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ABSTRACT

This thesis mainly summarizes three different projects that I am devoted to: Re-

combining Tree Approximations for Optimal Stopping for Diffusions (Chapter II),

Continuity of Utility Maximization under Weak Convergence (Chapter III) and Dis-

order Detection with Costly Observations (Chapter IV). The first two projects are

related work. The third one is based on [16].

In Chapter II, we develop two numerical methods for optimal stopping in the frame-

work of one dimensional diffusion. Both of the methods use the Skorohod embedding

in order to construct recombining tree approximations for diffusions with general co-

efficients. This technique allows us to determine convergence rates and construct

nearly optimal stopping times which are optimal at the same rate. Finally, we

demonstrate the efficiency of our schemes on several models.

In Chapter III, we find sufficient conditions for the continuity of the utility max-

imization problem from terminal wealth under convergence in distribution of the

underlying processes. We provide several examples which illustrate that without

these conditions, we cannot generally expect continuity to hold. Finally, we apply

our continuity results to numerical computations of the shortfall risk in the Heston

model.

In Chapter IV, we study the Wiener disorder detection problem where each observa-

tion is associated with a positive cost. In this setting, a strategy is a pair consisting of

a sequence of observation times and a stopping time corresponding to the declaration

of disorder. We characterize the minimal cost of the disorder problem with costly

observations as the unique fixed point of a certain jump operator, and we determine

x



the optimal strategy.
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CHAPTER I

Introduction

The Motivation of Chapter II comes from the calculations of American options

prices in local volatility models we develop numerical schemes for optimal stopping

in the framework of one dimensional diffusion. In particular, we develop tree based

approximations. In general for non-constant volatility models the nodes of the tree

approximation trees do not recombine and this fact results in an exponential and thus

a computationally explosive tree that cannot be used especially in pricing American

options. We will present two novel ways of constructing recombining trees.

The first numerical scheme we propose, a recombining binomial tree (on a uniform

time and space lattice), is based on correlated random walks. A correlated random

walk is a generalized random walk in the sense that the increments are not identi-

cally and independently distributed and the one we introduce has one step memory.

The idea to use correlated random walks for approximating diffusion processes goes

back to [43], where the authors studied the weak convergence of correlated random

walks to Markov diffusions. The disadvantage of the weak convergence approach is

that it can not provide error estimates. Moreover, the weak convergence result can

not be applied for numerical computations of the optimal stopping time. In order to

obtain error estimates for the approximations and calculate numerically the optimal

1



control we should consider all the processes on the same probability space, and so

methods based on strong approximation theorems come into picture. In this chap-

ter we apply the Skorokhod embedding technique for ”small” perturbations of the

correlated random walks. Our approach can be seen as an extension of recombining

tree approximations from the case when a stock evolves according to the geometrical

Brownian motion to the case of a more general diffusion evolution. This particular

case required the Skorokhod embedding into the Brownian motion (with a constant

variance) and it was treated in the more general game options case in [51, 32].

Under boundedness and Lipschitz conditions on the drift and volatility of the

diffusion, we obtain error estimates of order O(n−1/4). Moreover we show how to

construct a stopping time which is optimal up to the same order. In fact, we consider

a more general setup where the diffusion process might have absorbing barriers.

Clearly, most of the local volatility modes which are used in practice (for instance, the

CEV model [23] and the CIR model [25]) do not satisfy the above conditions. Still,

by choosing an appropriate absorbing barriers for these models, we can efficiently

approximate the original models, and for the absorbed diffusions, which satisfy the

above conditions, we apply our results.

Our second numerical scheme is a recombining trinomial tree, which is obtained

by directly sampling the original process at suitable chosen random intervals. In this

method we relax the continuity assumption and work with diffusions with measurable

coefficients, e.g. the coefficients can be discontinuous, while we keep the boundedness

conditions. (See Section 2.3.5 for an example). The main idea is to construct a

sequence of random times such that the increment of the diffusion between two sequel

times belongs to some fixed set of the form
{
−σ̄
√

T
n
, 0, σ̄

√
T
n

}
and the expectation

of the difference between two sequel times equals to T
n

. Here n is the discretization

2



parameter and T is the maturity date. This idea is inspired by the recent work

[2, 1] where the authors applied Skorohod embedding in order to obtain an Euler

approximation of irregular one dimensional diffusions. Following their methodology

we construct an exact scheme along stopping times. The constructions are different

and in particular, in contrast to the above papers we introduce a recombining tree

approximation. The above papers do provide error estimate (in fact they are of

the same order as our error estimates) for the expected value of a function of the

terminal value (from mathematical finance point of view, this can be viewed as

European Vanilla options). Since we deal with American options, our proof requires

additional machinery which allows to treat stopping times.

The second method is more direct and does not require the construction of a

diffusion perturbation. In particular it can be used for the computations of Barrier

options prices; see Remark 2.2.1. As we do for the first method, we obtain error

estimates of order O(n−1/4) and construct a stopping time which is optimal up to

the same order.

Comparison with other numerical schemes. The most well-known approach

to evaluate American options in one dimension is the finite difference scheme called

the projected SOR method, see e.g. [74]. As opposed to a tree based scheme, the

finite difference scheme needs to artificially restrict the domain and impose boundary

conditions to fill in the entire lattice. The usual approach is the so-called far-field

boundary condition (as is done in [74]). See the discussion in [75]. The main prob-

lem is that it is not known how far is sufficient and the error is hard to quantify.

This problem was addressed recently by [75] for put options written on CEV models

by what they call an artificial boundary method, which is model dependent in that

an exact boundary condition is derived that is then embedded into the numerical

3



scheme. (In fact, the PDE is transformed into a new PDE which satisfies a Neu-

mann boundary condition.) This technique requires having an explicit expression of

a Sturm-Lioville equation associated with the Laplace transform of the pricing equa-

tion. As an improvement over [75] the papers [76, 53] propose a numerical method

based on solving the integral equations that the optimal exercise boundary satisfies.

None of these papers discuss the convergence rate or prove that their proposed opti-

mal exercise times are nearly optimal. We have the advantage of having an optimal

stopping problem at the discrete level and without much additional effort are able

to show that these stopping times are actually approximately optimal when applied

to the continuous time problem. We compare our numerical results to these papers

in Table 2.3.2.

Another popular approach is the Euler scheme or other Monte-Carlo based schemes

(see e.g. [39, 3]). The grid structure allows for an efficient numerical computations of

stochastic control problems via dynamical programming since computation of condi-

tional expectation simplifies considerably. Compare this to the least squares method

in [59] (also see [39]). Besides the computational complexity, the bias in the least

squares is hard to characterize since it also relies on the choice of bases functions.

Recently a hybrid approach was developed in [14]. (The scope of this paper is more

general and is in the spirit of [59]). Our discussion above in comparing our proposed

method to Monte-Carlo applies here. Moreover, although [14] provides a conver-

gence rate analysis using PDE methods (requiring regularity assumptions on the

coefficients, which our scheme does not need), our approach in addition can prove

that the proposed stopping times from our numerical approximations are nearly op-

timal.

To summarize, our contributions are

4



• We build two recombining tree approximations for local volatility models, which

considerably simplifies the computation of conditional expectations.

• By using the Skorohod embedding technique, we give a proof of the rate of

convergence of the schemes.

• This technique in particular allows us to show that the stopping times con-

structed from the numerical approximations are nearly optimal and the error is

of the same magnitude as the convergence rate.

These two novel discretizations gives us idea to construct approximating models

for the Heston model. This leads to further study. Chapter III deals with the

following question. Given a utility function and a sequence of financial markets with

underlying assets S(n), n ∈ N, which converges weakly to an underlying asset S.

Under which condition the values of the utility maximization problem from terminal

wealth in the approximating sequence converge to the corresponding value for the

model given by S.

Although the utility maximization problem was largely studied (see, for instance,

[60, 61, 48, 54, 45, 69, 17]), to the best of our knowledge, the continuity under weak

convergence was studied only in [70] in an essentially complete market setup.

In this work we consider a general incomplete framework with a continuous state

dependent utility. We divide the problem into two problems. The first one studies

lower semi–continuity under weak convergence, namely the conditions that the value

of the utility maximization problem in the limit model is less or equal than the

lower limit of the converging models. The second problem deals with upper semi–

continuity, i.e. conditions that the value of the utility maximization problem in the

limit model will dominate from above the upper limit of the approximating sequence.

We show that for the lower semi–continuity to hold, it is sufficient that the approx-

5



imating sequence S(n), n ∈ N, has a bounded jump activity. The formal condition is

given in Assumption 3.1.4. In particular, we do not require concavity of the utility

function. The main idea is to prove that an admissible integral of the form
∫
γdS can

be approximated in the weak sense by admissible integrals of the form
∫
γ(n)dS(n),

n ∈ N. The assumption on the jump activity is essential for the admissability of the

approximating sequence.

The upper semi–continuity is a more delicate issue. Roughly speaking, we prove

that if the utility function is concave and the state price densities in the limit model

can be approximated by state price densities in the approximating sequence (see

Assumption 3.1.5) then upper semi–continuity holds. The proof relies on the op-

tional decomposition theorem. We provide two examples which illustrate that these

assumptions are essential.

We apply our continuity results in order to construct an approximating sequence

for the Heston model. For technical reasons we truncate the model in such a way that

the volatility is bounded. The novelty of our construction is that the approximating

sequence lies on a grid and satisfies the assumptions required for the continuity

of utility maximization from terminal wealth. The grid structure enables efficient

numerical computations of stochastic control problems via dynamical programming

since the computation of conditional expectations simplifies considerably.

Our last contribution is the implementation of the constructed approximating

models for the numerical computations of the shortfall risk measure in the Heston

model. We focus on European call options. It is well known (see [26, 38, 33, 65])

that in the Heston model the super–replication price is prohibitively high and lead to

buy–and–hold strategies. Namely, the cheapest way to super–hedge a European call

option is to buy one stock at the initial time and keep that position till maturity. For

6



a given initial capital which is less than the initial stock price we want to compute

the corresponding shortfall risk. This cannot be done analytically and so numerical

schemes come into picture.

It is important to mention the series of papers [58, 15, 57, 63, 62] where the authors

studied the stability and the corresponding expansion of the utility maximization

problem in terms of a perturbation of the model. The main difference is that in

these papers the stochastic base is fixed while in our setup each financial model is

defined on its own probability space. As a result, while their approach deals with

the stability of the models with respect small perturbations, we are able to obtain

numerical approximations using discrete models.

The idea of Chapter IV is similar to paper [36]. Both deal with sequential testing

with costly observations. We aim to find a strategy that consists of a decision

whether to stop or not, and with a rule specifying how long to wait for the next

observation. The main result states that the value function of the problem can be

characterized as the unique fixed point of this operator and that the value function

can be determined by an iterative procedure involving the operator. However, due to

the different operators constructed by different problems, the main properties of our

problem seems more challenging. For example, we use Girsanov theorem to prove

the operator keeps concavity of functions. On the other hand, unlike paper [36],

it is not straightforward that the continuation region is an open interval based on

concavity and monotonity of the operator. Although it is seems true in the numerical

examples, we leave it as an open problem for further study.

Comparing with paper [16], we add extra cost for observations. The idea and

computations between them are approximiate. Our work gives a more concise way to

consider the observation cost in practice and makes it more useful in further study.

7



We actually compare the numerical results for correctness checking(by assuming

d = 0).

The fixed-point strategy is a quite common tool in this kind of problems, however,

different constructions of the operators give different difficulities in studying. We

refer to paper [9]. Here the observing processs N is a Poisson process with arriving

rate sudden changes in an unkown time. By assuming the ”changing” arriving rate is

Bernoulli distributed, they solve the problem by using functional iterations. Due to

the complexity of the operator, their work is subtle and abstract. In our current work,

we show more detailed properties of the operator with less assumptions. Anyway,

although the fixing point strategy is not a novel strategy in this kind of problems,

different types of operators will generate different constructions.
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CHAPTER II

Recombining Tree Approximations for Optimal Stopping for
Diffusions

In this chapter we develop two numerical methods for optimal stopping in the

framework of one dimensional diffusion. See paper [10]. We introduce the setup and

introduce the two methods we propose and present the main theoretical results of the

paper, namely Theorems 2.1.1 and 2.1.2 (see the last statements in subsections 2.1.2

and 2.1.3). Sections 2.1.4 and 2.2 are devoted to the proof of these respective results.

In Section 2.3 we provide a detailed numerical analysis for both of our methods by

applying them to various local volatility models.

2.1 Preliminaries and Main Results

2.1.1 The Setup

Let {Wt}∞t=0 be a standard one dimensional Brownian motion, and let Yt, t ≥ 0

be a one dimensional diffusion

(2.1) dYt = σ(Yt)dWt + µ(Yt)dt, Y0 = x.

Let {Ft}Tt=0 be a filtration which satisfies the usual conditions such that Yt, t ≥ 0

is an adapted process and Wt, t ≥ 0 is a Brownian motion with respect to this

filtration. We assume that the SDE (2.1) has a weak solution that is unique in law.
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Introduce absorbing barriers B < C where B ∈ [−∞,∞) and C ∈ (−∞,∞]. We

assume that x ∈ (B,C) and look at the absorbed stochastic process

Xt = It<inf{s:Ys /∈(B,C)}Yt + It≥inf{s:Ys /∈(B,C)}Yinf{s:Ys /∈(B,C)}, t ≥ 0.

Motivated by the valuation of American options prices we study an optimal

stopping problem with maturity date T and a reward f(t,Xt), t ∈ [0, T ] where

f : [0, T ]× R→ R+ satisfies

(2.2)

|f(t1, x1)− f(t2, x2)| ≤ L ((1 + |x1|)|t2 − t1|+ |x2 − x1|) , t1, t2 ∈ [0, T ], x1, x2 ∈ R

for some constant L. Clearly, payoffs of the form f(t, x) = e−rt(x−K)+ (call options)

and f(t, x) = e−rt(K − x)+ (put options) fit in our setup.

The optimal stopping value is given by

(2.3) V = sup
τ∈T[0,T ]

E[f(τ,Xτ )],

where T[0,T ] is the set of stopping times in the interval [0, T ], with respect to the

filtration Ft, t ≥ 0.

2.1.2 Binomial Approximation Scheme Via Random Walks

In this section we adopt the following.

Assumption 2.1.1. The functions µ, σ : (B,C) → R are bounded and Lipschitz

continuous. Moreover, σ : (B,C) → R is strictly positive and uniformly bounded

away from zero.

Binomial Approximation of the State Process. Fix n ∈ N and let h =

h(n) := T
n

be the time discretization. Since the meaning is clear we will use h

instead of h(n). Let ξ
(n)
1 , ..., ξ

(n)
n ∈ {−1, 1} be a sequence of random variables. In the

10



sequel, we always use the initial data ξ
(n)
0 ≡ 1. Consider the random walk

X
(n)
k = x+

√
h

k∑
i=1

ξ
(n)
i k = 0, 1, ..., n

with finite absorbing barriers Bn < Cn where

Bn = x+
√
hmin{k ∈ Z ∩ [−n− 1,∞) : x+

√
hk > B + h1/3}

Cn = x+
√
hmax{k ∈ Z ∩ (−∞, n+ 1] : x+

√
hk < C − h1/3}.

Clearly, the process {X(n)
k }nk=0 lies on the grid x +

√
h{−n, 1 − n, ..., 0, 1, ..., n} (in

fact because of the barriers it lies on a smaller grid).

We aim to construct a probabilistic structure so the pair {X(n)
k , ξ

(n)
k }nk=0 forms

a Markov chain weakly approximating (with the right time change) the absorbed

diffusion X. We look for a predictable (with respect the filtration generated by

ξ
(n)
1 , ..., ξ

(n)
n ) process α(n) = {α(n)

k }nk=0 which is uniformly bounded (in space and n)

and a probability measure Pn on σ{ξ(n)
1 , ..., ξ

(n)
n } such that the perturbation defined

by

(2.4) X̂
(n)
k := X

(n)
k +

√
hα

(n)
k ξ

(n)
k , k = 0, 1, ..., n

is matching the first two moments of the diffusion X. Namely, we require that for

any k = 1, ..., n (on the event Bn < X
(n)
k−1 < Cn)

(2.5) En
(
X̂

(n)
k − X̂

(n)
k−1|ξ

(n)
1 , ..., ξ

(n)
k−1

)
= hµ(X

(n)
k−1) + o(h),

(2.6) En
(

(X̂
(n)
k − X̂

(n)
k−1)2|ξ(n)

1 , ..., ξ
(n)
k−1

)
= hσ2(X

(n)
k−1) + o(h),

where we use the standard notation o(h) to denote a random variable that converge

to zero (as h ↓ 0) a.s. after dividing by h. We also use the convention O(h) to denote

a random variable that is uniformly bounded after dividing by h.
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From (2.4) it follows that X
(n)
k − X̂

(n)
k = o(1). Hence the convergence of X(n) is

equivalent to the convergence of X̂(n). It remains to solve the equations (2.5)–(2.6).

By applying (2.4)–(2.5) together with the fact that α(n) is predictable and (ξ(n))2 ≡ 1

we get

En
(

(X̂
(n)
k − X̂

(n)
k−1)2|ξ(n)

1 , ..., ξ
(n)
k−1

)
= h(1 + 2α

(n)
k ) + h

(
(α

(n)
k )2 − (α

(n)
k−1)2

)
+ o(h).

This together with (2.6) gives that

α
(n)
k =

σ2(X
(n)
k−1)− 1

2
, k = 0, ..., n

is a solution, where we set X
(n)
−1 ≡ x−

√
h. Next, (2.5) yields that

En
(
ξ

(n)
k |ξ

(n)
1 , ..., ξ

(n)
k−1

)
=
α

(n)
k−1ξ

(n)
k−1 +

√
hµ(X

(n)
k−1)

1 + α
(n)
k

.

Recall that ξ
(n)
k ∈ {−1, 1}. We conclude that the probability measure Pn is given by

(prior to absorbing time)

(2.7)

Pn
(
ξ

(n)
k = ±1|ξ(n)

1 , ..., ξ
(n)
k−1

)
=

1

2

(
1±

α
(n)
k−1ξ

(n)
k−1 +

√
hµ(X

(n)
k−1)

1 + α
(n)
k

)
, k = 1, ..., n.

In view of Assumption 2.1.1 we assume that n is sufficiently large so Pn is indeed a

probability measure. Moreover, we notice that α
(n)
k−1 =

σ2(X
(n)
k−1−

√
hξ

(n)
k−1)−1

2
. Thus the

right hand side of (2.7) is determined by X
(n)
k−1, ξ

(n)
k−1, and so {X(n)

k , ξ
(n)
k }nk=0 is indeed

a Markov chain.

Optimal Stopping Problem on a Binomial Tree. For any n denote by Tn the

(finite) set of all stopping times with respect to filtration σ{ξ(n)
1 , ..., ξ

(n)
k }, k = 0, ..., n.

Introduce the optimal stopping value

(2.8) Vn := max
η∈Tn

En[f(ηh,X(n)
η )].
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By using standard dynamical programming for optimal stopping (see [67] Chapter

I) we can calculate Vn and the rational stopping times by the following backward

recursion. For any k = 0, 1, ..., n denote by G
(n)
k all the points on the grid x +

√
h{−k, 1− k, ..., 0, 1, ..., k} which lie in the interval [Bn, Cn].

Define the functions

J
(n)
k : G

(n)
k × {−1, 1} → R, k = 0, 1, ..., n

J(n)
n (z, y) = f(T, z).

For k = 0, 1, ..., n− 1, if z ∈ (Bn, Cn),

J
(n)
k (z, y) = max

{
f(kh, z),

2∑
i=1

1

2

(
1 + (−1)i

α′y +
√
hµ(z)

1 + α

)
J

(n)
k+1(z + (−1)i

√
h, i)

}
,

where α′ = σ2(z−y
√
h)−1

2
, α = σ2(z)−1

2
, and

J
(n)
k (z, y) = maxk≤m≤n f(mh, z) if z ∈ {Bn, Cn}.

We get that

Vn = J
(n)
0 (x, 1)

and the stopping time

(2.9) η∗n = n ∧min
{
k : J

(n)
k (X

(n)
k , ξ

(n)
k ) = f(kh,X

(n)
k )
}

is a rational stopping time. Namely,

Vn = En[f(η∗nh,X
(n)
η∗n

)].

