), which can upregulate the expression of glucose transporter 1/3 

(GLUT1/3) to ensure a large amount of glucose uptake [131]. Meanwhile, HIF-1 up-

regulates the expression of most glycolysis related enzymes, such as hexokinase-1/2 

(HK1/2), phosphoglycerate kinase 1(PGK1), lactate dehydrogenase A (LDHA), 6-

phosphofructo-2 -kinase/fructose-2,6-bisphosphatase-3/4 (PFKFB3/4), pyruvate kinase 

M2 (PKM2), etc., and this makes the glycolysis pathway more prereferral [132, 133]. 

Second, hypoxia and HIF-1 inhibit mitochondrial biosynthesis and cause mitochondrial 

autophagy, thereby reducing the copy number of mitochondria. They can also reduce the 
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expression of pyruvate dehydrogenase kinase 1 (PDK1) and acetyl-CoA production, or 

inhibit mitochondrial electron transport chain components iron-sulfur cluster assembly 

enzyme (ISCU) and cytochrome c oxidase assembly factor heme A:farnesyltransferase 

(COX10) expression, which in turn inhibits the mitochondrial oxidative phosphorylation 

function [134, 135]. Therefore, tumor cells need to supply energy by glycolysis. 

1.4.1.2 Activation of oncogenes and inactivation of tumor suppressor genes 

HIF-1 can bind to the promoter region of the Myc gene and stimulate Myc gene 

expression [136]. Also, the c-Myc gene can be activated by gene amplification and 

chromosomal translocation. High Myc expression is very common in tumors. Myc is a 

transcription factor with a wide range of biological functions, including cellular energy 

metabolism. Myc can stimulate the expression of many genes, including GLUT and 

glycolysis related genes, so that the metabolism of tumor cells moves towards the 

Warburg effect. Abnormal activation of the Myc gene also leads to abnormally increased 

synthesis of LDHA [137]. LDHA catalyzes the formation of pyruvate to form lactate, and 

the resulting lactate is discharged out of the cell, which is closely related to the 

acidification of the tumor microenvironment. This acidified environment is not good for 

normal tissues, but it is good for tumor tissues, which can stimulate the growth of tumor 

cells [138]. Recently, it has been suggested that lactate excreted by hypoxic tumor cells 

can be taken up by adjacent subpopulation tumor cells as an energy source, thereby 

forming a metabolic symbiont of lactate excretion and lactate utilization cells. This 

phenomenon is not unique to tumors, and it reflects that tumors use other physiological 

mechanisms for their rapid growth [139]. Therefore, blocking the activity of LDHA may 



 33 

effectively cut off the energy source of cancer cells, thereby causing them to die without 

affecting normal cells with aerobic metabolism. 

1.4.1.3 PKM2 

Recently, researchers have discovered that pyruvate kinase M2 (PKM2) is a very 

important metabolic molecule behind the glycolysis process [140]. There are two isomers 

of M-type pyruvate kinase, PKM1 and PKM2. PKM2 is usually expressed in embryonic 

tissue, while PKM1 is expressed in adult tissue. When the cells become cancerous, 

PKM2 resumes expression, while PKM1 expression is suppressed. Analysis of various 

tumor cell lines confirmed that PKM2 is the only form of pyruvate kinase found in 

cancerous tissues. When PKM1 is used to replace PKM2 in tumor cells, it leads to a 

decrease in lactate production and an increase in oxygen consumption, which is exactly 

the opposite of the Warburg effect. Only cells expressing PKM2 can form tumors in 

mice, indicating that PMK2 can promote unique metabolic phenotypes in tumor cells 

[140]. The expression of PKM2 in tumor cells is also related to Myc protein. Myc protein 

can induce the expression of PKM2, which is consistent with Myc's energy metabolism 

of tumor cells towards the Warburg effect [141]. Recent studies have shown that PKM2 

can be used as a partner factor for HIF1 transcription and enhance HIF1 transcription, 

from which we can see that the Warburg effect of tumor cells is the result of the 

synergistic effect of different factors. PKM catalyzes the conversion of 

phosphoenolpyruvate to pyruvate and simultaneously produces an ATP molecule. This 

reaction is the penultimate reaction of glycolysis. The current view is that PKM2 does not 

promote glycolysis, but inhibits glycolysis. As a result, the intermediate product of 
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glycolysis turns to biomacromolecule synthesis and maintains the redox balance of tumor 

cells to support the growth of tumor cells [142]. 

1.4.1.4 PI3K-Akt signal activation stimulates glycolysis 

The PI3K-Akt signaling pathway widely exists in cells and exerts a wide range of 

biological functions by regulating the cell cycle, protein synthesis, and cell energy 

metabolism. PI3K-Akt signal is positively regulated by the oncogene KRAS and 

negatively regulated by the tumor suppressor gene PTEN, and mutations or inactivation 

of the KRAS gene and PTEN gene are common in tumors, so many tumors have PI3K-

Akt signaling activation [143]. Akt enhances the Warburg effect of tumor cells by 

increasing the activity of GLUT, HK, PGK and PFK1 and other factors [142]. HK is the 

first rate-limiting enzyme for glycolysis, catalyzing the phosphorylation of glucose to 

glucose 6-phosphate. After isomerization of 6-phosphate glucose, fructose 6-phosphate is 

formed, and then fructose 6-phosphate is catalyzed by PFK1 to 1,6-phosphate fructose, 

and then enters glycolysis. Both HK and PFK1 are key enzymes for glucose to enter 

glycolysis. Akt can also enhance protein and lipid synthesis by activating the mammalian 

target of rapamycin (mTOR) signal [144]. At the molecular level, the above metabolic 

changes also activate HIF, tilting cellular energy metabolism towards glycolysis. 

1.4.1.5 TP53 regulates cellular energy metabolism 

Although about 56% to 63% of the ATP energy of most tumor cells comes from 

anaerobic glycolysis, the remaining about 44% to 37% of the ATP energy still needs to 

be provided by aerobic oxidation. The tumor suppressor gene TP53 plays an important 

role in regulating the balance between mitochondrial aerobic oxidation and glycolysis 

[145]. TP53 is a transcription factor with a wide range of biological functions, including 
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cellular energy metabolism. Recent studies showed that TP53-induced genes, such as 

TP53 Induced Glycolysis Regulatory Phosphatase (TIGAR) and Synthesis Of 

Cytochrome C Oxidase 2 (SCO2) are involved in cell energy metabolism [146]. TIGAR 

reduces the level of fructose-2,6-bisphosphate in cells, thereby inhibiting glycolysis 

levels, and SCO2's role is to participate in the assembly of cytochrome c oxidase (located 

in Electron transport chain complex IV), which is related to the mitochondrial electron 

transport chain [146]. Abnormal expression of SCO2 can increase the mitochondrial 

reactive oxygen species (ROS) and affect the mitochondrial oxidative phosphorylation 

function. Therefore, the inactivation of TP53 in tumor cells is the main force for tumor 

cells to obtain glycolysis phenotype. 

1.4.1.6 Impaired mitochondrial oxidative phosphorylation 

Warburg believed that tumor cells mainly adopt aerobic glycolysis for energy 

supply because mitochondria are irreversibly damaged. Studies have also found that 

tumor cell mitochondrial oxidative phosphorylation function may be damaged, which is 

related to hypoxia, mitochondrial DNA mutations, and electron transport chain 

dysfunction [147]. Abnormal expression of energy metabolism enzymes, such as 

mitochondrial Tu Translation Elongation Factor (TUFM) is involved in the malignant 

biological behavior of colon cancer [148], cytochrome B (Cytb) mutation is associated 

with bladder cancer [149], mutations of isocitrate dehydrogenase IDH1 and IDH2 are 

associated with glioma and acute myeloid leukemia [150], and mutations in fumarate 

hydratase (FH), succinate dehydrogenase (SDH) and other genes are involved in the 

formation of kidney cancer and paraganglioma [151]. The abnormality of these key 

molecules involved in the process of mitochondrial oxidative phosphorylation not only 
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inhibits the production of mitochondrial energy but at the same time, the functional 

mutations obtained by themselves increase the heterogeneity of tumor cells. Besides, 

some cancer cells produce a "truncated tricarboxylic acid cycle" due to damage to the 

respiratory chain [152]. Because the damaged mitochondria are attacked by reactive 

oxygen species (ROS), ROS inhibits the activity of aconitase and increases the 

concentration of citrate in the mitochondria. After the citrate enters the cytoplasm, it 

cooperates with acetyl-CoA to complete the TCA cycle. The NADH produced by this 

process inhibits the complete tricarboxylic acid cycle. It does not produce energy but 

provides raw materials for biological macromolecules for rapidly growing tumor cells. 

Therefore, under the above circumstances, assuming that the total cellular ATP is 

unchanged if the oxidative phosphorylation function is weakened, the role of glycolysis 

must be enhanced to maintain the cell energy balance. 

1.4.1.7 Other aspects 

In addition to the above reasons, other factors can also cause tumor cell glycolysis 

phenotype. Chronic inflammation is a major cause of tumorigenesis. Some inflammatory 

factors can promote glycolysis of breast cancer cells, and miR-155 can be involved as a 

transit molecule between inflammation and glycolysis [153]. In addition to inflammatory 

pathways, microRNAs lin28/let-7 regulatory axis post-transcriptionally regulates the 

metabolic enzyme PDK1, thereby reprogramming tumor metabolism to promote 

glycolysis [154]. There are also lncRNAs, such as UCA1 promotes the glycolysis ability 

of bladder cancer cells by increasing HK-2 expression [155]. The researchers also found 

that defects in fatty acid metabolism can aggravate the aerobic glycolysis process of 

colorectal cancer and promote malignant features of the tumor, which is related to the 



 37 

deletion of the Abhydrolase Domain Containing 5 (ABHD5) associated with lipid 

droplets [156]. Activation of certain signaling pathways such as Wnt signaling can drive 

the glycolytic phenotype of colon cancer cells and promote their proliferation, which 

depends on the activation of PDK1, a downstream target of Wnt [157]. 

1.4.1.8 ATP supply for growth and proliferation 

Tumor cells can overcome the constant uptake of nutrients caused by the 

stimulation of normal cell growth signals, and by ingesting glucose and glutamine in 

large amounts, they can obtain the ability to continue to grow, divide and multiply. Fast-

growing tumor cells can still produce a high proportion of ATP/ADP using glycolysis 

because lack of ATP is not conducive to cell survival, and it has a complete energy-

sensing signal pathway [158]. AMP-activated protein kinase (AMPK) acts as an energy 

sensor. When AMP/ATP increases, AMPK activates, which can increase ATP by 

increasing glucose transport and fatty acid oxidation and appropriately inhibit the 

consumption of ATP by anabolic metabolism [159]. In addition to providing sufficient 

ATP for cell growth and proliferation, enhanced glycolysis metabolism can also inhibit 

cell death, because, on the one hand, it reduces the production of reactive oxygen species, 

thereby weakening the damage of oxygen free radicals to the cell; on the other hand, it 

reduces caspase-dependent and non-dependent apoptosis, such as overexpression of 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can increase glycolysis and ATP 

levels, blocking non-caspase-dependent apoptosis [160]. After inhibiting cancer cell 

PDK1 with small molecules of sodium dichloroacetate (DCA), forcibly increasing 

oxidative phosphorylation and inhibiting glycolysis, it can make cancer cell membrane 
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hyperpolarization and potassium ion voltage-gated channels open, triggered 

mitochondrial activation-induced caspase-dependent apoptosis [161]. 

1.4.1.9 Provide macromolecular materials to form new cells 

In addition to the need for ATP, rapidly proliferating tumor cells also need 

biological macromolecular materials to form new cells. The unique energy metabolism of 

tumor cells can provide a large number of metabolic intermediates to facilitate the 

synthesis of fatty acids, membrane phospholipids, nucleic acids, and proteins [162]. For 

example, tumor cells increase the production of acetyl-CoA through reductive glutamine 

metabolism and up-regulate the expression of fatty acid synthases (FASN) by HIF-1, 

which is conducive to the large-scale synthesis of fatty acids. On the one hand, fatty acids 

synthesize phospholipids to facilitate cell membrane construction. On the one hand, the 

synthesis of triglycerides facilitates energy storage and signal transmission, which are 

closely related to tumor formation and progression [163, 164]. Many tumor cells 

specifically express pyruvate kinase PKM2, which can promote the conversion of sugar 

to membrane phospholipids, giving cancer cells a selective growth advantage [140]. A 

large number of pyruvate products produced by glycolysis can stimulate the synthesis of 

lipids, while glucose 6-phosphate can synthesize ribose and NADPH through the pentose 

phosphate pathway; glutamine metabolite glutamate can also be metabolized by the TCA 

cycle [164]. Converted to lactic acid, together with lactic acid produced by glycolysis, 

NADPH is produced for phospholipid biosynthesis, and oxaloacetate is used as an 

intermediate product of the TCA cycle [165]. 

Based on previous knowledge, it can be seen that the metabolic phenotype of 

tumor cells provides potential theoretical value for the diagnosis and treatment of clinical 
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tumors, such as the application of metabolic imaging technology. An in-depth 

interpretation of the internal molecular mechanism of different energy metabolism 

phenotypes of tumor cells will help to reveal the causal relationship between tumor cell 

metabolism changes and biological behaviors and provide new opportunities for targeted 

energy therapy of tumors, such as "starved" tumor cells. After the glycolysis phenotype 

of tumor cells is promoted, they will be completely wiped out. 

1.4.2 Amino acid metabolism 

The proliferation of cancer cells needs to obtain the corresponding energy and material 

basis to meet the biosynthesis needs of replication while maintaining the redox steady 

state. A large number of studies have shown that the metabolism of tumor cells is 

abnormally active, and the nutrients and energy necessary to maintain their rapid 

proliferation can be obtained in various ways [162]. The metabolism of cancer cells is 

also different from that of normal cells, and its metabolic changes are also considered to 

be the hallmarks of cancer [142, 166]. In recent years, several studies have shown that the 

metabolic level of various amino acids in tumor cells has changed to adapt to the increase 

in energy requirements and changes in the environment [128]. Multiple signaling 

pathways and transcription factors often drive the changes in tumor amino acid 

metabolism. A large number of basic and clinical trials have shown that targeting tumor-

dependent amino acid metabolism and developing new drugs can effectively inhibit 

tumor growth [167].  

1.4.2.1 Arginine metabolism  

Arginine (Arg) is synthesized from citrulline through a two-step catalytic 

synthesis of Argininosuccinate Synthase 1 (ASS1) and Argininosuccinate lyase (ASL), 
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and then Arginase 1 (Arg1) breaks down arginine into ornithine and urea. Arg and 

Ornithine carbamoyltransferase (OTC) are used to convert ornithine to citrulline for 

recycling in mitochondria. The abnormality of ASS1, ASL or OTC will affect the storage 

of arginine in the cell. ASS1 deficiency is common in tumors, causing tumor cells to have 

to obtain arginine in serum [168]. Therefore, the rapid depletion of arginine in serum can 

be used as a new strategy for cancer treatment [169]. Arginine deiminase (ADI) and Arg1 

can deplete arginine in serum by converting arginine to citrulline and ornithine, then 

inducing of cell cycle arrest, apoptosis, autophagy and causing inhibition of angiogenesis 

[170, 171]. 

1.4.2.2 Asparagine and aspartate metabolism 

Mammalian cells produce asparagine from aspartate and glutamine via asparagine 

synthetase (ASNS). However, some cancer cells lack ASNS expression and need to rely 

on asparagine in serum to meet their needs. ASNS catalyzes the synthesis of the non-

essential amino acid asparagine from aspartate and glutamine. ASNS expression is highly 

regulated at the transcriptional level and is also subject to the amino acid response. 

Lacking ASNS protein expression is a hallmark of acute lymphoblastic leukemia (ALL), 

so this is auxotrophic for asparagine. Using bacterial L-asparaginase (L-ASPase) for ALL 

treatment is the first example of anti-cancer treatment for tumor metabolism. L-ASPase is 

widely present in the serum of microorganisms, plants and some serrated animals. It is an 

enzyme inhibitor produced by microbial fermentation. L-ASPase catalyzes the 

deamidation of asparagine, which rapidly consumes asparagine in serum, leading to the 

inhibition of tumor cell protein synthesis and growth inhibition [172]. Many clinical trials 
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are currently evaluating the efficacy of L-ASPase in treating a series of malignant 

hematological tumors. 

Other hematological and solid cancers also have elevated ASNS levels, so they 

should also respond to asparagine deprivation. In the past few years, some reports have 

shown that in certain cancer types, ASNS is overexpressed, thereby promoting cell 

proliferation, chemoresistance, and metastatic behavior [173, 174].  Limiting asparagine 

by knocking out asparagine synthase, treating it with L-asparaginase, or restricting 

asparagine in the diet can reduce metastasis without affecting the growth of the primary 

tumor. Moreover, asparagine availability also promotes the epithelial-to-mesenchymal 

transition [174]. Activated transcription factor 4 (ATF4) is the main transcriptional 

regulator of the integrated stress response (ISR), which transforms cells to survive the 

nutrient transformation.  Zinc Finger and BTB domain-containing protein 1 (ZBTB1) has 

been shown to regulate ASNS directly through binding [175]. The loss of ZBTB1 

sensitizes T-cell leukemia cells that are resistant to treatment to L-asparaginase, which is 

a chemotherapy that reduces the serum asparagine content [175].  

1.4.2.3 Glutamine metabolism  

Normal cells can produce glutamine by self-synthesis, but tumor cells rely on 

self-synthesized glutamine to not meet their rapid proliferation needs and need to ingest 

glutamine from extracellular or enhance glutamine metabolism pathways through the 

membrane transporter. Tumor cells rely on SLC (solute carrier) superfamily transporters 

on the cell membrane to take up glutamine from the extracellular environment. As a key 

transporter for the transfer of glutamine into cells, SLC1A5, SLC7A5, SLC7A11 and 

SLC6A14 play an important role in tumor cells [176]. It has been reported that the 
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expression of the transporter SLC6A4 is upregulated in colon cancer, cervical cancer, 

breast cancer and pancreatic cancer, and it is expressed at low levels in normal cells. 

Blocking the SLC6A14 protein will affect the intracellular biosynthesis of tumor cells, 

but has little effect on normal cells [177]. Nicklin et al. found that inhibition or deletion 

of SLC1A5 would lead to a decrease in glutamine content in tumor cells, mTOR 

signaling pathway could not be activated, and eventually, tumor growth was inhibited 

[178]. 

In mitochondria, glutamine is catalyzed by glutaminase (GLS) to glutamate. 

There are two subtypes of glutaminase in the human body: renal glutaminase (GLS1) and 

liver glutaminase (GLS2). In the tumor cells of lymphoma, glioma, breast cancer, 

pancreatic cancer, non-small cell lung cancer and kidney cancer, the use of small-

molecule inhibitors or genetic knockdown suppresses the widely expressed GLS1 and 

produces antitumor activity [179]. In B lymphoma cells and prostate cancer cells, the 

highly expressed oncogenic transcription factor c-Myc can inhibit miRNA-23a/b, up-

regulate the expression of GLS1, enhance glutamine metabolism, and promote the 

proliferation of tumor cells [180]. Wang et al. found that the up-regulation of GLS1 in 

breast cancer depends on the role of Rho family proteins and the NF-κB signaling 

pathway and proved that the reduction of GLS1 expression could effectively inhibit the 

proliferation of tumor cells [181]. c-Myc can induce GLS1 without inducing GLS2 

expression, while the tumor suppressor p53 induces GLS2 without inducing GLS1 

expression. GLS2 expression is reduced or even deleted in hepatocellular carcinoma. 

GLS2 overexpression can significantly reduce the formation of tumor cell colonies, 

indicating the potential role of GLS2 in inhibiting the growth of tumor cells [182]. After 
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Glutamine is catalyzed into glutamate by GLS, glutamate is oxidized and deaminated by 

glutamate dehydrogenase (GLUD1, GLUD2) and transaminase (GOT1, GOT2) into α-

KG and ammonia in the mitochondria, and enters the TCA cycle. GLUD can regulate the 

production of α-KG in tumor cells, and its expression is up-regulated in lung cancer and 

breast cancer cells. The knockdown of  GLUD1 can inhibit tumorigenesis in lung cancer 

xenograft models [183]. 

Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-

derived glutamate into α-KG in the mitochondria to fuel the TCA cycle, KRAS derived 

PDAC relies on a distinct pathway in which glutamine derived aspartate is transported 

into the cytoplasm where it can be converted into oxaloacetate (OAA) by aspartate 

transaminase (GOT1) [165]. Furthermore, OAA is converted into malate and then 

pyruvate, then increases the NADPH/NADP+ ratio, which is used to maintain the cellular 

redox state [165]. Tumor vascular tissue usually leads to areas of nutritional deficiencies 

and hypoxia. Even we understand the response of solid tumors to hypoxia, but little is 

known about how nutritional deficiency locally affects tumor growth and treatment 

response. Due to decreased levels of low glutamine in the core region of the tumor, 

histone hypermethylation is caused, which is a key cofactor containing the Jumonji 

domain-containing (JmjC) histone demethylases (JHDMs) [184].  Low glutamine-

induced histone hypermethylation leads to de-differentiation and drug resistance, which 

is mainly mediated by methylation on H3K27[184].  Increased consumption of glutamine 

will lead to the consumption of nutrients in the tumor, which may cause metabolic stress, 

thereby affecting tumor progression. Glutamine deficiency regulates EMT by 

upregulating the main EMT regulator, Zinc finger protein SNAI2 (SNAI2) [185].  This 
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process depends on the MEK/ERK signaling pathway and ATF4 [185]. SNAI2 in PDAC 

cells are necessary for glutamine deprivation-induced EMT, cell movement, and 

nutritional stress survival.  

At present, many inhibitors against GLS have anti-tumor activity. Glutamine 

analogs, 6-Diazo-5-oxo-L-norleucine (DON), can successfully inhibit glutamine 

metabolic enzymes by combining with the enzyme active site, which has antitumor 

activity. Still, its clinical application is limited due to non-selectivity and toxicity [167]. 

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a selective 

allosteric modulator of GLS1, inhibits the proliferation of glutamine-dependent cancer 

cells in vitro, and slows the growth of transplanted animal tumors and the oncogenic 

factor c-Myc Growth of mouse tumors [181, 186]. CB-839, which is currently 

undergoing clinical trials, has a similar allosteric binding mechanism and particular 

characteristics to BPTES, but exhibits stronger inhibitory activity and unique kinetic 

properties. CB-839 has shown antiproliferative activity in triple-negative breast cancer 

(TNBC) cell lines and shows significant antitumor activity in two xenograft tumors 

[179]. The main component of green tea catechins, epigallocatechin gallate (EGCG), is 

an inhibitor of GDH, which can inhibit the growth of glutamine-dependent cancer cells 

[187]. Pan-transaminase inhibitor, Aminooxyacetate (AOA), mainly inhibits 

glutamylation in breast cancer cell lines that highly express c-Myc by activating the 

endoplasmic reticulum stress pathway, leading to cancer cell death [188].  

1.4.2.4 Serine and glycine metabolism  

Changes in the de novo serine synthesis pathway (SSP) are common in cancer 

cells. Start with 3-phosphoglycerate (3-PG), the intermediate metabolite of glycolysis, 
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produce serine after involving 3- Phosphoglycerate dehydrogenase (PHGDH), 

Phosphoserine aminotransferase 1 (PSAT1) and three enzymatic reactions regulated by 

Phosphoserine phosphatase (PSPH). The increased expression of enzymes in SSP is one 

of the factors that cancer cells can survive in a serine starvation environment. Increased 

PHGDH expression can promote melanoma and breast cancer growth in mice [189]. The 

expression of PHGDH in triple-negative breast cancer and melanoma cells is 

significantly increased, and inhibition of PHGDH expression can lead to a significant 

decrease in the proliferation rate of tumor cells [190]. PHGDH and PSAT1 are activated 

in non-small cell lung cancer and participate in tumorigenesis and development [191]. 

Besides, PSAT1 and PSPH are also highly expressed in highly metastatic breast cancer 

cell lines [192]. Inhibition of PHGDH can attenuate brain metastasis and improved 

survival in mice with multiple cancer types [193]. 

Serine is a non-essential amino acid that inhibits the de novo synthesis of serine 

and may cause tumor cell tolerance [194]. Exogenous serine is converted into glycine by 

serine hydroxymethyltransferase (SHMT1 or SHMT2), providing a carbon unit to 

participate in the one-carbon cycle for nucleotide biosynthesis. Increased levels of 

SHMT1 and SHMT2 have been observed in transgenic mice susceptible to the oncogenic 

factor Myc-driven B-cell lymphoma [195]. SHMT2 is one of the most commonly 

expressed "metabolic genes" in human tumors [196]. Knocking out of SHMT2 seriously 

damages the proliferation of cancer cells. Moreover, glycine decarboxylase (GLDC) in 

the glycine cleavage system (GCS) is one of the most up-regulated genes in tumor-

initiating cells isolated from non-small cell tumors, inhibition of GLDC can improve the 

survival rate of patients with non-small cell lung cancer [197]. 
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1.4.2.5 Tryptophan metabolism  

In mammalian cells, L-tryptophan (Trp) catabolizes mainly through the 

kynurenine pathway and converts to L-kynurenine (Kyn). Three different dioxygenases 

control the catabolism of Trp by the kynurenine pathway: tryptophan 2,3-dioxygenase 

(TDO), indoleamine 2, 3-dioxygenase 1 (IDO1) and indoleamine 2, 3-dioxygenase 2 

(IDO2). The cleaved product N-formyl kynurenine is enzymatically reacted or 

spontaneously hydrolyzed to Kyn. IDO is the rate-limiting enzymes in the kynurenine 

pathway and is highly expressed in a variety of human tumors [198]. IDO can suppress 

innate and adaptive immune cell responses by depleting tryptophan, which is essential for 

T cell proliferation in the tumor microenvironment, and causing the accumulation of 

tryptophan metabolite kyn and its derivatives, resulting in the rapid proliferation of tumor 

cells [199]. IDO (IDO1 and IDO2) are overexpressed in a variety of cancers, and most 

studies have been focused on the research of IDO1. Preclinical studies have shown that 

targeting IDO1 in rodent models can trigger an anti-tumor immune response and inhibit 

tumor growth [198]. IDO2 is a paralog of IDO1, and they have similar structures. 