Skorohod Embedding. Before we formulate our first result let us introduce the

Skorokhod embedding which allows to consider the random variables {ξ(n)
k , X

(n)
k }nk=0

(without changing their joint distribution) and the diffusion X on the same proba-

bility space.
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Set,

Mt := x+

∫ t

0

σ(Ys)dWs = Yt −
∫ t

0

µ(Ys)ds, t ≥ 0.

The main idea is to embed the process

X̃
(n)
k := X

(n)
k +

√
h(α

(n)
k ξ

(n)
k − α

(n)
0 ξ

(n)
0 )− h

k−1∑
i=0

µ(X
(n)
i ), k = 0, 1, ..., n

into the martingale {Mt}∞t=0. Observe that prior the absorbing time, the process

{X̃(n)
k }

n

k=0 is a martingale with respect to the measure Pn, and X̃
(n)
0 = x.

Set,

α
(n)
0 =

σ2(x−
√
h)− 1

2
, θ

(n)
0 = 0, ξ

(n)
0 = 1, X

(n)
0 = x.

For k = 0, 1, ..., n− 1 define by recursion the following random variables

α
(n)
k+1 =

σ2(X
(n)
k )− 1

2
,

If X
(n)
k ∈ (Bn, Cn) then

(2.10)

θ
(n)
k+1 = inf

{
t > θ

(n)
k : |Mt −Mθ

(n)
k

+
√
hα

(n)
k ξ

(n)
k + hµ(X

(n)
k )| =

√
h(1 + α

(n)
k+1)

}
,

(2.11) ξ
(n)
k+1 = I

θ
(n)
k+1<∞

sgn
(
M

θ
(n)
k+1
−M

θ
(n)
k

+
√
hα

(n)
k ξ

(n)
k + hµ(X

(n)
k )
)
,

where we put sgn(z) = 1 for z > 0 and = −1 otherwise, and

(2.12) X
(n)
k+1 = X

(n)
k +

√
hξ

(n)
k+1.

If X
(n)
k /∈ (Bn, Cn) then θ

(n)
k+1 = θ

(n)
k + h and X

(n)
k+1 = X

(n)
k . Set, Θn := n ∧ min{k :

X
(n)
k /∈ (Bn, Cn)} and observe that on the event k < Θn, θ

(n)
k+1 is the stopping time

which corresponds to the Skorokhod embedding of the binary random variable with

values in the (random) set {±
√
h(1 + α

(n)
k+1) −

√
hα

(n)
k ξ

(n)
k − hµ(X

(n)
k )}, into the

martingale {Mt − M
θ
(n)
k
}
t≥θ(n)

k
. Moreover, the grid structure of X(n) implies that

if X
(n)
k /∈ (Bn, Cn) then X

(n)
k ∈ {Bn, Cn}.
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Lemma 2.1.1. The stopping times {θ(n)
k }nk=0 have a finite mean and the random

variables {ξ(n)
k , X

(n)
k }nk=0 satisfy (2.7).

Proof. For sufficiently large n we have that for any k < n

−
√
h(1+α

(n)
k+1)−

√
hα

(n)
k ξ

(n)
k −hµ(X

(n)
k ) < 0 <

√
h(1+α

(n)
k+1)−

√
hα

(n)
k ξ

(n)
k −hµ(X

(n)
k ).

Thus by using the fact that volatility of the martingale M is bounded away from zero,

we conclude E(θ
(n)
k+1 − θ

(n)
k ) < ∞ for all k < n. Hence the stopping times {θ(n)

k }nk=0

have a finite mean.

Next, we establish (2.7) for the redefined {ξ(n)
k , X

(n)
k }nk=0. Fix k and consider the

event k < Θn. From (2.10) we get

(2.13) M
θ
(n)
k+1
−M

θ
(n)
k

=
√
h(1 + α

(n)
k+1)ξ

(n)
k+1 −

√
hα

(n)
k ξ

(n)
k − hµ(X

(n)
k ).

The stochastic process

{Mt −Mθ
(n)
k
}θ

(n)
k+1

t=θ
(n)
k

is a bounded martingale and so E(M
θ
(n)
k+1
−M

θ
(n)
k
|F

θ
(n)
k

) = 0. Hence, from (2.13)

E(ξ
(n)
k+1|Fθ(n)

k
) =

α
(n)
k ξ

(n)
k +

√
hµ(X

(n)
k )

1 + α
(n)
k+1

.

Since ξ
(n)
k+1 ∈ {−1, 1} we arrive at

P(ξ
(n)
k+1 = ±1|F

θ
(n)
k

) =
1

2

(
1± α

(n)
k ξ

(n)
k +

√
hµ(X

(n)
k )

1 + α
(n)
k+1

)

and conclude that (the above right hand side is σ{ξ(n)
1 , ..., ξ

(n)
k } measurable) (2.7)

holds true.

The first Main Result.

Theorem 2.1.1. The values V and Vn defined by (2.3) and (2.8), respectively satisfy

|Vn − V | = O(n−1/4).
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Moreover, if we consider the random variables ξ
(n)
0 , ..., ξ

(n)
n defined by (2.10)–(2.12)

and denote τ ∗n ∈ T[0,T ] by τ ∗n = T ∧ θ(n)
η∗n

, in which η∗n is from (2.9) and θ
(n)
k is from

(2.10), then

V − E[f(τ ∗n, Xτ∗n)] = O(n−1/4).

2.1.3 Trinomial Tree Approximation

In this section we relax the Lipschitz continuity requirement and assume the

following.

Assumption 2.1.2. The functions µ, σ, 1
σ

: (B,C)→ R are bounded and measurable.

As our assumption indicates the results in this section apply for diffusions with dis-

continuous coefficients. See Section 2.3.5 for a pricing problem for a regime switching

volatility example. See also [4] for other applications of such models.

Remark 2.1.1. From the general theory of one dimensional, time–homogeneous

SDE (see Section 5.5 in [49]) it follows that if σ, µ : R are measurable functions such

that σ(z) 6= 0 for all z ∈ R and the function |µ(z)| + |σ(z)| + |σ−1(z)| is uniformly

bonded, then the SDE (2.1) has a unique weak solution. Since the distribution of X

is determined only by the values of µ, σ in the interval (B,C) we obtain (by letting

σ, µ ≡ 1 outside of the interval (B,C)) that Assumption 2.1.2 above is sufficient for

an existence and uniqueness in law, of the absorbed diffusion X. Clearly, Assumption

2.1.1 is stronger than Assumption 2.1.2. A relevant reference here is [4] which not

only considers the existence of weak solutions to SDEs but also of their Malliavin

differentiability.

In this section we assume that x,B,C ∈ Q∪{−∞,∞} (recall that the barriers B

and C can take the values −∞ and ∞, respectively), and so for sufficiently large n,
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we can choose a constant σ̄ = σ̄(n) > supy∈(B,C) |σ(y)| +
√
h supy∈(B,C) |µ(y)| which

satisfies C−x
σ̄
√
h
, x−B
σ̄
√
h
∈ N ∪ {∞}.

Trinomial Approximation of the State Process. The main idea in this

section is to find stopping times 0 = ϑ
(n)
0 < ϑ

(n)
1 < ... < ϑ

(n)
n , such that for any

k = 0, 1, ..., n− 1

X
ϑ

(n)
k+1
−X

ϑ
(n)
k
∈ {−σ̄

√
h, 0, σ̄

√
h} and E(ϑ

(n)
k+1 − ϑ

(n)
k |Fϑ(n)

k
) = h+O(h3/2).(2.14)

In this case the random variables {X
ϑ

(n)
k
}nk=0 lie on the grid x + σ̄

√
h{−bn, 1 −

bn, ..., 0, 1,

..., cn} where bn = n ∧ x−B
σ̄
√
h

and cn = n ∧ C−x
σ̄
√
h

. Moreover, we will see that

max
0≤k≤n

|ϑ(n)
k − kh| = O(

√
h).

Skorohod Embedding. Next, we describe the construction. For any initial

position B + σ̄
√
h ≤ X0 ≤ C − σ̄

√
h and A ∈ [0, σ̄

√
h] consider the stopping times

ρX0
A = inf{t : |Xt −X0| = A} and

κX0
A =

∑2
i=1 IX

ρ
X0
A

=X0+(−1)iA inf{t ≥ ρX0
A : Xt = X0 or Xt = X0 + (−1)iσ̄

√
h}.

Observe that X
κ
X0
A
−X0 ∈ {−σ̄

√
h, 0, σ̄

√
h}. Let us prove the following lemma.

Lemma 2.1.2. There exists a unique Â = Â(X0, n) ∈ (0, σ̄
√
h] such that E(κX0

Â
) =

h.

Proof. Clearly, for any A1 < A2 κX0
A1
≤ κX0

A2
a.s. Since κX0

A1
6= κX0

A2
for A1 6= A2

we conclude that the function g(A) := E(κX0
A ) is strictly increasing which satisfies

g(0) = 0. Thus in order to complete the proof it remains to show that g(σ̄
√
h) ≥ h.

Observe that g(σ̄
√
h) = E(ρX0

σ̄
√
h
). Assume (by contradiction) that E(ρX0

σ̄
√
h
) < h. From
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the Itô isometry and the Jensen Inequality we obtain

σ̄
√
h =E|X

ρ
X0
σ̄
√
h

−X0| ≤ E

∣∣∣∣∣
∫ ρ

X0
σ̄
√
h

0

σ(Xt)dWt

∣∣∣∣∣+ E

∣∣∣∣∣
∫ ρ

X0
σ̄
√
h

0

µ(Xt)dt

∣∣∣∣∣
≤ sup

y∈R
|σ(y)|

√
E(ρX0

σ̄
√
h
) + sup

y∈R
|µ(y)|E(ρX0

σ̄
√
h
) < σ̄

√
h.

This clearly a contradiction, and the result follows.

Next, we recall the theory of exit times of Markov diffusions (see Section 5.5 in

[49]). Set,

p(y) =
∫ y
X0

exp
(
−2
∫ z
X0

µ(w)
σ2(w)

dw
)
dz,(2.15)

Ga,b(y, z) = (p(y∧z)−p(a))(p(b)−p(y∨z))
p(b)−p(a)

, a ≤ y, z ≤ b,

Ma,b(y) =
∫ b
a

2Ga,b(y,z)

p′(z)σ2(z)
dz, y ∈ [a, b].

Then for any A ∈ [0, σ̄
√
h]

E(κX0
A ) = E(ρX0

A ) + P(X
ρ
X0
A

= X0 + A)MX0,X0+σ̄
√
h(X0 + A)(2.16)

+ P(X
ρ
X0
A

= X0 − A)MX0−σ̄
√
h,X0

(X0 − A)

= MX0−A,X0+A(X0) +
p(X0)− p(X0 − A)

p(X0 + A)− p(X0 − A)
MX0,X0+σ̄

√
h(X0 + A)

+
p(X0 + A)− p(X0)

p(X0 + A)− p(X0 − A)
MX0−σ̄

√
h,X0

(X0 − A)

and

q(1)(X0, A) := P(X
κ
X0
A

= X0 + σ̄
√
h) = (p(X0)−p(X0−A))(p(X0+A)−p(X0))

(p(X0+A)−p(X0−A))(p(X0+σ̄
√
h)−p(X0))

,

q(−1)(X0, A) := P(X
κ
X0
A

= X0 − σ̄
√
h) = (p(X0+A)−p(X0))(p(X0)−p(X0−A))

(p(X0+A)−p(X0−A))(p(X0)−p(X0−σ̄
√
h))
,

q(0)(X0, A) := P(X
κ
X0
A

= X0) = 1− q(1)(X0, A)− q(−1)(X0, A).

We aim to find numerically Â = Â(X0, n) ∈ [0, σ̄
√
h] which satisfies E(κX0

A ) =

h+O(h3/2). Observe that p′(X0) = 1. From the Mean value theorem and the fact that
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µ
σ2 is uniformly bonded we obtain that for any X0− σ̄

√
h ≤ a ≤ y, z ≤ b ≤ X0 + σ̄

√
h

Ga,b(y, z)

p′(z)
=

(
(1 +O(

√
h))(y ∧ z − a)

)(
(1 +O(

√
h))(b− y ∨ z)

)
(1 +O(

√
h))2(b− a)

=(1 +O(
√
h))

(y ∧ z − a)(b− y ∨ z)

(b− a)
.

Hence, for any X0 − σ̄
√
h ≤ a ≤ y ≤ b ≤ X0 + σ̄

√
h

Ma,b(y) = 2

∫ b

a

(y ∧ z − a)(b− y ∨ z)

(b− a)σ2(z)
dz +O(h3/2).

This together with (2.16) yields

E(κX0
A ) =

∫ X0+A

X0−A

(X0 ∧ z + A−X0)(X0 + A−X0 ∨ z)

Aσ2(z)
dz

(2.17)

+

∫ X0+σ̄
√
h

X0

((X0 + A) ∧ z −X0)(X0 + σ̄
√
h− (X0 + A) ∨ z)

σ̄
√
hσ2(z)

dz

+

∫ X0

X0−σ̄
√
h

((X0 − A) ∧ z + σ̄
√
h−X0)(X0 − (X0 − A) ∨ z)

σ̄
√
hσ2(z)

dz +O(h3/2).

Thus, Â = Â(X0, n) can be calculated numerically by applying the bisection method

and (2.17).

Remark 2.1.2. If in addition to Assumption 2.1.2 we assume that σ is Lipschitz

then (2.17) implies

σ2(X0)E(κX0
A ) =A2 + 2

(
A2(σ̄

√
h− A) + A(σ̄

√
h− A)2

2σ̄
√
h

)
+O(h3/2)

=σ̄A
√
h+O(h3/2).

Thus for the case where σ is Lipschitz we set

Â(X0, n) =
σ2(X0)

σ̄

√
h.
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Now, we define the Skorokhod embedding by the following recursion. Set ϑ
(n)
0 = 0

and for k = 0, 1, ..., n− 1

(2.18) ϑ
(n)
k+1 = IX

ϑ
(n)
k

∈(B,C) κ
X
ϑ

(n)
k

Â(X
ϑ

(n)
k

,n)
+ IX

ϑ
(n)
k

/∈(B,C)(ϑ
(n)
k + h).

From the definition of κ and Â(·, n) it follows that (2.14) holds true.

Optimal Stopping of the Trinomial Model. Denote by Sn the set of all

stopping times with respect to the filtration {σ(X
ϑ

(n)
1
, ..., X

ϑ
(n)
k

)}nk=0, with values in

the set {0, 1, ..., n}. Introduce the corresponding optimal stopping value

(2.19) Ṽn := max
η∈Sn

E[f(ηh,X
ϑ

(n)
η

)].

As before, Ṽn and the rational stopping times can be found by applying dynamical

programming. Thus, define the functions

J (n)
k : {x+ σ̄

√
h{−(k ∧ bn), 1− (k ∧ bn), ..., 0, 1, ..., k ∧ cn}} → R, k = 0, 1, ..., n

J (n)
n (z) = f(T, z).

For k = 0, 1, ..., n− 1

J (n)
k (z) = max

(
f(kh, z),

∑
i=−1,0,1

q(i)(z, Â(z, n))J (n)
k+1(z + iσ̄

√
h)

)
if z ∈ (B,C)

and

J (n)
k (z) = max

k≤m≤n
f(mh, z) if z ∈ {B,C}.

We get that

Ṽn = J (n)
0 (x)

and the stopping times given by

(2.20) η̃∗n = n ∧min
{
k : J (n)

k (X
ϑ

(n)
k

) = f(kh,X
ϑ

(n)
k

)
}
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satisfies

Ṽn = E[f(η̃∗nh,Xϑ
(n)

η̃∗n
)].

The second main result.

Theorem 2.1.2. The values V and Ṽn defined by (2.3) and (2.19) satisfy

|V − Ṽn| = O(n−1/4).

Moreover, if we denote τ̃ ∗n = T ∧ ϑ(n)
η̃∗n

, where ϑ(n) is defined by (2.18) and η̃∗n by

(2.20), then

V − E[f(τ ∗n, Xτ∗n)] = O(n−1/4).

Remark 2.1.3. Theorems 2.1.1 and 2.1.2 can be extended with the same error es-

timates to the setup of Dynkin games which are corresponding to game options (see

[50, 52]). The dynamical programming in discrete time can be done in a similar

way by applying the results from [66]. Moreover, as in the American options case,

the Skorokhod embedding technique allows to lift the rational times from the discrete

setup to the continuous one. Since the proof for Dynkin games is very similar to our

setup, then for simplicity, in this work we focus on optimal stopping and the pricing

of American options.

2.1.4 Proof of Theorem 2.1.1

Fix n ∈ N. Recall the definition of θ
(n)
k , Tn, η∗n from Section 2.1.2. Denote by Tn

the set of all stopping times with respect to the filtration {F
θ
(n)
k
}nk=0, with values in

{0, 1, ..., n}. Clearly, Tn ⊂ Tn. From the strong Markov property of the diffusion X

it follows that

(2.21) Vn = sup
η∈Tn

E[f(ηnh,X
(n)
ηn )] = E[f(η∗nh,X

(n)
η∗n

)].
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Define the function φn : T[0,T ] → Tn by φn(τ) = n ∧min{k : θ
(n)
k ≥ τ}. The equality

(2.21) implies that Vn ≥ supτ∈T X
[0,T ]

E[f(φn(τ)h,X
(n)
φn(τ))]. Hence, from (2.2) we obtain

V ≤ Vn +O(1) sup
τ∈T[0,T ]

E|Xτ −Xθ
(n)
φn(τ)

|+O(1)E
(

max
0≤i≤n

|X(n)
i −Xθ

(n)
i
|
)

(2.22)

+O(1)E
(

sup
0≤t≤T

Xt

(
max
1≤i≤n

|θ(n)
i − ih|+ max

1≤i≤n
(θ

(n)
i − θ

(n)
i−1)

))
.

Next, recall the definition of τ ∗n and observe that

V ≥E[f(τ ∗n, Xτ∗n)] ≥ Vn −O(1)E
(

max
0≤i≤n

|X(n)
i −Xθ

(n)
i
|
)

(2.23)

−O(1) sup
θ
(n)
n ∧T≤t≤θ

(n)
n ∨T

|Xt −Xθ
(n)
n ∧T
| −O(1)E

(
sup

0≤t≤T
Xt max

1≤i≤n
|θ(n)
i − ih|

)
.

Let Θ := inf{t : Xt /∈ (B,C)} be the absorbing time. From the Burkholder–Davis–

Gundy inequality and the inequality (a + b)m ≤ 2m(am + bm), a, b ≥ 0, m ≥ 1 it

follows that for any m > 1 and stopping times ς1 ≤ ς2

E
(

sup
ς1≤t≤ς2

|Xt −Xs|m
)
≤ 2mE

(
sup

ς1∧Θ≤t≤ς2∧Θ
|Mt −Mς1∧Θ|m + ||µ||m∞(ς2 ∧Θ− ς1 ∧Θ)m

)
= O(1)E

(∣∣∣∣∫ ς2∧Θ

ς1∧Θ

σ2(Xt)dt

∣∣∣∣m/2 + (ς2 − ς1)m

)

= O(1)E
(
(ς2 − ς1)m/2 + (ς2 − ς1)m

)
.

(2.24)

Observe that for any stopping time τ ∈ T[0,T ], |τ − θ(n)
φn(τ)| ≤ max1≤i≤n(θ

(n)
i − θ

(n)
i−1) +

|T − θ
(n)
n |. Moreover, 2 max1≤i≤n |θ(n)

i − ih| + h ≥ max1≤i≤n(θ
(n)
i − θ

(n)
i−1). Thus

Theorem 2.1.1 follows from (2.22)–(2.24), the Cauchy–Schwarz inequality, the Jensen

inequality and Lemmas 2.1.4–2.1.5 below.

2.1.5 Technical estimates for the proof of Theorem 2.1.1

The next lemma is a technical step in proving Lemmas 2.1.4–2.1.5 which are the

main results of this subsection, which are then used for the proof of Theorem 2.1.1.
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Lemma 2.1.3. Recall the definition of Θn given after (2.12). For any m > 0

E
(

max
0≤k≤Θn

|Y
θ
(n)
k
−X(n)

k |
m

)
= O(hm/2).

Proof. From the Jensen inequality it follows that it is sufficient to prove the claim

for m > 2. Fix m > 2 and n ∈ N. We will apply the discrete version of the Gronwall

inequality. Introduce the random variables Uk := Ik≤Θn|X
(n)
k − Y

θ
(n)
k
|. Since the

process α(n) is uniformly bounded and µ is Lipschitz continuous, then from (2.4) and

(2.13) we obtain that

Uk =O(
√
h) + Ik≤Θn

∣∣∣∣∣h
k−1∑
i=0

µ(X
(n)
i )−

k−1∑
i=0

∫ θ
(n)
i+1

θ
(n)
i

µ(Yt)dt

∣∣∣∣∣(2.25)

≤O(
√
h) + Ik≤Θn

∣∣∣∣∣h
k−1∑
i=0

µ(X
(n)
i )−

k−1∑
i=0

µ(Y
θ
(n)
i

)(θ
(n)
i+1 − θ

(n)
i )

∣∣∣∣∣
+O(1)

k−1∑
i=0

Ii<Θn sup
θ
(n)
i ≤t≤θ

(n)
i+1

|Yt − Yθ(n)
i
|(θ(n)

i+1 − θ
(n)
i )

≤O(
√
h) +O(1)

k−1∑
i=0

Li +O(h)
k−1∑
i=0

Ui + |
k−1∑
i=0

(Ii + Ji)|

where

Ii : = Ii<Θnµ(Y
θ
(n)
i

)
(
θ

(n)
i+1 − θ

(n)
i − E(θ

(n)
i+1 − θ

(n)
i |Fθ(n)

i
)
)
,

Ji : = Ii<Θnµ(Y
θ
(n)
i

)
(
E(θ

(n)
i+1 − θ

(n)
i |Fθ(n)

i
)− h

)
,

Li : = Ii<Θn sup
θ
(n)
i ≤t≤θ

(n)
i+1

|Yt − Yθ(n)
i
|(θ(n)

i+1 − θ
(n)
i ).

Next, from (2.7), (2.13) and the Itô Isometry it follows that on the event i < Θn

E

(∫ θ
(n)
i+1

θ
(n)
i

σ2(Yt)dt|Fθ(n)
i

)
= E

(
(M

θ
(n)
i+1
−M

θ
(n)
i

)2|F
θ
(n)
i

)
(2.26)

=h(1 + 2α
(n)
i+1) + h

(
(α

(n)
i+1)2 − (α

(n)
i )2

)
+O(h3/2) = hσ2(X

(n)
i ) +O(h3/2).
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On the other hand, the function σ is bounded and Lipschitz, and so

E

(∫ θ
(n)
i+1

θ
(n)
i

σ2(Yt)dt|Fθ(n)
i

)
=σ2(X

(n)
i )E(θ

(n)
i+1 − θ

(n)
i |Fθ(n)

i
)

(2.27)

+O(1)E

 sup
θ
(n)
i ≤t≤θ

(n)
i+1

|Yt − Yθ(n)
i
|(θ(n)

i+1 − θ
(n)
i )|F

θ
(n)
i


+O(1)

∣∣∣X(n)
i − Yθ(n)

i

∣∣∣E(θ(n)
i+1 − θ

(n)
i |Fθ(n)

i

)
.

From (2.26)–(2.27) and the fact that σ bounded away from zero we get that on the

event i < Θn

E (θ
(n)
i+1 − θ

(n)
i |Fθ(n)

i
)(2.28)

= h+O(h3/2) +O(1)E

 sup
θ
(n)
i ≤t≤θ

(n)
i+1

|Yt − Yθ(n)
i
|(θ(n)

i+1 − θ
(n)
i )|F

θ
(n)
i


+ O(1)

∣∣∣X(n)
i − Yθ(n)

i

∣∣∣E(θ(n)
i+1 − θ

(n)
i |Fθ(n)

i

)
.

Clearly, (2.26) implies that (σ is bounded away from zero) on the event i < Θn,

E(θ
(n)
i+1 − θ

(n)
i |Fθ(n)

i
) = O(h). This together with (2.28) gives (µ is bounded)

(2.29) |Ji| = O(h3/2) +O(h)Ui +O(1)E(Li|Fθ(n)
i

).

From (2.25) and (2.29) we obtain that for any k = 1, ..., n

max
0≤j≤k

Uj = O(
√
h) +O(h)

k−1∑
i=0

max
0≤j≤i

Uj

+ max
0≤k≤n−1

|
k∑
i=0

Ii|+O(1)
n−1∑
i=0

Li +O(1)
n−1∑
i=0

E(Li|Fθ(n)
i

).

Next, recall the following inequality, which is a direct consequence of the Jensen’s

inequality,

(2.30) (
n∑
i=1

ai)
m̃ ≤ nm̃−1

n∑
i=1

am̃i , a1, ..., an ≥ 0, m̃ ≥ 1.
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Using the above inequality along with Jensen’s inequality we arrive at

E
(

max
0≤j≤k

Um
j

)
= O(hm/2) +O(h)

k−1∑
i=0

E
(

max
0≤j≤i

Um
j

)

+ O(1)E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)

+O(nm−1)
n−1∑
i=0

E(Lmi ).

From the discrete version of Gronwall’s inequality (see [21])

E
(

max
0≤i≤n

Um
i

)
(2.31)

= (1 +O(h))n ×

(
O(hm/2) +O(1)E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)

+O(nm−1)
n−1∑
i=0

E(Lmi )

)

= O(hm/2) +O(1)E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)

+O(nm−1)
n−1∑
i=0

E(Lmi ).

Next, we estimate E
(

max0≤k≤n−1 |
∑k

i=0 Ii|m
)

and E(Lmi |Fθ(n)
i

), i = 0, 1, ..., n − 1.

By applying the Burkholder—Davis—Gundy inequality for the martingale {Mt −

M
θ
(n)
i
}θ

(n)
i+1

t=θ
(n)
i

it follows that for any m̃ > 1/2

Ii<ΘnE

(∫ θ
(n)
i+1

θ
(n)
i

σ2(Yt)dt

)m̃ ∣∣∣∣Fθ(n)
i


=O(1)Ii<ΘnE

(
max

θ
(n)
i ≤t≤θ

(n)
i+1

(
Mt −Mθ

(n)
i

)2m̃
∣∣∣∣Fθ(n)

i

)
= O(hm̃)Ii<Θn

where the last equality follows from the fact that

Ii<Θn max
θ
(n)
i ≤t≤θ

(n)
i+1

|Mt −Mθ
(n)
i
| = O(

√
h)Ii<Θn .

Since σ is bounded away from zero we get

(2.32) Ii<ΘnE
(

(θ
(n)
i+1 − θ

(n)
i )m̃|F

θ
(n)
i

)
= O(hm̃)Ii<Θn , m̃ > 1/2.

Next, observe that
∑k

i=0 Ii, k = 0, ..., n − 1 is a martingale. From the Burkholder-
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Davis-Gundy inequality, (2.30), (2.32) and the fact that µ is bounded we conclude

E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)
≤ O(1)E

(n−1∑
i=0

I2
i

)m/2
(2.33)

≤ O(1)nm/2−1

n−1∑
i=0

E[|Ii|m] = O(1)nm/2−1nO(hm)

= O(hm/2).

Finally, we estimate E(Lmi |Fθ(n)
i

) for i = 0, 1, ..., n− 1. Clearly, on the event i < Θn,

sup
θ
(n)
i ≤t≤θ

(n)
i+1

|Yt − Yθ(n)
i
| ≤ sup

θ
(n)
i ≤t≤θ

(n)
i+1

|Mt −Mθ
(n)
i
|+ ||µ||∞(θ

(n)
i+1 − θ

(n)
i )

=O(
√
h) + ||µ||∞(θ

(n)
i+1 − θ

(n)
i ).

Hence, from (2.32) we get

E(Lmi |Fθ(n)
i

) ≤ Ii<ΘnE
(
O(hm/2)(θ

(n)
i+1 − θ

(n)
i )m +O(1)(θ

(n)
i+1 − θ

(n)
i )2m|F

θ
(n)
i

)
(2.34)

= O(h3m/2).

This together with (2.31) and (2.33) yields E (max0≤i≤n U
m
i ) = O(hm/2), and the

result follows.

Lemma 2.1.4. For any m > 0

E
(

max
1≤k≤n

|θ(n)
k − kh|

m

)
= O(hm/2).

Proof. Fix m > 2 and n ∈ N. Observe (recall the definition after (2.12)) that for

k ≥ Θn we have θ
(n)
k − kh = θ

(n)
Θn
−Θnh. Hence

(2.35) max
1≤k≤n

|θ(n)
k − kh| = max

1≤k≤Θn
|θ(n)
k − kh|.

Redefine the terms Ii, Ji from Lemma 2.1.3 as following

Ii := Ii<Θn

(
θ

(n)
i+1 − θ

(n)
i − E(θ

(n)
i+1 − θ

(n)
i |Fθ(n)

i
)
)
,
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Ji := Ii<Θn

(
E(θ

(n)
i+1 − θ

(n)
i |Fθ(n)

i
)− h

)
.

Then similarly to (2.32)–(2.33) it follows that

E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)

= O(hm/2).

Moreover, by applying Lemma 2.1.3, (2.29) and (2.34) we obtain that for any i,

E[|Ji|m] = O(h3m/2). We conclude that

E
(

max
1≤k≤Θn

|θ(n)
k − kh|

m

)
= O(1)E

(
max

0≤k≤n−1
|

k∑
i=0

Ii|m
)

+O(1)E

(
max

0≤k≤n−1
|

k∑
i=0

Ji|m
)

= O(hm/2).

This together with (2.35) completes the proof.

We end this section with establishing the following estimate.

Lemma 2.1.5.

E
(

max
0≤k≤n

|X
θ
(n)
k
−X(n)

k |
)

= O(h1/4).

Proof. Set Γn = sup
0≤t≤θ(n)

n
|Yt| + max0≤k≤n |X(n)

k |, n ∈ N. From Lemma 2.1.4 it

follows that for any m > 1, supn∈N E[(θ
(n)
n )m] < ∞. Thus, from the Burkholder–

Davis–Gundy inequality and the fact that µ, σ are bounded we obtain

sup
n∈N

E[ sup
0≤t≤θ(n)

n

|Yt|m] <∞.

This together with Lemma 2.1.3 gives that (recall that X(n) remains constant after

Θn)

(2.36) sup
n∈N

E[Γmn ] <∞ ∀m > 1.

We start with estimating E
(

max0≤k≤Θn |Xθ
(n)
k
−X(n)

k |
)

. Fix n and introduce the
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events

O = { max
0≤k<Θn

sup
θ
(n)
k ≤t≤θ

(n)
k+1

|Yt −X(n)
k | ≥ n−1/3},

O1 = { max
0≤k<Θn

sup
θ
(n)
k ≤t≤θ

(n)
k+1

|Yt − Yθ(n)
k
| ≥ n−1/3/2},

O2 = { max
1≤k≤Θn

|X(n)
k − Yθ(n)

k
| ≥ n−1/3/2}.

From Lemma 2.1.3 (for m = 6) and the Markov inequality we get

P(O2) = O(h).

Observe that on the event k < Θn, sup
θ
(n)
k ≤t≤θ

(n)
k+1
|Mt−Mθ

(n)
k
| = O(

√
h). Hence, from

the fact that µ is uniformly bounded we obtain that for sufficiently large n

P(O1) ≤
n−1∑
i=0

P
(
Ii<Θn(θ

(n)
i+1 − θ

(n)
i ) > h1/2

)
≤ O(n)h4/h2 = O(h)

where the last inequality follows form the Markov ineqaulity and (2.32) for m̃ = 4.

Clearly,

(2.37) P(O) ≤ P(O1) + P(O2) = O(h).

From the simple inequalities Bn − B,C − Cn ≥ n−1/3 it follows that {∃k ≤ Θn :

X
θ
(n)
k
6= Y

θ
(n)
k
} ⊂ O. Thus from Lemma 2.1.3, (2.36)–(2.37) and the Cauchy–Schwarz

inequality it follows

E
(

max
0≤k≤Θn

|X
θ
(n)
k
−X(n)

k |
)
≤ E

(
max

0≤k≤Θn
|Y
θ
(n)
k
−X(n)

k |
)

+ E[2ΓnIO]

≤ O(
√
h) +O(1)

√
P(O) = O(

√
h).

It remains to estimate E
(

maxΘn<k≤n |Xθ
(n)
k
−X(n)

k |
)

. Let Q ∼ P be the probability

measure given by

Zt :=
dQ
dP
|Ft = exp

(
−
∫ t

0

µ(Yu)

σ(Yu)
dWu −

∫ t

0

µ2(Yu)

2σ2(Yu)
du

)
, t ≥ 0.
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From Girsanov’s theorem it follows that under the measure Q, Y is a martingale.

Assume that the martingale Y starts at some Y0 ∈ (B,C) and we want to estimate

Q(max0≤t≤T Xt − Y0 > ε) for ε > 0. Define a stopping time ς = T ∧ inf{t : Yt =

Y0 + ε} ∧ inf{t : Yt = B}. Then from the Optional stopping theorem

Y0 = EQ[Yς ] ≥ B(1−Q(Yς = Y0 + ε)) + (Y0 + ε)Q(Yς = Y0 + ε).

Hence, (B is an absorbing barrier for X)

(2.38) Q( max
0≤t≤T

Xt − Y0 > ε) ≤ Q(Yς = Y0 + ε) ≤ Y0 −B
Y0 + ε−B

.

Similarly,

(2.39) Q( max
0≤t≤T

Y0 −Xt > ε) ≤ C − Y0

C + ε− Y0

.

Next, recall the event O from the beginning of the proof. Consider the event Õ =

{Θn < n} \ O and choose ε > 3n−1/3. Observe that θ
(n)
n − θ(n)

Θn
= (n − Θn)h ≤ T .

Moreover on the event Õ, min(C −X
θ
(n)
Θn

, X
θ
(n)
Θn

− B) ≤ 3n−1/3 (for sufficiently large

n). Thus, from (2.38)–(2.39)

(2.40) Q

Õ⋂
 sup
θ
(n)
Θn

<t≤θ(n)
n

|X
θ
(n)
Θn

−Xt| ≥ ε

∣∣∣∣Fθ(n)
Θn

 ≤ 3n−1/3

3n−1/3 + ε
a.s.

We conclude that

EQ

(
I0̃

(
1 ∧ sup

θ
(n)
Θn

<t≤θ(n)
n
|X

θ
(n)
Θn

−Xt|
) ∣∣∣∣|Fθ(n)

Θn

)
≤(2.41)

3n−1/3 +
∫ 1

3n−1/3
3n−1/3

3n−1/3+ε
dε = O(n−1/3 lnn) a.s.,

where EQ denotes the expectation with respect to Q.

Next, denote Zn =
Z
θ
(n)
n

Z
θ
(n)
Θn

. Observe that for a random variable X ,

E(X|F
θ
(n)
Θn

) = EQ(ZmX|Fθ(n)
Θn

).
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From the relations θ
(n)
n −θ(n)

Θn
= (n−Θn)h ≤ T it follows that for any m ∈ R, EQ[Zmn ]

is uniformly bounded (in n). This together with the (conditional) Holder inequality,

(2.36)–(2.37), and (2.40)–(2.41) gives

E
(

sup
Θn<k≤n

|X
θ
(n)
k
−X(n)

k |
)
≤ E[2ΓnIO] + E

(
EQ

(
2ZnΓnIÕIsup

θ
(n)
Θn

<t≤θ(n)
n
|X
θ
(n)
Θn

−Xt|>1

∣∣∣∣Fθ(n)
Θn

))

+ E

EQ

ZnIÕ
1 ∧ sup

θ
(n)
Θn

<t≤θ(n)
n

|X
θ
(n)
Θn

−Xt|

∣∣∣∣Fθ(n)
Θn


+ E

(
IÕ|X

(n)
Θn
−X

θ
(n)
Θn

|
)
≤ O(

√
h) + E

(
O(1)

(
3n−1/3

3n−1/3 + 1

)4/5
)

+ E
(
O(1)

(
O(n−1/3 lnn)

)4/5
)

+O(n−1/3) = O(h1/4)

and the result follows.

2.2 Proof of Theorem 2.1.2

The proof of Theorem 2.1.2 is less technical than the proof of Theorem 2.1.1.

We start with the following Lemma.

Lemma 2.2.1. Recall the stopping time ρX0
A from Section 2.1.3. For X0 ∈ (B,C)

and 0 < ε < min(X0 −B,C −X0) we have

E
(
(ρX0
ε )m

)
= O(ε2m) ∀m > 0.

Proof. Choose m > 1, X0 ∈ (B,C) and 0 < ε < min(X0 − B,C − X0). Define the

stochastic process Mt = p(Yt), t ≥ 0 where recall p is given in (2.15). It is easy

to see that p is strictly increasing function and {Mt}t≥0 is a local–martingale which

satisfies Mt =
∫ t

0
p′(Yu)σ(Yu)dWu. Hence ρX0

ε = inf{t :Mt = p(X0 ± ε)}. From the

Burkholder–Davis–Gundy inequality it follows that there exists a constant C > 0
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such that

max
{
|p(X0 + ε)|2m, |p(X0 − ε)|2m

}
≥ E

(
max

0≤t≤ρX0
ε

|Mt|2m
)

≥ CE

((∫ ρ
X0
ε

0

|p′(Yu)σ(Yu)|2du

)m)

≥ C

(
inf

y∈[X0−ε,X0+ε]
|p′(y)σ(y)|

)2m

E
(
(ρX0
ε )m

)
.(2.42)

Since µ
σ2 is uniformly bounded, then for y ∈ [X0 − ε,X0 + ε] we have p(y) = O(ε)

and p′(y) = 1−O(ε). This together with (2.42) completes the proof.

Now we are ready to prove Theorem 2.1.2.

Proof of Theorem 2.2. The proof follows the steps of the proof of Theorem

2.1.1, however the current case is much less technical. The reason is that we do not

take a perturbation of the process Xt, t ≥ 0 and so we have an exact scheme at the

random times {ϑ(n)
k }nk=0. Thus, we can write similar inequalities to (2.22)–(2.23),

only now the analogous term to max0≤i≤n |X(n)
i −Xθ

(n)
i
| is vanishing. Hence, we can

skip Lemmas 2.1.3 and 2.1.5. Namely, in order to complete the proof of Theorem

2.1.2 it remains to show the following analog of Lemma 2.1.4:

(2.43) E
(

max
1≤k≤n

|ϑ(n)
k − kh|

m

)
= O(hm/2), ∀m > 0.

Without loff of generality, we assume that m > 1. Set,

Hi = ϑ
(n)
i − ϑ

(n)
i−1 − E

(
ϑ

(n)
i − ϑ

(n)
i−1|Fϑ(n)

i−1

)
, i = 1, ..., n.

Clearly the stochastic process {
∑k

i=1 Hi}nk=1 is a martingale, and from (2.14) we get

that for all k, ϑ
(n)
k − kh =

∑k
i=1 Hi +O(

√
h). Moreover, on the event X

ϑ
(n)
i−1
∈ (B,C)

ϑ
(n)
i − ϑ

(n)
i−1 ≤ ρ

X
ϑ

(n)
i−1

σ̄
√
h

and so from Lemma 2.2.1, E[Hm
i ] = O(hm). This together with
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the Burkholder–Davis–Gundy inequality and (2.30) yields

E
(

max
1≤k≤n

|ϑ(n)
k − kh|

m

)
≤ O(hm/2) +O(1)E

(
max

1≤k≤n
|

k∑
i=1

Hi|m
)

≤ O(hm/2) +O(1)E

( n∑
i=1

H2
i

)m/2


≤ O(hm/2) +O(1)nm/2−1

n∑
i=1

E[|Hi|m] = O(hm/2)

and the result follows. �

2.2.1 Some remarks on the proofs

Remark 2.2.1. Theorem 2.1.2 can be easily extended to American barrier options

which we study numerically in Sections 5.4–5.5.