However, IDO1 and IDO2 exhibit different substrate specificities and tissue distribution. 

The expression of IDO2 in various cancers has been confirmed [200]. Also, IDO2 is 

necessary to induce several key inflammatory cytokines, and targeting IDO1 and IDO2 

can enhance immune effects [201]. TDO, a homotetrameric protein, together with IDO1 

and IDO2 catalyze the first rate-limiting reaction of the kynurenine pathway, but TDO 

has a higher affinity for L-tryptophan than IDO1. TDO is usually expressed in the liver, 

and most of it is highly expressed in human tumors [202]. Preclinical studies have shown 
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that TDO inhibitors can promote the immune rejection of host cells against tumor cells 

and can be used as a safe and effective cancer treatment [203]. 

1.5 BCAA metabolism 
 

BCAAs are essential amino acids include leucine, isoleucine, and valine, which not 

only act as building blocks for tissue proteins (accounting for 35% of the essential amino 

acids in muscle) but also contribute carbon and nitrogen through catabolism. Unlike other 

amino acids, BCAA levels are not regulated by the liver. BCAA is relatively high in 

dietary protein, accounting for 15-20% of protein intake [204]. Under physiological 

conditions, BCAA is in a steady-state, and it plays a variety of important physiological 

functions in the body, which are important nutritional signals that affect metabolism. 

1.5.1 The biological role of BCAA 

1.5.1.1 Influencing the structure and function of the protein 

BCAA plays an important role in protein structure (especially globular proteins) 

and functions, especially the interaction between membrane protein transmembrane 

regions and phospholipid bilayer. Mutation of BCAA sites in proteins caused by gene 

mutations will cause certain diseases. For example, the replacement of isoleucine with 

valine in thyroxine carrier protein will lead to cardiomyopathy characterized by amyloid 

deposition [205]. In Peroxisome proliferator-activated receptor alpha (PPAR-α)  protein, 

leucine replacing valine will cause changes in blood lipids [206]. BCAA can also 

promote protein synthesis through the mammalian target of rapamycin (mTOR) signaling 

pathway, and leptin can enhance this effect [207]. 



 48 

1.5.1.2 Regulate the energy metabolism of the body and tissue cells 

About 20% of the ingested BCAA is oxidized and decomposed by the TCA cycle 

and the biological oxidation system to produce adenosine triphosphate (ATP) for energy 

supply [208]. BCAA can also perform gluconeogenesis through the alanine-glucose cycle 

and the glutamine pathway to maintain blood glucose levels. Besides, BCAA catabolism 

plays an important role in regulating cardiac glucose metabolism. BCAA can directly 

inhibit pyruvate dehydrogenase complex (PDH) activity leads to a significant decrease in 

glucose uptake, oxidation, glycogen content, and protein glycosylation in hearts [209]. 

1.5.1.3 Regulating cell growth and metabolism as a signaling molecule 

A large number of studies have shown that BCAA, especially leucine, can 

activate protein synthesis, glucose utilization, lipid metabolism, cell growth of the liver, 

skeletal muscle and other tissues by activating a series of signaling molecules such as 

mTOR activation, insulin sensitivity, autophagy, and neurotransmitter synthesis are 

regulated [207, 210, 211]. Recent studies have shown that BCAA metabolic derivative 3-

hydroxyisobutyric acid can also promote skeletal muscle vasculature signal transduction 

or directly promote the synthesis of branched-chain fatty acids in adipocytes [212, 213]. 

Extensive biological functions BCAA can be converted into neurotransmitters, hormones 

and other important physiologically active substances in addition to the above functions. 

Besides, recent studies have found that an unbalanced intake of BCAA in food will 

promote the decomposition of lipids. BCAA can promote glucose utilization by up-

regulating glucose transporters in the intestinal and muscle tissues [214].  BCAA can 

promote intestinal development, intestinal amino acid transport and mucin production, 

which are beneficial to breast health, breast milk quality and embryo growth, respectively 
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[215-217]. BCAA can also participate in the upregulation of innate and adaptive immune 

responses [218]. 

1.5.2 Regulation of body BCAA level 

Increased plasma BCAA levels depend not only on their intake but also on their 

balance between catabolism and protein synthesis and degradation in the body. 

1.5.2.1 BCAA catabolic regulation  

BCAA mainly depends on food intake, so its content mainly depends on catabolic 

regulation [219]. BCAA is the only amino acid that can be metabolized outside the liver. 

Catabolic metabolism is mainly carried out in the liver, skeletal muscle, heart muscle and 

other tissues. The first step in the catabolism of BCAA is the reversible production of the 

corresponding branched-chain α-keto acid, α-ketoisovalerate (KIV), α-keto-β-

methylbutyrate (KMV), and α-ketoisocaproate (KIC) (Figure 1.1), by the catalysis of 

branched-chain aminotransferase (BCAT) and the synergy of α-ketoglutarate and 

glutamine. The second step of BCAA catabolism is a rate-limiting step: BCKA was 

catalyzed by the mitochondrial branched-chain alpha ketoacid dehydrogenase (BCKDH) 

complex to produce branched-chain acyl-CoA intermediates. The liver is the main 

oxidative decarboxylation site of BCKA, and 80% of the body's BCKA is decomposed in 

the liver [220]. The above two steps are the basic steps of BCAA metabolism. After 

oxidative decarboxylation, BCKA is transformed into the corresponding branched acyl-

CoA through its respective metabolic pathway and finally enters the TCA cycle for 

complete oxidation and energy supply. 
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Figure 1.1 Schematic of BCAA metabolism.    

The catabolism regulation of BCAA in the body mainly depends on the activity of 

the rate-limiting enzyme BCKDH complex. BCKDH kinase (BCKDK) and BCKDH 

phosphatase (PPM1K, PP2Cm) can regulate the activity of BCKDH complex and affect 

BCAA metabolism. The BCKDH complex is located on the mitochondrial inner 

membrane matrix side and contains three subunits: alpha-ketoacid dehydrogenase (E1 
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component), dihydrolipoyltransacylase (E2 component), and dihydrolipoamide 

dehydrogenase (E3 component). The activity of the BCKDH complex is mainly regulated 

by the phosphorylation level of the E1α subunit serine at position 293. Under the action 

of BCKDK, the phosphorylation of the E1α subunit of the BCKDH complex is 

inactivated, while under the action of PP2Cm, its dephosphorylation is activated (Table 

1.1). Studies have shown that when the activity of the BCKDH complex in the liver 

decreases, it not only causes BCKA to accumulate in the body but also causes an increase 

in the content of BCAA in the circulating blood [221]. 

 

 Table 1.1 BCAA metabolism related enzymes
 Enzyme 

Name 

Full name Location 

BCAT1 Branched-chain amino acid 

transaminase 1 

cytosolic  

BCAT2 Branched-chain amino acid 

transaminase 2 

mitochondrial 

BCKDHA Branched-chain keto acid 

dehydrogenase E1, alpha polypeptide 

mitochondrial 

BCKDHB Branched-chain keto acid 

dehydrogenase E1 subunit beta 

mitochondrial 
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DBT dihydrolipoamide branched chain 

transacylase E2 

mitochondrial 

DLD dihydrolipoamide dehydrogenase mitochondrial 

BCKDK Branched-chain keto acid 

dehydrogenase kinase 

mitochondrial 

PP2Cm protein phosphatase 2cm mitochondrial 

 

Nutritional status and hormone signals can also change the gene expression of 

BCAA-related regulatory enzymes: in the rat liver, a low-protein diet can increase BDK 

mRNA expression, while removing BCAA in the culture medium can increase the 

BCKDK expression level of cultured hepatocytes and make BCKDH complex activity 

reduced [222]. BCKDK activity is also regulated by allosteric modulation of BCKA, 

thiamine pyrophosphate and other factors. BCKA can allosterically inhibit BCKDK and 

weaken the interaction between BCKDK and BCKDH complex [223]. Mitochondrial 

matrix resident type 2C phosphatase (PP2Cm) is the only endogenous BCKDH 

phosphatase found so far. PP2Cm is a soluble protein located in the mitochondrial matrix. 

Its distribution is tissue-specific. It is highly expressed in the brain, heart, liver, kidney, 

and diaphragm, but low in skeletal muscle [223]. Studies have shown that starvation or 

low BCAA status can inhibit PP2Cm transcription, and PP2Cm can compete with 

BCKDK to bind and interact with the BCKDH complex E2 subunit. This competitive 

effect is regulated by BCKA levels, which cause low levels of BCKA to make BDK 
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dominant and high levels of BCKA dominate the role of PP2Cm [223]. The study found 

that PP2Cm knockout mice had BCAA catabolism disorders, which showed a significant 

increase in plasma BCAA concentration [222]. 

1.5.2.2 Protein synthesis and degradation balance 

  Protein synthesis and degradation rate can also affect plasma BCAA levels. 

Studies have confirmed that insulin, insulin-like growth factor and BCAA can damage 

the autophagy process and the ubiquitin-proteasome pathway mediated by mTORC1 and 

PI3K/AKT pathways, thereby inhibiting the rate of protein degradation in muscle and 

liver [224]. Amino acids can stimulate protein synthesis in human leg muscles, while 

insulin can reduce protein synthesis in human leg muscles [225]. 

1.5.3 BCAA and diseases 

BCAA maintains a steady-state under physiological conditions and exerts a 

variety of important physiological functions. When its catabolism is abnormal, resulting 

in the accumulation of BCAA and decomposition products, it may produce a series of 

harmful effects. Genetic defects of BCAA catabolism-related genes can cause a series of 

inborn metabolic diseases, such as Maple syrup urine disease (MSUD) [226]. In recent 

years, a large number of studies have shown that abnormal catabolism of BCAA is 

associated with many diseases such as Huntington's disease, pancreatic cancer, 

cardiovascular disease, diabetes, obesity. 

1.5.3.1 BCAA and MSUD 

MSUD is a rare autosomal recessive genetic disease with an incidence rate of 

about 1/85,000 [227]. It was first reported by Menkes et al. in 1954 that it got its name 
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because of the peculiar smell of caramel (maple sugar) in the urine of children [228]. The 

disease is due to the congenital disability of branched-chain alpha ketoacid 

dehydrogenase (BCKDH) complex, which causes the catabolism of branched-chain 

amino acids (leucine, isoleucine, valine) to be blocked, and the corresponding keto acids 

cannot be oxidatively decarboxylated and retained. In the body, it produces nervous 

system damage and maple odor urine. According to the different activity of BCKD 

complex, MSUD is divided into 5 types: classic type (< 2%), intermediate type (3% ~ 

8%), intermittent type (8% ~ 15%), effective type of vitamin B1 and E3 subunit-deficient 

type [229]. The key to the treatment of MSUD during the acute phase is to promote 

protein synthesis, inhibit protein breakdown, and avoid damage to the nervous system 

caused by the accumulation of branched-chain amino acids. The branched-chain amino 

acid with a large degree of damage to the nervous system is leucine, and the blood 

leucine concentration is usually higher than isoleucine and valine. Therefore, the rapid 

reduction of leucine with neurotoxicity in plasma is the focus of treatment. 

1.5.3.2 BCAA and diabetes  

As early as 1942, studies reported that plasma BCAA levels in diabetic patients 

increased significantly, and plasma BCAA levels in obese patients also increased 

significantly. However, this phenomenon has not received due attention. Until 2009, 

Newgard et al. [25] reported that BCAA is involved in the development of insulin 

resistance in obese patients. McCormack et al. [26] found that serum BCAA levels (not 

BCAA dietary intake) are associated with obesity and insulin resistance. A large number 

of studies have shown that plasma BCAA levels in patients with diabetes are significantly 

increased, and BCAA can increase the risk of type 2 diabetes (T2DM) by five times. The 
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Framingham Heart Study evenly matched 378 respondents based on body mass, lipid 

metabolism indicators, and other clinical variables. The results showed that the high 

BCAA group was more prone to diabetes, and subsequent Malmo studies also confirmed 

this conclusion [27]. Recently, a large human genome-wide association study showed 

that the mechanism of impaired BCAA metabolism is involved in the pathophysiological 

process of T2DM. These results suggest that there may be a causal relationship between 

BCAA and insulin resistance. 

Studies have confirmed that the activity of the BCKD complex in diabetic patients 

and animal liver is reduced, and it leads to the accumulation of plasma BCAA and 

BCKA. BCAA accumulation can inhibit the transport and utilization of pyruvate and 

fatty acids [16], inhibit the use of insulin-stimulated sugars [28], promote glycogen 

synthesis and lead to hyperglycemia [29]. BCAA inhibits phosphatidylinositol-3-kinase 

and insulin signaling by activating mTOR/p70S6 kinase (which phosphorylates insulin 

receptor substrate 1), which may be one of the mechanisms that promote T2DM after 

elevated BCAA levels [30]. However, some studies have shown that BCAA activation of 

mTORC1 is not enough to cause insulin resistance; while long-term supplementation of 

BCAA activates mTOR, insulin resistance has not been found. Most research results 

support the positive correlation between the accumulation of BCAA and its metabolites 

and the increased risk of insulin resistance. Therefore, the content of BCAA in circulating 

blood has potential clinical application value as a biomarker to predict the level of insulin 

resistance in diabetes. 
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1.5.3.3 BCAA and heart disease  

BCAA and its metabolites play an important role in the regulation of cardiac 

substrate metabolism. Elevated BCAA levels can affect the development of 

cardiovascular and metabolic diseases. Li et al. found that chronic accumulation of 

BCAA can inhibit glucose metabolism and sensitize the heart to ischemic injury [209]. 

This further indicates that high BCAA levels can increase ischemia-reperfusion injury 

(I/RI) caused by myocardial infarction. High levels of BCAA can selectively inhibit PDH 

activity, thereby interfering with the usage of pyruvate by mitochondria. This is because 

the chronic accumulation of BCAA causes the downregulation of the hexosamine 

biosynthesis pathway (HBP), which decreases protein O-linked N-acetylglucosamine (O-

GlcNAc) modification and inactivates PDH, resulting in a marked reduction in 

myocardial glucose oxidation and an increase in fatty acid oxidation.  

The heart has high energy consumption and is sensitive to the nutritional 

environment. Therefore, abnormal metabolism of nutrients will seriously affect the heart 

function and the progress of related diseases. Sun et al. showed that BCAA metabolism 

changes the most significant in the cardiac metabolism of mice with heart failure induced 

by stress overload [230]. They found that the expression of a variety of important BCAA 

catabolism related genes (BCAT2, BCKDHA, BCKDHB, DBT, PP2Cm) was reduced, 

and the expression of BCKDK did not change significantly, which made the role of 

BCKDK dominant, leading to a significant increase in BCAA catabolism in the heart. 

Abnormal catabolism of BCAA can promote myocardial contractile disorders 

independently of other pathological factors, and impaired catabolism of BCAA and its 

increased BCKA will impair mitochondrial function and induce myocardial oxidative 



 57 

stress, significantly promoting the progression of heart failure [230]. Kruppel Like Factor 

15(KLF15) is an important transcriptional regulator of nutrient metabolism, and its 

various target genes are involved in the regulation of glucose and lipid metabolism. The 

same study also found that KLF15 plays an important role in regulating BCAA 

catabolism. The decrease in KLF15 expression in pathologically stressed myocardium 

may be one of the mechanisms of BCAA catabolism abnormalities induced by pressure 

overload in heart disease [230]. Another study showed that BCKA could down-regulate 

the mTORC2-Akt signaling pathway and increase myocardial apoptosis induced by 

pressure overload in a concentration-dependent manner [231]. 

Furthermore, myocardial BCAA metabolism is significantly impaired after MI in 

mice, resulting in a significant increase in myocardial BCAA levels. Activating the 

myocardial mTOR signaling pathway aggravates cardiac dysfunction and myocardial 

remodeling, and promotes the progression of heart failure after MI [231]. These all 

indicate that the reduction of BCAA metabolism related gene expression and the 

accumulation of BCAA and BCKA metabolites caused by BCAA catabolism disorder are 

one of the signs of heart disease.  
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Chapter 2 Characterization of BCAA Metabolism in CAFs and Cancer Cells 
 

2.1 Introduction 
 

Pancreatic tumors have a rich stromal diversity containing fibroblasts, stellate cells 

and infiltrating immune cells, which cumulatively account for up to 90% of the total 

tumor volume. Fibroblasts are the most common cells in the normal pancreatic stroma. 

Fibroblasts were first defined as cells in the connective tissue that synthesized collagen 

150 years ago [232]. Fibroblasts in normal tissues are generally present as single cells in 

the interstitial space or occasionally near a capillary, without any association with a 

basement membrane, but are embedded within fibrillar ECM of the interstitium [232]. 

These cells exhibit classic spindle-shaped morphology with a potential for planar 

polarity. Fibroblasts in normal tissue are generally considered indolent with negligible 

metabolic and transcriptional activity. Resting fibroblasts may share many features with 

mesenchymal stem cells. In response to the presence of tumor cells, quiescent fibroblasts 

and stellate cells become activated cancer-associated fibroblasts (CAFs) that express 

alpha-smooth muscle actin (αSMA). CAFs develop from bone marrow-derived 

mesenchymal stem cells, pancreatic stellate cells (PSCs), and quiescent resident 

fibroblasts through distinct pathways of activation. However, a recent study showed that 

tumors form their CAFs predominantly from precursors present in the local tumor 

microenvironment, and the contribution from bone marrow is rare [233]. It is known that 

CAFs contribute to tumor proliferation, invasion, and metastasis, and they are a physical 
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barrier for drugs that help enable chemoresistance [232]. However, there is a lack of 

knowledge regarding the metabolic interactions between CAFs and cancer cells.  

2.2 Expression of BCAA metabolism related enzymes in cell lines 
 

Metabolic activity of the BCAAs, leucine, valine, and isoleucine, is both cell- and 

tissue-dependent and takes place in several steps beginning with BCAA deamination. 

BCAA transaminase (BCAT), the enzyme that initiates this process, has two isoforms 

(BCAT1 in the cytosol and BCAT2 in the mitochondria), which result in corresponding 

branched-chain ketoacids (BCKAs), α-ketoisovalerate (KIV), α-keto-β-methylbutyrate 

(KMV), and α-ketoisocaproate (KIC). The second step in BCAA metabolism involves 

irreversible BCKA oxidation catalyzed by the mitochondrial inner membrane complex, 

branch-chain α-ketoacid dehydrogenase (BCKDH) complex. The BCKDH complex 

consists of three catalytic components, alpha-ketoacid dehydrogenase (E1 component), 

dihydrolipoyltransacylase (E2 component), and dihydrolipoamide dehydrogenase (E3 

component). E1 has two isoforms encoded by BCKDHA and BCKDHB, the DBT gene 

encodes E2, and the DLD gene encodes E3. BCKDH complex E1 and E3 units are linked 

via E2. Oxidation of BCKAs results in IB-CoA, 2MB-CoA and IV-CoA, which are 

further converted into succinyl-CoA and acetyl-CoA that act as anaplerotic or ketogenic 

sources for the TCA cycle.  

To determine the differences in BCAT catabolism between stromal and PDAC 

cells, we analyzed protein and gene expression of BCAT1 and BCAT2 (Figure 2.1a-b). 

Interestingly, we found that CAFs had significantly higher BCAT1 expression when 

compared to PDAC cell lines. In contrast, BCAT2 expression was higher in PDAC cells 
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relative to CAFs. Besides, PDAC cells displayed a higher expression of the BCKDH 

complex enzymes BCKDHA, BCKDHB, and DBT than CAFs (Figure 2.1c). Differential 

DBT expression was also corroborated by immunoblotting (Figure 2.1a). These results 

suggest differential BCAA deamination and oxidation potential in stromal and cancer cell 

lines.  

 

Figure 2.1 Expression of BCAA metabolism related enzymes in CAFs and cancer 
cell lines.  a. Immunoblots of BCAT1, BCAT2 and DBT expression in CAFs and 
pancreatic cancer cell lines. HSP90 and Vinculin used as loading control. n = 4 
biologically independent samples. Experiments were repeated independently three times 
with similar results. b. Relative BCAT1 and BCAT2 mRNA expression in CAFs and 
pancreatic cancer cell lines. Expression normalized to gene expression in CAF1. n = 4 
biologically independent samples. c. Relative BCKDHA, BCKDHB, and DBT mRNA 
expression were determined by qRT–PCR in CAFs and pancreatic cancer cell lines. 
Expression normalized to gene expression in CAF1. n = 4 biologically independent 
samples.  

2.3 Expression of BCAA metabolism related enzymes in PDAC tissues 
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To corroborate our observations regarding BCAT1/2 expression in cancer and CAF 

cell-lines, we analyzed human PDAC tissue through staining. IHC staining of PDAC 

tumor similarly revealed that the stromal component had significantly higher expression 

of BCAT1 compared to its epithelial counterpart (Figure 2.2). We further compared 

BCAT1 and α-SMA expression in PDAC patient paired tumor and adjacent normal 

regions (Figure 2.3) and found that both BCAT1 and α-SMA were highly expressed in 

CAFs compared to fibroblasts in the normal stroma, thereby suggesting that enhanced 

BCAT1 expression in tumor stroma is associated with distinct desmoplasia differing from 

normal tissue (Figure 2.3).  

 

Figure 2.2 BCAT1 expression in human PDAC tissues   Representative IHC staining 
image comparing BCAT1 expression between stromal and tumor compartments. 
Experiments were repeated independently three times with similar results. 
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Figure 2.3 BCAT1 expression in paired healthy and PDAC tissue.   Representative IF 
images were showing protein expression of stromal αSMA, BCAT1 and Vimentin from 
paired healthy and PDAC tissue. Experiments were repeated independently two times 
with similar results. 

 

2.4 PDAC cells are more BCAA dependent 
 

Since differential gene and protein expression does not always translate to 

metabolic phenotype, we measured BCAA catabolic flux using 13C-labeled BCAAs in 

PDAC cells and CAFs (Figure 2.4a). We observed that CAFs had three-fold higher 

BCAA catabolic flux compared to PDAC cell-lines. To evaluate the essentiality of 

BCAAs for CAFs’ and cancer cells’ growth, we cultured them under BCAA deprived 

conditions. Expectedly, CAFs were observably resilient to BCAA deprivation vis a vis 

proliferation, whereas cancer cells were BCAA-dependent (Figure 2.4b-c). The finding 

that cancer cells not only have reduced BCAA catabolic flux compared to CAFs but are 

BCAA-addicted for growth suggests that BCAA intermediates like BCKAs play a 

significant role in maintaining metabolic activity in the nutrient-starved pancreatic 

milieu.  
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Figure 2.4 Growth rates of pancreatic cancer cells or CAFs under BCAA 
deprivation.  a. The stable-isotope tracing experiment reveals that CAFs deaminate 
BCAAs into BCKAs at a rate three-fold faster than PDAC cells. n = 3 biologically 
independent samples.  b. Relative proliferation rates of Mia Paca-2, Panc-1 and Patu 
8988t pancreatic cancer cells or CAFs under BCAA deprivation. n = 4 biologically 
independent samples. c. Absolute cell numbers of PDAC CAFs were determined in the 
presence or absence of BCAA. n = 3 biologically independent samples.  d. Absolute cell 
numbers of PDAC cells were determined in the presence or absence of BCAA. n = 3 
biologically independent samples.   

2.5 Discussion 
 

Previously, most BCAA catabolism studies were focused only on the cancer cells in 

diseases like glioma, lung cancer or pancreatic cancer, and they completely ignored the 

role of the stroma. In this chapter, we examined the BCAA related enzyme expression in 

the PDAC tumor microenvironment. We also analyzed the difference of BCAA 

catabolism flux that is distributed within the PDAC tumor microenvironment.  First, 

CAFs had high BCAT1 expression, while PDAC cell lines lack expression of BCAT1. In 

contrast, BCAT2 expression was higher in PDAC cells relative to CAFs. IHC staining of 

human PDAC tissue found that the stromal component had significantly higher 

expression of BCAT1 compared to its epithelial counterpart. Similar expressions were 

also confirmed in normal pancreas tissue. 

Moreover, the BCAA catabolic flux using 13C-labeled BCAAs revealed that CAFs 

had three-fold higher BCAA catabolic flux compared to PDAC cell-lines. Moreover, 

compared to PDAC cells, CAFs were observably resilient to BCAA deprivation. These 

findings suggest that PDAC cells have reduced BCAA catabolic flux compared to CAFs, 

and stromal BCAT1 may also play an important role in the PDAC tumor environment. 
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Chapter 3 BCAT2 Regulates BCKA-Mediated De Novo Protein Synthesis in 
PDAC cells 

 

3.1 Introduction 
 

Our previous work that genetic mutations can also influence how BCAA 

metabolism impacts PDAC progression [234]. Malic enzyme 2(ME2) is near the 

SMAD4, which is commonly deleted PDAC, in the human genome, so ME2 is usually a 

passenger deletion in PDAC. When ME2 is deleted, malic enzyme 2(ME3) became 

essential. Moreover, ME3 regulates BCAT2 through AMP-activated protein kinase 

(AMPK)-sterol regulatory element-binding protein 1 (SREBP1) pathways [234]. 