Namely, let −∞ ≤ B < x < C ≤ ∞ and let Y be the unique (in law) solution of

(2.1). Let τB,C = T ∧ inf{t : Yt /∈ (B,C)}. Consider the optimal stopping value

V = sup
τ∈T[0,T ]

E[Iτ≤τB,Cf(τ,Xτ )]

which corresponds to the price of American barrier options. Let us notice that if

we change in the above formula, the indicator Iτ≤τB,C to Iτ<τB,C the value remains

the same. As before, we choose n sufficiently large and a constant σ̄ = σ̄(n) >

supy∈(B,C) |σ(y)|+
√
h supy∈(B,C) |µ(y)| which satisfies C−x

σ̄
√
h
, x−B
σ̄
√
h
∈ N ∪ {∞}. Define

Ṽn = max
η∈Sn

E[I
η≤η(n)

B,C
f(ηh,X

ϑ
(n)
η

)]

where η
(n)
B,C = n ∧ min{k : Y

ϑ
(n)
k
∈ {B,C}}. In this case, we observe that on the

interval [0, ϑ
(n)
n ] the process Y can reach the barriers B,C only at the moments ϑ

(n)
i

i = 0, 1, ..., n. Hence, by similar arguments, Theorem 2.1.2, can be extended to the

current case as well.
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Remark 2.2.2. Let us notice that in both of the proofs we get that the random matu-

rity dates θ
(n)
n , ϑ

(n)
n are close to the real maturity date T , and the error estimates are of

order O(n−1/2). Hence, even for the simplest case where the diffusion process Y is the

standard Brownian motion we get that the random variables |YT − Yθ(n)
n
|, |YT − Yϑ(n)

n
|

are of order O(n−1/4). This is the reason that we can not expect better error estimates

if the proof is done via Skorohod embedding. In [56] the authors got error estimates of

order O(n−1/2) for optimal stopping approximations via Skorokhod embedding, how-

ever they assumed very strong assumptions on the payoff, which excludes even call

and put type of payoffs.

Our numerical results in the next section suggest that the order of convergence we

predicted is better than we prove here. In fact, the constant multiplying the power of

n is small, which we think is due to the fact that we have a very efficient way of cal-

culating conditional expectations. We will leave the investigation of this phenomena

for future research.

2.3 Numerical examples

In the first subsection we consider two toy models, which are variations of geomet-

ric Brownian motion, the first one with capped coefficients and the other one with

absorbing boundaries. In Subsections 2.3.2, we consider the CEV model and in 2.3.3,

we consider the CIR model. In Subsection 2.3.4 we consider the European capped

barrier of [29] and its American counterpart. We close the paper by considering an-

other modification of geometric Brownian motion with discontinuous coefficients, see

Subsection 2.3.5. In these sections we report the values of the option prices, optimal

exercise boundaries, the time/accuracy performance of the schemes and numerical

convergence rates. All computations are implemented in Matlab R2014a on Intel(R)
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Core(TM) i5-5200U CPU @2.20 GHz, 8.00 GB installed RAM PC.

2.3.1 Approximation of one dimensional diffusion with bounded µ and σ by using
both two schemes

We consider the following model:

(2.44) dSt = [(A1 ∧ St) ∨B1]dt+ [(A2 ∧ St) ∨B2]dWt, S0 = x,

where A1, B1, A2, B2 are constants, and the American put option with strike price

$K and expiry date T :

(2.45) v(x) = sup
τ∈T[0,T ]

E
[
e−rτ (K − Sτ )+

]
.

Figure 2.1 shows the value function v and the optimal exercise boundary curve which

we obtained using both schemes. Table 2.1 reports the schemes take and Figure 2.2

shows the rate of convergence of both models.

Figure 2.1: The left figure shows that value function of American put (2.45) under model (2.44)
with parameters: n = 8000, r = 0.1,K = 4, A1 = 10, A2 = 10, B1 = 2, B2 = 2, T = 0.5.
The right figure is the optimal exercise boundary curve. Here τ is the time to maturity.
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Table 2.1: Put option prices(2.45) under model (2.44):
scheme 1 scheme 2 scheme 1 scheme 2

n=1000 0.5954 0.6213 n=2000 0.6042 0.6213
error(%) 3.64 0.23 error(%) 2.21 0.08

CPU 0.540s 0.374s CPU 2.097s 1.467s
scheme 1 scheme 2 scheme 1 scheme 2

n=3000 0.6079 0.6214 n=4000 0.6100 0.6216
error(%) 1.61 0.06 error(%) 1.27 0.03

CPU 4.749s 3.249s CPU 8.726s 5.747s
scheme 1 scheme 2 scheme 1 scheme 2

n=5000 0.6114 0.6216 n=6000 0.6124 0.6216
error(%) 1.04 0.03 error(%) 0.88 0.02

CPU 14.301s 9.145s CPU 24.805s 14.080s

Parameters used in computation are: r = 0.1,K = 4, A1 = 10, A2 = 10, B1 = 2, B2 = 2, T =
0.5, x = 4. Error is computed by taking absolute difference between vn(x) and v30000(x) and then
dividing by v30000(x).

Figure 2.2: Convergence rate figure of both two schemes in the implement of American put (2.45)
under (2.44). We draw log |v − vn| vs log n for both schemes to show the convergence
speed. Here we pick v(x) = v30000(x) for x = 4 and n ∈ {40, 400, 4000}. The slope of the
left line given by linear regression is −0.69981, and the right is −0.97422. Parameters
used in computation are: r = 0.1,K = 4, A1 = 10, A2 = 10, B1 = 2, B2 = 2, T =
0.5, x = 4.

For comparison we will also consider a geometric Brownian motion with absorbing

barriers. Let

(2.46) dYt = Ytdt+ YtdWt, Y0 = x,

and B,C ∈ [−∞,∞) with B < x < C and denote

(2.47) Xt = It<inf{s:Ys /∈(B,C)}Yt + It≥inf{s:Ys /∈(B,C)}Yinf{s:Ys /∈(B,C)}, X0 = x.
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As in the previous example, we show below the value function, times the schemes

take and the numerical convergence rate.

Figure 2.3: The left figure shows the value function of American put (2.45) under model (2.47) with
parameters: n = 30000, r = 0.1,K = 4, C = 10, B = 2, T = 0.5. The right figure is the
optimal exercise boundary curve.

Figure 2.4: Convergence rate figure of both two schemes in the implement of American put (2.45)
under (2.47). We draw log |v − vn| vs log n for both schemes to show the convergence
speed. Here we pick, v(x) = v30000(x) for x = 4 and n ∈ {40, 400, 4000}. The slope of
the left line given by linear regression is −0.74513, the right one is −0.98927.

36



Table 2.2: put option prices(2.45) under (2.47)
scheme 1 scheme 2 scheme 1 scheme 2

n=1000 0.5943 0.6175 n=2000 0.6029 0.6185
error(%) 3.44 0.24 error 2.05 0.09

CPU 0.240s 0.029s CPU 0.667s 0.091s
scheme 1 scheme 2 scheme 1 scheme 2

n=3000 0.6063 0.6184 n=4000 0.6082 0.6188
error(%) 1.49 0.09 error 1.17 0.03

CPU 1.220s 0.157s CPU 1.927s 0.254s
scheme 1 scheme 2 scheme 1 scheme 2

n=5000 0.6095 0.6188 n=6000 0.6104 0.6189
error(%) 0.96 0.04 error 0.81 0.02

CPU 2.720s 0.359s CPU 3.723s 0.457s

Note: Parameters used in computation: r = 0.1,K = 4, C = 10, B = 2, T = 0.5, x = 4. Error is
computed by taking absolute difference between vn(x) and v30000(x) and then dividing by v30000(x).

2.3.2 Pricing American put option under CEV

Set β ≤ 0 and consider the CEV model:

(2.48) dSt = rSt + δSβ+1
t dWt, S0 = x,

and let δ = σ0x
−β (to be consistent with the notation of [29]). Consider the American

put option pricing problem:

(2.49) vA(x) = sup
τ∈T[0,T ]

E
[
e−rτ (K − Sτ )+

]
.

Clearly, the CEV model given by (2.48) does not satisfies our assumptions. How-

ever, this limitation can be solved by truncating the model. The next result shows

that if we choose absorbing barriers B,C > 0 such that B is small enough and C

is large enough, then the optimal stopping problem does not change much. Hence,

we can apply our numerical scheme for the absorbed diffusion and still get error

estimates of order O(n−1/4).

Lemma 2.3.1. Choose 0 < B < C. Consider the CEV model given by (2.48) and

let X be the absorbed process

Xt = It<inf{s:Ss /∈(B,C)}St + It≥inf{s:Ss /∈(B,C)}Sinf{s:Ss /∈(B,C)}, t ≥ 0.
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Then

(2.50)

sup
τ∈T[0,T ]

E[e−rτ (K − Sτ )+]− sup
τ∈T[0,T ]

E[e−rτ (K −Xτ )
+] = Iτ∗≤τBB +O(C−k), ∀k ≥ 1,

where τ ∗ is the optimal time for first the expression on the left and τB is the first

time St is below the level B.1

Proof. Let us briefly argue that E
(
max0≤t≤T S

k
t

)
< ∞ for all k. Clearly, if β = 0

then S is a geometric Brownian motion and so the statement is clear. For β < 0 we

observe that the process Y = S−β belongs to CIR family of diffusions (see equation

(1) in [40]). Such process can be represented in terms of BESQ (squared Bessel

processes); see equation (4) in [40]. Finally, the moments of the running maximum

of the (absolute value) Bessel process can be estimated by Theorem 4.1 in [42]. Hence

from the Markov inequality it follows that P(max0≤t≤T St ≥ M) = O(M−k). Next,

consider the stopping time τB = inf{t : St = B} ∧ T . If τB < T then the payoff of

the put option is K − B, and since S is non–negative its B optimal to stop at this

time. It is clear also that one would make no error if B is always in the stopping

region.

1It might seem to be a moot point to have Iτ∗≤τB since this involves determining the optimal stopping boundary.
But one can actually easily determine B’s satisfying this condition through through setting B ≤ b, the perpetual
version of the problem whose stopping boundary, which can be determined by finding the unique root of

(2.51) F (x) = φ′(x)
K − x
φ(x)

+ 1,

in which the function φ is given by [29, Equation (38)] (with λ = r), see e.g. [8]. The perpetual Black-Scholes
boundary,

(2.52) b = 2rK/(2r + δ2)

is in fact is a lower bound to b for β < 0, which can be proved using the comparison arguments in [7].
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Table 2.3: Pricing American puts (2.49) under the CEV (2.48) model with different β’s by using
the first scheme

K β = −1 β = − 1
3

90 1.4373(1.5122) 1.3040(1.3844)
100 4.5359(4.6390) 4.5244(4.6491)
110 10.6502(10.7515) 10.7716(10.8942)

Parameters used in computation are: σ0 = 0.2, x = 100, T = 0.5, r = 0.05, n = 15000, B = 0.01, C =
200. The values in the parentheses are the results from last row of Tables 4.1, 4.2, 4.3 from paper
[75], which carries out the artificial boundary method discussed in the introduction. This is a finite
difference method which relies on artificially introducing an exact boundary condition.

Table 2.4: Prices of the American puts (2.49) under (2.48) with different β’s by using the second
scheme

K β = −1 β = − 1
3

90 1.5123(1.5122) 1.3845(1.3844)
100 4.6392(4.6390) 4.6492(4.6489)
110 10.7517(10.7515) 10.8943(10.8942)

Parameters used in computation are: σ0 = 0.2, x = 100, T = 0.5, r = 0.05, n = 15000, B = 0.01, C =
200. The values in the parentheses are the results from last row of Tables 4.1, 4.2, 4.3 from paper
[75], which carries out the artificial boundary method discussed in the introduction. This is a finite
difference method which relies on artificially introducing an exact boundary condition.

Figure 2.5: The left figure shows that value function of American put (2.49) under CEV (2.48)
with parameters: n = 2000, β = − 1

3 , δ = σ0(100)−β , σ0 = 0.2, T = 0.5, r = 0.05, B =
0.01, C = 200,K = 90. The right figure is the optimal exercise boundary curve which
τ = T − t denotes time to maturity. With these parameters F (60) = −0.3243, F (70) =
0.1790 (where F is defined in (2.51)), from which we conclude that the unique root
is in (60,70). So there in fact is no error in introducing a lower barrier. In this case
b = 9.3577 (where b is defined in (2.52)).

Since we observed that second scheme exhibits faster convergence, we report the

CPU time and errors for second scheme.
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Table 2.5: Prices of the American puts under (2.48) with different beta’s (second scheme)
β = −1 β = − 1

3
K=90 1.5147 1.3862
CPU 0.335s 0.259s

error(%) 0.16 0.12
K=100 4.6414 4.6383
CPU 0.314s 0.256s

error(%) 0.05 0.23
K=110 10.7523 10.8925
CPU 0.338s 0.253s

error(%) 0.005 0.02

Parameters used in computation are: σ0 = 0.2, x = 100, T = 0.5, r = 0.05, B = 0.01, C = 200. The
Error is computed by taking absolute difference between vn(x) and v15000(x) and then dividing by
v15000(x).

Table 2.6: Pricing American puts (2.49) under (2.48) with different σ0 (second scheme)
σ0 = 0.2 σ0 = 0.3 σ0 = 0.4

K=35 1.8606(1.8595) 4.0424(4.0404) 6.4017(6.3973)
CPU 0.247s 0.171s 0.136s

error(%) 0.04 0.03 0.06
K=40 3.3965(3.3965) 5.7920(5.7915) 8.2584(8.2574)
CPU 0.237s 0.172s 0.154s

error(%) 0.01 0.002 0.004
K=45 5.9205(5.9204) 8.1145(8.1129) 10.5206(10.5167)
CPU 0.203s 0.170s 0.146s

error(%) 0.01 0.02 0.03

Parameters used in computation are: T = 3, r = 0.05, x = 40, β = −1, n = 100, B = 0.01, C = 100.
Error is computed by taking absolute difference between vn(x) and v30000(x) and then dividing by
v30000(x). The values in the parentheses are the results computed by FDM:1024× 1024 reported in
Table 1 of [76].

In Table 2.3.2 we compare our numerical results with the ones reported in Table 1

of [76], the numerical values here are closer to results computed by FDM:1024×1024,

which is the traditional Crank-Nicolson finite difference scheme (the 1024×1024 refer

to the size of the lattice). The CPU time of FDM:1024× 1024 is 6.8684s. Table 1 of

[76] also reports the performance of the Laplace-Carson transform and the artificial

boundary method of [75] (both of which we briefly described in the introduction).

The CPU for Laplace-Carson method is 0.609s, ABC:512 × 512 is 0.9225s. If we
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consider FDM:1024 × 1024 as a Benchmark, our method is more than 30 times

faster with accuracy up to 4 decimal points. Comparing with ABC:512×512 method,

our method is about 5 times faster with the same accuracy. Our method is about

3 times faster than what the Laplace transform method produced when it had

accuracy up to 3 decimal points. (Here accuracy represents the absolute difference

between the computed numerical values and the FDM:1024 × 1024 divided by the

FDM:1024× 1024).

2.3.3 Pricing American put option under CIR

In this subsection, we use numerical scheme to evaluate American put options

vA(x) (recall formula (2.49)) under CIR model. (This model is used for pricing VIX

options, see e.g. [53]). Let the volatility follow

(2.53) dYt = (β − αYt)dt+ σ
√
YtdWt, Y0 = y,

Consider the absorbed process

Xt = It<inf{s:Ys /∈(B,C)}Yt + It≥inf{s:Ys /∈(B,C)}Yinf{s:Ys /∈(B,C)}, t ≥ 0,

for 0 < B < C. Same arguments as in Section 2.3.2 give that for CIR process

P(max0≤t≤T Yt ≥ C) = O(C−k), k ≥ 1. Moreover, from Theorem 2 in [40] it follows

that P(min0≤t≤T Yt ≤ B) = O(B2ν) for ν = 2β
σ2 − 1 > 0. Thus if we consider the

absorbed diffusion X then the change of the value of the option price is bounded by

O(C−k) +O(B2ν) for all k. (In fact, potentially we do not make any error by having

an absorbing boundary if B is small enough, as we argued in the previous section.)
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Table 2.7: Prices of American puts (2.49) under (2.53) with different K
scheme 1 scheme 2

K = 35 4.4654 4.5223
K = 40 8.1285 8.1932
K = 45 12.4498 12.5167

Parameters used in computation are: σ = 2, y = 40, T = 0.5, r = 0.1, B = 0.01, C = 200, β = 2, α =
0.5, n = 30000.

As the previous example, since the second scheme looks more efficient, we only

report its time with the accuracy performance here.

Table 2.8: American put prices under (2.53) for a variety of K’s using the second scheme
K = 35 K = 40 K = 45

n = 100 4.5140 8.1834 12.5127
CPU 0.245s 0.202s 0.198s

error(%) 0.18 0.12 0.03
n = 500 4.5215 8.1918 12.5163

CPU 0.600s 0.585s 0.579s
error(%) 0.02 0.02 0.003
n = 1000 4.5238 8.1925 12.5170

CPU 0.807s 0.813s 0.839s
error(%) 0.03 0.01 0.002

Parameters used in computation are: σ = 2, y = 40, T = 0.5, r = 0.1, B = 0.01, C = 200, β = 2, α =
0.5. Error is computed by taking absolute difference between vn(x) and v30000(x) and then dividing
by v30000(x).

2.3.4 Pricing double capped barrier options under CEV by using second scheme

In this subsection, we use second scheme to evaluate double capped barrier call

options under the CEV model given by (2.48). Let us denote the European option

value by

(2.54) vE(x) = e−rTE
[
IT<τ∗(ST −K)+

]
,

and the American option value by

(2.55) vA(x) = sup
τ∈T[0,T ]

E
[
Iτ<τ∗e−rτ (Sτ −K)+

]
,

where τ ∗ = inf{t ≥ 0;St 6= (L,U)}. We use the parameters values given in [29] and

report our results in Table 2.3.4 and Figure 2.3.4.
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Table 2.9: Double capped European Barrier Options (2.54) under CEV(2.48) (second scheme)
U L K β = −0.5 β = 0 β = −2 β = −3

120 90 95 1.9012 1.7197 2.5970 3.2717
CPU 0.970s 1.026s 6.203s 1.209s
error 0.96% 1.2% 0.4% 2.7%

120 90 100 1.1090 0.9802 1.6101 2.0958
CPU 0.957s 1.102s 6.066s 1.205s
error 0.98% 1.2% 0.44% 2.3%

120 90 105 0.5201 0.4473 0.8142 1.1072
CPU 0.961s 1.023s 6.205s 1.187s
error 1.00% 1.3% 0.53% 2.2%

n 2000 2000 5000 2000

Table 2.10: Double capped American Barrier Options (2.55) under CEV(2.48) (second scheme)

U L K β = −0.5 β = 0 β = −2 β = −3
120 90 95 9.8470 9.8271 9.9826 10.0586

CPU 0.965s 1.007s 1.248s 1.170s
error 0.55% 0.63% 0.56% 0.81%

120 90 100 7.4546 7.4522 7.5118 7.5203
CPU 0.942s 1.017s 1.239s 1.211s
error 0.70% 0.8% 0.47% 0.57%

120 90 105 5.2612 5.2788 5.2345 5.1669
CPU 0.968s 1.044s 1.145s 1.188s
error 1.00% 1.2% 0.35% 0.17%

n 2000 2000 2000 2000

Parameters used in calculations are: x = 100, σ(100) = 0.25 (denoting σ(S) = δS1+β), r = 0.1, T =
0.5. Error is computed by taking the absolute difference between vn and v40000 and then dividing
by v40000.

Figure 2.6: The left figure shows the value function vA(x)(2.55) and vE(x)(2.54) with Parameters:
δ = 2.5, r = 0.1, T = 0.5, β = −0.5, n = 5000, L = 90, U = 120,K = 100,. In the
right figure, we show the log |v − vn| vs log n picking v(x) = v40000(x), x = 100, and
n ∈ {400, 1000, 3000, 8000, 20000}. The slope of the blue line given by linear regression
is −0.47178.
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2.3.5 Pricing double capped American barrier options with jump volatility by using
second scheme

In this subsection, we show the numerical results for pricing double capped Amer-

ican barrier option when the volatility has a jump. Consider the following modifica-

tion of a geometric Brownian motion:

(2.56) dSt = rStdt+ σ(St)StdWt, S0 = x

where σ(St) = σ1, for St ∈ [0, S1], σ(St) = σ2, for St ∈ [S1,∞). We will compute the

American option price

(2.57) v(x) = sup
τ∈T[0,T ]

E
[
e−rτ Iτ<τ∗(Sτ −K)+

]
,

where τ ∗ = inf{t ≥ 0;St 6= (L,U)}. We use scheme 2 here, since it can handle

discontinuous coefficients; see Figures 2.3.5 and 2.3.5. We compare it to the geometric

Brownian motion (gBm) problem with different volatility parameters. In particular,

we observe that although the jump model’s price and the gBm model with average

volatility are close in price, the optimal exercise boundaries differ significantly.