Knockdown of BCAT2 in ME2-deficient PDAC cell lines inhibited colony formation, 

which could be rescued by nucleotide supplementation, suggesting BCAAs to play an 

important role in PDAC. Li et al. showed that BCAT2 is elevated during PDAC 

progression. Pancreatic tissue-specific knockout of BCAT2 impedes the progression of 

pancreatic intraepithelial neoplasia (PanIN) in mice. Functionally, BCAT2 enhances 

BCAA uptake to sustain BCAA catabolism and mitochondrial respiration. 

Mechanistically, KRAS stabilizes BCAT2 through spleen tyrosine kinase (SYK) and E3 

ligase tripartite-motif-containing protein 21 (TRIM21), so BCAT2-mediated BCAA 

catabolism is critical for the development of PDAC harboring KRAS mutations [235].  

Lei et al. show that BCAT2 is acetylated, which is acetylated at lysine 44 (K44) [236]. 

BCAT2 acetylation leads to its degradation through the ubiquitin-proteasome pathway, 
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and they also identified cAMP-responsive element-binding (CREB)-binding protein 

(CBP) and SIRT4 as the acetyltransferase and deacetylase for BCAT2, respectively 

[236]. All these data suggest that BCAT2 has an important role in PDAC. 

MicroRNAs have also been shown to regulate BCAT2. MiR-182 can reduce the 

expression of Bcat2, Foxo3 and Adcy6 to regulate the hypertrophic response in placental 

growth factor-induced mice [237]. The knocking down of BCAT2 promotes Akt 

(Ser473)/p70-S6K (Thr389) phosphorylation and cardiomyocyte hypertrophy [237, 238]. 

In muscle cells, Dhanani et al. showed that leucine is required for myotube formation, 

which can also be replaced by KIC and BCAT2 is induced in the differentiation [239]. 

The inhibition of BCAT2 also abolished myoblast differentiation [239]. Moreover, both 

of KLF15 and PGC-1α can regulate BCAA metabolism by targeting BCAT2 skeletal 

muscle [240, 241]. 

 

3.2 CAF support PDAC cell growth under BCAA deprivation 
 

To address whether upregulated BCAA deamination in pancreatic CAFs fuels the 

BCAA addiction of cancer cells, we measured the proliferation rate of GFP-labeled 

PDAC cell lines, Mia PaCa-2, Panc-1 and PaTu 8988t, directly coculture with patient-

derived CAFs or normal fibroblasts (NOFs). Notably, we observed that CAFs completely 

rescued the loss of proliferation of cancer cells under BCAA-deprivation, while NOFs 

did not affect (Figure 3.1a-c). Similar results were also seen by AsPC-1 and BxPC3 
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PDAC cell lines (Figure 3.1d). These data suggest that CAFs may either be secreting 

BCAAs or their catabolic product, BCKAs.  

 

 

Figure 3.1 CAFs support PDAC growth under BCAA deprivation.  a. Fluorescence 
microscopy images comparing the growth of GFP-labeled Mia Paca-2 and Panc-1 cells in 
contact co-cultures with CAFs or NOFs under BCAA deprivation. Experiments were 
repeated independently three times with similar results. b. Fluorescence microscopy 
images merged with brightfield images comparing the growth of GFP-labeled Mia Paca-2 
and Panc-1 cells in contact co-cultures with CAFs or NOFs under BCAA deprivation. c. 
Relative proliferation rates of Mia Paca-2, Patu 8988t and Panc-1 pancreatic cancer cells 
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under BCAA deprivation. n = 3 biologically independent samples.   d. Relative growth 
rates of AsPc1 and BxPC-3 cells co-cultured with CAFs or NOFs under BCAA 
deprivation. n = 3 biologically independent samples.     

 

3.3 CAF secrete BCKA to support PDAC cells 
 

First, we check the CAF’s rescue effect at different co-culture ratio, since the ratio 

influences the effect, it supposes to come from soluble factor secreted by CAFs (Figure 

3.2a). We measured BCKA secretion by CAFs to be around 200 pmol/µg protein, which 

increased under BCAA-deprivation to around 300 pmol/µg protein (Figure 3.2b). 

Interestingly, we found that under BCAA-deprivation, BCKAs rescued the proliferation 

at concentrations as low as 5-50uM, whereas 100µM BCAA was needed to obtain a 

similar effect (Figure 3.2d). This suggests that BCKA is a more effective nutrient at 

lower concentrations compared to BCAAs (Figure 3.2c). 
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Figure 3.2 CAFs support PDAC growth through BCKA.  a. Relative growth rates of 
Mia Paca-2 cells co-cultured with CAFs or NOFs at different seeding ratios under BCAA 
deprivation. n = 3 biologically independent samples.  b. BCKA secretion by CAFs 
estimated by measuring the extracellular concentration of BCKAs, KIC and KMV, at 6, 
12, 24, and 48 hours by LC-MS. n = 3 biologically independent samples. c. Model for the 
rescue of proliferation in BCAT2 KD cancer cells by BCKAs released from CAFs under 
BCAA deprivation. d. Relative growth rates of Mia Paca-2 cells in various concentrations 
of BCAAs or BCKAs. n = 6 biologically independent samples.     

 

3.4 BCKA contribute to TCA cycle and protein synthesis 
 

Once the CAF-secreted BCKAs are consumed by cancer cells, they may be used 

directly for BCKA oxidation through the BCKDH complex to maintain oxidative TCA 

cycle metabolite levels. BCKAs can also act as substrates for de novo synthesis of 

BCAAs through reanimation by the reversible enzyme BCAT2 (Figure 3.3). Although 

not explicitly shown before, this newly synthesized BCAAs could maintain de novo 

protein synthesis in cancer. To confirm the fate of BCKAs, we cultured cancer cells with 
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13C labeled BCKAs. They estimated their contribution towards the TCA cycle as an 

anaplerotic substrate and for de novo BCAA and subsequent de novo protein synthesis 

(Figure 3.3). We observed that BCKAs are indeed oxidized and incorporated into the 

TCA cycle via acetyl-CoA and succinyl-CoA, as evident from the 13C labeled TCA 

intermediates citrate, malate, and aspartate (Figure 3.3). 

Interestingly, BCKAs were also utilized for de novo protein synthesis and were 

found to contribute more than 60% of the intracellular BCAA pools under BCAA-

deprived conditions (Figure 3.3). Further, 15N labeled glutamine and serine were found to 

contribute the required nitrogen for BCAA synthesis commensurately. The amino acid 

composition of intracellular protein was determined using acid hydrolysis and GC-MS 

analysis. The constituent BCAAs in the protein achieved 40% enrichment from 13C 

labeled BCKAs and 50% enrichment from 15N labeled glutamine and serine, definitively 

proving that BCKA-derived BCAAs contributed significantly to de novo protein 

synthesis (Figure 3.3). 
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Figure 3.3 BCKA metabolism in PDAC cells.  The fate of 13C-BCKAs in PDAC cells 
elucidated by measuring mole percent enrichment (MPE) of TCA cycle intermediates 
that represent BCKA oxidation and of intracellular BCAAs and BCAAs from acid-
hydrolyzed proteins that represent de novo protein synthesis. n = 7 biologically 
independent samples for intracellular metabolites and n = 4 biologically independent 
samples for protein hydrolyzed metabolites. 

3.5 BCKA contribute to protein synthesis through BCAT2 
 

To substantiate the functional role of BCAT2 in the BCAA metabolism of PDAC 

cells, we silenced BCAT2 using both CRISPR and short hairpin (sh) RNA in PDAC cells 

(Mia Paca-2, Panc-1 and Patu 8988t). We found that BCAT2 knockdown (KD) 

significantly reduced the growth rate of PDAC cells implying that BCAT2 plays an 

important role in these cells (Figure 3.4ab). The knockdown of BCAT2 resulted in a 

decrease of the 13C enrichment of BCAAs obtained after protein hydrolysis, thereby 

confirming the BCKA-mediated, anabolic, regulatory role of BCAT2 in PDAC (Figure 
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3.4c). Having delineated that BCKAs can contribute towards de novo protein synthesis, 

we next assessed whether CAFs could promote protein synthesis in cancer cells. We used 

the SUnSET assay to measure de novo protein synthesis and found that CAFs, indeed 

increased protein synthesis in cancer cells (Figure 3.4d). Consistent with significant 

enrichment of labeled BCKA-derived BCAAs in hydrolyzed protein, BCKA 

supplementation restored the loss of newly synthesized protein levels under BCAA 

deprivation (Figure 3.4e). To establish the essentiality of BCAT2 in PDAC, we 

cocultured BCAT2 knockdown PDAC cells with patient-derived CAFs (Figure 3.4f).  

Intriguingly, knocking down BCAT2 in cancer cells had no effect on CAF-mediated 

rescue of cancer cell growth under BCAA deprivation conditions.  

 

Figure 3.4 BCAT2 regulates protein synthesis in PDAC cells.  a. Relative proliferation 
rates of Mia Paca-2, Panc-1 and Patu 8988t pancreatic cancer cells with BCAT2 
knockdown by shRNA. n = 4 biologically independent samples.    b. Relative 
proliferation rates of Panc-1 and Patu 8988t pancreatic cancer cells with BCAT2 
knockdown by CRISPR. n = 4 biologically independent samples.  c. Mole percent 
enrichment (MPE) of BCAAs in hydrolyzed protein obtained from BCAT2 knockdown 
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Mia Paca-2 cells cultured with 13C-BCKA. n = 4 biologically independent samples. d. 
FACS analysis of GFP-labeled Mia Paca-2 cells detected with Alexa 647–labeled 
antibodies to puromycin (puro-A647). n = 3 biologically independent samples.    e. 
Representative images of SUnSET assay of Mia Paca-2 cells cultured in the indicated 
medium for 48 hr. Whole-cell lysates were subjected to western blotting with puromycin 
antibody. Experiments were repeated independently three times with similar results. f. 
CAF cocultures rescue the loss of growth in BCAT2-knockdown PDAC cells. n = 6 
biologically independent samples. 

3.6 CAF support PDAC cells through BCKA independent of autophagy 
 

We further excluded the possibility that BCAAs are directly catabolized from 

autophagy-induced protein degradation[242] by knocking down autophagy-related 5/7 

(ATG5/7) in CAFs and coculturing them with PDAC cells under BCAA deprivation. We 

found that ATG5/7 knockdown did not suppress CAF-mediated rescue of cancer cell-

growth under BCAA-deprivation (Figure 3.5a). Moreover, autophagy inhibitors, 

chloroquine, Bafilomycin A1 and LY294002 did not inhibit the rescue effect of CAFs on 

cancer cell growth under BCAA-deprivation conditions (Figure 3.5b). These results 

provide strong evidence of the regulation of BCAA metabolism by BCAT2 in PDAC 

cells. 

 

Figure 3.5 CAF support PDAC cells under BCAA deprivation independent of 
autophagy.  a. Relative growth rates of Mia Paca-2 and Panc-1 cells co-cultured with 
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ATG-5/7 knockdown CAFs. n = 3 biologically independent samples.   b. Relative growth 
rates of Mia Paca-2 and Patu 8988t cells cocultured with CAFs treated with autophagy 
inhibitors (chloroquine, Bafilomycin A1 and LY294002) under BCAA deprivation. n = 3 
biologically independent samples. 

 

3.7 Discussion 
 

The role of BCAA catabolism in cancer was largely overlooked until 2013 when 

Tonjes et al. reported overexpression of BCAT1 in gliomas, which excrete glutamate and 

promote glioma cell proliferation [243]. BCAT1 expression in glioma is specific to those 

gliomas with wild-type isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2). Also, 

BCAT1 is required for chronic myeloid leukemia (CML) growth. It was shown that 

BCAT1 is upregulated during the progression of CML and promotes BCAA production 

in leukemia cells by the amination of branched-chain keto acids [244]. BCAAs are also 

important nitrogen sources since the transamination of BCAAs leads to the regeneration 

of glutamate, which can be used for biosynthesis of other nonessential amino acids. 

Previous studies have demonstrated that elevated plasma levels of BCAAs are associated 

with a greater than 2–fold increased risk of pancreatic cancer [245]. Previously we 

demonstrated that knockdown of BCAT2 in Malic Enzyme 2 (ME2)-deficient pancreatic 

cell lines inhibited cell proliferation, which could be rescued by nucleotide 

supplementation, suggesting that BCAA is an important nitrogen source in pancreatic 

cancer [234].  Pancreatic tissue-specific knockout of BCAT2 impedes the progression of 

PanIN in mice, and BCAT2 enhances BCAA uptake to sustain BCAA catabolism and 

mitochondrial respiration [235]. Also, BCAT2 can be acetylated, which is acetylated at 
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lysine 44 (K44), and its acetylation leads to degradation through the ubiquitin-proteasome 

pathway [236].   

In this chapter, we showed that CAFs are secreting BCAA catabolic products, 

BCKAs. Moreover, CAF-secreted BCKAs are consumed by PDAC cells. They can be 

used directly for BCKA oxidation through the BCKDH complex to maintain oxidative 

TCA cycle metabolite levels. BCKAs can also act as substrates for de novo synthesis of 

BCAAs through reanimation by the reversible enzyme BCAT2. We also found that 

BCAT2 knockdown significantly reduced the growth rate of PDAC cells implying that 

BCAT2 plays an important role in these cells. We also showed that CAFs increased 

protein synthesis in cancer cells. However, when we cocultured BCAT2 knockdown 

PDAC cells with CAFs, knocking down BCAT2 in cancer cells had no effect on CAF-

mediated rescue of cancer cell growth under BCAA deprivation conditions. This would 

suggest that BCAT2 is not only an important enzyme in BCAA metabolism for PDAC 

cells. 
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Chapter 4 BCKDH Complex Is Essential for PDAC Cells Growth and 
Biosynthesis 

 

4.1 Introduction 
 

Since the catabolism of BCAA starts with branched-chain aminotransferases giving 

rise to corresponding BCKA.  The second step is catalyzed by the mitochondrial inner 

membrane complex called branch-chain α-ketoacid dehydrogenase (BCKDH) complex.  

The BCKDH complex consists of three catalytic components, alpha-ketoacid 

dehydrogenase (also referred to as the E1 component), dihydrolipoyl transacylase (E2 

component), and dihydrolipoamide dehydrogenase (E3 component). The branched-chain 

keto acid dehydrogenase E1 has two isoforms, alpha polypeptide and subunit beta, which 

are encoded by BCKDHA and BCKDHB, respectively.  Dihydrolipoamide 

dehydrogenase (E3 component) is encoded by the DLD gene, which also acts as the 

common part for pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. 

Compared to BCAT1/2, BCKDH was not well studied yet. Most of the research related to 

BCKDH is coming from MUSD; these studies identified different mutations of 

BCKDHA, BCKDHB, and DBT can cause MUSD [246]. Lee et al. found knocking 

down of BCKDHA inhibited PDAC cell proliferation but not pancreatic duct epithelial 

cell proliferation [247]. Similar to adipocyte, BCKDHA knockdown also inhibited fatty-

acid synthesis in PDAC cells, indicating that PDAC cells also utilize BCAAs for fatty 

acid biosynthesis [247, 248]. Xue et al. found that BCKDK is widely expressed in 
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colorectal cancer patients and related to survival times [249]. Nevertheless, BCKDK 

promotes colorectal cancer by enhancing the MAPK signaling pathway through direct 

MEK phosphorylation rather than by branched-chain amino acid catabolism [249]. White 

et al. found inhibition of BCKDK or overexpression of the PPM1K can regulate BCKDH 

complex activity, lower circulating BCAA, reduce hepatic steatosis, and identified ATP-

citrate lyase (ACL) as an alternate substrate of BCKDK and PPM1K [250]. Hepatic 

overexpression of BCKDK increased ACL phosphorylation and activated de novo 

lipogenesis. Furthermore, mechanically ChREBP-β regulates BCKDK and PPM1K 

transcription levels to control lipid metabolism [250].  

The DBT gene encodes Dihydrolipoyl transacylase (E2), it is also the center of 

the BCKDH complex E1 and E3 are all linked to it [251]. Targeting the DBT gene will 

directly target the whole BCKDH complex instead of the target of genes, BCKDHA and 

BCKDHB. Furthermore, its encoded component is the core of the BCKDH complex, 

which all makes DBT a good target in BCAA catabolism.    

4.2 PDAC cells are DBT dependent 
 

Because BCAT2 knockdown did not result in a loss of cancer cell growth in 

cocultures with CAFs under BCAA-deprivation, we hypothesized that irreversible BCKA 

oxidative decarboxylation by the BCKDH complex might be facilitating biosynthesis. To 

regulate BCKDH complex activity, we targeted the core, the E2 component encoded by 

DBT. Knocking down DBT using shRNA-DBT profoundly reduced proliferation and 

colony formation (Figure 4.1a-c). In agreement with the essentiality of the BCKDH 

complex, the addition of BCKAs under BCAA deprivation rescued the loss of 
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proliferation in PDAC cells (Figure 4.1d), but not in CAFs (Figure 4.1e).To confirm that 

BCKA-mediated growth-rate rescue is conferred via the BCKDH complex and not due to 

BCAT2, we cultured DBT knockdown cells under BCAA deprivation. As expected, 

BCKA-mediated rescue of cancer cell growth was attenuated (Figure 4.1f).  

 

Figure 4.1 PDAC cells are DBT dependent.  a. Absolute cell numbers of PDAC cells 
expressing control shRNA or two independent shRNAs to DBT. n = 3 biologically 
independent samples.  b. Relative proliferation rates of Mia Paca-2, Panc-1 and Patu 
8988t cells expressing control shRNA or two independent shRNAs to DBT. n = 8 
biologically independent samples. c. Colony-formation assay of DBT knockdown PDAC 
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cell lines. n = 3 biologically independent samples.   d. BCKAs can rescue BCAA 
deprivation in the cancer monoculture. n = 4 biologically independent samples.  e. BCKA 
does not influence CAF proliferation. n = 4 biologically independent samples.  f. Relative 
proliferation rates of DBT knockdown cells in BCAA depleted media under BCKA 
replete conditions. n = 8 biologically independent samples.   

Next, we cocultured DBT-knockdown PDAC cells with CAFs under BCAA 

deprivation to substantiate the BCKDH-dependent role of CAF-secreted BCKA in 

maintaining PDAC cells’ growth (Figure 4.2a-b). Notably, knockdown of DBT in PDAC 

cells abrogated the rescue effect from CAFs, thereby validating the role of the BCKDH 

complex. 

 

Figure 4.2 CAF's rescue effect is regulated by DBT. a. Relative proliferation rates of 
DBT knockdown cells co-cultured with CAFs. n = 3 biologically independent samples. b. 
Schematic for the loss of rescue in DBT knockdown cancer cells by BCKA released from 
CAFs under BCAA deprivation. 

4.3 BCKA support NADH through DBT 
 

Given that complete oxidation of one molecule of KIV, KMV, or KIC can provide 

6, 5, or 10 NADH molecules, respectively, BCKA-driven NADH could provide a 

substantial measure of BCKA oxidative capacity in cells. To further validate the effect of 

BCKA oxidation on mitochondrial activity, we used a fluorescent, genetically encoded 

NADH sensor to measure mitochondrial NADH/NAD+ in MiAPaCa-2 cells cultured in 

the absence or presence of either BCAA or BCKA (Figure 4.3). Interestingly, BCKAs 
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increased the mitochondrial NADH/NAD+ ratio and corroborated our findings that 

BCKA oxidation enhances energy metabolism. BCKAs have two fates in the cells; they 

can either be reanimated into BCAAs via BCAT2 or be oxidized through the BCKDH 

complex. To investigate both possible fates, we measured NADH in DBT, BCAT2 

knockdown PDAC cells and PDAC cells under varying α-KG/Glutamate ratios. 

 

Figure 4.3 BCKA rescue NADH supply under BCAA deprivation. a. Colocalization 
of Mitotracker and RexMito fluorescence in Mia Paca-2 cells. Mitotracker (red), 
RexMito (green), and DAPI (blue).  Experiments were repeated independently three 
times with similar results. b. NADH/NAD+ ratio measured using confocal fluorescence 
imaging of Mia Paca-2 cells in BCAA depleted media under BCKA replete conditions. 
Experiments were repeated independently three times with similar results.   c. 
NADH/NAD+ ratio measured using confocal fluorescence imaging of Mia Paca-2 cells in 
BCAA depleted media under BCKA replete conditions. n = 5 biologically independent 
samples.    

The knockdown of DBT reduced the NADH/NAD+ ratio in PDAC cells, 

confirming the involvement of DBT and BCKA oxidation in increasing this ratio (Figure 

4.4). We further increased the ratio of α-KG/glutamate by supplementing αKG in the 
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media to regulate the flux of the BCAT2 pathway to reduce the reanimation of BCKAs 

and favor oxidation. The increased α-KG/glutamate ratio nudges BCKAs towards 

oxidation, which is confirmed with the observation of an increased NADH/NAD ratio 

and increased growth of PDAC cells (Figure 4.5). Since the effect of modulating NADH 

should directly affect mitochondrial oxygen consumption rate (OCR), we measured OCR 

under different substrates and varying α-KG/glutamate ratios. As seen in Figure 4.5e, 

increasing the α-KG/glutamate ratio (by supplementing α-KG) increased the OCR 

significantly, whereas the converse was true when this ratio was decreased (by 

supplementing glutamate). 

 

Figure 4.4 Inhibition of DBT reduces NADH. a. NADH/NAD+ ratio measured using 
confocal fluorescence imaging of Mia Paca-2 transfected with siControl or siDBT.  b. 
NADH/NAD+ ratio measured using confocal fluorescence imaging of Mia Paca-2 cells 
transfected with siControl or siDBT. n = 5 biologically independent samples. c. DBT 
inhibition impedes oxidation of BCKAs via BCKDH complex, and thus pushes the 
accumulated BCKAs to be reanimated to BCAAs.  
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Figure 4.5 α-KG/Glutamate ratio regulates BCKA oxidation. a. NADH/NAD+ ratio 
measured using confocal fluorescence imaging of Mia Paca-2 cells in complete media 
with 4mM α-KG added BCKAs.   b. NADH/NAD+ ratio measured using confocal 
fluorescence imaging of Mia Paca-2 cells in complete media with 4mM a-KG added 
BCKAs n = 4 biologically independent samples.  c. BCKAs have two fates, but the 
reanimation of BCKAs is dependent on nitrogen availability via glutamate. We regulate 
the α-KG/glutamate ratio by supplementing α-KG to impede the reanimation of BCKAs 
via BCAT2, thereby pushing BCKAs towards oxidation via BCKDH. d. EdU uptake was 
measured in Mia Paca-2 cells in the presence of a-KG or/and BCKA after one day. n = 3 
biologically independent samples.   e. Substrate-specific oxygen consumption rate (OCR) 
in permeabilized pancreatic cancer cells measured using Seahorse Analyzer. n = 6 
biologically independent samples.  

Finally, we used BCAT2 knockdown cells and found that adding BCKAs in 

BCAT2 knockdown cells (Fig. 3M, Extended Fig. 3J-K) increased NADH, thus 



 84 

substantiating that two outcomes, delamination and oxidation of BCKA, control its fate. 

Cumulatively, these experiments show that both fates of BCKAs are relevant in the 

context of PDAC cells. Thus BCKAs contribute to both the proliferation and bioenergetic 

metabolism of PDAC cells. 

 

Figure 4.6 BCAT2 regulates downstream BCKA oxidation. a. NADH/NAD+ ratio 
measured using confocal fluorescence imaging of Mia Paca-2 cells transfected with 
siControl or siBCAT2 in complete media or BCAA depleted media under BCKA replete 
conditions. b. BCAT2 inhibition has the same effect as α-KG supplementation and 
pushes the accumulated BCKAs towards oxidation via BCKDH. c. NADH/NAD+ ratio 
measured using confocal fluorescence imaging of Mia Paca-2 cells transfected with 
siControl or siBCAT2 in complete media or BCAA depleted media under BCKA replete 
conditions. n = 6 biologically independent samples.   

4.4 DBT regulate BCKA specific OCR 
 

To identify the dominant substrates contributing to cellular oxidative capacity, we 

measured OCR. Remarkably, BCKA-driven OCR in PDAC cells is significantly higher 

than that of alternative substrates (Figure 4.7a). To dissect the role of BCAT2 and DBT 
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in the oxidative capacity of PDAC cells, we measured the OCR of DBT- and BCAT2-

knockdown PDAC cells and found that their OCR was significantly reduced (Figure 

4.7b-c). 

 

Figure 4.7 BCKA OCR is higher than BCAA in PDAC cells. a. Substrate-specific 
OCR in permeabilized cells. n = 4 biologically independent samples.  b. OCR 
measurements in DBT knockdown cells. n = 6 biologically independent samples. c. OCR 
measurements in BCAT2 knockdown cells. n = 6 biologically independent samples.  

To associate substrate specificity with BCAT2 and the BCKDH complex, we 

performed substrate-specific OCR in BCAT2- and DBT-knockdown cells. Interestingly, 

in BCAT2-knockdown cells, there was no change in BCKA-driven OCR, whereas 

BCAA-driven OCR was significantly reduced (Figure 4.8ab). Strikingly, in DBT-
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knockdown cells, both BCAA- and BCKA-driven OCR are significantly reduced (Figure 

4.8cd).  Further, BCKA-driven OCR is higher than BCAA-driven OCR, thereby 

suggesting that BCKAs are a better fuel source for PDAC cells (Figure 4.8cd). These 

results strongly suggest that PDAC cells are heavily dependent on BCKAs, and DBT is a 

potential target for exploiting this dependency. 

 

 

Figure 4.8 BCKA specific OCR is regulated by DBT. a. Substrate-specific OCR 
measurements of BCAT2 knockdown Mia Paca-2 cells. n = 4 biologically independent 
samples.   b. Substrate-specific OCR measurements of BCAT2 knockdown Panc-1 cells. 
n = 4 biologically independent samples.  c. Substrate-specific OCR measurement of DBT 
knockdown Mia Paca-2 cells. n = 4 biologically independent samples.     d. Substrate-
specific OCR measurement of DBT knockdown Panc-1 cells. n = 4 biologically 
independent samples.   

4.5 Discussion 
 

The second step of BCAA metabolism is catalyzed by the mitochondrial inner 

membrane complex called branch-chain α-ketoacid dehydrogenase complex (BCKDH 

complex).  The BCKDH complex consists of three catalytic components, alpha-ketoacid 
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dehydrogenase (also referred to as the E1 component), dihydrolipoyl transacylase (E2 

component), and dihydrolipoamide dehydrogenase (E3 component). The branched-chain 

keto acid dehydrogenase E1 has two isoforms, alpha polypeptide and subunit beta, which 

are encoded by BCKDHA and BCKDHB, respectively.  Dihydrolipoamide 

dehydrogenase (E3 component) is encoded by the DLD gene, which is also a subunit of 

pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. The DBT 

gene encodes Dihydrolipoyl transacylase (E2), BCKDC E1 and E3 are linked via E2. 

After the second step, BCKAs are catalyzed into IB-CoA, 2MB-CoA and IV-CoA, which 

are then converted into succinyl-CoA and Acetyl-CoA to contribute to the TCA cycle. 

Since BCAT2 knockdown did not result in a loss of cancer cell growth in cocultures 

with CAFs under BCAA-deprivation, we use DBT knockdown PDAC cells to 

characterize the functions of the BCKDH complex in this chapter. Knocking down DBT 

reduced proliferation and colony formation. In agreement with the essentiality of the 

BCKDH complex, the addition of BCKAs under BCAA deprivation rescued the loss of 

proliferation in PDAC cells is conferred via the BCKDH complex. Furthermore, DBT-

knockdown PDAC cells with CAFs under BCAA deprivation proved the BCKDH-

dependent role of CAF-secreted BCKA in maintaining PDAC cells’ growth. 

Also, we showed that BCKAs increased the mitochondrial NADH/NAD+ ratio and 

corroborated our findings that BCKA oxidation enhances energy metabolism. BCKA's 

contribution to oxidization through the BCKDH complex is regulated by DBT, BCAT2 

and α-KG/Glutamate ratios in PDAC cells. To identify the dominant substrates 

contributing to cellular oxidative capacity, we measured OCR differences in BCAT2 and 
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DBT knockdown cells. We showed that that PDAC cells are heavily dependent on 

BCKAs, and DBT is a potential target for exploiting this dependency. 
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Chapter 5 BCAT1 Regulates Stromal Cells’ Synthesis of Ketoacids 
 

5.1 Introduction 
 

The BCAT1 gene, also known as the ECA39 or PNAS121, is located in the 12p12-

11 segment. The mRNA is 8191 bp in length, contains 11 exons, and encodes 641 amino 

acids. It was first found in teratocarcinoma cell lines in 1990 [252]. In normal organisms, 

BCAT1 is located in the cytoplasm, which is mainly expressed in brain tissue, spinal 

cord, peripheral neurons and other tissues [253]. The corresponding isozyme BCAT2 is 

often found in mitochondria and is expressed in all tissues of the body [254]. The first 

step of BCAA catabolism is to transfer the α-amino group to α-ketoglutarate through 

BCAT1 in the cytoplasm or BCAT2 isozyme in mitochondria, the product is glutamate, 

and corresponding branched-chain keto acids. The resulting branched-chain keto acids 

can be further metabolized into acetyl-CoA and succinyl-CoA, enter the tricarboxylic 

acid cycle, generate precursors needed for the synthesis of other biological 

macromolecules and provide energy for the synthesis of mitochondrial ATP [204]. In 

1996, BCAT1 was first identified as the direct target of c-MYC regulation, which is 

highly conservative during evolution and involved in the regulation of the yeast cell cycle 

[255, 256].  



 90 

5.1.1 Glioma  

Glioma is derived from the glial cells and neuronal cells of the nervous system, 

also known as neuroepithelial tumors. It is the most common malignant tumor in the 

brain, accounting for 35.26%-60.96% of the primary intracranial tumors [257]. The 

transamination of BCAA via BCAT1 provides an important nitrogen source for the body 

to synthesize non-essential amino acids, and down-regulation of BCAA catabolism often 

leads to neurological dysfunction [243]. This shows that BCAA plays an important role 

in maintaining normal neurological function. Tönjes et al. found that BCAT1 is highly 

expressed in gliomas carrying wild-type IDH (IDHwt), but not significantly increased in 

mutant IDH (IDHmut) gliomas and normal brain tissues [243]. It found that compared to 

IDHmut glioma, an important difference between IDHwt glioma is the overexpression of 

BCAT1. Therefore, it is different from the commonly used IDH1-R132H staining is 

similar, and BCAT1 staining can also be used for differential diagnosis of related brain 

gliomas; in glioma cell lines, the expression level of BCAT1 depends not only on the 

concentration of its substrate α-ketoglutarate, but also overexpression of IDHmut can 

inhibit the expression of BCAT1; at the same time, in vitro experiments found that 

inhibiting the expression of BCAT1 in glioma cells directly leads to a reduction in 

glutamate production, and the cell proliferation and invasion ability also decreases; not 

only that, It is also found in the mouse model of glioma transplantation that the growth of 

the transplanted tumor is also significantly restricted under the condition of inhibiting the 

expression of BCAT1 [243]. Zhang et al. show that hypoxia upregulates the BCAA 

transporter LAT1 and BCAT1, but not BCAT2 in glioblastoma [258]. HIF-1α regulates 

BCAT1 expression by directly binding to the hypoxia response element at the first intron 
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of the BCAT1 in glioblastoma [258]. Knockout of HIF-1α reduces flux labeling from 

BCAAs in glioblastoma under hypoxia, and inhibition of BCAT1 inhibits glioblastoma 

cell growth under hypoxia [258]. BCAT1 expression can be used as a new diagnosis and 

treatment target for glioma. 

5.1.2 Liver cancer  

Hepatocellular carcinoma (HCC) has gradually increased in incidence in recent 

years and is the third leading cause of tumor death in the world [259]. Wang et al. 

discussed the expression of BCAT1 protein in hepatocellular carcinoma and its 

correlation with the prognosis of hepatocellular carcinoma [260]. Moreover, a later study 

found that BCAT1 was highly expressed in liver cancer [261]. They found that BCAT1 

expression in liver cancer cell lines and c -Myc expression is positively correlated, and 

knocking down c-Myc can also down-regulate the expression of BCAT1 [261]. 

Combined with in vivo experiments, after interfering with the expression of BCAT1, the 

ability of hepatocellular carcinoma cell migration and invasion also decreases. 

Conversely, loss of BCAA deamination enhances mTORC1 activity and promotes 

tumor development in the liver[262]. Another study also found that BCAT1 expression 

enhances the resistance of hepatocellular carcinoma to cisplatin drugs by inducing 

autophagy [263]. These findings suggest that BCAT1 is a potential biomarker for the 

diagnosis and treatment of hepatocellular carcinoma.  

5.1.3 Ovarian cancer  

Ovarian malignant tumors are one of the three most common malignant tumors in 

female genitals [264]. Wang et al. pointed out that the BCAT1 gene is overexpressed in 
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low-grade malignant tumors and high-grade serous epithelial ovarian tumors, and 

suggested that BCAT1 expression is closely related to BCAT1 due to significant 

hypomethylation [265]. It was found that the knocking down of BCAT1 in epithelial 

ovarian cancer cells attenuates cell proliferation, metastasis and invasion, and inhibits the 

cell cycle and inhibiting BCAT1 leads to a decrease in lipid synthesis and protein 

synthesis [265]. Further metabolomics analysis shows that more amino acids and sheath 

substances are consumed, suggesting that BCAT1 plays an important role in the 

metabolism of ovarian cancer [265]. 

5.1.4 Leukemia 

Acute myeloid leukemia (AML) is the most common adult acute leukemia, and its 

morbidity and mortality are both high. Raffel et al. find the BCAA enriched and BCAT1 

overexpressed in leukemia stem cells. BCAT1 is also necessary for α-ketoglutarate (α-

KG) homeostasis and links BCAA deamination to epigenomic regulation via α-KG 

dependent dioxygenases in AML stem cells[266]. Knockdown of BCAT1 in AML cells 

caused accumulation of α-KG, which leads to Egl-9 family hypoxia-inducible factor 1 

(EGLN1) -mediated HIF1α protein degradation. By contrast, overexpression of BCAT1 

in AML cells decreased intracellular αKG levels and caused DNA hypermethylation 

through altered ten-eleven translocation (TET)activity.  Gu et al.  show that EZH2 and 

NRASG12D mutations cooperatively induce the progression of myeloid leukemias in 

mice [267]. BCAT1 is repressed by EZH2 in normal cells and aberrantly activated in 

EZH2-deficient myeloid leukemias. BCAT1 reactivation sustains intracellular BCAA 

pools, resulting in enhanced mTOR signaling in EZH2-deficient leukemia cells, and 

inhibition of BCAT1 selectively inhibits EZH2-deficient leukemia-initiating cells [267].  
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Hattori et al. showed that BCAT1 is upregulated in chronic myeloid leukemia (CML) and 

promotes BCAA production in CML cells by aminating the branched-chain keto acids. 

The inhibition of BCAT1 induces cellular differentiation and impairs the propagation of 

blast crisis CML [244]. They also identified Musashi2 (MSI2), an RNA binding protein 

that is required for CML, as a regulator of BCAT1. These studies also suggest that 

BCAT1 has an important role in leukemia. 

5.1.5 Colorectal cancer  

Colorectal cancer is a common malignant tumor of the digestive system; the overall 

morbidity and mortality of colorectal cancer are stable. Still, its proportion of global 

malignant tumor morbidity and mortality has increased [268]. BCAT1 is significantly 

higher expressed in colorectal cancer with distant metastasis compared to colorectal 

cancer without distant metastasis, and BCAT1 expression can reliably predict whether 

colorectal cancer is distant metastasis [269]. Mitchell et al. found that when screening 

biomarkers diagnosed by colorectal cancer, BCAT1 Methylation is more common in 

colorectal tissue [270]. Other studies also pointed out that methylated BCAT1 and IKZF1 

are significantly increased in colorectal cancer, which is circulating in the blood [271, 

272]. So BCAT1 can also be used as a potential biomarker for the diagnosis of colorectal 

cancer [271, 272].  

 

5.2 CAF secreting BCKAs medicated by BCAT1 
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The mechanistic underpinnings of stromal BCKA secretion are necessary to 

elucidate its dynamics and targetable vulnerabilities. Because the synthesis of stromal 

BCKA is dependent on the transamination by BCAT1 or BCAT2.  We first check the 

PDAC cell growth in shBCAT1/2 CAFs, knockdown of BCAT1 by shRNA-BCAT1 in 

CAFs and consequent reduced BCKA secretion significantly reduced the growth rate of 

PDAC cells (Figure 5.1ab). Importantly, knockdown of BCAT2 by shRNA-BCAT2 in 

CAFs did not affect the growth rate of PDAC cells (Figure 5.1a). 

We then inhibited BCAT1 activity using Gabapentin, a BCAT1 inhibitor and 

measured BCKA secretion in CAFs[273]. Gabapentin concentration was selected after 

assessing its inhibition efficacy on BCAT1 activity (Figure 5.1c). Indeed, Gabapentin 

significantly reduced BCKA production and subsequent secretion by 40-50%, as 

observed by the extracellular BCKA concentrations using LC-MS analysis (Figure 

5.1d).To conclusively associate BCAT1 with CAF-mediated rescue of cancer cells under 

BCAA-deprived conditions, we added Gabapentin to cocultures (Figure 5.1e). Notably, 

inhibition of stromal BCAT1 abrogated the CAFs’ ability to rescue PDAC cell growth, 

whereas the addition of BCKA markedly restored the PDAC cell growth. These results 

suggest that BCKA synthesis in CAFs can be severely impacted upon loss of BCAT1 

expression or activity.   
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Figure 5.1 CAF secreting BCKAs medicated by BCAT1.  a. Effect of BCAT1 
knockdown in CAFs on the CAF-mediated rescue of cell growth rate under BCAA 
deprivation. n = 3 biologically independent samples. b. The effect of knockdown of 
BCAT1 in CAFs on CAF growth rates. n = 4 biologically independent samples.  c. BCAT 
activity is CAFs treated with Gabapentin measured by spectrophotometric assay. n = 6 
biologically independent samples.   d. BCKA secretion by CAFs treated with 10mM 
Gabapentin. n = 3 biologically independent samples.   e. Effect of 10mM Gabapentin on 
CAF-mediated rescue of MiaPaca-2 growth rate under BCAA deprived conditions. n = 6 
biologically independent samples.  

 

5.3 Inhibition of stromal BCAT1 down-regulate cancer protein synthesis and 
NADH 
 

We further investigated if Gabapentin-mediated BCAT1 inhibition in CAFs could 

influence de novo protein synthesis in PDAC cells in coculture. We found that BCAT1 

suppression in CAFs not only markedly reduced de novo protein synthesis (Figure 5.2a), 

but also the mitochondrial NADH/NAD+ ratio in PDAC cells (Figure 5.2b). 
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Figure 5.2 Inhibition of stromal BCAT1 down-regulate cancer protein synthesis and 
NADH.   a. FACS analysis of GFP-labeled Mia Paca-2 cells detected with puromycin 
antibodies in the co-culture system with 10mM gabapentin. n = 6 biologically 
independent samples. b. Effect of 10mM gabapentin on the NADH/NAD+ ratio of cancer 
cells cocultured with CAFs. n = 6 biologically independent samples. 

 

5.4 Discussion 
 

In recent studies, the high catabolic activity of BCAT1 was shown to promote cell 

proliferation in wild type isocitrate dehydrogenase 1 (IDH1) gliomas [243]. BCAT1 is 

also necessary for α-ketoglutarate (α-KG) homeostasis and links BCAA deamination to 

epigenetic regulation via α-KG dependent dioxygenases in acute myeloid leukemia stem 

cells [266]. Conversely, loss of BCAA deamination enhances mTORC1 activity and 

promotes tumor development in the liver [262, 274]. BCAT1 is upregulated during the 

progression of chronic myeloid leukemia and promotes BCAA production by aminating 

the BCKAs [244]. Finally, high glucose uptake suppresses BCAA deamination in 

cardiomyocytes [275].  
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In this chapter, we identified BCAT1 as the regulator of BCKA secretion in CAFs. 

We first performed the PDAC cell growth assay in shBCAT1/2 CAFs. After confirmation 

of BCAT1 in CAFs, we then used BCAT1 inhibitor, Gabapentin. Indeed, Gabapentin 

significantly reduced BCKA production. Furthermore, we also used Gabapentin to CAF 

cocultures; it showed that Gabapentin inhibits the CAFs’ ability to rescue PDAC cell 

growth. These results suggest that BCAT1 regulates BCKA synthesis in CAFs in CAFs. 

Gabapentin could inhibit de novo protein synthesis and the mitochondrial NADH/NAD+ 

ratio in PDAC cells in coculture. With the continuous development of BCAT1 related 

research, more and more are found that malignant tumors, BCAT1 is highly expressed, 

and it is suggested that it plays an important role in promoting tumor cell proliferation, 

invasion and metastasis. It may be a potential clinical aid for related tumors to diagnostic 

biomarkers or therapeutic targets. 
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Chapter 6 Internalization of The Extracellular Matrix to Supply Amino Acid 
Precursors for BCKA Secretion by CAFs 

 

6.1 Introduction 
 

One of the hallmarks of PDAC histology is desmoplasia, where the fibrosis 

reaction is caused by excessive fibroblasts and ECM deposition of most tumor masses 

[52, 276, 277]. ECM is made of structural protein, an adaptor protein, dense network 

structure of proteins and enzymes found in all tissues, providing biochemical and 

structural support for tissue homeostasis [278]. In PDAC, the deposition of ECM has 

increased significantly with progression. Collagen is the main structural protein in the 

ECM. Type I and IV collagens are the main structural proteins constituting PDAC ECM 

[279]. 

6.1.1 Collagen Type I (Col I) 

Col Ⅰ is a heterogeneous triplet that constitutes the extracellular matrix. The main 

component is fibrous collagen, and Col Ⅰ has a wide range of biological activities. In 

addition to regulating cell protein synthesis and secretion, it can also regulate the 

production of some proteolytic enzymes [280]. Moreover, through the induction of tumor 

cells, a variety of hydrolytic enzymes are produced. Moreover, under the regulation of 

various cytokines, it affects the growth, differentiation, migration or gene expression of 

cells through the interaction with the cells, thus in the tumor and It plays an extremely 
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important role in the process of inflammation occurrence, development and wound 

healing. 

The role of Col Ⅰ in the process of tumor evolution has been gradually understood 

and increasingly valued in recent years. It is related to a variety of tumors. Kiefer et al. 

[1] found that α2β1 and α3β1 integrins can mediate the adhesion of Col Ⅰ to cells, and 

then stimulates the proliferation and growth of cells through the transduction of signaling 

pathways [281]. Furthermore, incubating bladder cancer cells on Col Ⅰ coating, the 

expression of genes related to metabolism, transcription and translation has been 

changed, which has increased the proliferation of cells and contributed to the bone 

metastasis of bladder cancer [282]. In normal tissues, Col Ⅰ is mainly produced by 

fibroblasts in the interstitium. The content of Col Ⅰ in the main depends on two aspects: 

one is the synthesis and deposition of collagen, and the other is the role of collagen 

dissolution factors. The two together determine the content of Col Ⅰ in tumor tissues. In 

tumor tissues, tumor cells and fibroblasts are involved in the process of Col Ⅰ synthesis 

and deposition, and there is an interaction between the two. Dahlman et al. found that 

tumor cells can stimulate the transcription of Col Ⅰ mRNA of fibroblasts through direct 

interactions between cancer cells and fibroblasts or stimulation of cytokines such as 

PDGF and TGFGβ [283]. Sengupta et al. found that when the methylation level of α2(Ⅰ) 

transcription initiation site increased, the steady-state level of Col Ⅰ mRNA decreased, 

and the production of collagen decreased [284]. This shows that the collagen synthesis 

process is extremely complicated. It is regulated by various factors and needs further 

discussion. 
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Similarly, the dissolution factor of Col Ⅰ is a factor that cannot be ignored and is 

closely related to tumor invasion and metastasis. In tumor tissues, the dissolution of Col Ⅰ 

is mainly related to hydrolytic enzymes that are mainly related to MMP1, MT-MMP1, 

and other enzymes [285]. Although tumor cells can secrete these enzymes to degrade Col 

Ⅰ, Col Ⅰ has a certain regulatory effect on the production of these enzymes. Studies have 

found that Col Ⅰ can regulate the production and secretion of MMP-2 and can also 

regulate the secretion ability of fibroblast MMP-2 and cathepsin B precursors [286]. 

Therefore, Col Ⅰ can reduce the barrier effect on tumor invasion through the action of 

lytic factors, and can also induce tumor cells to produce multiple hydrolases. 

The abnormal expression of Col Ⅰ is related to the occurrence and evolution of 

multiple types of tumors. The degradation and synthesis of Col Ⅰ in tumor tissue is a 

dynamic process, and the enhancement of collagen synthesis and deposition may be 

involved in preventing the growth of tumors. In contrast, the dissolution of collagen may 

cause tumor invasion and expansion. At the same time, in highly malignant tumors, the 

abnormality of collagen may promote the evolution of the tumor. It can be seen that the 

role of Col Ⅰ in the process of malignant transformation of cancer cells cannot be ignored. 

6.1.2 Collagen Type IV (Col IV) 

Col Ⅳ is the main component of the dense layer of the basement membrane and 

also belongs to the fibrous collagen. The basement membrane has a three-dimensional 

network structure, which is maintained by covalent bonds and is connected with other 

components, such as laminin, fibronectin, etc. [287]. The extracellular matrix structure 

constitutes the cell's microenvironment. Current research has found that Col Ⅳ can 

provide sites for cell adhesion. These sites are specifically recognized by receptors on the 
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cell surface and participate in the regulation of cell function. Therefore, they are involved 

in tumors and inflammation. The development process also has important significance. 

During the invasion and metastasis of many tumors, the expression of Col Ⅳ is generally 

reduced or absent. Col Ⅳ expression was negatively correlated with cervical lymph node 

metastasis in larynx cancer [288]. Erkan et al. found that as the degree of tumor invasion 

increased, the rate of expression loss of Col Ⅳ is also gradually worsened, and is closely 

related to the lymph node metastasis of the tumor [289]. Ozer et al. reported that the 

expression of Col Ⅳ and laminin in urinary tract tumors is closely related to the survival 

time of patients [290]. In recent years, studies have also found that Col Ⅳ expression is 

related to tumor differentiation, invasion and metastatic ability. At the same time, it has a 

certain value for judging tumor invasion, metastasis and prognosis. 

6.2 Uptake of collagen under BCAA deprivation 
 

Activated CAFs in PDAC is known to secrete a vast array of ECM proteins, such 

as collagen, enzymes, and glycoproteins [291-293]. Therefore, we surmised that under 

the nutrient-scarce conditions of the pancreatic TME, the ECM proteins in the milieu 

could be a source of amino acids for CAFs. However, there continues to be sparse data 

regarding the role, if any, of ECM protein uptake by stromal fibroblasts in cancer. To 

illustrate that CAFs utilize ECM proteins, which in turn influence CAF-mediated rescue 

of PDAC cells under BCAA deprivation conditions, we added collagen I or collagen IV 

to coculture. As seen in Figure 6.1a, both collagen I and IV enhanced PDAC cell growth 
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rate in coculture under BCAA-deprivation but did not affect monoculture. Further, 

Gabapentin attenuated ECM protein-mediated rescue of cancer cell growth by CAFs.  

To characterize internalization, confirm uptake and cleavage of ECM proteins by 

CAFs, we used fluorogenic DQ collagen (self-quenched collagen that emits fluorescence 

upon degradation). We found that collagen uptake in CAFs under BCAA-deprivation 

increased significantly compared to the BCAA-replete condition, and this increase was 

pronounced in the presence of TGF-β (Figure 6.1b). To further substantiate this, we 

studied the uptake of collagen by both PDAC cells and CAFs and found significantly 
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higher collagen uptake in CAFs (Figure 6.1c) compared to PDAC cells. 

 

Figure 6.1 Uptake of collagen under BCAA deprivation.  a. Relative proliferation 
rates of Mia Paca-2 cells co-cultured with CAFs and Collagen or 10mM Gabapentin 
under BCAA deprivation. n = 6 biologically independent samples. b. Uptake of DQ-
Collagen by CAFs assessed using confocal imaging after 24 h. Experiments were 
repeated independently three times with similar results. c. Uptake of DQ-Collagen by 
PDAC cell lines and CAFs measured using confocal imaging after 24 h. Experiments 
were repeated independently three times with similar results.  

6.3 Collagen uptake regulated by uPARP in CAFs 
 

Since fibroblasts internalize ECM proteins through (uPARAP/Endo 180, which is 

encoded by the MRC2 gene), we measured the expression of uPARAP/Endo180 in 
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PDAC and CAFs. In concurrence with our previous results, uPARAP/Endo180 

expression is much higher in CAFs compared to cancer cells (Figure 6.2ab). Moreover, 

inhibiting the expression of uPARP in CAFs significantly impacted the uptake of 

collagen (Figure 6.2c). These results cumulatively indicate that ECM internalization is 

indeed high in CAFs, and undetectable in PDAC cells. These ECM internalization results 

were confirmed by measuring intracellular BCAA levels and 13C enrichment in CAFs 

cultured with 13C-BCAAs for 12 hours before deprivation (Figure 6.3a). Notably, 

intracellular BCAA levels increased gradually over 6, 12, 24, and 48 hours post-

deprivation (Figure 6.3b). Whereas, 13C enrichment of BCAAs gradually decreased in the 

same timeframe (Figure 6.3b), indicating the introduction of unlabeled BCAAs in 

BCAA-deprived CAFs from ECM proteins. 
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Figure 6.2 Collagen uptake regulated by uPARP in CAFs. a. Flow cytometry assay 
indicated the expression of MRC2 in PDAC cell lines. Experiments were repeated 
independently three times with similar results. b. Flow cytometry assay indicated the 
expression of MRC2 in CAFs. Experiments were repeated independently three times with 
similar results.   c. Uptake of DQ-Collagen by CAFs transfected with siControl or 
siuPARP measured using confocal imaging after 24 h. Experiments were repeated 
independently three times with similar results.  
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Figure 6.3 Intracellular BCAA levels in CAFs under BCAA deprivation.  a. CAFs 
are cultured with labeled with 13C-BCAAs for 12 hours before inducing BCAA 
deprivation. Spent media and cells are collected after 6, 12, 24 and 48 hours under 
deprivation. Media samples are analyzed for secreted BCKAs using LC-QTOF, and 
intracellular samples are analyzed for BCAAs using GC-MS.   b. Intracellular BCAA 
levels were measured after 6, 12, 24 and 48 hours under BCAA deprivation. Mole 
percent enrichment of intracellular BCAAs was measured after 6, 12, 24, and 48 hours 
under BCAA deprivation. n = 3 biologically independent samples.   