Figure 2.7: There are four curves in the left figure. They are value functions (2.57) under model
(2.56) with different values of σ(St) as specified in the legend. The parameters used
in computations are: n = 4000, r = 0.1, S1 = K = 8, L = 2, U = 10, σ1 = 0.7, σ2 =
0.3, T = 0.5. Here σ2 <

σ1+σ2

2 < σ1, and as expected the gBm option price decreases
as σ decreases but the gBm price with jump volatility and one corresponding to gBm
with σ = σ2 intersect in the interval [7, 8]. The right figure is of the optimal exercise
boundary curves.
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Figure 2.8: Convergence rate figure of scheme 2 in the implement of double capped American put
(2.57) under (2.56). We pick v(x) = v40000(x) to be the actual price, and the other
three values are v70(x), v700(x), v7000(x), x = 8. The slope of the blue line given by
linear regression approach is −0.39499. Parameters used in computation: n = 4000, r =
0.1,K = 8, L = 2, U = 10, σ1 = 0.7, σ2 = 0.3, S1 = 8, T = 0.5.
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CHAPTER III

Continuity of Utility Maximization under Weak
Convergence

The main work in this Chapter is based on paper [11]. I also refer to paper

[12]. It studied extended weak convergence and utility maximization with propor-

tional transaction costs. The outline of the Chapter is the following. We introduce

the setup and formulate the main results. In Section 3.2 we discuss Assumptions

3.1.4,3.1.5,3.1.6 and demonstrate their necessity. In Section 3.3 we prove the lower

semi–continuity. In Section 3.4 we prove the upper semi–continuity. In Section 3.4.1

we establish Theorem 3.1.2. Section 3.5 is devoted to the construction of an ap-

proximating sequence for the Heston model. In Section 3.6 we provide a detailed

numerical analysis for shortfall risk minimization.

3.1 Preliminaries and Main Results

We consider a model of a security market which consists of d risky assets which we

denote by S = (S
(1)
t , ..., S

(d)
t )0≤t≤T , where T <∞ is the time horizon. We assume that

the investor has a bank account that, for simplicity, bears no interest. The process

S is assumed to be a continuous semi–martingale on a filtered probability space

(Ω,F , (FSt )0≤t≤T ,P) where the filtration (FSt )0≤t≤T is the usual filtration generated

by S. Namely, the filtration {FSt }Tt=0 is the minimal filtration which is complete,
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right continuous and satisfies Ft ⊃ σ{Su : u ≤ t}. Without a loss of generality we

take F := FST .

A (self–financing) portfolio π is defined as a pair π = (x, γ) where the constant x

is the initial value of the portfolio and γ = (γ(i))1≤i≤d is a predictable S–integrable

process specifying the amount of each asset held in the portfolio. The corresponding

portfolio value process is given by

V π
t := x+

∫ t

0

γudSu, t ∈ [0, T ].

Observe that the continuity of S implies that the wealth process {V π
t }Tt=0 is con-

tinuous as well. We say that a trading strategy π is admissible if V π
t ≥ 0, ∀t ≥ 0.

For any x > 0 we denote by A(x) the set of all admissible trading strategies.

Denote by M(S) the set of all equivalent (to P) local martingale measures. We

assume that M(S) 6= ∅. This condition is intimately related to the absence of

arbitrage opportunities on the security market. See [31] for a precise statement and

references.

Next, we introduce our utility maximization problem. Consider a continuous

function U : (0,∞)×D([0, T ];Rd)→ R. As usual, D([0, T ];Rd) denotes the space of

all RCLL (right continuous with left limits) functions f : [0, T ]→ Rd equipped with

the Skorokhod topology (for details see [18]).

Assumption 3.1.1.

(i) For any s ∈ D([0, T ];Rd) the function U(·, s) is non–decreasing.

(ii) For any x > 0 we have EP[U(x, S)] > −∞ .

We extend U to R+ × D([0, T ];Rd) by U(0, s) := limv↓0 U(v, s). In view of As-

sumption 3.1.1(i) the limit exists (might be −∞).
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For a given initial capital x > 0 consider the optimization problem

u(x) := sup
π∈A(x)

EP[U(V π
T , S)],

where we set −∞ +∞ = −∞. Namely, for a random variable X which satisfies

EP[max(−X, 0)] =∞ we set EP[X] := −∞.

Let us notice that Assumption 3.1.1(ii) implies u(x) > −∞.

Assumption 3.1.2. The function u : (0,∞) → R ∪ {∞} is continuous. Namely,

for any x > 0 we have u(x) = limy→x u(y) where a priori the joint value can be equal

to ∞.

Next, for any n, let S(n) = (Sn,1t , ..., Sn,dt )0≤t≤T be a RCLL semi–martingale de-

fined on some filtered probability space (Ωn,F (n), (F (n)
t )0≤t≤T ,Pn) where the filtration

(F (n)
t )0≤t≤T satisfies the usual assumptions (right continuity and completeness). For

the n–th model we define An(x) as the set of all pairs πn = (x, γ(n)) such that γ(n)

is a predictable S(n)–integrable process and the resulting portfolio value process

V πn
t := x+

∫ t

0

γ(n)
u dS(n)

u ≥ 0, t ∈ [0, T ],

is non-negative. Set,

un(x) := sup
πn∈An(x)

EPn [U(V πn
T , S(n))].

We assume the weak convergence S(n) ⇒ S on the space D([0, T ];Rd) equipped

with the Skorokhod topology. Moreover, we assume the following uniform integra-

bility assumptions.

Assumption 3.1.3.

(i) For any x > 0 the family of random variables {U−(x, S(n))}n∈N is uniformly

integrable where U− := max(−U, 0).
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(ii) For any x > 0 the family of random variables {U+(V πn
T , S(n))}n∈N,πn∈An(x) is

uniformly integrable, where U+ := max(U, 0).

Remark 3.1.1. The verification of Assumption 3.1.2 and Assumption 3.1.3(ii) can

be a difficult task. In Section 3.1.1 we provide quite general and easily verifiable

conditions which are sufficient for the above assumptions to hold true.

Due to the admissibility requirements we will need the following assumption which

bounds the uncertainty of the jump activity. This assumption will be discussed in

details in Section 3.2.1.

Assumption 3.1.4. For any n ∈ N consider the non-decreasing RCLL process given

by D
(n)
t := sup0≤u≤t |S

(n)
u −S(n)

u− |, t ∈ [0, T ] where |·| denotes the Euclidean norm in Rd.

For any n, there exists an adapted (to (F (n)
t )0≤t≤T ) left continuous process {J (n)

t }Tt=0,

n ∈ N such that inf0≤t≤T

(
J

(n)
t −D

(n)
t

)
≥ 0 a.s. and J

(n)
T → 0 in probability.

Now, we ready to formulate our first result (lower semi–continuity) which will be

proved in Section 3.3.

Proposition III.1. Under Assumptions 3.1.1–3.1.2, Assumption 3.1.3(i) and As-

sumption 3.1.4 we have

u(x) ≤ lim inf
n→∞

un(x), ∀x > 0.

Next, we treat upper semi–continuity.

Assumption 3.1.5. Recall the setM(S) of all equivalent local martingale measures.

Denote by M(S(n)), n ∈ N the set of all equivalent local martingale measures for the

n–th model. For any Q ∈ M(S) there exists a sequence of probability measures

Qn ∈ M(S(n)), n ∈ N such that under Pn the joint distribution of
(
{S(n)

t }Tt=0,
dQn
dPn

)
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on the space D([0, T ];Rd) × R converges to the joint distribution of
(
{St}Tt=0,

dQ
dP

)
under P. We denote this relation by

(3.1)

((
S(n),

dQn

dPn

)
;Pn
)
⇒
((

S,
dQ
dP

)
;P
)
.

Remark 3.1.2. The verification of Assumption 3.1.5 requires a convenient represen-

tation of the corresponding local martingale measures. This is the case for tree based

approximations of diffusion processes. In Section 3.5.2 we illustrate the verification

of Assumption 3.1.5 for tree based approximations of the Heston model.

We do notice that in order to verify Assumption 3.1.5 it is sufficient to establish

(3.1) for a dense subset of
{
dQ
dP : Q ∈M(S)

}
. This simplification will be used in

Section 3.5.2.

Assumption 3.1.6. For any s ∈ D([0, T ];Rd), the function U(·, s) is concave.

Assumption 3.1.6 says that the investor can not gain from additional randomiza-

tion.

The following upper semi–continuity result will be proved in Section 3.4.

Proposition III.2. Under Assumption 3.1.1(i), Assumption 3.1.3(ii) and Assump-

tions 3.1.5,3.1.6 we have

u(x) ≥ lim sup
n→∞

un(x), ∀x > 0.

We now combine the statements of the above propositions and state them as the

main theorem of our paper:

Theorem 3.1.1. Under Assumptions 3.1.1–3.1.3,3.1.4,3.1.5,3.1.6 we have

(3.2) u(x) = lim
n→∞

un(x), ∀x > 0.

Proof. Follows from Proposition III.1 and Proposition III.2.
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Remark 3.1.3. Observe that in view of Assumption 3.1.3 we have

−∞ < lim inf
n→∞

un(x) ≤ lim sup
n→∞

un(x) <∞, ∀x > 0.

We conclude that the joint value in (3.2) is finite.

Next, we establish the weak convergence for the optimal terminal wealths.

Theorem 3.1.2. Assume that Assumptions 3.1.1–3.1.3,3.1.4,3.1.5,3.1.6 hold true.

Moreover, assume that for any s ∈ D([0, T ];Rd) the function U(·, s) is strictly con-

cave. Let x > 0 and π̂n ∈ An(x), n ∈ N be a sequence of asymptotically optimal

portfolios, namely

(3.3) lim
n→∞

(
un(x)− EPn [U(V π̂n

T , S(n))]
)

= 0.

Then (
S(n), V π̂n

T

)
⇒
(
S, V π̂

T

)
,

where π̂ ∈ A(x) is the unique portfolio that satisfies u(x) = EP[U(V π̂
T , S)].

The proof of Theorem 3.1.2 will be given in Section 3.4.1.

Remark 3.1.4. It is well known (see Theorem 2.2 in [54]) that for a utility function

which is strictly concave there exists a unique optimizer. Although in [54] the authors

do not consider a random utility, their argument can be without much effort extended

to our setup.

3.1.1 On the verification of Assumption 3.1.2 and Assumption 3.1.3(ii)

The following result provides a simple and quite general condition which implies

Assumption 3.1.2.
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Lemma 3.1.1. Assume that Assumption 3.1.1 holds true and there exist continuous

functions m1,m2 : [0, 1)→ R+ with m1(0) = m2(0) = 0 (modulus of continuity) and

a non-negative random variable ζ ∈ L1(Ω,F ,P) such that for any λ ∈ (0, 1) and

v > 0

U((1− λ)v, S) ≥ (1−m1(λ))U(v, S)−m2(λ)ζ.

Then Assumption 3.1.2 holds true.

Proof. In view of the fact that u is a non-decreasing function (follows from Assump-

tion 3.1.1(i)) it sufficient to prove that for any x > 0

lim
α↓0

u((1− α)x) ≥ lim
α↓0

u((1 + α)x).

For any β, y > 0 the map (y, {γt}Tt=0) → (βy, {βγt}Tt=0) is a bijection between A(y)

and A(βy). Thus,

lim
α↓0

u((1− α)x)

≥ lim
α↓0

((
1−m1

(
1− 1− α

1 + α

))
u((1 + α)x)−m2

(
1− 1− α

1 + α

)
EP[ζ]

)
= lim

α↓0
u((1 + α)x).

Remark 3.1.5. We notice that the power and the log utility satisfy the assumptions

of Lemma 3.1.1. On the other hand for these utility functions Assumption 3.1.2 is

straightforward.

A “real” application of Lemma 3.1.1 is the case which corresponds to the utility

function given by (3.1). In this case, if v ≥ ST
1−λ then U((1− λ)v, S) = U(v, S) = 0.

If v < ST
1−λ then |U((1 − λ)v, S) − U(v, S)| ≤ λv ≤ λ

1−λST . Thus, for m1(λ) := 0,

m2(λ) := λ
1−λ and ζ := ST the assumptions of Lemma 3.1.1 hold true (provided that

EP[ST ] <∞).
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Next, we treat Assumption 3.1.3(ii).

Lemma 3.1.2. Suppose there exist constants C > 0, 0 < γ < 1 and q > 1
1−γ which

satisfy the following.

(I) For all (v, s) ∈ (0,∞)× D([0, T ];Rd),

(3.4) U(v, s) ≤ C(1 + vγ).

(II) For any n ∈ N there exists a local martingale measure Qn ∈M(S(n)) such that

(3.5) sup
n∈N

EQn

[(
dPn
dQn

)q]
<∞.

Then Assumption 3.1.3(ii) holds true.

Proof. Let p = q
q−1

. Clearly 1
p
> γ. Thus in view of (3.4), in order to prove that

Assumption 3.1.3(ii) holds true, it suffices to show that for any x > 0

sup
n∈N

sup
πn∈An(x)

EPn [(V πn
T )1/p] <∞.

For any n ∈ N and πn ∈ An(x), {V πn
t }Tt=0 is a Qn super–martingale. Hence, from

the Holder inequality (observe that 1
p

+ 1
q

= 1) we get

sup
n∈N

sup
πn∈An(x)

EPn [(V πn
T )1/p]

= sup
n∈N

sup
πn∈An(x)

EQn

[
(V πn

T )1/p dPn
dQn

]
≤ sup

n∈N
sup

πn∈An(x)

(EQn [V πn
T ])1/p sup

n∈N

(
EQn

[(
dPn
dQn

)q])1/q

≤ x1/p sup
n∈N

(
EQn

[(
dPn
dQn

)q])1/q

<∞,

and the result follows.

3.2 The necessity of Assumptions 3.1.4,3.1.5,3.1.6

3.2.1 On the necessity of Assumption 3.1.4

Let us explain by example why Assumption 3.1.4 is essential for the lower semi–

continuity to hold.
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Example 3.2.1. Naive discretization does not work.

Let d = 1. Consider a random utility which corresponds to shortfall risk minimization

for a call option with strike price K > 0. Namely, we set

(3.1) U(v, s) := −((sT −K)+ − v)+.

We have,

u(x) = − inf
π∈A(x)

EP

[(
(ST −K)+ − V π

T

)+
]
.

Consider the Black–Scholes model

St = S0e
σWt−σ2t/2, t ∈ [0, T ]

where σ > 0 is a constant volatility and W = {Wt}Tt=0 is a Brownian motion (under

P).

We take the naive discretization and define the processes S(n), n ∈ N, by

S
(n)
t := S kT

n
, kT/n ≤ t < (k + 1)T/n.

Let F (n) the usual filtration which is generated by S(n). Namely,

F (n)
t := σ

{
ST
n
, ..., S kT

n
,N
}
, kT/n ≤ t < (k + 1)T/n

where N is the collection of all null sets. We also set Pn := P.

It is easy to see that S(n) ⇒ S and Assumptions 3.1.1–3.1.3 hold true (for As-

sumption 3.1.2 see Remark 3.1.5).

Next, we check Assumption 3.1.4. Fix n. Recall the processes D(n), J (n) from

Assumption 3.1.4. First, observe that if J (n) is an adapted left continuous process,

then for all k < n J
(n)
(k+1)T

n

is F (n)
kT
n

measurable. Notice that for or all k < n,

ess sup

(
S

(n)
(k+1)T

n

− S(n)
kT
n

|F (n)
kT
n

)
=∞ a.s.
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As usual ess sup(Y |G) is the minimal random variable (which may take the value∞)

that is G measurable and ≥ Y a.s. These two simple observations yield that there is

no (finite) adapted left continuous process {J (n)
t }Tt=0 which satisfy J

(n)
(k+1)T

n

≥ D
(n)
(k+1)T

n

.

Thus, Assumption 3.1.4 is not satisfied.

In [64] (see Section 6.1.2) it was proved that for the processes S(n), n ∈ N defined

above and the initial capital x := EP[(ST − K)+] (i.e. the Black–Scholes price) we

have

lim inf
n→∞

inf
πn∈An(x)

EP

[(
(ST −K)+ − V πn

T

)+
]
> 0.

Clearly, the fact that x is the Black–Scholes price implies that

inf
π∈A(x)

EP

[(
(ST −K)+ − V π

T

)+
]

= 0.

We get

u(x) = 0 > lim sup
n→∞

un(x),

and as a result Proposition III.1 does not hold true.

Example 3.2.2. Discrete approximations with vanishing growth rates do

work.

Consider a setup where for any n, S(n) is a pure jump process of the form

S
(n)
t =

mn∑
i=1

S
(n)

τ
(n)
i

I
τ

(n)
i ≤t<τ

(n)
i+1

+ S
(n)
T It=T

where mn ∈ N and 0 = τ
(n)
1 < τ

(n)
2 < ... < τ

(n)
mn+1 = T are stopping times with respect

to {F (n)
t }Tt=0.

Assume that there exists a deterministic sequence an > 0, n ∈ N such that

limn→∞ an = 0 and

|S(n)

τ
(n)
i+1

− S(n)

τ
(n)
i

| ≤ an|S(n)

τ
(n)
i

| a.s, ∀i, n.
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Then Assumption 3.1.4 holds true with the processes

J
(n)
t := an

(
mn∑
i=1

max
1≤j≤i

|S(n)

τ
(n)
j

| I
τ

(n)
i <t≤τ (n)

i+1

)
, n ∈ N.

In other words, if the growth rates go to zero uniformly then Assumption 3.1.4

holds true. This is exactly the case for binomial approximations of diffusion models

with bounded volatility.

3.2.2 On the necessity of Assumption 3.1.5

A natural question to ask is whether Assumption 3.1.5 can be replaced by a

simpler one.

In [46] the authors analyzed when weak convergence implies the convergence of

option prices. Roughly speaking, the main result was that under contiguity properties

of the sequences of physical measures with respect to the martingale measures there

is a convergence of prices of derivative securities. The contiguity assumption (for

the exact definition see [46]) is simpler than Assumption 3.1.5 and deals only with

the approximating sequence. The main advantage of such assumption that it does

not require establishing weak convergence (unlike Assumption 3.1.5). However, this

classical result assumes that the limit model is complete. In general, in incomplete

markets “strange phenomena” can happen as we will demonstrate in Example 3.2.3.

In Example 3.2.3 we construct a sequence of binomial (discrete) martingales S(n)

considered with their natural filtrations that converge weakly to a continuous mar-

tingale S (the contiguity assumption trivially holds true). Surprisingly, the limiting

model, which is given by the martingale S, is a fully incomplete market (see Defi-

nition 2.1 in [33]) and the set of all equivalent martingale measures is dense in the

set of all martingale measures (for a precise formulation see Lemma 8.1 in [33]). We

use this construction to illustrate that Assumption 3.1.5 is the “right” assumption
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to make.

The cornerstone of our construction is the following result which was established

in [22] (see Theorem 8 there). For the reader’s convenience we provide a short self-

contained proof.

Lemma 3.2.1. Let ξi = ±1, i ∈ N be i.i.d. and symmetric. Define the processes

W
(n)
t , Ŵ

(n)
t , t ∈ [0, T ] by

W
(n)
t :=

√
T
n

∑k
i=1 ξi,

kT
n
≤ t < (k+1)T

n
,

Ŵ
(n)
t :=

√
T
n

∑k
i=1

∏i
j=1 ξj,

kT
n
≤ t < (k+1)T

n

where
∑0

i=1 ≡ 0. Then, we have the weak convergence

(W (n), Ŵ (n))⇒ (W, Ŵ ),

where W and Ŵ are independent Brownian motions.

Proof. We apply the martingale invariance principle given by Theorem 2.1 in [73]. For

any n define the filtration {G(n)
t }Tt=0 by G(n)

t = σ{ξ1, ..., ξk} for kT/n ≤ t < (k+1)T/n.