6.4 CAFs utilize collagen through the proteasome 
 

To understand the underlying mechanism behind the degradation of ECM proteins 

in CAFs, we hypothesized that proteasomal proteolysis plays a major role in the 
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degradation of these internalized ECM proteins under nutrient-deprived conditions. 

Consistent with this notion, both BCAA-deprivation and TGF-β increased the 

chymotrypsin-like proteasome activity in CAFs, but not trypsin-like and caspase-like 

protease activities (Figure 6.4a). To further investigate the role of the proteasome in 

collagen degradation, cells were incubated with FITC-collagen I for 48h and then stained 

with an antibody for the proteasome α and β subunits (Figure 6.4b). It was evident that 

collagen is localized with proteasomes in the CAFs, thereby suggesting that proteasomes 

indeed degrade ECM proteins. We further tested our hypothesis by measuring BCKA 

secretion from CAFs and PDAC cell growth rates in coculture under BCAA-deprived 

conditions. We found that Delanzomib, the chymotrypsin-like proteasome activity 

inhibitor, attenuated ECM protein-mediated rescue of cancer cell growth by CAFs 

(Figure 6.4c). These results confirm that collagen is indeed degraded by proteasomal 

proteolytic activity in CAFs. Further, MG-132, a potent proteasomal inhibitor, also 

suppressed the rescue of cancer cell growth by CAFs (Figure 6.4d). To further expand 

our findings, we measured CAF-secreted BCKAs in the presence of Delanzomib and 

found that Delanzomib impeded their ability to secrete BCKA by 40% (Figure 6.4e). 
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Figure 6.4 CAFs utilize collagen through the proteasome.  a. Proteasome activity in 
CAFs treated with TGF-beta and under BCAA deprivation. n = 6 biologically 
independent samples.  b. Colocalization of collagen and proteasome analyzed by 
immunofluorescence against proteasome 20s and FITC-collagen. Experiments were 
repeated independently three times with similar results.  c. Relative proliferation rates of 
Mia Paca-2 pancreatic cancer cells cocultured with CAFs in combination with Collagen 
or Delanzomib under BCAA deprivation. n = 6 biologically independent samples. d. 
Relative growth rates of Mia Paca-2 and Panc-1 cells cocultured with CAFs treated with 
MG-132 under BCAA deprivation conditions. n = 8 biologically independent samples.  e. 
BCKA secretion by CAFs treated with Delanzomib. n = 3 biologically independent 
samples.  
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6.5 CAF derived ECM labeling and tracing 
 

To establish whether internalized ECM proteins are a carbon source for CAF-

secreted BCKAs, we cultured CAFs on decellularized 13C-BCAA-labeled ECM proteins 

(Figure 6.5a). Decellularized 13C-BCAA-labeled ECM was obtained by culturing CAFs 

with 13C-labeled leucine, isoleucine, and valine for eight days so that CAFs could 

incorporate labeled BCAAs into ECM protein. To confirm the ECM structure, we used 

scanning electron microscopy to observe the matrix and found that the CAF-derived 3-D 

matrix is free of cellular debris and remained attached to the culture surface (Figure 

6.5b). Secreted ECM proteins were acid hydrolyzed, and their constituent BCAAs were 

found to be enriched by 40-50% 13C-labeled BCAAs (Figure 6.5c-e). We then cultured 

CAFs with 13C-BCAA labeled ECM under BCAA-deprived conditions and analyzed the 

spent media obtained after 48 hours of culture. BCKAs secreted by the CAFs were 

analyzed using LC-MS and found to be enriched with 13C derived from the proteolyzed 

ECM (Figure 6.5f). This indicated that when CAFs were cultured with this labeled ECM, 

they internalized and proteolyzed it to maintain intracellular BCAA pools and produce 

and secrete BCKAs. Collectively, these results provide evidence that the ECM in the 

pancreatic milieu could serve as a storage pool of BCAAs for the CAFs under nutrient-

stressed conditions. 
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Figure 6.5 CAF derived ECM labeling and tracing.  a. Schematic of the protocol used 
to synthesize ECM labeled with 13C-BCAAs and secretion of 13C-BCKAs after 
culturing BCAA-deprived CAFs in ECM labeled with 13C-BCAAs.  b. Scanning 
electron microscopy image of CAF-derived 3-D matrices. Experiments were repeated 
independently two times with similar results.  c. Fractional enrichment of BCAAs after 
acid hydrolysis of decellularized ECM proteins produced by CAFs cultured with 13C-
BCAAs. n = 3 biologically independent samples. d. Mass isotopomer distribution of 
BCAAs after acid hydrolysis of decellularized ECM proteins produced by CAFs cultured 
with 13C-BCAAs. n = 3 biologically independent samples.  e. Fractional enrichment of 
amino acids after acid hydrolysis of decellularized ECM proteins produced by CAFs 
cultured with 13C-BCAAs. n = 3 biologically independent samples. f. Fractional 
enrichment of BCKAs secreted by CAFs at the end of 48h of being cultured under BCAA 
deprivation on ECM labeled with 13C-BCAAs. n = 3 biologically independent samples. 
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6.6 Discussion 
 

In this chapter, we characterized the BCAA source for CAFs under BCAA 

deprivation. CAFs have been shown to secrete a vast array of ECM proteins, such as 

collagen, enzymes, and glycoproteins [277]. Therefore, we surmised that under the 

nutrient-scarce conditions of the pancreatic TME, the ECM proteins in the milieu could 

be a source of amino acids for CAFs. To illustrate that CAFs utilize ECM proteins, which 

in turn influence CAF-mediated rescue of PDAC cells under BCAA deprivation 

conditions, we showed collagen I or collagen IV could further support PDAC cells in 

cocultures. To characterize internalization, confirm uptake and cleavage of ECM proteins 

by CAFs using DQ collagen. We showed that collagen uptake in CAFs under BCAA-

deprivation increased significantly compared to the BCAA-replete condition or in the 

presence of TGF-β.  

It is well-established that stromal cells, including fibroblasts, internalize ECM 

proteins through (uPARAP/Endo 180, which is encoded by the MRC2 gene) [294, 295], 

and the expression of uPARAP/Endo180 is maximal in fibroblasts. We first showed that 

uPARAP/Endo180 expression is much higher in CAFs compared to cancer cells. 

Furthermore, inhibition of uPARP in CAFs significantly reduced the uptake of collagen. 

We also tested the proteasomal proteolysis role in the degradation of these internalized 

ECM proteins under nutrient-deprived conditions. WE also proved that proteasomes 

indeed degrade ECM proteins since the collagen is co-localized with proteasomes in the 

CAFs. We found that proteasome inhibitor Delanzomib reduced ECM protein-mediated 

rescue of cancer cell growth by CAFs.  To establish whether internalized ECM proteins 
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are a carbon source for CAF-secreted BCKAs, we cultured CAFs on decellularized 13C-

BCAA-labeled ECM proteins. BCKAs secreted by the CAFs were found to be enriched 

with 13C derived from the proteolyzed ECM. This indicated that when CAFs were 

cultured with this labeled ECM, they internalized and proteolyzed it to maintain 

intracellular BCAA pools and produce and secrete BCKAs. Collectively, we showed that 

the ECM in the pancreatic milieu could serve as a storage pool of BCAAs for the CAFs 

under nutrient-stressed conditions, and proteasome can also be a potential target in PDAC 

tumors.
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Chapter 7 Cancer Cells Regulate BCAT1 In Stromal Cells Through TGF-β 
 

7.1 Introduction 
 

Transforming growth factor β (TGF-β) is a newly discovered group of TGF-β 

superfamily that can regulate cell growth and differentiation. In recent years, it has been 

found that TGF-β has important adjustment effects on cell growth, differentiation and 

immune function, such as inhibiting the growth of epithelial cells and endothelial cells, 

suppressing the differentiation of lymphocytes and suppressing the proliferation of 

immune cells. These biological functions have an inhibitory effect on the occurrence and 

development of tumor cells. However, studies have shown that TGF-β1 can promote the 

infiltration and migration of tumor cells when regulating the immune system of cells and 

the microenvironment of tumors [296, 297].  

7.1.1 Molecular biological feature of TGF-β  

The TGF-β superfamily consists of more than 40 proteins, including TGF-β, 

activin (A, AB, B, C, E), inhibin (A, B), bone morphogenetic proteins (BMPs) and 

growth and differentiation factors (GDFs). The human TGF-β cDNA sequence shows 

that the monomeric TGF-β is a polypeptide containing 112 amino acid residues, and the 

gene is located in the chromosome 19q13, human TGF-β has three subtypes of TGF-β1, 

TGF-β2, and TGF-β3. There are also two subtypes of TGF-β4 and TGF-β5 in birds and 

amphibians. The role of TGF-β1 is multi-directional, and almost all types of tissues in the 
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human body can synthesize and secrete. It plays an important role in regulating the 

growth of cells, the formation of the extracellular matrix, immune regulation, 

neovascularization, cell death and tumor development [298]. 

TGF-β1 needs to be activated with its receptor before it can exert its biological 

effects. Common receptors are TβRI (53 kDa), TβRIII (75 kDa) and TβRIII (280 kDa). 

TβR TβRII and I belong to transmembrane proteins, and they also have serine protein 

kinase activity in cells. TβRII is first activated by binding to a ligand, and then recruited 

and combined with TβRI. They jointly determine the identification characteristics of 

TGF-β. Activated TβRII can make the sequence of TβRII amino acid fragments 

phosphorylated by TTSGSGSG, which further activates the receptor's serine protein 

kinase activity, which triggers a cascade of cell signal transduction reactions. TβRI can 

promote the phosphorylation of Smad2 and Smad3 proteins and connect with the 

“pocket” structure of the SMD4 protein Mh2 region to form R-Smad-SMAD4 oligomers 

into the nucleus and further regulate target gene transcription [299]. The Smads protein is 

the central nucleus of the TGF-β1 signal that enters the nucleus from the cytoplasm. The 

Smad pathway is the classic pathway for the transduction of TGF-β signals. Besides, the 

activity of TGF-β signal transduction is also regulated by the negative feedback loop of I-

Smads (suppressive Smads: Smad6, Smad7) [300]. Moreover, TGF-β can also conduct 

signal transduction through non-classical SMAD-independent pathways. So far, SMAD-

independent pathways mainly include RhoA-Rock1, RAS, ShcA, ERK1/2, and p38 

MAPK pathways [301]. 
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7.1.2 The role of TGF-β1 in the development of tumors 

Under physiological conditions, TGF-β1 can effectively inhibit the growth of 

many types of cells, including tumor cells. The mechanism by which TGF-β1 suppresses 

normal cell growth is to regulate the genes so that the cell proliferation period is at rest. 

In the early stage of the tumor, it inhibits the proliferation of cancer cells by resisting 

mitosis. TGF-β1 controls cell proliferation mainly by blocking cell cycle progression and 

inducing or activating cyclin-dependent kinase (CDK) inhibitors such as p27Kip1 [302]. 

However, when the tumor develops to an uncontrollable stage, TGF-β1 loses this 

inhibitory effect on most tumor cells. At this time, the tumor cells began to secrete TGF-

β1. TGF-β1 can promote vascularization by up-regulating the expression of microRNA, 

increasing the ability of cancer cells to bind to adherent molecules of cells, thereby 

enhancing the invasion of cancer cells and promoting the growth of micro-circulation and 

metastasis of tumors [303]. At this time, TGF-β1 can induce normal cell death around the 

cancer cells, thereby eliminating their inhibitory effect on tumor growth. 

In the later stage of the tumor, TGF-β1 becomes a tumor-promoting factor, which 

plays an important role in the transition of the tumor. In PDAC, TGF-β1 can convert 

human acinar cells to duct-like cells in a SMAD-dependent pathway [304]. Furthermore, 

TGF-β1 regulates miR-100 and miR-125b through SMAD2/3 to promote PDAC 

progression [305]. 

7.1.3 TGF-β1 and EMT 

EMT is the transformation of epithelial cells into cells with an interstitial 

phenotype. The biological process is not only a basic process of body development but 

also a feature of tumor occurrence. Through EMT, epithelial cells have lost cell polarity, 
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epithelial phenotypes, such as connection to the basement membrane. At the same time, 

they have obtained higher migration and invasion, resistance to decay, and the ability to 

decompose the extracellular matrix [98]. TGF-β1 is an important regulatory factor in the 

process of EMT. Extracorporeal studies have shown that TGF-β recognition is the main 

inducer of EMT. The regulators of EMT can be adjusted through the Smad pathways, 

mainly including Snail, Slug, Twist, Cripto-1, FoxC2 and Six1 [306]. Activating the 

Smd2/3 in the epithelial cells can induce the expression of the nuclear HMGA2, and it 

can stimulate Snail1, Snail2, Slug, Twist by transcription [307]. TGF-β1-mediated 

formation of the Snail Smad3/4 complex can inhibit the expression of E-cadherin in 

epithelial cells, and E-cadherin will be lost during the EMT process and in the post-tumor 

period [308]. TGF-β1 inhibitors are being used reversal epithelial-mesenchymal 

transition as metastasis inhibitors in clinical trials [309].  

7.2 PDAC cell condition media activate BCAT1 
 

To unravel the mechanism underlying the regulation of BCAT1 expression in 

CAFs, we postulated that cancer cells reprogram fibroblasts to upregulate their BCAT1 

expression to meet the cancer cells’ demand for BCKAs under BCAA deprivation. It is 

well-established that resident quiescent fibroblasts and bone marrow-derived 

mesenchymal stem cells (MSCs) serve as precursors of activated CAFs, and factors 

secreted by cancer cells modulate this transformation [310]. We first transformed NOFs 

and MSCs into CAFs by culturing them in PDAC cell-conditioned medium (CM) for four 

weeks and measured the expression of genes involved in BCAA metabolism. This 

revealed that the basal expression of BCAT1 in NOFs and primary MSCs is low, 
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however, increased activation of NOFs and primary MSCs using cancer cell CM 

progressively increased BCAT1 expression and expression of activated CAF markers α-

smooth muscle actin, (αSMA), podoplanin (PDPN), and fibroblast specific protein 

(FSP1) (Figure 7.1). Consistent with previous results, there was no change in BCAT2 

gene expression in MSCs and NOFs cultured in PDAC cell CM (Figure 7.2). These 

results were further corroborated when CAFs were exposed to PDAC CM for three 

weeks, and similar upregulation of BCAT1 was found with no significant changes in 

BCAT2, BCKDHA, and BCKDHB (Figure 7.3). Next, we asked if these activated NOFs 

could acquire PDAC-supporting characteristics of CAFs. Notably, we found that, like 

CAFs, activated NOFs completely rescue PDAC cell growth under BCAA-deprivation 

conditions (Figure 7.4).  
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Figure 7.1 Panc-1 CM activates BCAT1 in NOFs. a. Effect of pancreatic cancer cell-
conditioned media (CM) on BCAT1 expression in NOFs over four weeks. n = 8 
biologically independent samples.  b.  BCAT2 expression in NOFs treated with 
pancreatic cancer cell-conditioned media (CM). n = 8 biologically independent samples.   
c.  α-smooth muscle actin, (α-SMA) expression in NOFs cultured with pancreatic cancer 
cell-CM over four weeks. n = 8 biologically independent samples.  d.  fibroblast specific 
protein (FSP1) expression in NOFs cultured with pancreatic cancer cell-CM over four 
weeks. n = 8 biologically independent samples.  e.  podoplanin (PDPN) expression in 
NOFs cultured with pancreatic cancer cell-CM over four weeks. n = 8 biologically 
independent samples.   
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Figure 7.2 Panc-1 CM activate BCAT1 in MSCs. a. Effect of pancreatic cancer cell 
CM on BCAT1 expression in primary MSCs over four weeks. n = 6 biologically 
independent samples.   b. Effect of pancreatic cancer cell CM on BCAT2expression in 
primary MSCs over four weeks. n = 6 biologically independent samples.    c. Effect of 
pancreatic cancer cell CM on αSMA expression in primary MSCs over four weeks. n = 6 
biologically independent samples.   d. Effect of pancreatic cancer cell CM on FSP-1 
expression in primary MSCs over four weeks. n = 6 biologically independent samples.   e. 
Effect of pancreatic cancer cell CM on PDPN expression in primary MSCs over four 
weeks. n = 6 biologically independent samples.  
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Figure 7.3 Panc-1 CM activates BCAT1 in CAFs. a. Effect of pancreatic cancer cell 
CM on BCAT1 expression in various CAFs. n = 6 biologically independent samples.  b. 
Effect of pancreatic cancer cell CM on BCAT2 expression in various CAFs. n = 6 
biologically independent samples. c. Effect of pancreatic cancer cell CM on BCKDHA 
expression in various CAFs. n = 6 biologically independent samples. d. Effect of 
pancreatic cancer cell CM on BCKDHB expression in various CAFs. n = 6 biologically 
independent samples.    

 

 

Figure 7.4 Activated CAF rescue cancer cell growth under BCAA deprivation. The 
growth rate of pancreatic cancer cells cultured with activated NOFs under BCAA 
deprivation. n = 6 biologically independent samples. 
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7.3 TGF-β regulated stromal BCAT1 
 

Having established that fibroblast activation specifically upregulates BCAT1 

expression in CAFs, we sought to elucidate the congruence between NOF activation 

pathways and BCAT1 expression. Although the signaling pathways that activate 

fibroblasts are still being studied, many pathways converge towards TGF-β-based 

activation [311]. We assessed if TGF-β could regulate BCAT1 expression in CAFs and 

surprisingly found that induction of BCAT1 expression by TGF-β is pronounced in CAFs 

(Figure 7.5a). By contrast, TGF-β could neither influence BCAT2 expression in CAFs 

nor induce changes in BCAT1 expression in PDAC cells (Figure 7.5ab). Importantly, 

depletion of TGF-β with a neutralizing antibody abrogated upregulation of stromal 

BCAT1 and αSMA expression mediated by cancer cell-secreted TGF-β. In contrast, there 

was no change in BCAT2 gene expression (Figure 7.5c-e). These results were further 

confirmed using immunofluorescence (Figure 7.6a). We also employed a genetic 

approach using αvβ5-integrin KO CAFs, which becomes activated upon pre-activated (as 

opposed to immature/latent) TGF-β in a non-cell-autonomous way. The BCAT1 

expression of αvβ5-integrin KO CAFs failed to be activated by conditioned media 

obtained from cancer cells (Figure 7.6b). Additionally, we measured the secretion rate of 

TGF-β by cancer cells and CAFs (Figure 7.6c). We found that cancer cells secreted TGF-

β at several folds higher concentrations compared to CAFs, thereby corroborating our 

claim that cancer-cell secreted TGF-β regulates BCAT1 expression. 
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Figure 7.5 TGF-β regulated stromal BCAT1. a. BCAT1 and BCAT2 mRNA 
expression measured in CAFs after two days of treatment with TGF-β. n = 6 biologically 
independent samples. b. BCAT1 expression in cancer cells treated with TGF-β. n = 8 
biologically independent samples. c. BCAT1 expression in NOFs cultured with 
pancreatic cancer cell-CM in the presence of Anti-TGFB1 antibodies or isotype 
antibodies for three weeks. n = 8 biologically independent samples.  d. BCAT2 
expression in NOFs cultured with pancreatic cancer cell-CM in the presence of Anti-
TGFB1 antibodies or isotype antibodies for three weeks. n = 8 biologically independent 
samples.  e. αSMA expression in NOFs cultured with pancreatic cancer cell-CM in the 
presence of Anti-TGFB1 antibodies or isotype antibodies for three weeks. n = 8 
biologically independent samples.   
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Figure 7.6 Cancer cell-derived TGF-β regulated stromal BCAT1.  a. Representative 
images from IF analysis of BCAT1 and αSMA expression in NOFs cultured with 
pancreatic cancer cell-CM in the presence of Anti-TGFB1 antibodies or isotype 
antibodies for three weeks. Experiments were repeated independently twice with similar 
results. b. BCAT1 and BCAT2 expression in control and Integrin αvβ5 KO CAFs 
cultured with pancreatic cancer cell-CM for three weeks. n = 4 biologically independent 
samples.  c. ELISA shows TGF-β secretion levels from CAFs and PDAC cell lines. n = 8 
biologically independent samples.  

 

7.4 TGF-β regulated stromal BCAT1 through SMAD5 
 

Previous studies have provided evidence that SMAD proteins are the effectors of 

TGF-β activation, and once activated, they regulate gene expression by translocating to 

the nucleus. NOF activation significantly upregulated SMAD2, SMAD4 and SMAD5 
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(Figure 7.7). 

 

Figure 7.7 Panc-1 CM regulates SMADs in NOFs.  a. Effect of pancreatic cancer cell 
CM on SMAD5 expression in NOFs over four weeks. n = 6 biologically independent 
samples. d. SMAD2 expression in NOFs treated with pancreatic cancer cell-CM. n = 8 
biologically independent samples.  e. SMAD3 expression in NOFs treated with 
pancreatic cancer cell-CM. n = 8 biologically independent samples.    f. SMAD4 
expression in NOFs treated with pancreatic cancer cell-CM. n = 8 biologically 
independent samples.      

To establish which SMAD directly regulated BCAT1 expression, we performed 

quantitative ChIP-PCR to elucidate the targets for the BCAT1 binding regions. Our 

analysis revealed the enrichment of SMAD5 for BCAT1 promoter binding regions 

compared to the control regions (Figure 7.8a). Furthermore, only SMAD5 binding to the 

BCAT1 promoter regions is increased upon TGF-β activation, while SMAD4 binding 

was not affected. To further decipher if TGF-β and SMAD5 activation increased the 

BCAT1 promoter activity, we performed a dual-luciferase reporter assay. We found that 

incubation with TGF-β strongly increased BCAT1 promoter activity in CAFs (Figure 

7.8b). Expectedly, the increase of TGF-β-mediated BCAT1 promoter activity is 

suppressed on treatments with either TGF-β pathway inhibitor, RepSox or via silencing 
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of SMAD5 expression (Figure 7.8b). Further, IHC staining confirmed that the stromal 

component had increased expression of SMAD5 compared to the epithelial compartment 

(Figure 7.8c). To conclusively elucidate the transcriptional regulation of BCAT1 by 

SMAD5, we measured mRNA levels of BCAT1 in CAFs when transfected with siRNAs 

targeting SMAD4 or SMAD5 (Figure 7.8d). SMAD5 inhibition significantly impacted 

the BCAT1 expression at mRNA and protein levels (Figure 7.8e). In contrast, SMAD4 

silencing did not induce any changes in BCAT1 expression.  These results provide strong 

evidence that cancer cell-secreted TGF-β upregulates stromal BCAT1 activity through 

SMAD5 activation in stromal cells (Figure 7.8f). 

 

 

 

 



 126 

 

Figure 7.8 TGF-β regulated stromal BCAT1 through SMAD5.  a. ChIP assays 
performed with control IgG and anti-SMAD5 or anti-SMAD4 antibodies in CAFs treated 
with PBS control or TGF-β. n = 4 biologically independent samples. b. Transient 
transfection assays in CAFs with the reporter plasmid containing BCAT1 promoter. n = 8 
biologically independent samples. c. Representative IHC staining image comparing 
SMAD5 expression between stromal and tumor compartments. Experiments were 
repeated independently three times with similar results. d. mRNA expression of BCAT1 
in CAFs treated with siRNAs targeting SMAD4 or SMAD5. n = 6 biologically 
independent samples.     e. Immunoblots showing BCAT1 protein expression in CAFs 
treated with control siRNA and SMAD5 siRNA. Experiments were repeated 
independently three times with similar results. f. TGF-β secreted by cancer cells regulates 
BCAT1 expression in CAFs by activating SMAD5, which binds to the BCAT1 promoter. 
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7.5 Discussion 
 

TGF-β1 in the tumor microenvironment has a significant effect on the antitumor 

activity of T cells. In the presence of exogenous IL-2 and IL-4, TGF-β1 can regulate the 

growth of T cells and usually promotes proliferation [312]. TGF-β1 can cause the 

resident macrophage to become an inhibitor of CD4+ T cell proliferation [313]. TGF-β1 

can inhibit the differentiation of cytotoxic T cells and the lysis of cancer cells mediated 

by cytotoxic T cells. Also, TGF-β1 can block the expression of granzyme A, granzyme B 

and perforin, while the expression of granzyme B is directly linked to the Smad 

transcription factor [314]. TGF-β1 also has the function of suppressing the effect of NK 

cells and neutrophils, which leads to the deterioration of tumors [315]. The enhancement 

of TGF-β1 and IL-6 levels has the effect of promoting the progress of inflammation and 

gastric cancer. TGF-β1 also showed suppression of the expression of the cell populations 

MHC I and MHC II. The decrease of tumor cell MHC I expression will reduce the 

dissolution effect of tumor cells of NK cells, thereby accelerating the growth and 

migration of tumors. 

In this chapter, we showed that TGF-β could regulate BCAT1 expression in CAFs 

and induction of BCAT1 expression by TGF-β is pronounced in CAFs. Furthermore, 

depletion of TGF-β with a neutralizing antibody abrogated upregulation of stromal 

BCAT1 and αSMA expression mediated by cancer cell-secreted TGF-β.  Moreover, we 

identified SMAD5 as the regulator of BCAT1 through quantitative ChIP-PCR and dual-

luciferase reporter assay. In summary, we showed that cancer cell-secreted TGF-β 

upregulates stromal BCAT1 activity through SMAD5 activation in stromal cells. 
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Chapter 8 Patient-derived Circulating Tumor Cells Have Upregulated BCKDH 
Metabolism and Modulate Stromal Cells 

 

8.1 Introduction 
 

The number of CTCs that can be collected in clinical blood samples is very limited, 

except for cell counting and gene sequencing, it is usually not sufficient for routine drug 

sensitivity testing or cell phenotype analysis. Therefore, stable culture expansion of CTCs 

is a downstream function of CTCs. At the same time, in the case of a small number of 

cells, the lack of paracrine signals between cells will increase the difficulty of cell culture 

expansion. Yu et al. collected CTCs from estrogen receptor-positive breast cancer 

patients using CTC-ichip, and cultured in RPMI-1640 medium with epidermal growth 

factor (EGF), basic fibroblast growth factor (bFGF), B27 Supplement, with ultra-low 

attachment plates and hypoxia (4% O2) conditions [316]. Then 17.14% (6/35) sample 

CTCs proliferated successfully with doubling times of 3 days to 3 weeks. At the same 

time, it was also reported that adhesion would induce CTCs to age. Cayrefourcq et al.  

used the CELLSEARCH system to collect the CTCs suspension culture of patients with 

metastatic colorectal malignant adenocarcinoma, and the culture was first placed in 

DMEM/F12 medium with FBS,  insulin, L-glutamine, EGF, FGF-2, N2 Supplement, and 

cultured under hypoxic (2% O2) condition [317]. After a few weeks, the cultures then 

transferred to RPMI-1640 medium with EGF, FGF-2, Insulin-Transferrin-Selenium (ITS) 

under normal oxygen conditions to obtain a cell line capable of long-term survival [317]. 
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Gao et al. centrifuged the CTCs from patients with metastatic prostate cancer using the 

Ficoll Paque system, dispersed in Matrigel as organoids, and soaked in DMEM/F12 

medium with A83-01, B27 Supplement, Dihydrotestosterone (DHT), EGF, FGF2, 

FGF10, Glutamax Supplement, HEPES, N-Acetyl-L-cysteine (NAC), Nicotinamide, 

Noggin, R-spondin 1, SB202190 and Y-27632. Then, 5.88% (1/17) of the samples were 

successfully amplified with a doubling time of 1 week [318]. The mutation and pathology 

were similar to those of tumor cells and tissues in situ. Zhang et al. used CTC-chip to 

collect CTCs in the peripheral blood from patients with early-stage lung cancer [319]. 

First, fibroblasts, collagen and Matrigel were added to the chip, soaked in RPMI-1640 

medium supplemented with FBS. After 3D co-culture for one week, the number of tumor 

cells increased to an average of 8 times; after the cells were released from the chip and 

transferred to a multi-well plate for one week, the number of tumor cells increased to an 

average of 54 times, with a total culture success rate of 73.68% (14/19) [319]. In a recent 

study, Rivera-Báez et al. used high-throughput, label-free Labyrinth isolated CTCs based 

on cell sizes, CTCs were isolated from 10 locally advanced, then cultured in a simple, 2D 

monoculture approach with RPMI1640, CTCs from 3 individual patients successfully 

grew into cell lines [320]. The generally low success rate of CTCs cultivation is the 

academic problem facing us. At present, there is no "gold standard" applicable to the 

cultivation of tumor cells from all different sources, but the successful cultivation of 

CTCs for each type of tumor will greatly advance the research and clinical treatment of 

tumor metastasis. 
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8.2 BCAA related enzymes expression in CTCs 
 

To replicate tumor-stroma interactions in humans in the context of PDAC cell 

BCAA metabolism, and overcome inconsistencies observed in animal models, we have 

relied on human CTCs derived models. CTCs shed by the primary tumor are the seeds of 

metastasis[321] and established as a potential biomarker of disease progression[322]. 

CTCs mediate metastasis of many solid tumors, including PDACs, even after the 

resection of the primary tumor[323]. These cells can extravasate from the primary tumor 

site into the bloodstream and invade distant sites, resulting in the formation of metastases. 

CTCs freshly obtained from PDAC patient blood using the Labyrinth, a label-free size 

based inertial microfluidic CTC isolation device [324], allowed us to compare their 

transcriptional profile with the cells obtained from a healthy subject and CAF cell lines 

(Figure 8.1ab).  Healthy control samples are the PBMCs that were not depleted during 

our Labyrinth processing. Therefore, the data represents the background signal for gene 

expression in PBMCs and deviations from that are due to the presence of the CTCs in the 

patient samples. It showed that the gene expression of BCKDHA and DBT are higher in 

Day 0 CTCs compared to healthy controls and CAFs (Figure 8.1c).  In contrast, BCAT1 

expression is much higher in CAFs compared to CTCs (Figure 8.1c).  These data indicate 

the clinical relevance and corroborative evidence of our observations in the in vitro 

model. We then used patient-derived expanded CTC lines for downstream experiments 

[320]. Similar to PDAC cell lines, CTC lines showed lower expression of BCAT1 

compared to CAFs, and higher expression of DBT compared to CAFs at the mRNA level 

(Figure 8.1d).  Consistent with our findings in PDAC cell lines, CTC lines also had 

higher expression of BCAT2 and lowered BCAT1 at the protein level (Figure 8.1e).  
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Further, BCKAs could rescue the impeded proliferation of CTC lines under BCAA 

deprivation, thereby demonstrating that similar to their cancer cell line counterparts, CTC 

lines are also BCKA-dependent in stromal rich conditions (Figure 8.1f).  

 

Figure 8.1 BCAA related enzyme expression in CTCs.  a. CTCs are isolated from the 
blood of PDAC patients using the microfluidics-based LabyrinthTM Chip. Isolated CTCs 
are purified to generate CTC cell-lines used for downstream analyses. b. Representative 
images of CTCs separated by Labyrinth. Cells are stained with DAPI (blue), cytokeratin 
(red), CD45 (green) and Vimentin (pink). Experiments were repeated independently three 
times with similar results. c. Heatmap of gene expression of BCAT1, BCAT2, BCKDHA 
and DBT measured by qRT-PCR from Day 0 CTCs isolated from PDAC patients, CAF1 
cells, and cells isolated from a healthy subject. n = 7 biologically independent samples. d. 
Relative BCAT1, BCAT2, BCKDHA, BCKDHB and DBT mRNA expression 
determined by qRT–PCR in CAFs and Patient-derived CTCs. n = 4 biologically 
independent samples.  e. Immunoblots of BCAT1 and BCAT2 expression in CAFs and 
Patient-derived CTCs. HSP90 is used as loading control. Experiments were repeated 
independently three times with similar results. f. The influence of BCAAs and BCKAs on 
the growth of CTCs. n = 8 biologically independent samples.    
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8.3 BCAA metabolism in CTCs 

 

Most interestingly, there is a marked increase in the secretion of BCKAs by CAFs 

when they are cocultured with CTC lines as measured from the extracellular BCKA 

concentrations after 6, 12, 24, 36 and 48 hours of coculture (Figure 8.2ab). We did not 

find any secretion of ketoacids from cancer cells alone (Figure 8.2c). We next assessed if 

TCA cycle substrates other than BCKA could also rescue the loss of growth rate of 

PDAC cells- and CTC lines under BCAA deprivation. This could also reveal the role of 

BCKAs as opposed to other TCA cycle substrates in the oxidative TCA cycle. 

Anaplerotic TCA substrates only partially rescued the reduction in growth rate; however, 

BCKAs could completely rescue the growth of PDAC cells and CTC lines under BCAA 

deprivation (Figure 8.2d). 

 

Figure 8.2 BCAA metabolism in CTCs.  a. KIC concentration in spent media from 
CAFs in monoculture or cocultured with CTC line. n = 3 biologically independent 
samples.  *,p=0.0001,**,p=0.0008,***,p=0.0093. b. Extracellular concentration of 
BCKAs secreted by CAFs in monoculture and cocultured with CTCs over 6,12, 24 and 
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48 hours. n = 3 biologically independent samples.    c. Extracellular concentration of 
BCKAs secreted by CAFs in monoculture or cocultured with CTCs, and CTCs in 
monoculture for 48 hours. n = 4 biologically independent samples.   d. The relative 
growth rate of PDAC cell lines and CTC lines under BCAA deprivation but 
supplemented with α-KG, malate, succinate, acetate, citrate, NEAA mixture or the 
combination in the BCAA-deprived media. n = 8 biologically independent samples.    

8.4 BCAA metabolism in CTC organoid model 
 

We further corroborated our main hypothesis that stromal BCAT1 maintains the 

BCAA metabolism in a CTC-organoid model (Figure 8.3a-c). To generate the CTC 

derived organoid, CAF was first seeded on CAF-derived 3D ECMs one day before. Then 

the fresh isolated CTC was seeded on the cultures. CTC derived Organoid was cultured 

as previously described without TGF-β modulators (360). Importantly, the targeting of 

stromal BCAT1 reduced proliferation and de novo protein synthesis in cytokeratin+ 

cancer cells of CTC-organoids (Figure 8.3d). Our results substantiate that CAFs maintain 

their ability to fuel high BCKA demand observed in CTCs, a system that can capture the 

tumor heterogeneity more closely.  
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Figure 8.3 BCAA metabolism in the CTC organoid model.  a. Schematic of the 
protocol used to generate CTC derived organoid with CAF secreted ECM.  b. 
Representative images from CTC derived organoids. Cytokeratin is shown in green, and 
the nuclei stained with DAPI are shown in blue. Experiments were repeated 
independently three times with similar results. c. Representative FACS data of Pan-
Cytokeratin positive tumor cells in CTC derived organoid. Experiments were repeated 
independently three times with similar results. d. EdU staining and SUnSET assay on Pan 
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Cytokeratin+ tumor cells in the CTC derived organoid cultured with Cancer associated 
fibroblasts treated with vehicle or 10mM Gabapentin. n = 6 biologically independent 
samples.    

8.5 Discussion 
 

To replicate tumor-stroma interactions in humans PDAC, we used human CTCs 

derived models to confirm the BCAA metabolism. We isolated CTCs freshly obtained 

from PDAC patient blood using the Labyrinth.  We found that the expression of 

BCKDHA and DBT is higher in Day 0 CTCs compared to healthy controls and CAFs. In 

contrast, BCAT1 expression is much higher in CAFs compared to CTCs.  We then used 

patient-derived expanded CTC lines for downstream experiments. Similar to PDAC cell 

lines, CTC lines showed lower expression of BCAT1 compared to CAFs, and higher 

expression of DBT compared to CAFs.  Moreover, the same with our findings in PDAC 

cell lines, CTC lines also had higher expression of BCAT2 and lowered BCAT1 at the 

protein level. 

Organoids are miniature models of tissues grown in a 3D semi-solid extracellular 

matrix supplemented with specific growth factors. A single epithelial cell can form 

organoids within 7-10 days. These can dissociate into individual cells to restart organoid 

formation. In 2015, it was first reported the utility of organoid models to better 

understand the development of pancreatic ductal adenocarcinoma [325]. After 

transplantation, organoids derived from murine and human PDAC produced lesions 

reminiscent of pancreatic intraepithelial neoplasia and then developed into invasive 

PDAC [325]. Organoids derived from CTC may be very useful for simulating metastatic 

processes and drug-induced screening [326]. 
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We further corroborated our main hypothesis that stromal BCAT1 maintains the 

BCAA metabolism in a CTC-organoid model. To generate the CTC derived organoid, 

CAF was first seeded on CAF-derived 3D ECMs one day before. Then the fresh isolated 

CTC was seeded on the cultures. CTC derived Organoid was cultured as previously 

described without TGF-β modulators. Importantly, the targeting of stromal BCAT1 

reduced proliferation and de novo protein synthesis in cytokeratin+ cancer cells of CTC-

organoids.
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Chapter 9 Validation of Stromal BCAT1 and PDAC DBT in Tissue Slices 
 

9.1 Introduction 
 

Ex vivo cultures of tumor tissue slices derived from different organs have been 

previously established [327]. Tissue slice culture has recently been shown to resemble the 

architecture of the original organ or tumor closely. It has been used in drug toxicity 

studies, drug testing mechanisms of resistance and gene therapy assays in pancreatic 

cancer [328, 329]. Because tissue slices in ex vivo culture retain most components of the 

tumor microenvironment, they are believed to more likely mirror in vivo tumor models 

then monoculture [327]. Cultured slices maintain their baseline morphology, surface area, 

and microenvironment for at least six days in culture, which provides enough time to test 

drugs or perform gene therapy assays. The tissue slices can also be tested using stable 

isotope tracer methods, which allows for metabolic analysis [330]. By using the tumor 

and the tissue surrounding the tumor, you more accurately model the effect of cancer 

treatments by avoiding genetic, physiologic and environmental complications that could 

be produced in a monoculture. Also, the tissue slice culture provides the ability to 

determine treatment effects on tumor and surrounding tumor tissue from an individual 

patient. 
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Studies have demonstrated that tissue slice culture resembles the architecture of the 

original organ or tumor and can be utilized to study better drug toxicity, resistance 

mechanisms and gene therapy testing in pancreatic cancer [328, 329]. Since tissue slices 

in ex vivo culture retain most components of the tumor microenvironment, they are 

believed to recapitulate in vivo tumor models [327]. To test our hypothesis, we will 

address the contribution of BCAA catabolism from the tumor microenvironment using 

tissue slice cultures.  

9.2 PDAC Tissue slice model 
 

We then illustrated that CAF-derived BCKAs support BCKA-dependence in CTC 

cell lines we wanted to validate these findings in a setting that mimics the in vivo TME. 

Previous studies have demonstrated that tissue slice culture resembles the architecture of 

the original organ or tumor and can be utilized to study better drug toxicity, resistance 

mechanisms, and gene therapy in pancreatic cancer [329]. Since tissue slices in ex vivo 

culture retain most of the components of the TME, they are believed to recapitulate better 

stromal-rich tumors than other in vivo tumor models [327]. We obtained fresh PDAC 

patient tissue slices, as shown here and validated their viability for fourteen days in 

culture (Figure 9.1).  
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Figure 9.1 PDAC Tissue slice model.  a. Schematic of human PDAC tissue slice 
culture. The freshly biopsied tumor is embedded in agarose and sliced into 200 µm thick 
slices using a vibrating microtome. Slices are cultured for downstream metabolic and 
functional analyses. b. Representative Live Dead assay of tissue slice at Day 0 and Day 
14. Live cells fluoresce bright green, whereas dead cells fluoresce red. Positive controls 
were fixed by methanol. Experiments were repeated independently three times with 
similar results. 
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9.3 Targeting BCAA metabolism in tissue slice by siRNAs 

 

Based on our extensively developed mechanistic crosstalk, we examined whether 

simultaneously targeting the stromal-BCAT1 and cancer cell-DBT could result in an 

enhanced therapeutic effect. We used BCAT1 and DBT siRNAs to inhibit BCAA 

metabolism. Remarkably, knocking down either BCAT1 or DBT significantly reduced 

PDAC cell viability (Figure 9.2). Both PCNA and Ki67 positive cell populations 

significantly reduced in cytokeratin positive cells when either knocking down DBT or 

BCAT1 alone or combinations. Further, a reduction in expression of both DBT and 

BCAT1 validated our siRNA-DBT and siRNA-BCAT1 silencing (Figure 9.3a). 

Moreover, there were no changes in other BCAA-related genes. Next, we asked if 

BCKAs were indeed consumed by PDAC cells in our tissue slice model. Tissue slices 

were cultured in media containing 13C labeled BCKAs, and after 48 hours, the slices were 

homogenized in a cryo-cooled homogenizer to extract intracellular metabolites as well as 

intercellular protein. Intracellular BCKAs were found to be enriched between 10% and 

40%. Subsequently, 13C-BCKA-derived BCAAs were utilized for de novo protein 

synthesis. This is corroborated by the BCAAs obtained by hydrolyzing the intercellular 

tumor-slice protein, which was enriched by 2-15% (Figure 9.3b).  
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Figure 9.2 Targeting BCAA metabolism in tissue slice by siRNAs.  a. Representative 
images from IF analysis of PDAC tissue treated with BCAT1 and DBT siRNAs. 
Cytokeratin is shown in green, PCNA staining is shown in red, Ki-67 staining in pink, 
and the nuclei stained with DAPI are shown in blue. Experiments were repeated 
independently twice with similar results. b. Percentage of PCNA-positive and Ki67-
positive in Pan Cytokeratin+ tumor cells identified using IF. n = 6 biologically 
independent samples. 

 

 

Figure 9.3 Validation of BCAA metabolism in tissue slice.  a. The efficiency of 
BCAT1 and DBT siRNAs in the human PDAC tissue slices. Expression of BCAT1, 
BCAT2, DBT, BCKDHA and BCKDHB in the human PDAC tissue slices treated with 
BCAT1 and DBT siRNAs. n = 6 biologically independent samples. b. Fractional 
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enrichment of BCAAs of human PDAC tissue slices cultured with 13C-BCKAs. n = 5 
individual tissue samples from distinct patients. Violin plot represents the entire range of 
values, lines at the median, 10-90 percentiles. 

9.4 Gabapentin inhibits protein synthesis in the tissue slice 
 

We next tested if suppressing stromal BCAT1 could reduce BCKA-mediated de 

novo protein synthesis in cancer cells inside tissue slices using SUnSET IF. To 

specifically analyze cancer cells, we used areas of colocalization of puromycin with 

cytokeratin, a cancer cell-specific marker. Notably, cancer cell-specific de novo protein 

synthesis was pronouncedly reduced in slices cultured with Gabapentin (Figure 9.4). 

Overall, our results highlight that stromal-BCAT1 not only supports PDAC cell BCKA 

demand but also exposes the synthetic lethal vulnerabilities in stromal-rich PDAC by co-

targeting stromal BCAT1 and the cancer BCKDH complex (specifically DBT) as a 

clinically relevant therapy. 
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Figure 9.4 Gabapentin inhibits protein synthesis in tissue slice.  a. Representative 
images from SUnSET IF analysis of PDAC tissue treated with vehicle or 10mM 
Gabapentin. n = 3 biologically independent samples. b. Representative images from 
SUnSET IF analysis of PDAC tissue treated with vehicle or 10mM Gabapentin. 
Cytokeratin is shown in green, and Puromycin staining is shown in red. Experiments 
were repeated independently three times with similar results. 
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9.5 Discussion 
 

In the development of effective targeting therapy for pancreatic cancer, it is 

essential to have a powerful platform to accurately and reproducibly study the interaction 

of CAFs with PDAC cells in the tumor microenvironment. In this chapter, we have 

shown that the tissue slice culture of fresh human PDAC can survive for at least two 

weeks. There is much evidence to support our view that slice culture can accurately 

short-term model the tumor microenvironment. The literature is scarce, but it is growing 

recently, describing the precise section culture of different normal and tumor tissues. In 

this chapter, we using PDAC tissue slices to study tumor microenvironment metabolism 

demonstrated for the first time, and we also studied cancer cells and CAFs crosstalk in 

tissue slice. In order to further enhance our ability to understand the interactions between 

cells in tissue slices, we used multiple fluorescent antibodies to stain cancer cells and 

CAFs in tissue slices. 

In this chapter, we inhibited BCAA metabolism using BCAT1 and DBT siRNAs. 

Remarkably, knocking down either BCAT1 or DBT significantly reduced PDAC cell 

viability. Next, we checked BCKAs consumption in the tissue slice model. Intracellular 

BCKAs were found to be enriched between 10% and 40%, and 13C-BCKA-derived 

BCAAs were utilized for de novo protein synthesis, which was enriched by 2-15%. 

Furthermore, inhibiting stromal BCAT1 could reduce BCKA-mediated de novo protein 

synthesis in cancer cells inside tissue slices using SUnSET IF.  

Since the main goal of our work is to develop biopsy culture as a platform for 

evaluating the effects of immunotherapy, with particular emphasis on the development of 
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personalized cancer care, we have developed a technology to inspect biopsy culture 

directly. Using fluorescent-conjugated antibodies to stain viable sections of cancer cells 

allows us to obtain three-dimensional images through confocal microscopes. We hope to 

study further the endogenous 3D or subcellular interactions of cancer cells and CAFs in 

patient samples.  
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Chapter 10 Conclusions and Future Directions 
 

10.1 Summary of research 

 

Several recent reports conclude that the stromal cells’-secretory pathways play a 

major role in mitigating avid nutrient deficiency and increasing prototypic pro-survival 

pathways in PDAC cells. Pancreatic CAFs have been shown to secrete alanine and 

lysophosphatidylcholines, supporting the metabolic needs of PDAC cells in the nutrient-

deprived tumor milieu [242, 331]. Like macrophages, CAFs also secrete pyrimidines that 

induce gemcitabine resistance [332, 333]. Furthermore, while our study was in progress, 

it was recently shown that BCAAs contribute around 20% of the carbon in the TCA cycle 

of the pancreas [334]. However, the stromal role in PDAC BCAA metabolism, if any, is 

still unclear. 

In contrast to the current studies in BCAA metabolism, we investigated how 

stromal CAFs regulate BCAA metabolism in PDAC cells and whether there exists a 

mutualistic relationship vis a vis BCAA metabolism between CAFs and PDAC cells. We 

found an increase of BCAA catabolic fluxes and the associated BCAA catabolic enzyme, 

BCAT1, gene and protein expression in stromal CAFs compared to PDAC cells. 

Conversely, the BCAA oxidative enzyme complex, BCKDH, along with mitochondrially 

expressed BCAT2, was increased in cancer cells. We found that BCKAs play a 

significant role in maintaining metabolic activity in the nutrient-starved pancreatic 
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milieu. Unconventionally, BCKAs was used as a substrate for de novo synthesis of 

BCAAs by the reversible action of BCAT2, and these newly synthesized BCAAs 

maintained de novo protein synthesis in cancer cells in BCAA deprived conditions. Our 

results provide strong evidence for dependency on the BCKDH complex and suggest its 

synergistic involvement with BCAT2 in regulating BCAA metabolism in PDAC cells. To 

our knowledge, this is the first report that uncovers heavy reliance on BCKAs in stromal-

rich tumors and reveals DBT as a vulnerable target to exploit this dependency. Recent 

studies investigated BCAT2’s role in PDAC development and found BCAT2 is elevated 

in both mouse and human PDAC models [235, 247], which was responsible for 

enhancing BCAA uptake to sustain BCAA catabolism, mitochondrial respiration, and 

fatty-acid biosynthesis [247]. Our work develops a systematic understanding of BCAA 

metabolism in the PDAC tumor microenvironment, especially in the context of the 

pancreatic cancer-cell centric observations of previous studies. 

In contrast, we found that BCAT2 regulates BCKA-mediated de novo protein 

synthesis in PDAC cells and elucidate the central role of the BCKDH complex in 

regulating PDAC bioenergetics. On the other hand, DBT knockdown, which reduces 

BCKDH complex levels, is detrimental to both BCAA-driven and BCKA-driven 

knockdown. Together, this shows that BCKA-driven oxidation is only dependent on 

BCKDH expression and not on BCAT2 expression. Our results are also in line with 

Neinast et al. [334], where they show that BCKDK inhibitors do not affect BCKDH-

mediated oxidation in the pancreas, alluding to a high basal BCKDH activity in the 

pancreas. Several CAF subpopulations have been identified recently, which may explain 

the heterogeneity or plasticity seen in CAFs.  
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Further, the effect of varying concentrations of the BCAT1 inhibitor, Gabapentin 

on LAT transporters, is poorly studied in CAFs and must be assessed in future studies. 

Within the scope of this study, we have worked extensively to develop clinically relevant 

human PDAC-derived ex vivo models to corroborate and highlight the impact of the 

metabolic crosstalk discovered in vitro. Due to the dynamic interplay of metabolism in 

distinct compartments of the tumor, this study was focused on in vitro and clinical ex vivo 

studies, where these metabolic mechanisms can be observed, characterized and quantified 

readily. Unfortunately, validating these observations in popular in vivo models such as 

KPC and KP mouse models becomes extremely challenging. One major divergence of 

mouse models from human PDAC tumors is the limitation of studying the interaction 

between human PDAC cancer cells with mouse CAFs. The second major challenge is the 

technological limitations of assessing compartmentalized metabolism in vivo. In the 

future, improvement in mass spectrometry imaging and increasing sensitivity of 

chromatography-coupled MS will allow spatial resolution of not only static metabolite 

abundances but also the flux of metabolites across cell-types and tissue compartments.  

We discovered that ECM proteins could be a source of amino acids for BCKA 

synthesis in CAFS under certain nutrient-starved conditions. Interestingly, TGF-β 

upregulated ECM-protein internalization and BCAT1 expression in CAFs are essential 

for BCKA synthesis in CAFs. Recently, PDAC cells were shown to use ECM proteins for 

maintaining amino acid levels [335]. However, our findings that CAFs uptake ECM 

under nutrient limiting conditions are in congruence with previous studies underscoring 

that ECM uptake through the uPARAP receptor is upregulated in fibroblasts [336]. 

Before our results, CAFs were shown to secrete ECM and induce a fibrotic environment 
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in tumors. By contrast, our results stress that this process is reversed under nutrient-

deprived conditions. 