Observe that W (n), Ŵ (n) are martingales with respect to the filtration G(n). Thus it

remains to establish (2)–(3) in [73]. Clearly,

sup
0≤t≤T

|W (n)
t −W (n)

t− | = sup
0≤t≤T

|Ŵ (n)
t − Ŵ (n)

t− | =
√
T

n
,

and so the maximal jump size goes to zero as n→∞. Moreover, [W (n)]t = [Ŵ (n)]t =

kT/n for kT/n ≤ t < (k + 1)T/n. Thus, [W (n)]t → t and [Ŵ (n)]t → t as n→∞.

It remains to show that for all t ∈ [0, T ]

(3.2) [W (n), Ŵ (n)]t → 0 in probability.

Indeed, let n ∈ N and kT/n ≤ t < (k + 1)T/n. Clearly,

[W (n), Ŵ (n)]t =
T

n

k∑
i=1

i−1∏
j=1

ξj,
kT

n
≤ t <

(k + 1)T

n
,
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where
∏0

i=1 ≡ 1. Observe that the random variables
∏m

j=1 ξj = ±1, m ∈ N are i.i.d.

and symmetric. Thus,

E
((

[W (n), Ŵ (n)]t

)2
)

=
T 2

n2
k ≤ Tt

n

and (3.2) follows. This completes the proof.

Example 3.2.3. Binomial models can converge weakly to fully incomplete

markets.

Let d = 1. For any n ∈ N define the stochastic processes {ν(n)
t }Tt=0 and {S(n)

t }Tt=0 by

ν
(n)
t :=

∏k
i=1

(
1 +

√
T
n
ξi

)
, kT

n
≤ t < (k+1)T

n
,

S
(n)
t :=

∏k
i=1

(
1 + min(ν

(n)
(i−1)T
n

, lnn)
√

T
n

∏i
j=1 ξj

)
, kT

n
≤ t < (k+1)T

n
,

where ξi = ±1, i ∈ N are i.i.d. and symmetric. Let Pn be the corresponding proba-

bility measure.

We assume that n is sufficiently large so that S(n) and min(ν(n), lnn) are strictly

positive. Let F (n) be the filtration which is generated by S(n),

F (n)
t := σ

{
ST
n
, ..., S kT

n

}
, kT/n ≤ t < (k + 1)T/n.

Observe that F (n)
t = σ{ξ1, ..., ξk} for kT/n ≤ t < (k + 1)T/n. Moreover, the condi-

tional support of supp

(
S

(n)
(k+1)T

n

|S(n)
T
n

, ..., S
(n)
kT
n

)
consists of exactly two points, and so

the physical measure Pn is the unique martingale measure for S(n).

From Theorems 4.3–4.4 in [35] and Lemma 3.2.1 we obtain the weak convergence

(S(n), ν(n))⇒ (S, ν) where (S, ν) is the (unique strong) solution of the SDE

dSt = νtStdŴt, S0 = 1

(3.3)

dνt = νtdWt, ν0 = 1
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where W and Ŵ are independent Brownian motions (under P).

Namely, for the complete binomial models S(n), n ∈ N we have the weak conver-

gence S(n) ⇒ S where S is the distribution of the stochastic volatility model given by

(3.3). This is a specific case of the Hull–White model which was introduced in [47].

From Theorem 3.3 in [72] it follows that {St}Tt=0 is a true martingale. Hence,

EP[ST ] = S0 = 1 = S
(n)
0 = EPn [S

(n)
T ].

This together with Theorem 3.6 in [18] gives that the random variables {S(n)
T }n∈N are

uniformly integrable.

Let us observe that Assumption 3.1.5 does not hold true. Indeed, for any n we

have the equality M(S(n)) = {Pn}. Hence, ((S, 1) ;P) is the only cluster point for

the distributions
((
S(n), dQn

dPn

)
;Pn
)

, Qn ∈ M(S(n)). Since the set M(S) is not a

singleton then clearly Assumption 3.1.5 is not satisfied.

Next, let K > 0. Consider a call option with strike price K and the utility function

given by (3.1). Obviously, Assumption 3.1.1(i) and Assumption 3.1.3(ii) (U+ ≡ 0)

are satisfied. We want to demonstrate that Proposition III.2 does not hold true.

For any n ∈ N let Vn be the unique arbitrage free price of the above call option

in the (complete) model given by S(n). From the weak convergence S(n) ⇒ S and the

uniform integrability of {S(n)
T }n∈N we get

lim
n→∞

Vn = EP
[
(ST −K)+] < S0 = 1.

In particular there exists ε > 0 such that for sufficiently large n we have Vn < 1− ε.

Thus,

lim
n→∞

un(1− ε) = 0.

On the other hand, the model given by S is a fully incomplete market (see Definition

2.1 and Example 2.5 in [33]). In [33, 65] it was proved that in fully incomplete
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markets the super–replication price is prohibitively high and lead to buy–and–hold

strategies. Namely, the super–hedging price of a call option is equal to the initial

stock price S0 = 1. Thus u(1− ε) < 0 and so Proposition III.2 does not hold.

3.2.3 On the necessity of Assumption 3.1.6

Example 3.2.4. Non-concave utility.

Let d = 1. Assume that the investor utility function is given by

U(v, s) := min(2,max(v, 1)),

and depends only on the wealth. We notice that the function U does not satisfy

Assumption 3.1.6.

For any n ∈ N consider the binomial model given by

S
(n)
t :=

k∏
i=1

(
1 +

ξi
n2

)
,
kT

n
≤ t <

(k + 1)T

n
,

where ξi = ±1, i ∈ N are i.i.d. and symmetric. Namely, Pn is the unique martingale

measure for the n–th model. Clearly, for the constant process S ≡ 1 we have the

weak convergence S(n) ⇒ S. Thus, Assumption 3.1.1(i), Assumption 3.1.3(ii) and

Assumption 3.1.5 are satisfied.

Next, consider the initial capital x := 1. Observe that for any n, there is a set

An ∈ σ{ξ1, ..., ξn} with Pn(An) = 1/2. Thus, from the completeness of the binomial

models we get that there exists πn ∈ An(1) such that V πn
T = 2IAn. In particular,

un(1) ≥ EPn [min(2,max(2IAn , 1))] = 3/2, n ∈ N.

On the other hand, trivially u(1) = 1, which means that Proposition III.2 does not

hold true.

The paper [70] studies the continuity of the value of the utility maximization

problem from terminal wealth (under convergence in distribution) in a complete
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market. The author does not assume that the utility function is concave. The

main result says that if the limit probability space is atomless and the atoms in

approximating sequence of models are vanishing (see Assumption 2.1 in [70]) then

continuity holds. Clearly, this is not satisfied in the Example 3.2.4 above where the

filtration generated by the limit process is trivial.

An open question is to understand whether the continuity result from [70] can be

extended to the incomplete case.

3.3 The Lower Semi–Continuity under Weak Convergence

In this section we prove Proposition III.1. We start by establishing a general

result.

For any M > 0 and n ∈ N introduce the set Γ
(n)
M of all simple predictable inte-

grands of the from

γ
(n)
t =

k∑
i=1

βiIti<t≤ti+1

where k ∈ N, 0 = t1 < t2 < .... < tk+1 = T is a deterministic partition and

βi = ψi(S
(n)
ai,1
, ..., S(n)

ai,mi
), i = 1, ..., k,

for a deterministic partition 0 = ai,1 < ... < ai,mi = ti and a continuous function

ψi : (Rd)mi → Rd that satisfies |ψi| ≤M .

Lemma 3.3.1. Let γ be a predictable process (with respect to (FSt )0≤t≤T ) with |γ| ≤

M for some constant M . Then there exists a sequence γ(n) ∈ Γ
(n)
M , n ∈ N such that

we have the weak convergence

(3.1)

(
{S(n)

t }Tt=0,

{∫ t

0

γ(n)
u dS(n)

u

}T
t=0

)
⇒

(
{St}Tt=0,

{∫ t

0

γudSu

}T
t=0

)

on the space D([0, T ];Rd)× D([0, T ];R).
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Proof. On the space (Ω,F , (FSt )0≤t≤T ,P), let ΓM be the set of all integrands of the

form

(3.2) γt =
k∑
i=1

βiIti<t≤ti+1

where k ∈ N, 0 = t1 < t2 < .... < tk+1 = T is a deterministic partition and

(3.3) βi = ψi(Sai,1 , ..., Sai,mi ), i = 1, ..., k

for a deterministic partition 0 = ai,1 < ... < ai,mi = ti and a continuous function

ψi : (Rd)mi → Rd which satisfy |ψi| ≤ M . From standard density arguments it

follows that for any ε > 0 we can find γ′ ∈ ΓM which satisfy

P
(

sup
0≤t≤T

∣∣∣∣∫ t

0

γudSu −
∫ t

0

γ′udSu

∣∣∣∣ > ε

)
< ε.

Hence, without loss of generality we can assume that γ ∈ ΓM . Thus, let γ be given

by (3.2)–(3.3).

For any n ∈ N define γ(n) ∈ Γ
(n)
M by

(3.4) γ
(n)
t :=

k∑
i=1

ψi

(
S(n)
ai,1
, ..., S(n)

ai,mi

)
Iti<t≤ti+1

, t ∈ [0, T ].

It is well known that there exists a metric d on the Skorokhod space D([0, T ];Rd)

that induces the Skorokhod topology and such that D([0, T ];Rd) is separable under

d (for details see Chapter 3 in [18]). From the weak convergence S(n) ⇒ S and

the Skorokhod representation theorem (see Theorem 3 in [34]) it follows that we

can redefine the stochastic processes S(n), n ∈ N and S on the same probability

space such that limn→∞ d(S(n), S) = 0 a.s. Recall that if limn→∞ d(z(n), z) = 0 and

z : [0, T ]→ Rd is a continuous function then limn→∞ sup0≤t≤T |z
(n)
t − zt| = 0 (see e.g.

Chapter 3 in [18]). We conclude that

(3.5) sup
0≤t≤T

|S(n)
t − St| → 0 a.s.
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Next, recall the partition 0 = t1 < t2 < .... < tk+1 = T and redefine (on the common

probability space) the integrands γ, γ(n) by the relations (3.2)–(3.4). Since these inte-

grands are simple then the corresponding stochastic integrals
∫ t

0
γudSu,

∫ t
0
γ

(n)
u dS

(n)
u ,

t ∈ [0, T ] can be redefined as finite sums.

From (3.5) and the continuity of ψi, i = 1, ..., k we get that

sup
0≤t≤T

|γ(n)
t − γt| → 0 a.s.

Thus,

sup
0≤t≤T

∣∣∣∣∫ t

0

γ(n)
u dS(n)

u −
∫ t

0

γudSu

∣∣∣∣
= sup

0≤t≤T

∣∣∣∣∣
k∑
i=1

(
γ

(n)
ti+1

(S
(n)
ti+1∧t − S

(n)
ti∧t)− γti+1

(Sti+1∧t − Sti∧t)
)∣∣∣∣∣

≤ sup
0≤t≤T

∣∣∣∣∣
k∑
i=1

γ
(n)
ti+1

(
(S

(n)
ti+1∧t − S

(n)
ti∧t)− (Sti+1∧t − Sti∧t)

)∣∣∣∣∣
+ sup

0≤t≤T

∣∣∣∣∣
k∑
i=1

(γ
(n)
ti+1
− γti+1

)(Sti+1∧t − Sti∧t)

∣∣∣∣∣
≤ 2Mkd sup

0≤t≤T
|S(n)
t − St|

+ 2kd sup
0≤t≤T

|γ(n)
t − γt| sup

0≤t≤T
|St| → 0 a.s.

and the proof is completed.

Now, we are ready to prove Proposition III.1.

Proof of Proposition III.1.

The proof will be done in two steps.

Step I: For any x > 0 let A0(x) ⊂ A(x) be the set of all admissible portfolios

π = (x, γ) such that γ is predictable, uniformly bounded and of bounded variation.

In this step we show that for any x1 > x2 > 0

(3.6) u(x2) ≤ sup
π∈A0(x1)

EP[U(V π
T , S)].
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A priori the left hand side and the right hand side of (3.6) can be both equal to ∞.

Let π̄ = (x2, γ̄) ∈ A(x2) be an arbitrary portfolio. By applying the density argu-

ment given by Theorem 3.4 in [6] we obtain that there exists an adapted continuous

process of bounded variation γ̃ = {γ̃t}Tt=0 such that

sup
0≤t≤T

∣∣∣∣∫ t

0

γ̃udSu −
∫ t

0

γ̄udSu

∣∣∣∣ ≤ x1 − x2

2
a.s.

We conclude that the portfolio which is given by π̃ := (x1, γ̃) satisfies

(3.7) V π̃
t ≥ V π̄

t +
x1 − x2

2
≥ x1 − x2

2
, t ∈ [0, T ].

Next, for the continuous process γ̃ define the stopping times

θn := T ∧ inf{t : |γ̃t| = n}, n ∈ N

and the trading strategies

γ̃
(n)
t := It≤θn γ̃t, t ∈ [0, T ].

Set π̃n = (x1, γ̃
(n)). Clearly, |γ̃(n)| ≤ n and from (3.7) we have

V π̃n
t = V π̃

t∧θn ≥
x1 − x2

2
, t ∈ [0, T ].

Hence, π̃n ∈ A0(x1). Observe that θn ↑ T a.s., and so

lim
n→∞

V π̃n
T = lim

n→∞
V π̃
θn = V π̃

T .

This together with Fatou’s Lemma, Assumption 3.1.1 (notice that V π̃n
T ≥ x1−x2

2
> 0),

the fact that U is continuous and (3.7) gives

EP[U(V π̄
T , S)] ≤ EP[U(V π̃

T , S)] ≤ lim inf
n→∞

EP[U(V π̃n
T , S)].

Since π̄ ∈ A(x2) was arbitrary we complete the proof of (3.6).

Step II: In view of (3.6) and Assumption 3.1.2, in order to prove Proposition III.1
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it sufficient to show that for any initial capital x > 0, 0 < ε < x
2

and π ∈ A0(x− 2ε)

there exists a sequence πn ∈ An(x), n ∈ N which satisfies

(3.8) lim inf
n→∞

EPn [U(V πn
T , S(n))] ≥ EP[U(V π

T , S)].

Let 0 < ε < x
2

and π = (x − 2ε, γ) ∈ A0(x − 2ε). Let M > 0 such that |γ| ≤ M .

Lemma 3.3.1 provides the existence of simple integrands γ(n) ∈ Γ
(n)
M , n ∈ N which

satisfy (3.1).

For a given n, the portfolio (x, γ(n)) might fail to be admissible and so a modifi-

cation is needed. Recall Assumption 3.1.4 and the stochastic processes J (n), n ∈ N.

For any n ∈ N introduce the stopping time

(3.9) Θn := T ∧ inf

{
t : x+

∫ t−

0

γ(n)
u dS(n)

u < ε+MdJ
(n)
t

}
,

and define the portfolio πn = (x, γ̄(n)) by γ̄
(n)
t := It≤Θnγ

(n)
t . Let us show that V πn

t ≥ ε

for all t ∈ [0, T ]. Indeed,

V πn
t = x+

∫ t∧Θn

0

γ(n)
u dS(n)

u

≥ x+

∫ t∧Θn−

0

γ(n)
u dS(n)

u −Md|S(n)
t∧Θn− − S

(n)
t∧Θn
|

≥ ε+MdJ
(n)
t∧Θn
−Md|S(n)

Θ − S(n)
Θ−| ≥ ε

as required. The first inequality follows from |γ(n)| ≤ M . The second inequality

follows from the fact that on the time interval [0,Θn) se have x +
∫ ·−

0
γ

(n)
u dS

(n)
u ≥

ε + MdJ
(n)
· . The last inequality is due to J

(n)
Θ ≥ |S(n)

Θ − S
(n)
Θ−|. We conclude that

πn ∈ An(x) and

(3.10) V πn
T = x+

∫ Θn

0

γ(n)
u dS(n)

u ≥ ε.

Next, we apply the Skorokhod representation theorem. Recall that the processes

{J (n)
t }Tt=0, n ∈ N are non–negative, non decreasing and J

(n)
T → 0 in probability. This
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together with (3.1) implies that we have the weak convergence

(3.11)(
{J (n)

t }Tt=0, {S
(n)
t }Tt=0,

{∫ t

0

γ(n)
u dS(n)

u

}T
t=0

)
⇒

(
0, {St}Tt=0,

{∫ t

0

γudSu

}T
t=0

)

on the space D([0, T ];R)× D([0, T ];Rd)× D([0, T ];R).

For any n ∈ N the integrand γ(n) is of the form (3.4). Hence the integrand γ(n)

and the corresponding stochastic integral
∫ ·

0
γ

(n)
u dS

(n)
u are determined pathwise by

S(n). Since γ is of bounded variation then we have∫ t

0

γudSu = γtSt − γ0S0 −
∫ t

0

Sudγu,

where the last term is the pathwise Riemann–Stieltjes integral. We conclude that γ

and the corresponding stochastic integral
∫ ·

0
γudSu are determined pathwise by S.

Thus, from the Skorokhod representation theorem and (3.11) it follows that we

can redefine the stochastic processes γ(n), S(n), J (n), n ∈ N and γ, S on the same

probability space such that (3.5) holds true,

(3.12) sup
0≤t≤T

J
(n)
t → 0 a.s.

and

(3.13) sup
0≤t≤T

∣∣∣∣∫ t

0

γ(n)
u dS(n)

u −
∫ t

0

γudSu

∣∣∣∣→ 0 a.s.

As in (3.5) the uniform convergence is due to the fact that the limit processes are

continuous. By applying (3.9) we redefine Θn, n ∈ N on the common probability

space. With abuse of notations we denote by P and E the probability and the

expectation on the common probability space, respectively.

First, we argue that

(3.14) lim
n→∞

P(Θn = T ) = 1.
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Recall, the admissible portfolio π = (x− 2ε, γ). From (3.13) it follows that

lim inf
n→∞

inf
0≤t≤T

(
x+

∫ t

0

γ(n)
u dS(n)

u

)
= x+ inf

0≤t≤T

∫ t

0

γudSu ≥ 2ε.

In particular

lim
n→∞

P
(

inf
0≤t≤T

(
x+

∫ t

0

γ(n)
u dS(n)

u

)
>

3ε

2

)
= 1.

This together with (3.12) gives (3.14).

Finally, from Fatou’s Lemma, the continuity of U , Assumption 3.1.1(i), Assump-

tion 3.1.3(i) (recall that V πn
T ≥ ε), (3.5), (3.10) and (3.13)–(3.14) we obtain

lim inf
n→∞

EPn [U(V πn
T , S(n))] = lim inf

n→∞
E
[
U

(
x+

∫ Θn

0

γ(n)
u dS(n)

u , S(n)

)]
≥ E

[
U

(
x+

∫ T

0

γudSu, S

)]
≥ EP[U(V π

T , S)],

and (3.8) follows. �

3.4 The Upper Semi–Continuity under Weak Convergence

In this section we prove Proposition III.2.

Proof. Let x > 0. From Assumption 3.1.3(ii) it follows that for any n ∈ N un(x) <

∞. Hence, we can choose a sequence π̂n ∈ An(x), n ∈ N which satisfy (3.3).

Without loss of generality (by passing to a subsequence) we assume that the limit

limn→∞ EPn [U(V π̂n
T , S(n))] exists. We will prove that there exists π̂ ∈ A(x) such that

(3.1) EP[U(V π̂
T , S)] ≥ lim

n→∞
EPn [U(V π̂n

T , S(n))]

and this will give Proposition III.2. The proof will be done in two steps.

Step I: Choose Q ∈ M(S) (recall that we assume M(S) 6= ∅) and set Z := dQ
dP .