Moreover, we showed that internalized ECM is degraded through proteasomal 

proteolysis, specifically through the chymotrypsin-like proteasome activity. Using 

decellularized 13C-BCAA-labeled ECM proteins, we observed that BCKAs secreted by 

CAFs were enriched with 13C derived from the proteolyzed ECM, thereby confirming 

that ECM in the pancreatic milieu could serve as a source for CAF-secreted BCKAs 

under nutrient-stressed conditions. We reveal a mechanistic basis behind TGF-β mediated 

BCAT1 regulation in CAFs, showing that the TGF-β/SMAD5 axis directly targets 

BCAT1 in CAFs. Thus, cancer-secreted TGF-β regulates the internalization of ECM 

from the TME to supply amino acid precursors for BCKA secretion by CAFs. Our in 

vitro findings were further corroborated in two different patient-derived models: CTCs 

and PDAC tumor slices. These lines of evidence expand our findings to systems that 

recapitulate tumor heterogeneity and mimic the in vivo cancer microenvironment. Our 

results indicate that BCAT1 in CAFs supports the high BCKA demand in PDAC cells.  

We reveal the synthetically lethal BCAA metabolism vulnerabilities in PDAC. Our 

efforts in co-targeting stromal BCAT1 and the cancer BCKDH complex -specifically 

DBT- bridge the gap between knowledge of BCAA metabolism in the stroma and BCAA 

utilization in cancer cells.  
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10.2 Future directions 
 

10.2.1 CAF heterogeneity in BCAA metabolism 

There are also several CAF subpopulations identified recently, and this may prove 

the heterogeneity or plasticity of CAF. Moreover, different CAFs may have different 

metabolic profiles and coupling with cancer cells. The first population was also identified 

as the population we used. It is a population that expressed markers of myofibroblasts, 

such as αSMA, and was therefore named myofibroblastic CAFs, which is known to bed 

regulated by TGF-β/SMAD pathways [337]. Furthermore, there is a population that 

expressed inflammatory markers such as IL6 and leukemia inhibitory factor (LIF) and 

was therefore named inflammatory CAFs, which is regulated by IL-1/JAK pathways 

[337, 338]. IL1 induces LIF expression and downstream JAK/STAT activation to 

generate inflammatory CAFs and demonstrate that TGFβ antagonizes this process by 

downregulating IL1R1 expression and promoting differentiation into myofibroblasts.  

Our initial result showed that IL-1 does not influence BCAT1 or SMAD5 (Figure 10.1). 

Nevertheless, there are still other CAF populations. 
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Figure 10.1 IL-1 does not influence BCAA related genes.  a. BCAT1 mRNA 
expression measured in CAFs after two days of treatment with IL-1α. n = 4 biologically 
independent samples. b. αSMA mRNA expression measured in CAFs after two days of 
treatment with IL-1α. n = 4 biologically independent samples.  c. SMAD4 mRNA 
expression measured in CAFs after two days of treatment with IL-1α. n = 4 biologically 
independent samples.   d. SMAD5 mRNA expression measured in CAFs after two days 
of treatment with IL-1α. n = 4 biologically independent samples. 

 

Recently, there is a new CAF subtype that expresses MHC class II (MHCII)–

related genes and induces T-cell receptor (TCR) ligation in CD4+ T cells in an antigen-

dependent manner named these cells antigen-presenting CAFs[339]. Antigen-presenting 

CAFs can convert into myofibroblasts upon suitable culture conditions, suggesting that 

pancreatic CAF subpopulations represent dynamic and interconvertible. Moreover, the 

MHCII expressed by antigen-presenting CAFs acts as a decoy receptor to deactivate 

CD4+ T cells by inducing either anergy or differentiation into Tregs. In this case, antigen-

presenting CAFs are expected to decrease the CD8+ to the Treg ratio and contribute to 
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immune suppression in the PDAC microenvironment. Future studies are warranted to 

assess the role of the heterogeneous population of CAFs in BCAA metabolism. 

10.2.2 Deactivation of pancreatic CAFs through sodium butyrate and GW3965 

Previously, we showed that sodium butyrate (NaB) and GW3965 (GW) could 

deactivate CAFs [340]. NaB is a 4-carbon short-chain fatty acid, which is naturally 

derived from the fermentation of dietary fiber through the gut microbiota [341]. NaB has 

been shown as an HDAC inhibitor and a regulator of cell proliferation, apoptosis and 

differentiation [342]. In cancer, overexpression of HDAC usually inhibits tumor 

suppressor genes, cell cycle inhibitors, epithelial differentiation factors and apoptosis-

inducing factors. HDAC inhibitor can induce cell differentiation, apoptosis and inhibit 

HIF1-α and VEGF [343]. 

Liver X receptor (LXR) agonists have also been used to inhibit tumor cell growth. 

LXR is a member of the nuclear receptor superfamily of ligand-dependent transcription 

factors. They perform important cellular functions, including regulating cholesterol 

homeostasis, lipid and glucose metabolism, and regulating inflammation [344]. LXR 

agonist has been shown to disrupt proliferation, the cell-cycle progression of PDAC cells 

[345].  At the molecular level, LXR is the controlling factor of several cell cycle genes. 

LXR can also inhibit inflammation-related genes such as IL-6 [346].  LXRs are also 

effective regulators of adipogenesis through SREBP1c and its down-regulated genes 

FAS, ACC and SCD-1 [347]. LXR-induced SREBP stimulates the transcription of many 

genes involved in the synthesis and uptake of cholesterol and fatty acids. GW3965 is a 

synthetic LXR agonist that has been shown to alter the distribution of adipose tissue in 

mice and inhibit the production of inflammatory cytokines [348]. 
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We examined that treatment of PDAC tissue slices with NaB and GW would 

restore CAFs’ quiescent state. We show that the treated tissue slices show reduced 

expression of CAF activation markers (Figure 10.2) and up-regulated expression of 

quiescent markers (Figure 10.3). 

 

Figure 10.2 Expression of CAF activation markers in PDAC tissue slices.  a. Relative 
αSMA mRNA expression in PDAC tissue slices. n = 4 biologically independent samples. 
b. Relative COL1 mRNA expression in PDAC tissue slices. n = 4 biologically 
independent samples. c. Relative FAP mRNA expression in PDAC tissue slices. n = 4 
biologically independent samples. d. Relative MMP2 mRNA expression in PDAC tissue 
slices. n = 4 biologically independent samples. e. Relative TIMP1 mRNA expression in 
PDAC tissue slices. n = 4 biologically independent samples. 
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Figure 10.3 Expression of quiescent markers in PDAC tissue slices.  a. Relative 
GFAP mRNA expression in PDAC tissue slices. n = 4 biologically independent samples. 
b. Relative FASN mRNA expression in PDAC tissue slices. n = 4 biologically 
independent samples. c. Relative SREBP1c mRNA expression in PDAC tissue slices. 
n = 4 biologically independent samples.  

Besides, we show that NaB and GW treatment can also influence the properties of 

ECM. As shown in the figure, if we treated the CAFs from the beginning, the CAFs 

stopped to produce ECM; if treated in the middle, the CAF ECM would be deactivated to 

normal ECM (Figure 10.4a-c).  For the adhesion assay, we further showed that the 

deactivated ECM is harder for PDAC cells to attach (Figure 10.4d-e). The properties of 

this ECM still need to be further examined. We could further examine whether the 

stromal cell-induced quiescence caused by NaB and GW treatment would lead to a 

decrease in tumor growth and metastasis. 
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Figure 10.4 Deactivation of ECM by NaB + GW.  a-c. Scanning electron microscopy 
image of CAF-derived 3-D matrices treated by vehicles (a), NaB + GW for eight days (b) 
or four days (c). Experiments were repeated independently two times with similar results.  
d. Fluorescence microscopy images comparing the adhesion of GFP-labeled Mia Paca-2 
and Patu 8988t cells with ECM treated by vehicles and NaB + GW. Experiments were 
repeated independently two times with similar results. e. Relative adhesion percentage of 
Mia Paca-2 and Patu 8988t pancreatic cancer cells with ECM treated by vehicles and 
NaB + GW. n = 3 biologically independent samples.    

 

10.2.3 CAFs secrete NAD+ precursors to support PDAC cells. 

The Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form 

(NADP) contained in nicotinamide play an important role in the metabolism of all 
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organisms.  Like many phosphorylation products, NAD is synthesized de novo by some 

smaller units, such as tryptophan (Trp), nicotinamide (Nam), nicotinic acid (NA), 

nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). Trp becomes 

NAD+ through the de novo biosynthetic pathway in the liver [349]. Once converted to 

other molecules, it merges with the Preiss-Handler pathway, which is the same pathway 

used by NA to reach NAD+. Although tryptophan does produce NAD+, its efficiency is 

60 times lower than other precursors [350]. 

Nam is a common form of vitamin B3, sometimes called niacinamide. Nam will 

go through the same remedial approach as NR, but it must be stopped by bypassing the 

rate-limiting step before NR becomes NAD+. Nam also participated in the salvage part of 

the approach. When enzymes that consume NAD+ (such as sirtuins (a family of proteins 

that regulate cell health)) use NAD+, they divide it into the necessary parts and then send 

them back as needed to create more NAD+ [351]. NA is another form of vitamin B3, also 

known as niacin, and is sometimes used as a general term for all vitamin B3. Nicotinic 

acid was discovered by chemists who study nicotine, and its name was changed to niacin 

to distinguish it from tobacco. As we all know, NA causes flushing. Since the 1940s, NA 

has been used to fortify flour and rice all over the world due to its advantages. NA enters 

NAD+ through the Preiss-Handler pathway, which also integrates chemically converted 

tryptophan (amino acid NAD+ precursor) into NAD+ [352]. 

Nicotinamide Mononucleotide (NMN) is an intermediate compound between NR 

and NAD+, which means that NR must first become NMM before it can become NAD+ 

[353]. NMN is a new member of NAD+ precursor products. We know it is a beneficial 

precursor, but only recent studies have begun to clarify its ability to enter cells intact. 
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NMN and NR have never been intensively studied in clinical studies to see if one NAD+ 

produces less NAD+ energy than the other. NR is a form of vitamin B3 and is generally 

considered to be a highly effective precursor, which means that it consumes the least 

energy when taken orally and becomes NAD+. This is because NR bypasses a step in the 

NAD+ biosynthetic pathway, which is also the niacinamide pathway [354]. NR is 

increasingly used for NAD+ supplementation because it is well known that NR can 

increase the level of NAD+. In animal studies, this increase leads to specific benefits such 

as mitochondrial health, but so far, there is no evidence that these animal studies can be 

inferred to humans. NaR (nicotinic acid riboside) is a newly discovered eukaryotic NAD+ 

precursor. NaR is converted to NAD+ in three steps, first by nicotinamide riboside kinase 

(NMRK)-dependent [355].  

 In the initial siRNA screening, we identified the CAF-mediated rescue of PDAC 

cell growth rate under NAD+ precursors deprivation. Furthermore, this effect is further 

enhanced when NAPRT is knockdown. This suggested that CAF is secreting NaR 

(Figure 10.5ab). Colony formation assay suggested NaR is an effective NAD+ precursor 

(Figure 10.5c). Further, gemcitabine is a pyrimidine anti-nucleoside, has long served as a 

core component of chemotherapy treatments for PDAC. Gemcitabine resistance has been 

shown to be easily developed in PDAC, although the mechanism behind this link remains 

unclear. Since NaR is also a nucleoside analog, it probably completes the transporters 

with gemcitabine, and this could cause gemcitabine resistance. Our results indicated that 

NaR could cause gemcitabine resistance at low concentrations (Figure 10.6). Thus, NaR 

released by CAFs may directly confer gemcitabine resistance to PDAC cells. 
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Figure 10.5 CAFs secrete NaR to support PDAC cells.  a. Effect of NAMPT or 
NAPRT knockdown in CAFs on the CAF-mediated rescue of the Panc-1 cell growth rate 
under NAD+ precursors deprivation. n = 4 biologically independent samples. b. Effect of 
NAMPT or NAPRT knockdown in CAFs on the CAF-mediated rescue of Patu8988t cell 
growth rate under NAD+ precursors deprivation. n = 4 biologically independent samples. 
c. Colony-formation assay of PDAC cell lines with NaR. n = 4 biologically independent 
samples.  
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Figure 10.6 NaR Confer Gemcitabine Resistance to PDAC Cells.  a. Relative viability 
and IC50 of Capan1 cells treated with Gem in the presence of NaR. n = 4 biologically 
independent samples. b. Relative viability and IC50 of Panc-1 cells treated with Gem in 
the presence of NaR. n = 4 biologically independent samples. c. Relative viability and 
IC50 of Patu8988t cells treated with Gem in the presence of NaR. n = 4 biologically 
independent samples.  

 

Previous studies showed that members of the SLC29 family (ENT, equilibrative 

nucleoside transporters) and/or SLC28 family (CNT, concentrative nucleoside 

transporters) family could mediate the transport of NaR and NR. We performed RT-PCR 

to identify which CNT or ENT isoform mRNA is most abundant in CAFs (Figure 

10.7ab). We found that SLC28A2 and SLC28A3 are highly expressed in CAFs, while 

cancer cells have high expression of ENTs. Also, the CAF-mediated rescue of PDAC cell 

growth rate under NAD+ precursors deprivation is reduced when SLC28A2 is 

knockdown (Figure 10.7c). Furthermore, this effect is further enhanced when NAPRT is 

knockdown. To check the effect of CAF on PDAC cell NAD+ metabolism, we treated 
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PDAC cells with CAF CM or NaR. CAF CM and NaR have a similar effect in PDAC 

cells, up-regulated NMRK1 and down-regulate NAMPT or NAPRT (Figure 10.8a). This 

suggests that CAF shifts PDAC cells to more NaR dependent, and reduced dependence of 

NAM and NA. Also, NaR can support OCR and fatty acid oxidation in PDAC cells 

(Figure 10.8bc). 

 

 

Figure 10.7 CAF secrete NaR through SLC28A2.  a. Expression of SLC28 family 
(CNT) in CAFs and pancreatic cancer cell lines. n = 4 biologically independent samples. 
b. Expression of SLC29 family (ENT) in CAFs and pancreatic cancer cell lines. n = 4 
biologically independent samples. c. Effect of SLC28A2 or SLC28A3 knockdown in 
CAFs on the CAF-mediated rescue of Patu8988t cell growth rate under NAD+ precursors 
deprivation. 
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Figure 10.8 CAF secreted NaR up-regulated NMRK1 and down-regulate NAMPT 
or NAPRT.  a. Expression of NMRK1, NAMPT and NAPRT in PDAC cells treated with 
CAF CM or NaR. n = 4 biologically independent samples. b. OCR measurements in 
PDAC cells with NaR. n = 6 biologically independent samples. c. Fatty acid oxidation 
OCR measurements in PDAC cells with NaR. n = 6 biologically independent samples. 

 

10.2.4 Identifying BCKA Transporters 

Unlike BCAAs, BCKA transport is not governed by a single amino acid 

transporter. However, it is instead mediated by monocarboxylate transporters (MCTs), 

which also control the transport of lactate, pyruvate, and ketone bodies through the 

plasma membrane. There are at least 7 MCTs that are active in different tissue types. In 
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order to identify the MCT in the pancreatic tumor stroma, we performed RT-PCR to 

identify which MCT isoform mRNA is most abundant in CAFs (Figure 10.9). We found 

that MCT1 is highly expressed in PDAC cells, while MCT2 is highly expressed in CAFs. 

Nevertheless, because MCTs are shared with lactate, pyruvate and other α-keto acids, we 

cannot identify the specific transporters based on the expression. 

 

Figure 10.9 Expression of monocarboxylate transporters in CAF and PDAC cell 
lines.  a. Relative MCT1 mRNA expression in CAFs and pancreatic cancer cell lines. 
Expression normalized to gene expression in CAF1. n = 6 biologically independent 
samples. b. Relative MCT2 mRNA expression in CAFs and pancreatic cancer cell lines. 
Expression normalized to gene expression in CAF1. n = 6 biologically independent 
samples. c. Relative MCT4 mRNA expression in CAFs and pancreatic cancer cell lines. 
Expression normalized to gene expression in CAF1. n = 6 biologically independent 
samples. 

For the future study, we will perform CRISPR screening to identify the BCKA 

related transporters. A previous study indicated BCAT2 is a bifunctional protein 
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catalyzing branched chain amino acid transamination and branched chain alpha-keto acid 

transport [356]. The transport properties of BCAT2 suggest that this protein may be the 

branched-chain alpha-keto acid transporter [356]. So, in order to implement such a 

screening strategy, we will use the BCAT2 knockout cell lines we generated. We will 

transduce the BCAT2 knockout cells with a lentiviral single guide RNA (sgRNA) library 

that targets ~3000 metabolic enzymes, small-molecule transporters, and metabolism-

related transcription factors (~10 sgRNAs per gene) and also contains 499 control 

sgRNAs [357]. The transduced cells were cultured in DMEM media with or without 

BCKAs. For each gene, we generated a gene score by calculating the mean log2 fold-

change in abundance from the beginning to the end of the culture period of all the 

sgRNAs targeting the gene (Figure 10.10).  

 

Figure 10.10 Screening strategy of BCKA transporters.  a. Schematic of BCAT2 
knockout cells. b. Screening strategy of BCKA transporters.  

 

10.2.5 Nuclear BCAT2 regulate lipid metabolism 

PPARs are members of the superfamily of transcription factors expressed by the 

target gene [358]. PPARs include three subtypes: PPARα, PPARβ, and PPARγ, and 

PPARs of different subtypes that regulate different target genes. PPARs are known as 
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fatty acid receptors, mainly involved in fatty acid metabolism [359]. PPARα is mainly 

expressed in liver tissues, by regulating the expression of genes related to fatty acid 

oxidation in the liver, it can differentiate liver fat cells, fat storage, transportation and 

fatty acid oxidation. The PPARα gene mainly regulates the mitochondrial and 

peroxisomal β oxidation system and microsomal ω oxidation system [359]; PPARα can 

also regulate the peroxisomal β oxidation pathway through the expression of some key 

enzymes (such as acetyl coenzyme A oxidase, ACSL1 and dehydrogenase 

multifunctional enzyme, ketone acetyl coenzyme A thiolase, etc.) [360]. Also, some 

studies have shown that activated PPARα can also mediate the expression of 

apolipoprotein apoA I; promote lipoprotein lipase synthesis, catalyze lipolysis of 

triglycerides (TG) in lipoproteins into free fatty acids (FFA) [358]. 

PPARγ can be divided into four subtypes: γ1, γ2, γ3, and γ4 [361]. PPARγ is 

mainly involved in the fat tissue differentiation and lipid metabolism process, including 

regulating lipid metabolism, fat cell terminal differentiation, and glycometabolism; 

besides, PPARγ is used in the development of liver fibrosis development process. 

Previous studies have shown that PPARγ is highly expressed in adipocytes and can 

induce liver cells to express apolipoproteins, fatty acid oxidase systems and lipoprotein 

lipases, etc., thereby promoting the oxidative metabolism of lipids, which can also 

enhance fatty acid transport proteins and fatty acid transfer enzymes Gene expression of 

fatty acid storage such as FAT/CD36, aP2, phosphoenolpyruvate carboxykinase 

(PEPKK), ACSL1, etc., and inhibits β3-adrenergic receptors, leptin and tumor necrosis 

factor-alpha (TNFα) expression and fatty acid release [360]. Also, PPARγ plays an 

important role in the transformation of HSC from static phenotype to active phenotype. 
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PPARγ regulates liver fibrosis signal channels such as TGFβ/Smad signal channel, Ras-

MAPK signal channel, NF-κB signal channel, etc., to slow down the process of fibrosis 

[361]. 

When we were first staining the BCAT2 in human PDAC tissue, we found 

BCAT2 is also located in the nucleus. Since BCAT2 is a transaminase, BCAT2 can also 

transport lipid to the nucleus to bind with PPARs as other transaminases. The co-

localization is also confirmed in the PDAC cell lines (Figure 10.11).  

 

Figure 10.11 Expression of BCAT2 in PDAC tissue and cell lines.    a. Representative 
IHC staining image of BCAT2 expression in human PDAC tissue. Experiments were 
repeated independently three times with similar results. b. Colocalization of BCAT2, 
mitochondria and nucleus analyzed by immunofluorescence against BCAT2, Mitotracker 
and DAPI. Experiments were repeated independently three times with similar results.  

 

To further check the interference between BCAT2 and PPARs. We used the 

BCAT2 knockdown cells treated with PPAR inhibitors, and we found that GW9662, 
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which inhibits PPARα/γ, is more effective in BCAT2 knockdown cells (Figure 10.12). 

Moreover, we also checked the expression of PPAR in the BCAT2 knockdown cells, 

similar to the GW99662 result, and we found that BCAT2 knockdown cells have a high 

expression of PPARA and lower expression of PPARG. These data indicate that BCAT2 

may be linked to PPARα/γ functions.

 

Figure 10.12 BCAT2 and PPAR.  a. Representative IHC staining image of BCAT2 
expression in human PDAC tissue. Experiments were repeated independently three times 
with similar results. b. Colocalization of BCAT2, mitochondria and nucleus analyzed by 
immunofluorescence against BCAT2, Mitotracker and DAPI. Experiments were repeated 
independently three times with similar results.  

 

Since PPAR regulates lipid metabolism, we check the lipid oxidation in BCAT2 

knockdown cells. We found the lipid oxidation is up-regulated in the BCAT2 knockdown 

cells (Figure 10.13a). Furthermore, a recent study has shown that ferroptosis is linked to 

lipid oxidation [362]. So we check the use of Erastin, which is a small molecule capable 

of initiating ferroptotic cell death in the BCAT2 knockdown cells (Figure 10.13b). We 
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found that Erastin is more effective when BCAT2 is knocking down. This further proves 

the BCAT2 may be linked to lipid metabolism. 

 

Figure 10.13 BCAT2 and lipid oxidation.  a. Representative IHC staining image of 
BCAT2 expression in human PDAC tissue. Experiments were repeated independently 
three times with similar results. b. Colocalization of BCAT2, mitochondria and nucleus 
analyzed by immunofluorescence against BCAT2, Mitotracker and DAPI. Experiments 
were repeated independently three times with similar results.  
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Chapter 11 Materials and Methods 
 

11.1 Cell Culture  

11.1.1 PDAC Cell lines 

All the cell lines used in this study were purchased from ATCC, used below 

passage 25 and continuously cultured in 100 U/ml penicillin and 100 U/ml streptomycin. 

The Mia Paca-2, Panc-1 and Patu 8988t cell lines were routinely cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS) (Atlanta 

Biologicals, S11150). AsPc1 and BxPC3 cell lines were routinely cultured in Roswell 

Park Memorial Institute (RPMI) 1640 (Invitrogen) with 10% FBS. All cell lines were 

mycoplasma free based on PCR-based assays run every month in the lab.  

For metabolic and metabolomics assays, 10% dialyzed FBS (Sigma-Aldrich, F0392) was 

used. For the rescue experiments, the DMEM medium without BCAAs was used (United 

States Biological). 

11.1.2 Fibroblast Cell Culture  

Patient-derived fibroblast cells were kindly provided by Drs. Edna Cukierman, 

Anirban Maitra and Mara Sherman and internal STR profiling were maintained and 

checked annually. CAFs were cultured at 37˚C under 5% CO2 using DMEM 

supplemented with 10% FBS and 100 u/ml-mg/ml penicillin-streptomycin. Normal 

fibroblast cell lines IMR-90 and MRC-5 were purchased from ATCC and cultured at 
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37˚C under 5% CO2 using DMEM supplemented with 10% FBS and 100 u/ml-mg/ml 

penicillin-streptomycin. MSCs were provided by Dr. Michael Andreeff and cultured in α-

MEM containing 10% FBS, 4% pooled human platelet lysate and 1% penicillin-

streptomycin. Only third or fourth passage cells were used for experiments. 

11.1.3 CTC Cell Culture 

Cells were maintained at 37°C, 5% CO2 under normoxic conditions. PDAC CTC-

derived cell lines were grown in RPMI-1640 supplemented with 10% FBS and 1% 

antibiotic-antimycotic (Gibco).  

11.1.4 Tissue slice culture 

Fresh pancreatic cancer tissue samples were procured immediately after surgical 

resection from the University of Michigan Hospital. Informed consent was obtained from 

all patients. The remaining connective, fibrotic or adipose tissue was removed with razor 

blades. Tumor specimens were embedded in 3% low melting point agarose/PBS before 

cutting in the Leica VT1200 tissue slicer. The slice thickness ranged between 100–200 

µm. Slices were then cultured in DMEM with penicillin (100 U/mL), streptomycin (100 

U/mL) and amphotericin (Fungizone 2.5 μg/mL). All experiments were performed in 

triplicate and were repeated at least three times.  

11.2 CTC isolation from patient blood and healthy controls 

The experimental protocol was approved by the University of Michigan Medicine 

Institutional Review Board, and all patients gave their informed consent to participate in 

the study. Patients were diagnosed with metastatic PDAC and were treatment naïve at the 

time of the first sample collection. Blood was collected in EDTA tubes and processed 
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within two hours of sample collection. Red blood cells (RBCs) were depleted from the 

sample using RBC aggregation via HetaSepTM (STEMCELL Technologies) following the 

manufacturer’s protocol. Briefly, blood was divided into 3 mL aliquots and mixed with 

600μL HetaSepTM, and centrifuged at 90xg for 1 minute, at room temperature, with the 

centrifuge brake off. The sample was then further incubated for an additional 10 minutes 

at room temperature to improve RBC depletion. The nucleated cell fraction was collected 

and diluted to 3x the original blood volume with phosphate-buffered saline (PBS) (Gibco). 

The resultant sample was processed through the Labyrinth at a flowrate of 2500 μL/min. 

The flow was stabilized for 1 mL of flow volume, before the CTC outlet, outlet 2, was 

collected, termed the CTC-enriched labyrinth product. This sample was divided into CTC 

enumeration (800 μL) and RNA analysis (≈3-4 mL). 