From Assumption 3.1.5 it follows that there exists a sequence Qn ∈M(S(n)), n ∈ N

for which (3.1) holds true. For any n, {V π̂n
t }Tt=0 is a Qn super–martingale. Hence,

EPn

(
V π̂n
T

dQn

dPn

)
= EQn [V π̂n

T ] ≤ V π̂n
0 = x.
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We conclude that the sequence
(
V π̂n
T

dQn
dPn ;Pn

)
, n ∈ N is tight. This together with

(3.1) yields that the sequence
((
S(n), dQn

dPn , V
π̂n
T

dQn
dPn

)
;Pn
)

, n ∈ N is tight on the space

D([0, T ];Rd) × R2. From Prohorov’s theorem it follows that there exists a subse-

quence
((
S(n), dQn

dPn , V
π̂n
T

dQn
dPn

)
;Pn
)

(for simplicity the subsequence is still denoted by

n) which converge weakly. From (3.1) we obtain that

(3.2)

((
S(n),

dQn

dPn
, V π̂n

T

dQn

dPn

)
;Pn
)
⇒ (S,Z, Y ),

where Y is some random variable. In particular we have the weak convergence

(3.3)
((
S(n), V π̂n

T

)
;Pn
)
⇒
(
S,
Y

Z

)
.

The random vector (S,Z, Y ) is defined on a new probability space (Ω̃, F̃ , P̃), which

might be different from the original probability space (Ω,F ,P). We redefine the

filtration FS (the usual filtration which is generated by S) and the sets M(S),A(·)

(as before, these sets defined with respect to FS) on the new probability space

(Ω̃, F̃ , P̃).

Set (notice that Y
Z
≥ 0)

(3.4) V := EP̃

(
Y

Z
| FST

)
where a priori V can be equal to ∞ with finite probability. In order to prove (3.1)

it is sufficient to show that there exists π̂ ∈ A(x) such that

(3.5) V π̂
T ≥ V a.s.

Indeed, if (3.5) holds true (in particular V <∞ a.s.), then from the Jensen inequality,

the continuity of U , Assumption 3.1.1(i), Assumption 3.1.3(ii), Assumption 3.1.6 and

(3.3) we obtain

(3.6) EP[U(V π̂
T , S)] ≥ EP̃[U(V, S)] ≥ EP̃

[
U

(
Y

Z
, S

)]
≥ lim

n→∞
EPn [U(V π̂n

T , S(n))]
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as required.

This brings us to the second step.

Step II: In this step we establish (3.5). In view of the optional decomposition

theorem (Theorem 3.2 in [55]) it is sufficient to show that the super-hedging price

which is given by supQ̂∈M(S) EQ̂[V ] is less or equal than x. From (3.4) we obtain

sup
Q̂∈M(S)

EQ̂[V ] = sup
Q̂∈M(S)

EP̃

[
Y

Z

dQ̂
dP̃

]
.

Hence, it remains to prove that for any Q̂ ∈M(S)

(3.7) x ≥ EP̃

[
Y

Z

dQ̂
dP̃

]
.

From Assumption 3.1.5 we get a sequence Q̂n ∈M(S(n)), n ∈ N for which

(3.8)

((
S(n),

dQ̂n

dPn

)
;Pn

)
⇒

((
S,
dQ̂
dP

)
;P

)
.

This together with (3.2) yields that the sequence((
S(n),

dQn

dPn
, V πn

T

dQn

dPn
,
dQ̂n

dPn

)
;Pn

)
, n ∈ N,

is tight on the space D([0, T ];Rd) × R3. From Prohorov’s Theorem and (3.2) there

is a subsequence which converge weakly

(3.9)

((
S(n),

dQn

dPn
, V π̂n

T

dQn

dPn
,
dQ̂n

dPn

)
;Pn

)
⇒ (S,Z, Y,X)

for some random variable X.

Once again, the random vector (S,Z, Y,X) is defined on a new probability space

( ˜̃Ω, ˜̃F , ˜̃P), on which we redefine the filtration FS and the sets M(S),A(·).

Observe that dQ̂
dP is determined by S. Hence, there exists a measurable function

g : D([0, T ];Rd) → R such that dQ̂
dP = g(S) P a.s, i.e. EP|dQ̂dP − g(S)| = 0. From

(3.8)–(3.9) we get that the distribution of (S,X) equals to
((
S, dQ̂

dP

)
;P
)

. Thus,

E˜̃P|X − g(S)| = 0. We conclude that X = g(S) ˜̃P a.s.

69



Finally, from Fatou’s Lemma, (3.9) and the fact that {V π̂n
t }Tt=0 is a Q̂n super–

martingale it follows that

EP̃

(
Y

Z

dQ̂
dP̃

)
= EP̃

(
Y

Z
g(S)

)
= E˜̃P

(
Y g(S)

Z

)
= E˜̃P

(
Y X

Z

)

≤ lim inf
n→∞

EPn

(
V π̂n
T

dQn

dPn

dQ̂n
dPn
dQn
dPn

)
= lim inf

n→∞
EQ̂n [V π̂n

T ] ≤ x,

from which we get (3.7).

Next, we prove Theorem 3.1.2.

3.4.1 Proof of Theorem 3.1.2

In order to prove the statement it is sufficient to show the for any sub–sequence

of laws
(
S(n), V π̂n

T

)
there is a further subsequence which converge weakly to

(
S, V π̂

T

)
.

We stay with notation of the proof of Proposition III.2.

Following the same arguments as in the proof of Proposition III.2 we obtain for

any sub–sequence of laws
(
S(n), V π̂n

T

)
that there is a further sequence which satisfies

(3.3). Moreover, there exists π̂ ∈ A(x) such that (3.5)–(3.6) hold true.

From (3.6), Theorem 3.1.1 (holds true because the required Assumptions are

satisfied) and the fact that π̂n ∈ An(x) are asymptotically optimal we get

u(x) ≥ EP[U(V π̂
T , S)] ≥ EP̃

[
U

(
EP̃

(
Y

Z
| FST

)
, S

)]
≥ EP̃

[
U

(
Y

Z
, S

)]
≥ u(x).

We conclude that all the above inequalities are in fact equalities. This together with

(3.5) and the assumption that U is strictly concave and strictly increasing in the first

variable (follows from Assumption 3.1.1(i) and the strict concavity) implies that

V π̂
T = EP̃

(
Y

Z
| FST

)
=
Y

Z

and π̂ ∈ A(x) is the unique optimal portfolio. This completes the proof. �

We end this section with a remark on how our results can be generalized.
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Remark 3.4.1. Consider the case where the filtration F := FS,Y is the usual fil-

tration generated by S and another RCLL process R = (R
(1)
t , ..., R

(m)
t )0≤t≤T . The

process R can be viewed as a collection of non traded assets.

For the approximate model we take (S(n), R(n)) and a filtration which satisfies

the usual assumptions and makes both S(n) and R(n) adapted. Once again R(n) =

(Rn,1
t , ..., Rn,m

t )0≤t≤T is the collection of non traded assets. Consider a continuous

utility function U : (0,∞)× D([0, T ];Rd)× D([0, T ];Rm)→ R and assume the weak

convergence (S(n), R(n))⇒ (S,R) and an analogous assumptions to those in Section

3.1. Of course, as before the martingale measures are with respect to the traded

assets. Then, by using similar arguments as in Sections 3.3–3.4 we can extend the

main results Theorems 3.1.1-3.1.2 to this setup as well.

3.5 Lattice Based Approximations of the Heston Model

Consider the Heston model [44] given by

dŜt = Ŝt(µdt+
√
ν̂tdWt),

dν̂t = κ(θ − ν̂t)dt+ σ
√
ν̂tdW̃t,

where µ ∈ R, κ, θ, σ > 0 are constants and W , W̃ are two standard Brownian motions

with a constant correlation ρ ∈ (−1, 1). The initial values Ŝ0, ν̂0 > 0 are given. We

assume the condition 2κθ > σ2 which guarantees that ν̂ does not touch zero (see

[24]).

For technical reasons our approximations require that the volatility will lie in an

interval of the form [σ, σ] for some 0 < σ < σ. Thus, we modify the Heston model

as following. Fix two barriers 0 < σ < σ and define the function

h(z) := max(σ2,min(z, σ2)), z ∈ R.
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Consider the SDE

dSt = St(µdt+
√
h(νt)dWt)

(3.10)

dνt = κ(θ − h(νt))dt+ σ
√
h(νt)dW̃t

where the initial values are S0 := Ŝ0, ν0 := ν̂0. Observe that
√
h, h are Lipschitz

continuous, and so (3.10) has a unique solution.

We expect that if σ is small and σ is large then the value of the utility maxi-

mization problem in the Heston model will be close to the one in the model given by

(3.10). For the shortfall risk measure we provide an error estimate in Lemma 3.6.1.

3.5.1 Discretization

In this section we construct discrete time lattice based approximations for the

model given by (3.10). The novelty of our constructions is that the approximating

sequence satisfies Assumptions 3.1.4,3.1.5.

It is more convenient to work with a transformed system of equations driven by

independent Brownian motions. Therefore, we set

Φt := lnSt, Ψt :=
νt
σ
− ρΦt.

From Itô’s formula we obtain that

dΦt = µΦ(Φt,Ψt)dt+ σΦ(Φt,Ψt)dWt

dΨt = µΨ(Φt,Ψt)dt+ σΨ(Φt,Ψt)dŴt

where

µΦ(y, z) := µ− h (σ(ρy + z)) /2, σΦ(y, z) :=
√
h (σ(ρy + z)),

µΨ(y, z) := κ
σ

(θ − h (σ(ρy + z)))− ρµΦ(y, z), σΨ :=
√

(1− ρ2)σΦ,
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and Ŵ := W̃−ρW√
1−ρ2

is a Brownian motion independent of W .

Next, we define lattice based approximations for the process (Φ,Ψ). Choose

σ̃ ≥ σ. For any n ∈ N define the stochastic processes Φ
(n)
t ,Ψ

(n)
t , t ∈ [0, T ] by

Φ
(n)
t := Φ0 + σ̃

√
T
n

∑k
i=1 ξi,

kT
n
≤ t < (k+1)T

n

Ψ
(n)
t := Ψ0 + σ̃

√
T
n

∑k
i=1 ξ̂i,

kT
n
≤ t < (k+1)T

n

where ξi, ξ̂i ∈ {−1, 0, 1}. Observe that the processes Φ(n) − Φ0, Ψ(n) −Ψ0 lie on the

grid σ̃
√

T
n
{−n, 1− n, ..., n}.

Let F (n)
t , t ≤ T be the piece wise constant filtration generated by the processes

Φ(n),Ψ(n). Namely,

F (n)
t := σ

{
ξ1, ..., ξk, ξ̂1, ..., ξ̂k

}
, kT/n ≤ t < (k + 1)T/n.

It remains to define the probability measure Pn. First since W and Ŵ are indepen-

dent Brownian motions we require that for all a, b ∈ {−1, 0, 1} and k ≥ 1

Pn
(
ξk = a, ξ̂k = b|F (n)

(k−1)T
n

)
:= Pn

(
ξk = a|F (n)

(k−1)T
n

)
Pn
(
ξ̂k = b|F (n)

(k−1)T
n

)
.

In order to match the drift and the volatility, we set,

Pn
(
ξk = ±1|F (n)

(k−1)T
n

)
:=

σ2
Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃2 ±

√
T
n

µΦ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃

,

Pn
(
ξk = 0|F (n)

(k−1)T
n

)
:= 1−

σ2
Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ̃2 ,

and

Pn
(
ξ̂k = ±1|F (n)

(k−1)T
n

)
:=

σ2
Ψ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃2 ±

√
T
n

µΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃

,

Pn
(
ξ̂k = 0|F (n)

(k−1)T
n

)
:= 1−

σ2
Ψ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ̃2 .

Observe that for sufficiently large n, the right hand side of the above equations all

lie in the interval [0, 1].
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Proposition III.3. For any n ∈ N (sufficiently large) consider the financial market

given by S(n) := eΦ(n)
and the filtration F (n) defined above. Then, the following holds

true.

(I) We have the weak convergence S(n) ⇒ S to the modified Heston model.

(II) Assumption 3.1.4 holds true.

Proof.

Proof of (I). Let us prove that

(3.11) (Φ(n),Ψ(n))⇒ (Φ,Ψ).

Clearly, (3.11) implies that S(n) ⇒ S.

From the definition of Pn we have

(3.12) EPn

(
Φ

(n)
kT
n

− Φ
(n)
(k−1)T

n

∣∣F (n)
(k−1)T

n

)
=
T

n
µΦ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
,

(3.13) EPn

(
Ψ

(n)
kT
n

−Ψ
(n)
(k−1)T

n

∣∣F (n)
(k−1)T

n

)
=
T

n
µΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
,

EPn

(
(Φ

(n)
kT
n

− Φ
(n)
(k−1)T

n

)2
∣∣F (n)

(k−1)T
n

)
=
T

n
σ2

Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
,

EPn

(
(Ψ

(n)
kT
n

−Ψ
(n)
(k−1)T

n

)2
∣∣F (n)

(k−1)T
n

)
=
T

n
σ2

Ψ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
and

EPn

(
(Φ

(n)
kT
n

− Φ
(n)
(k−1)T

n

)(Ψ
(n)
kT
n

−Ψ
(n)
(k−1)T

n

)
∣∣F (n)

(k−1)T
n

)
= O(n−2).

Thus, (3.11) follows from the the martingale convergence result Theorem 7.4.1 in

[37].

Proof of II. The statement follows from applying Example 3.2.2 for mn = n, τ
(n)
i =

(i− 1)T/n and an = eσ̃
√

T
n − 1.
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3.5.2 Verification of Assumption 3.1.5

We start with some preparations. Denote by D the set of all stochastic pro-

cesses Υ = {Υt}Tt=0 of the form Υ = F (Φ) where F : D([0, T ];R) → D([0, T ];R)

is a bounded, continuous function (we take the Skorokhod topology on the space

D([0, T ];R) and F is a progressively measurable map. Namely, for any t ∈ [0, T ] and

f (1), f (2) ∈ D([0, T ];R), f
(1)
[0,t] = f

(2)
[0,t] implies that Ft(f

(1)) = Ft(f
(2)).

Define the set

Md(S) :={
Q : ∃Υ ∈ D, dQ

dP |F
S
T = e

∫ T
0

−µ√
h(νt)

dWt+
∫ T
0 ΥtdŴt−

∫ T
0

µ2

2h(νt)
dt−

∫ T
0

1
2

Υ2
tdt
}
.

From the Girsanov theorem it follows that Md(S) ⊂ M(S). Moreover, since Φ =

lnS then the usual filtration which is generated by S equals to the usual filtration

which is generated by Φ. Hence standard arguments yield that Md(S) ⊂ M(S) is

dense.

Choose an arbitrary Υ = F (Φ) ∈ D and denote

(3.14) Zt := e
∫ t
0

−µ√
h(νu)

dWu+
∫ t
0 ΥudŴu−

∫ t
0

µ2

2h(νu)
du−

∫ t
0

1
2

Υ2
udu
, t ∈ [0, T ].

It is sufficient to prove that (recall Remark 3.1.2) there exists a sequence of proba-

bility measures Qn ∈ M(S(n)), n ∈ N, such that for the processes Z
(n)
t := dQn

dPn |F
(n)
t ,

t ∈ [0, T ], we have the weak convergence

(3.15) (S(n), Z(n))⇒ (S,Z).

For any n ∈ N (sufficiently large) define the probability measure Qn by the following

relations

Qn

(
ξk = a, ξ̂k = b|F (n)

(k−1)T
n

)
:= Qn

(
ξk = a|F (n)

(k−1)T
n

)
Qn

(
ξ̂k = b|F (n)

(k−1)T
n

)
,
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Qn

(
ξk = ±1|F (n)

(k−1)T
n

)
:=

σ2
Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ̃2
(

1 + e±σ̃
√

T
n

) ,

Qn

(
ξk = 0|F (n)

(k−1)T
n

)
:= 1−

σ2
Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ̃2

,

(3.16)

and

Qn

(
ξ̂k = ±1|F (n)

(k−1)T
n

)
:=

σ2
Ψ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃2

±
√
T

n

F (k−1)T
n

(Φ(n))σΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
+ µΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
2σ̃

,

Qn

(
ξ̂k = 0|F (n)

(k−1)T
n

)
:= 1−

σ2
Ψ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ̃2

.

Observe that (3.16) implies Qn ∈M(S(n)).

Lemma 3.5.1. We have the weak convergence

(Φ(n),Ψ(n), Z(n))⇒ (Φ,Ψ, Z).

Proof. In order to prove the lemma it suffices to show that for any subsequence there

exists a further subsequence (still denoted by n) such that

(3.17) (Φ(n),Ψ(n), Z(n))⇒ (Φ,Ψ, Z).

Fix n ∈ N. By applying Taylor’s expansion we obtain that there exist uniformly

bounded (in n) processes En,1
k , En,2

k , k = 0, 1, ..., n such that

Qn

(
ξk|F (n)

(k−1)T
n

)
Pn
(
ξk|F (n)

(k−1)T
n

) = 1− σ̃ξk

√
T

n

1

2
+

µΦ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ2

Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
+

En,1
k

n
+ o(1/n)

and

Qn

(
ξ̂k|F (n)

(k−1)T
n

)
Pn
(
ξ̂k|F (n)

(k−1)T
n

) = 1 + σ̃ξ̂k

√
T

n

F (k−1)T
n

(Φ(n))

σΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

) +
En,2
k

n
+ o(1/n).
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We conclude that there exists a uniformly bounded (in n) process E
(n)
k , k = 0, 1..., n

such that

Z
(n)
kT
n

− Z(n)
(k−1)T

n

Z
(n)
(k−1)T

n

=

Qn

(
ξk|F (n)

(k−1)T
n

)
Pn
(
ξk|F (n)

(k−1)T
n

) Qn

(
ξ̂k|F (n)

(k−1)T
n

)
Pn
(
ξ̂k|F (n)

(k−1)T
n

) − 1

= −(Φ
(n)
kT
n

− Φ
(n)
(k−1)T

n

)

1

2
+

µΦ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)
σ2

Φ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

)


+ (Ψ
(n)
kT
n

−Ψ
(n)
(k−1)T

n

)
F (k−1)T

n

(Φ(n))

σΨ

(
Φ

(n)
(k−1)T

n

,Ψ
(n)
(k−1)T

n

) +
E

(n)
k

n
+ o(1/n).

(3.18)

In particular,

(
Z

(n)
kT
n

−Z(n)
(k−1)T

n

Z
(n)
(k−1)T

n

)2

is of order O(1/n). Since Z(n) is a martingale, then

by taking conditional expectation we arrive to

EPn

(
[Z

(n)
kT
n

]2|F (n)
(k−1)T

n

)
= [Z

(n)
(k−1)T

n

]2(1 +O(1/n)).

By taking expectation we obtain

EPn

(
[Z

(n)
kT
n

]2
)

= EPn

(
[Z

(n)
(k−1)T

n

]2
)

(1 +O(1/n)).

This together with the Doob–Kolmogorov inequality gives

(3.19) sup
n∈N

EPn

(
sup

0≤t≤T
[Z

(n)
t ]2

)
≤ 4 sup

n∈N
EPn

(
[Z

(n)
T ]2

)
<∞.

Next, define Ê
(n)
k := EPn

(
E

(n)
k |F

(n)
(k−1)T

n

)
, k = 1, ..., n and consider the martingale

M̂
(n)
k :=

1

n

k∑
i=1

(E
(n)
i − Ê

(n)
i ), k = 0, 1, ..., n.

Since E(n), n ∈ N, are uniformly bounded then

EPn

(
max0≤k≤n |M̂ (n)

k |2
)
≤ 4EPn

(
|M̂ (n)

n |2
)

= 4
n2

∑n
i=1 EPn

[(
E

(n)
i − Ê

(n)
i

)2
]

= O(1/n).
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Thus,

(3.20) max
0≤k≤n

|M̂ (n)
k | → 0 in probability.

Introduce the adapted (to F (n)) processes

Ξ
(n)
t :=

∫ t
0
Ê

(n)
b∗cnu/Tdu, t ∈ [0, T ]

M
(n)
t := M̂

(n)
b∗cnt/T , t ∈ [0, T ]

where b∗c· is the integer part of · and Ê
(n)
0 := E

(n)
0 .