11.3 Immunofluorescent staining and CTC enumeration 

The CTC-enriched labyrinth product was divided across 4 Polysine microscope 

slides (Thermo Scientific), 200μL each, using Thermo ScientificTM Cytospin 4 (Thermo 

Scientific). The slides were placed into an EZ Cytofunnel (Thermo scientific) and spun at 

800rpm for 10 minutes. To fix the cells, 200μL of 4% paraformaldehyde (PFA) was added 

to the Cytofunnel and spun a second time under the same conditions. Slides were stored at 

4°C coated in PBS until used for immunofluorescent staining.  

Slides were permeabilized with 0.2% Triton X-100 for 3 minutes, washed 3x with 

PBS, and blocked using 10% goat serum (Life Technologies) for 30 minutes at room 

temperature. The slides were then incubated overnight at 4°C with primary antibodies 

diluted in 10% goat serum - mouse anti-human Pan-Cytokeratin (CK) (Bio-Rad, 

MCA1907), mouse anti-human CD45 (Bio-Rad, MCA87GA), and rabbit anti-human 
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Vimentin (Vim) (CST, 5741). The next day the slides were washed 3x with 5 minutes 

incubation PBS washes. Slides were then incubated in the dark for 45 minutes at room 

temperature with secondary antibodies - (Alexa Fluor 488, 546, and 647). The slides were 

washed 3x with 5minute incubation PBS washes and mounted using Prolong Gold Antifade 

Mountant with DAPI (Invitrogen). The slides were scanned using a Nikon TI microscope 

at 20x magnification. The tiled images were individually analyzed, and CTC was identified 

based on their fluorescent signature in each channel.  

Cells were considered CTCs when they were DAPI+/CD45 (AF488)-/CK (AF546) +. 

CTC phenotype was determined based on vimentin expression. Cells were considered 

epithelial if DAPI+/CD45(AF488)-/CK(AF546) +/Vim (AF647)-, and epithelial to 

mesenchymal transition (EMT) if DAPI+/CD45(AF488)-/CK(AF546) +/Vim (AF647) +.  

11.4 Proliferation assay 

Cells were cultured on 96-well plates in the indicated conditions. For cancer cells, 

cell growth was measured after that as fluorescence intensity using a plate reader 

(SpectraMax M5, Molecular Devices). For CAFs, the CyQUANT® direct cell 

proliferation assay was performed according to the manufacturer’s instructions. 

11.5 Coculture assay with fibroblasts 

Direct coculture in which two cell types were grown in physical contact was 

performed. In brief, CAFs or NOFs were seeded first, and after the attachment, GFP 

labeled pancreatic cancer cells were seeded overnight. The medium was changed to 

BCAA deprivation or with different drugs after 24 hours. Fluorescence value as 

proliferation rates was measured at 485/515 nm, or flow cytometry assay was performed. 
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11.6 Conditioned media (CM) preparation  

PANC-1 cells were grown in DMEM + 10% FBS medium, and conditioned 

medium was harvested after 16 h and centrifuged at 3,000 rpm for 5 min, and the 

supernatant was passed through the 0.45-µm filter. NOFs or MSCs were exposed to fresh 

CM repeatedly for four weeks. 

11.7 Colony formation assay 

Cell growth of shRNA-treated cell lines was assayed through crystal violet 

staining. 500 cells were seeded in 6-well plates. At the indicated time point (usually two 

weeks), cells were fixed with 80% methanol and stained with crystal violet solution 

overnight. All experiments were performed in triplicate. 

11.8 Protein assay 

Protein assays are used to do normalization in our experiment and are done 

according to Bicinchoninic Acid (BCA) Protein Assay protocol (Thermo Fisher). In brief, 

200 µl reagent mixture was added to a 96-well assay plate and mixed with samples or 

standard, and then incubated at 37°C for 30 min. The absorbance was read on a 

spectrophotometer at 562 nm, and a standard curve was generated to determine sample 

protein concentration. 

11.9 SiRNA, shRNA and CRISPR knockdown 

Cells were transfected with siBCAT1 (Sigma, EHU072291), siDBT (Sigma, 

EHU035851), siSMAD4 (Sigma, EHU149321), siSMAD5 (Sigma, EHU104241), 

siMRC2(Sigma, EHU003351) and respective negative controls (Sigma, SIC001) using 

Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific) and Opti-MEM 
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accordingly to manufacturer’s instructions and analysis was performed three days after 

transfection. 

shRNA vectors were purchased from Sigma-Aldrich (St. Louis, USA). The clone 

IDs for each shRNA are as follows: shBCAT1-1: TRCN0000005907; shBCAT1-2: 

TRCN0000010976; shBCAT2-1: TRCN0000035115; shBCAT2-2: TRCN0000286266; 

shDBT-1: TRCN0000025837; shDBT-2: TRCN0000025838; A non-targeting shRNA 

(shCTRL) was used as a control. Knockdown was confirmed by qRT–PCR or 

immunoblotting.  

For CRISPR knockdown of BCAT2, sgRNA oligonucleotide pairs (Pair1, 

CACCGCACGGATCATATGCTGACGG, AAACCCGTCAGCATATGATCCGTGC, 

Pair2, CACCGGTTCACGGATCATATGCTGA, 

AAACTCAGCATATGATCCGTGAACC were phosphorylated, annealed, and cloned as 

previously described into the BbsI-linearized pSpCas9(BB)-2A-Puro (PX459) V2.0 

(PX459) plasmid (Addgene, #62988). 

11.10  Quantitative RT-PCR 

Total RNA was isolated using Trizol (Life Technologies) according to the 

manufacturer’s instructions. RNA concentration was determined using a purified RNA by 

NanoDrop Lite Spectrophotometer (Thermo Fisher Scientific) and 1µg of cDNA 

synthesized using the iScript cDNA synthesis kit (BioRad). Quantitative-RT PCR was 

performed using a QuantStudio 3 Real-Time PCR System (Applied Biosystems, Foster 

City, CA) with the Power SYBR™ Green PCR Master Mix (Invitrogen, Carlsbad, CA) as 



 175 

per the manufacturer’s instructions. The primer sequences used for qRT–PCR are shown 

in Table 11.1. 

Table 11.1 Primer sequences for qRT-PCR. 

Gene Forward Reverse 

BCAT1  GCCTTGGTGTGTGACAATGG CCATCACCCCCTGATGTCTG 

BCAT2  AAATGGGCCTGAGCTGATCC GAGTCATTGGTAGGGAGGCG 

BCKDH

A  GGAACGCCACTTCGTCACTA GTGTGGCAGCGAAGTTGAAG 

BCKDH

B  

TGGAGTCTTTAGATGCACTGT

TG 

CGCAATTCCGATTCCAAATCC

AA 

DBT  TTGCCTCCTTCACCCAAAGTT TGCCTGTGAATACCGGAGGT 

SMAD2  

AACCTGCATTTTGGTGTTCGA

T CCATCTACAGTGAGTGAGGGC 

SMAD3  AGCTGACACGGAGACACATC GTTGCATCCTGGTGGGATCT 

SMAD4  GAGACATACAGCACCCCAGC TGTGGAAGCCACAGGAATGT 

SMAD5  ACAACACAGCCTTCTGGTTCA CGTGGCATTTTGTGGCATGT 

For the CTCs, the remainder of the CTC-enriched labyrinth product was centrifuged 

at 300xg for 10 minutes to pellet the cells. The cell pellet was resuspended in 700μL TRIzol 

to lyse the cells and incubated at room temperature for 5 minutes and frozen at -20°C until 
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ready for RNA purification. RNA was purified using a modified lysis protocol and the 

Total RNA Purification kit (Norgen Biotek Corp.). Once thawed, 140μL of chloroform was 

added to the TRIzol sample and centrifuged at 12,000xg for 15 minutes. The RNA layer 

was collected and mixed with an equal volume 70% ethanol and loaded onto the spin 

column and washed 3x using the provided wash solution and eluted into 30μL volume. 

cDNA was prepared using SuperScript IV VILO with ezDNaseTM Enzyme (Invitrogen) 

following the manufacturer’s protocol. Real-time PCR was performed using TaqManTM 

Fast Advanced Master Mix (Applied Biosystems) with following probes 18s: 

Hs99999901_s1, BCAT1:Hs00398962_m1, BCAT2:Hs01553550_m1, BCKDHA: 

Hs00958109_m1, BCKDHB: Hs00609053_m1, DBT: Hs01066445_m1 following the 

manufacturer’s protocol and run on the QuantStuido 3. Detection thresholds were 

determined using the QuantStuidoTM Design & Analysis Software.  

11.11  Immunoblotting 

Cells were washed twice in ice-cold phosphate-buffered saline (PBS), scraped and 

collected as pellets after centrifugation at 4,000 r.p.m. for 5 min. The pelleted cells were 

incubated in RIPA buffer with proteinase and phosphatase inhibitors for 15 min. Lysates 

were then collected and centrifuged at 14,000 r.p.m. for 15 min at 4 °C. Protein 

concentrations were measured using the BCA Assay. SDS–PAGE and immunoblotting 

were performed in pre-cast Bis-Tris 4–20% gradient gels (Bio-Rad). Blots were imaged 

using a ChemiDoc (Bio-Rad ChemiDoc™ MP System). The following antibodies were 

used: BCAT1 (Novus Biologicals, NBP2-01826), BCAT2 (Cell Signaling Technologies 

(CST), 9432S), DBT (Abcam, ab151991), HSP90 (CST, 4877) and Vinculin (Santa Cruz 

Biotechnology, sc-25336).   
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11.12  ChIP-PCR 

CAFs were treated with vehicle or 5 ng/ml TGF-β1, then cross-linked, fixed and 

processed with Simple ChIP Enzymatic Chromatin IP Kit (Magnetic Beads) (CST, 9003) 

according to the manufacturer’s instructions. Cell lysates were Immuno-precipitated with 

anti-SMAD4 antibody (CST. 38454), SMAD5 antibody (CST, 12534) and rabbit IgG 

ChIP grade (CST, 2729). Region of BCAT1 promoter or non-promoter region were 

amplified by Power SYBR™ Green PCR Master Mix (Invitrogen, Carlsbad, CA) as per 

the manufacturer’s instructions. 

11.13  Dual-luciferase reporter assay 

BCAT1 promoter regions were conjugated to the translation start site of the 

NanoLuc gene in the pNL2.1 vector (Promega). CAFs were plated in 96-well plates 12 h 

before transfection. The NanoLuc reporter vectors were co-transfected with promoter 

firefly luciferase reporter vector using Lipofectamine 3000 Reagent (Thermo) according 

to the manufacturer’s protocol. After 48 h of the transfection, the luminescence was 

quantified and normalized using Nano-Glo Dual-Luciferase Reporter Assay (Promega). 

11.14  Puromycin incorporation assay 

Surface sensing of translation (SUnSET) assay was performed as previously 

described[363]. Briefly, cells were incubated with 10µg/mL puromycin (Thermo Fisher) 

for 10 min, followed by washing with ice-cold PBS and lysing with RIPA buffer. Cell 

lysates were loaded onto SDS–PAGE, and western blotting was performed with a mouse 

anti-puromycin monoclonal antibody (Millipore), and normalized against Ponceau S 

staining (Sigma). 
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11.15  Mitochondrial NADH/NAD+ measurement  

Mitochondrial NADH/NAD+ sensor, RexMito, was prepared as previously 

described[364]. Mia Paca-2 cells were transfected using Lipofectamine 2000 Reagent 

(Thermo) according to the manufacturer’s protocol. Then the cell medium was replaced 

by a complete medium, BCAA deprived medium, or BCAA deprived medium with 

BCKA. We used a Nikon A1Si Laser Scanning Confocal Microscope to visualize the 

fluorescence of transfected cells 24–48 h after transfection. Fluorescence detection was 

carried out using the 488 laser line for RexYFP and 561 laser line for HyPerRed-C199S. 

Imaging intensity was measured, and Ratio imaging was generated by Nikon NIS-

Elements AR. 

11.16  Flow cytometry 

In the mixed coculture, cancer-associated fibroblasts were seeded in a 6-well plate 

for 24 hours. For the SUnSET assay, then GFP labeled cells were added and cocultured 

for three days in the indicated medium. Puromycin intensity was analyzed by FACS in 

tumor cells with GFP gating. For the NADH/NAD+ measurement, PKH26 labeled cells 

were added and cocultured for three days in the indicated medium. NADH/NAD+ ratio 

was analyzed by FACS in tumor cells with PKH26 gating. All data were acquired with 

the Bio-Rad ZE5 flow cytometry analyzer, and analysis was performed using FlowJo. 

11.17  Measurements of OCR 

Mitochondrial OCR was measured by XF96 Analyzer (Seahorse Biosciences). 

Cells were seeded in 96-well seahorse plates and incubated at 37 °C with 5% CO2 

overnight. The medium was replaced with 100 μL medium free of serum and sodium 

bicarbonate. Plates were then incubated in a CO2-free incubator for one h before placing 
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them in the analyzer. The OCRs were measured with the procedure of 3-min mixing, 2-

min waiting, and 3-min measuring. Oligomycin, FCCP and Rotenone/Antimycin A were 

injected through port A, B and C, respectively, to calculate mitochondrial function under 

different stress. All data were normalized to total cell protein as measured by the BCA 

assay. 

11.18  Substrate specific OCR 

OCR was measured in MAS medium supplemented with 0.2% (w/v) BSA, four 

mM ADP, 1 nM XF Plasma Membrane Permeabilizer (Seahorse Bioscience), 500 nM 

Coenzyme B12 and biotin and sequentially offered Oligomycin, FCCP and antimycin. 

Permeabilized pancreatic cancer cells were offered 5 mM branched-chain ketoacids. 

Substrate specific respiration was calculated as the maximum respiration, and the data 

were normalized to total cell protein. 

11.19  Immunohistochemistry (IHC) and immunofluorescence (IF) staining 

Tissues were fixed in 10% formalin overnight and embedded in paraffin. PDAC 

sections were deparaffinized in xylene, rehydrated through sequential ethanol, and rinsed 

in PBS. Non-specific signals were blocked using 10% goat serum in 0.1% Triton X-100. 

Tumor samples were stained with the following primary antibodies: αSMA(Sigma, 

A5228, 1:500), BCAT1 (Sigma, HPA048592, 1:200), SMAD5 (Sigma, HPA058931, 

1:200), Ki-67(Santa Cruz Biotechnology,sc-23900,1:500), PCNA(Santa Cruz 

Biotechnology, sc-56,1:500). After overnight incubation, the slides were washed and 

incubated with biotinylated secondary antibody (Vector Laboratories) for 30min at room 

temperature. All slides were then incubated with avidin-biotin-peroxidase complex for 30 

min, and the signals were visualized by using DAB Substrate Kit (Vector Laboratories). 



 180 

The tissue sections were counterstained with VECTOR Hematoxylin QS and mounted 

with VectaMount after dehydration. IF staining was performed on tissue slices or 

chamber slide cultures (Thermo Fisher Scientific). The primary antibody was Anti-

Proteasome 20S alpha + beta (Abcam, ab22673). Samples were mounted on microscope 

slides with Prolong Antifade with DAPI and imaged using a Nikon A1Si Laser Scanning 

Confocal Microscope.  

11.20  BCAT activity assay 

The enzymatic activity assay is performed as previously described[365]. CAFs 

were homogenized in the buffer consisting of 20 mM EDTA, 20 mM EGTA, 0.4% (w/v) 

CHAPSO, 5 mM DTT, protease inhibitor cocktail, and 25 mM Hepes. The tissue 

homogenates were then frozen in a -80 °C freezer for one h and then thawed at room 

temperature. The cellular debris was removed by centrifugation at 15,000g for 10 min at 

4 °C. The supernatant is then mixed with reaction buffer containing 10 mM L-leucine, 2 

mM NAD+, and 100 mM sodium carbonate/bicarbonate buffer. The disappearance of 

absorbance at 340 nm due to NADH oxidation is measured continuously. BCAT activity 

is quantified by comparing the rate of loss of absorbance at 340 nm in the 

spectrophotometric assay mixture with or without bacterial leucine dehydrogenase or 

lacking bacterial leucine dehydrogenase. 

11.21  Collagen Uptake 

For the collagen uptake assays, cells were cultured with 25 µg/ml Collagen for 

indicated periods in different media. Subsequently, cells were washed three times with 

ice‐cold PBS and fixed with 4% formaldehyde in PBS for 15 min. After fixation, cells 

were washed in PBS and mounted using Prolong Antifade + DAPI. 
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11.22  Proteasome activity assay 

Proteasome activity was assessed by using the Cell-Based Proteasome-Glo Assay 

(Promega, G1180). Cells were trypsinized and plated according to the manufacturer’s 

recommended instructions. Then cell medium was replaced by complete medium, 

BCAA-deprived medium or medium with 5 ng/ml TGF-β. Luminescence was detected 

using SpectraMax M5 Microplate Reader (Molecular Devices) after two days. 

11.23  Preparation of CAF-derived 3D ECMs 

The cell-derived ECMs were generated as previously described[277]. Briefly, 

confluent CAF cultures were maintained for eight days in the presence of daily added and 

freshly prepared ascorbic acid and 13C-labeled leucine, isoleucine and valine. Matrices 

were fixed or decellularized seven days after plating. Cells were extracted from the 

matrices using 0.5% Triton X-100 (Sigma-Aldrich) and 20 mM NH4OH. The matrices 

were washed in PBS three times and then treated with 10 U/ml DNAse (Sigma-Aldrich) 

in DPBS for 30 minutes at 37°C. Labeled ECM was washed with PBS before plating 

CAFs; after 48 hours, the media was extracted for LC-MS. 

11.24  CTC derived organoid culture 

To generate the CTC derived organoid, CAF was first seeded on CAF-derived 3D 

ECMs one day before. Then the fresh isolated CTC was seeded on the cultures. CTC 

derived Organoid was cultured as previously described without TGF-β modulators[325], 

it uses Advanced DMEM/F12 (Gibco) containing 1X antibiotic-antimycotic (Gibco) as 

the base. Supplements include the following: N-acetyl-L-cysteine (NAC; Sigma-Aldrich), 
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Gastrin I(Sigma-Aldrich), Nicotinamide (Sigma-Aldrich), R-spondin 1 (Peprotech), 

EGF(Peprotech) and FGF-10(Peprotech). 

11.25  Scanning electron microscopy (SEM)  

ECM was fixed in 2.5% glutaraldehyde in PBS at room temperature for one hour 

and then rinsed with PBS, followed by sequential dehydration with ethanol at 

concentrations of 50%, 70%, 90%, 95%, and 100% for 10 min each. The specimen was 

then immersed for 10 min in a solution of 1:1 ethanol: hexamethyldisilazane (HMDS) 

and then transferred to 100% HMDS, followed by overnight air dry in the hood.  The 

dehydrated specimen attached to double-sided carbon tape is mounted on a SEM stub and 

coated with gold by sputtering.  The ECM was examined by FEI Nova 200 Nanolab 

Dual-beam FIB scanning electron microscope under low beam energies (2.0-5.0 kV) at 

the Michigan Center for Materials Characterization (MC2) at the University of Michigan. 

11.26  Metabolic flux analysis 

11.26.1 Metabolite extraction for in vitro studies 

Cells cultured in 6-well plates were quenched with 800 µL of ice-cold 

methanol/water (1:1) solution containing 1 µg of Norvaline. Cells were scraped while 

keeping the plate on ice, followed by the addition of 800 µL of chloroform. The cell 

extracts were transferred to microcentrifuge tubes and vortexed for 30 minutes at 4 °C.  

11.26.2 Metabolite extraction from tissue slices  

Frozen tissue slices were transferred to Preceyllys CKMix Lysing tubes (Bertin 

Corp., 03961-1-009) and kept on dry ice. 200 µL of ice-cold methanol/water (1:1) 

solution containing 1 µg of Norvaline was added to the tubes to submerge the beads and 
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tissue barely. The samples were homogenized using a Precellys Evolution Homogenizer 

with the Cryolys attachment to maintain the temperature below 4 °C in the 

homogenization chamber. Homogenization was achieved using two 30 second cycles at 

6000 rpm with a pause of 60 seconds. Additional homogenization cycles were performed 

only when samples were not homogenized. Following homogenization, an additional 600 

µL of ice-cold methanol/water (1:1) solution was added to the tubes, as well as 800 µL of 

chloroform. The homogenized extracts were transferred to microcentrifuge tubes and 

vortexed for 30 minutes at 4 °C. 

11.26.3 Sample processing for polar metabolites, the amino acid composition of 

proteins, and lipids 

Metabolite extracts were centrifuged at 14,000g for 10 mins to separate the polar 

phase, protein interphase and chloroform phase. The water/methanol phase containing 

polar metabolites were transferred to fresh microcentrifuge tubes and dried in a SpeedVac 

and stored at -80 °C until GC-MS analysis. The chloroform phase containing lipids were 

transferred to microcentrifuge tubes and dried under nitrogen and stored at -80 °C. The 

protein layer was rinsed gently with chloroform, then PBS, and the liquid was discarded. 

The rinsed protein fractions were transferred to glass tubes with sealable caps and 

subjected to acid hydrolysis with 6M hydrochloric acid at 100 °C for 18-24 hours to 

obtain constituent amino acids. Hydrolyzed samples were dried under nitrogen and stored 

at -80 °C until GC-MS analysis. 
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11.26.4 GC-MS analysis for intracellular polar metabolites and amino acids from 

hydrolyzed protein 

 30 µL of methoxyamine hydrochloride (MOX, Thermo Scientific) was added to 

dried samples and incubated at 30 °C for 2 hours with intermittent vortexing. 45 µL of 

MBTSTFA+1% TBDMCS was added to the samples and incubated at 55 °C for 1 hour. 

Derivatized samples were transferred to GC vials with glass inserts and added to the GC-

MS autosampler queue.  GC-MS analysis was performed using an Agilent 7890 GC 

equipped with a 30-m HP-5MSUI capillary column connected to an Agilent 5977B MS. 

For polar metabolites, the following heating cycle was used for the GC oven: 100 °C for 

three minutes, followed by a ramp of 5 °C/min to 300 °C and held at 300 °C for a total 

run time of 48 min. Data were acquired in scan mode. The relative abundance of 

metabolites was calculated from the integrated signal of all potentially labeled ions for 

each metabolite fragment. Mass Isotopologue Distributions (MID) were corrected for 

natural abundance using IsoCor before analysis with the model. Metabolite levels were 

normalized to internal standard Norvaline’s signal and quantified using 6-point 

calibration with external standards for 19 polar metabolites. 

11.26.5 LC-MS analysis to quantify BCKA secretion in media samples 

Spent culture media samples were collected from culture plates, and 200 µL was 

transferred to fresh microcentrifuge tubes for metabolic analysis. 800 µL of pre-chilled 

methanol was added to media samples and kept at -20 °C for 2 hours to deproteinize the 

samples. The samples were centrifuged at 14,000g for 10 minutes at 4 °C, following 

which the supernatant was transferred to fresh tubes and dried in the SpeedVac. Media 

samples were derivatized with 500 µL of 12.5 mM OPD (o-phenylenediamine) solution 
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in 2M hydrochloric acid. Samples were incubated at 80 °C for 20 minutes and transferred 

to an ice-bath to terminate the derivatization reaction. The derivatized solution was 

transferred to microcentrifuge tubes containing 0.08g of sodium sulfate. 500 µL of ethyl 

acetate was added to the samples, followed by vigorous vortexing and centrifuging at 

1000g for 10 minutes. The ethyl acetate phase containing the derivatized ketoacids was 

transferred to fresh tubes and dried under nitrogen. The dried samples were reconstituted 

in 200 µL of 200 mM ammonium acetate solution and transferred to LC vials with glass 

inserts. The samples were analyzed with an Agilent Infinity LC stack using an Agilent 

Eclipse Plus C18 column (2.1 mm x 100 mm x 1.8 µm) connected to an Agilent 6520 

QTOF. The following parameters were used for analysis, 5 mM ammonium acetate as 

Solvent A, methanol as solvent B, 380 µL/min flow rate, 5-10 µL injection volume, 55% 

B for 4.2 minutes, ramp B to 95% for 0.9 minutes, retain 95% B for 1.5 minutes, return to 

initial conditions and equilibrate for 2.5 minutes. The analysis was performed in full-scan 

mode with the MS in positive ion mode. 

11.26.6 Mole Percent Enrichment (MPE) 

MPE represents the fractional contribution of 13C from a substrate to intermediate 

metabolite. It is calculated as follows, where NC is the number of carbons that can be 

labeled as 13C, and xi is the fraction of (M+i)th isotopologue: 

MPE = �� i ∗ xi

NC

i=0

� /NC 



 186 

11.26.7 Newly synthesized BCKA flux 

To estimate de novo synthesized branched-chain ketoacid flux from 13-carbon 

labeled BCAA, we measure 13-carbon enrichment in respective branched-chain ketoacid 

much before cells reach isotopic steady-state: 

BCAA catabolic flux =  
[(13C mean enrichment)t=T − (13C mean enrichment)t=0] ∗ (Intracellular abundance of BCKA)

(Total cell protein) ∗ (Time to achieve 13C enrichment, T)
 

11.27  Statistics and Reproducibility 

Data are presented as mean ± s.d. All experiments were repeated twice with similar 

results unless otherwise stated. Graphpad Prism software V8.4 was used to conduct the 

statistical analysis of all data.  A comparison of the data sets obtained from the different 

experimental conditions was performed with the two-tailed Student t-test. Comparisons 

between multiple groups were made using one-way analysis of variance (ANOVA) with 

Tukey’s post hoc comparison, and two-way ANOVA with Dunnett’s post-testing for 

comparisons between multiple groups with independent variables. *P < 0.0001 unless 

otherwise stated. 
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