Again, E(n), n ∈ N, are uniformly bounded, and so Ξ(n), n ∈ N, is tight. From

(3.11) and (3.20) we conclude that the sequence (Φ(n),Ψ(n),Ξ(n),M (n)), n ∈ N, is

tight as well. Thus, from Prohorov’s Theorem, (3.11) and (3.20) it follows that for

any subsequence there exists a further subsequence such that

(3.21) (Φ(n),Ψ(n),Ξ(n),M (n))⇒ (Φ,Ψ,Ξ, 0)

for some absolutely continuous process Ξ = {Ξt}Tt=0. From Theorems 4.3–4.4 in [35],

(3.18), (3.21) and the equality
E

(n)
k

n
=

Ê
(n)
k

n
+ M̂

(n)
k − M̂

(n)
k−1 we obtain that

(Φ(n),Ψ(n),Ξ(n),M (n), Z(n))⇒ (Φ,Ψ,Ξ, 0, Ẑ)

where Ẑ is the solution of the SDE

(3.22)
dẐt

Ẑt
= −

(
1

2
+
µΦ(Φt,Ψt)

σ2
Φ(Φt,Ψt)

)
dΦt +

Υt

σΨ(Φt,Ψt)
dΨt +

dΞt

T

with the initial condition Ẑ0 = 1.

Finally, (3.19) implies that for any t ∈ [0, T ] the random variables {Z(n)
t }n∈N are

uniformly integrable. This together with the fact that for any n, Z(n) is a martingale

with respect to the filtration generated by Φ(n),Ψ(n),Ξ(n),M (n), Z(n) gives that Ẑ is

a martingale with respect to the filtration generated by Φ,Ψ,Ξ, Ẑ. Moreover, from
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(3.12)–(3.13) we get that {Φt −
∫ t

0
µΦ(Φu,Ψu)du}Tt=0 and {Ψt −

∫ t
0
µΨ(Φu,Ψu)du}Tt=0

are martingales with respect to the filtration generated by Φ,Ψ,Ξ, Ẑ. In particular,

from Lévy’s Theorem it follows that the stochastic processes W and Ŵ which we

redefine by

Wt :=
Φt −

∫ t
0
µΦ(Φu,Ψu)du

σΦ(Φt,Ψt)
, Ŵt :=

Ψt −
∫ t

0
µΨ(Φu,Ψu)du

σΨ(Φt,Ψt)

are (independent) Brownian motions with respect to the filtration generated by

Φ,Ψ,Ξ, Ẑ. We conclude that the drift of the right hand side of (3.22) is equal

to zero. Namely,

dẐt

Ẑt
= −

(
1

2
+
µΦ(Φt,Ψt)

σ2
Φ(Φt,Ψt)

)
σΦ(Φt,Ψt)dWt + ΥtdŴt =

dZt
Zt

,

where the last equality follows from (3.14). Hence, Ẑ = Z and (3.17) follows.

Clearly, Lemma 3.5.1 implies (3.15). This gives us the following result.

Proposition III.4. Consider the set-up of Proposition III.3. Assumption 3.1.5 holds

true.

We end this section by addressing condition (II) in Lemma 3.1.2.

Remark 3.5.1. Consider the martingale measures Qn ∈ M(S(n)), n ∈ N which

were defined before Lemma 3.5.1 for Υ ≡ 0. Since µΦ, σΦ, 1
σΦ are uniformly bounded,

then standard arguments yield that for any q > 0 (3.5) holds true.

3.6 Approximations of the Shortfall Risk in the Heston Model

In this section we focus on shortfall risk minimization for European call options

(which corresponds to U given by (3.1)) in the Heston model. We start with the

following estimate.
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Lemma 3.6.1. For an initial capital x let R̂(x) be the shortfall risk in the Heston

model and let R(x) be the shortfall risk in the model given by (3.10). Then for any

m ∈ N

|R̂(x)−R(x)| ≤ O(σ2κθ/σ2−1) +O(1/σm),

where the O terms do not depend on x.

Proof. Define the stopping time

Θσ,σ := T ∧ inf{t :
√
ν̂t /∈ (σ, σ)}.

Observe that on the event Θσ,σ = T the processes Ŝ and S coincide. Hence,

(3.23) |R̂(x)−R(x)| ≤ EP[(ŜT + ST )IΘσ,σ<T ] ≤ 2eµTEP[e−µΘσ,σ Ŝθσ,σIΘσ,σ<T ]

where the last inequality is due to the fact that the processes e−µtŜt, e
−µtSt, t ∈ [0, T ]

are martingales.

Introduce the probability measure P by dP
dP |F

S
T :=

e
−µΘσ,σ ŜΘσ,σ

S0
. Then by Girsanov

theorem the process Wt := W̃t−ρ
∫ t∧Θσ,σ

0

√
ν̂u, t ∈ [0, T ], is a Brownian motion with

respect to P. Let {αt}Tt=0 be the unique strong solution of the SDE

dαt = (κ(θ − αt) + σραt) dt+ σ
√
αtdWt, α0 = ν̂0.

Observe that

(3.24) α[0,Θσ,σ ] = ν̂[0,Θσ,σ ].

Clearly, for any m ∈ N we have

EP

(
sup

0≤t≤T
[
√
αt]

m

)
<∞.

Thus, from the Markov inequality we get

(3.25) P

(
sup

0≤t≤T

√
αt ≥ σ

)
= O(1/σm), ∀m ∈ N.
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Moreover, from Theorem 2 in [41] it follows that

(3.26) P

(
inf

0≤t≤T

√
αt ≤ σ

)
= O(σ2κθ/σ2−1).

By combining (3.23)–(3.26) we conclude that

|R̂(x)−R(x)| ≤ 2S0e
µT

(
P

(
inf

0≤t≤T

√
αt ≤ σ

)
+ P

(
sup

0≤t≤T

√
αt ≥ σ

))
≤ O(σ2κθ/σ2−1) +O(1/σm)

as required.

Next, we focus on approximating the shortfall risk in the model given by (3.10). In

order to apply Theorem 3.1.1 we need to verify the required Assumptions. Observe

that Assumption 3.1.1, Assumption 3.1.3(ii) (U+ ≡ 0) and Assumption 3.1.6 trivially

hold true. Moreover, from Remark 3.1.5 we obtain Assumption 3.1.2. Since the drift

and the volatility are uniformly bounded we get that the random variables {S(n)
T }n∈N

are uniformly integrable, which gives Assumption 3.1.3(i). In view of Propositions

III.3,III.4 we conclude that our Assumptions are satisfied and so Theorem 3.1.1 holds

true.

Thus, fix n ∈ N and recall the discrete models introduced in Section 3.5.1. The

stock price process S(n) is piece wise constant and so the investor trades only at the

jump times kT
n

, k = 0, 1..., n. Notice that
{∑k

m=1 ξm,
∑k

m=1 ξ̂m

}n
k=0

is a lattice valued

Markov chain (with respect to Pn). Hence, we introduce the functions J
(n)
k (i, j, λ),

k = 0, 1..., n such that J
(n)
k (i, j, λ) measures the shortfall risk at time kT/n given

that
∑k

m=1 ξm = i,
∑k

m=1 ξ̂m = j, and λ is the ratio of the portfolio value and the

stock price. The stock price is recovered by

S
(n)
kT
n

= S0e
σ̃
√

T
n

∑k
m=1 ξm = S0e

iσ̃
√

T
n .
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Clearly, if λ ≥ 1, then the shortfall risk is zero because we can buy the stock and

hold it until maturity. Namely, J
(n)
k (i, j, λ) = 0 for λ ≥ 1. Hence, we assume that

λ ∈ [0, 1].

Next, we describe the dynamic programming principle to solve the discrete control-

problem. At time kT/n the investor decides about his investment policy. Assume

that the investor portfolio value is λS
(n)
kT
n

. We have a trinomial model with growth

rates
{
e−σ̃
√

T
n , 1, eσ̃

√
T
n

}
. From the binomial representation theorem we easily deduce

that the set of replicable portfolios at time (k+1)T/n are of the form Λ(ξk+1)S
(n)
(k+1)T

n

where Λ : {−1, 0, 1} → R satisfies Λ(0) = λ and

Λ(−1) + Λ(1)eσ̃
√

T
n

1 + eσ̃
√

T
n

= λ.

Thus, if Λ(−1) is known then we set

(3.27) Λ(1) := 1 ∧
(
λ(1 + e−σ̃

√
T
n )− Λ(−1)e−σ̃

√
T
n

)
.

We take a truncation in order to have Λ(1) ∈ [0, 1]. In view of our admissibility

condition, we denote by A(λ) the set of all Λ(−1) ∈ [0, 1] for which the right hand

side of (3.27) is non-negative.

We arrive to the following recursive relations. Define

J
(n)
k (i, j, λ) : {−k, 1− k, ..., k} × {−k, 1− k, ..., k} × [0, 1]→ R+, k = 0, 1, ..., n

by

J (n)
n (i, j, λ) := U

(
λS0 exp

(
iσ̃

√
T

n

)
, S0 exp

(
iσ̃

√
T

n

))
,

and for k < n,

J
(n)
k (i, j, λ) :=

sup
Λ(−1)∈A(λ)

EPn

(
J

(n)
k+1

(
i+ ξm+1, j + ξ̂m+1,Λ(ξm+1)

)∣∣∣∣ k∑
m=1

ξm = i,
k∑

m=1

ξ̂m = j

)
(3.28)
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where Λ(0) = λ and Λ(1) is given by (3.27). For k = 0 we have J
(n)
0 (x/S0) = un(x).

Observe that the functions J
(n)
k (i, j, λ) are piece wise linear and continuous in λ,

and so they can be represented by an array which consists of the slope values and

the slope jump points. This together with the condition J
(n)
k (i, j, 1) = 0 is sufficient

to recover the function. Of course the array will depend on time kT/n and the

states i, j. Thus, theoretically, the dynamic programming given by (3.28) can be

implemented using a computer. However, from practical point of view the number

of the slope points of the function J
(n)
k grows exponentially (in n − k), and so for

large n it cannot be implemented. Hence, we need to introduce a grid structure for

the portfolio value as well.

Thus, choose M ∈ N and consider the grid

(3.29) GR :=

{
0,

1

M
,

2

M
, ..., 1

}
.

For a given Λ(−1) ∈ GR we define two grid values for Λ(1). The first value is

(3.30) Λ−(1) := 1 ∧
b∗c
(
λ(1 + e−σ̃

√
T
n )− Λ(−1)e−σ̃

√
T
n

)
M

M

where, recall that b∗c· is the integer part of ·. The second value is

(3.31) Λ+(1) := 1 ∧
d∗e
(
λ(1 + e−σ̃

√
T
n )− Λ(−1)e−σ̃

√
T
n

)
M + 1

M

where d∗e · = min{n ∈ Z : n ≥ ·}. Define two value functions

(3.32)

J
(n)
k (±, i, j, λ) : {−k, 1− k, ..., k} × {−k, 1− k, ..., k} ×GR→ R+, k = 0, 1, ..., n

as following. The terminal condition is

J (n)
n (±, i, j, λ) := U

(
λS0 exp

(
iσ̃

√
T

n

)
, S0 exp

(
iσ̃

√
T

n

))
.
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For k < n,

J
(n)
k (±, i, j, λ)

:= max
Λ(−1)∈A(λ)

⋂
GR

EPn

(
J

(n)
k+1

(
±, i+ ξm+1, j + ξ̂m+1,

Λ±(ξm+1)

)∣∣∣∣ k∑
m=1

ξm = i,

k∑
m=1

ξ̂m = j

)
where Λ±(−1) = Λ(−1), Λ±(0) = λ and Λ±(1) are given by (3.30)–(3.31).

For k = 0 we obtain two values J
(n)
0 (+, x/S0) and J

(n)
0 (−, x/S0). Observe that

the complexity of the above dynamic programming is polynomial in M,n. For the

exact value un(x) = J
(n)
0 (x/S0) we have the following simple lemma.

Lemma 3.6.2. Assume that x
S0
∈ GR. Then

Jn(x/S0) ∈ [J
(n)
0 (−, x/S0), J

(n)
0 (+, x/S0)].

Proof. The inequality J
(n)
0 (−, x/S0) ≤ J

(n)
0 (x/S0) is obvious. Let us prove that

J
(n)
0 (x/S0) ≤ J

(n)
0 (+, x/S0). Choose λ ∈ GR and Λ̃(−1), Λ̃(1) ∈ [0, 1] which satisfy

(3.27). Define Λ(−1) := 1 ∧ d∗eΛ̃(−1)M
M

and let Λ+(1) be given by (3.31). Then it is

straightforward to check that Λ(−1) ≥ Λ̃(−1) and Λ+(1) ≥ Λ̃(1). Hence, by applying

backward induction (on k) and the fact that J
(n)
k (i, j, λ) is non-decreasing in λ we

get that for any k, J
(n)
k (·) ≤ J

(n)
k (+, ·) where we take the restriction of J

(n)
k (·) to

{−k, 1 − k, ..., k} × {−k, 1 − k, ..., k} × GR. For k = 0, we obtain J
(n)
0 (x/S0) ≤

J
(n)
0 (+, x/S0) as required.

Remark 3.6.1. By using the fact that U is Lipschitz continuous in the first variable,

it can be shown that the difference J
(n)
0 (+, x/S0)−J (n)

0 (−, x/S0) is of order O(n/M).

In practice this difference goes to zero much faster (in M). As we will see in the

following numerical results, already for M “close” to n the difference J
(n)
0 (+, x/S0)−

J
(n)
0 (−, x/S0) becomes very small.
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3.6.1 Numerical Results

In this section we implement numerically the above described procedure. In Table

3.1 and in the corresponding Figure 3.1 we compute the functions defined in (3.32).

To serve as a reference we also evaluate the function u(x) = −EP [((ST −K)+ − x)+] ,

a lower bound, which corresponds to the value of spending no extra effort in reducing

the shortfall.

J
(n)
0 (−, x/S0) J

(n)
0 (+, x/S0) u

(n)
0 (x)

x=0 -24.5421 -24.0371 -24.6095

x=5 -18.4702 -17.7050 -21.4086

x=10 -12.3159 -11.6165 -18.2077

x=15 -7.0529 -6.3398 -16.3018

x=20 -2.7913 -2.2453 -14.3959

x=25 -0.6802 -0.4201 -12.4901

x=30 -0.0825 -0.0274 -10.5842

x=35 -0.0043 -0.0004 -8.6783

x=40 0 0 -7.1540

x=45 0 0 -6.4423

x=50 0 0 -5.7306

x=55 0 0 -5.0190

x=60 0 0 -4.3073

x=70 0 0 -2.8840

x=80 0 0 -2.0045

x=90 0 0 -1.6418

x=100 0 0 -1.2792

Table 3.1: Shortfall risk minimization for call options. Parameters used in computation: K = 90, σ =
1, σ̃ = 5, σ = 0.0001, σ = 0.39, ρ = −0.64, κ = 1.15, θ = 0.348, µ = 0.05, S0 = 100, T =
1, ν0 = 0.09, n = 400,M = 400
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Figure 3.1: Plot of the values reported in Table 3.1.

In the next table we analyze the sensitivity of the problem to σ. The smaller this

parameter, the faster the algorithm takes. Although, Lemma 3.6.1 indicates an error

bound for large σ (which was obtained by an application of Markov’s inequality), we

observe that we can in practice take σ = 1 for our parameters.

σ = 0.4(0.1757) σ = 0.6(0.8085) σ = 0.8(0.9939) σ = 1 σ = 2
x=0 -15.3139 -23.1077 -22.0861 -24.5421 -24.5421

x=10 -4.1129 -9.6884 -10.9334 -12.3159 -12.3159

x=20 -0.1435 -4.5287 -1.9145 -2.7913 -2.7913

Table 3.2: Variation with respect to σ. Parameters are the same as in Table 3.1. The values in the
parentheses represent P(Θσ,σ < T ) rounded to 4 decimals points. We did not indicate
these values when this probability is extremely close to 1.

In Table 3.3 we analyze the sensitivity of solution to the grid size of the control
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variable defined in (3.29). We observe, as stated in Remark 3.6.1, that the we can

actually take M = kn, where k < 1. In this table, we determine the range of k we

can choose. We observe that choosing n larger leads to more error reduction than

choosing k larger. We have also checked this for values of k > 1.

M=n/4 M=n/2 M=n
n=50 -9.2138 -6.6971 -6.6586
n=100 -5.4667 -5.4282 -5.4238
n=200 -3.7184 -3.6541 -3.6448
n=400 -2.9834 -2.8392 -2.7913
n=800 -2.6675 -2.5299 -2.4833

Table 3.3: Variation with respect to M . x = 20. Other parameters are the same as in Table 3.1.

Table 3.4 and the corresponding Figure 3.4 demonstrate the convergence with

respect to n. We observe that the convergence rate is a power of n. We leave the

rigorous demonstration of this result for future work.

M=n/4
Jn
0 (−,x/S0)−Jn/2

0 (−,x/S0)

|Jn/2
0 (−,x/S0)|

n=50 -9.2138 –
n=100 -5.4667 0.4067
n=200 -3.7184 0.3198
n=400 -2.9834 0.1977
n=800 -2.6675 0.1059
n=1600 -2.6171 0.0189

Table 3.4: x = 20. Other parameters are the same as in Table 3.1.
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Figure 3.2: Plot of the values in Table 3.4.
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CHAPTER IV

Disorder Detection with Costly Observations

In this chapter we study the Wiener disorder detection problem where each ob-

servation is associated with a positive cost. This is a foumous problem which has

been studied for much of twentieth century. In our setting, a strategy is a pair con-

sisting of a sequence of observation times and a stopping time corresponding to the

declaration of disorder. We characterize the minimal cost of the disorder problem

with costly observations as the unique fix-point of a certain jump operator, and we

determine the optimal strategy. More details can be found in paper [13].

4.1 Problem Formulation

Let (Ω,F ,Pπ) be a probability space hosting a Brownian motion W and an inde-

pendent random variable Θ having distribution

Pπ{Θ = 0} = π, Pπ{Θ > t} = (1− π)e−λt, t ≥ 0,

where π ∈ [0, 1]. We assume that the observation process (Xt)t≥0 is given by

(4.1) Xt = α(t−Θ)+ +Wt,

i.e. a Brownian motion which after the random (disorder) time Θ drifts at rate α.

Our objective is to detect the unknown disorder time Θ based on the observations
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of Xt as quickly after its occurrence as possible, but at the same time with a small

proportion of false alarms. A classical Bayes’ risk associated with a stopping strategy

τ (where τ is a stopping time with respect to some appropriate filtration) is given by

(4.2) Pπ(τ < Θ) + cEπ[(τ −Θ)+],

where c > 0 is a cost associated to the detection delay.

In the classical version of the detection problem, see [71], observations of the

underlying process are costless, and a solution can be obtained by making use of the

associated formulation in terms of a free-boundary problem. Subsequent literature

has, among different things, focused on the case of costly observations. In [5] and

[27], a version of the problem was considered in which observations of increments of

the underlying process are costly, and where the cost is proportional to the length of

the observation time. An alternative set-up was considered in [16], where the number

of observations of the underlying process is limited.

In the current chapter, we consider a model in which observations of X are un-

restricted, but where each observation is associated with an observation cost d > 0.

We stress the fact that we assume that the controller observes values of the process

X, as opposed to increments of X as in [5] and [27]. In a related work [36], the se-

quential hypothesis testing problem for the drift of a Wiener process was considered

under the same assumption of costly observations.

Due to the discrete cost of each observation, our observation strategies will consist

of finitely many samples; this motivates the following definition.

Definition 4.1.1. A strictly increasing sequence τ̂ = {τ1, τ2, · · · } of random variables

is said to belong to T if τ1 is positive and deterministic and if τj is measurable with

respect to σ(Xτ1 , · · · , Xτj−1
, τ1, · · · , τj−1), j = 2, 3, · · · . For a given sequence τ̂ ∈ T ,
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let

F τ̂t = σ(Xτ1 , · · · , Xτj , τ1, · · · , τj; where j = sup{k : τk ≤ t}),

let Fτ̂ = (F τ̂t )t≥0, and denote by S τ̂ the stopping times with respect to Fτ̂ .

A useful result regarding the structure of the stopping times is the following result

which is presented as Proposition 2.1 in [16].

Lemma 4.1.1. Let τ̂ ∈ T , and let S be an Fτ̂ -stopping time. Then for each j ≥ 1,

both S1{τj≤S<τj+1} and 1{τj≤S<τj+1} are Fτ̂τj -measurable.

We generalize the Bayes’ risk defined in (4.2) by formulating the quickest detection

problem with observation costs as

V (π) = inf
τ̂∈T

inf
τ∈S τ̂

{
Pπ(τ < Θ) + Eπ

[
c (τ −Θ)+ + d

∞∑
k=1

1{τk≤τ}

]}
.(4.3)

Here the positive constant c represents the cost of detection delay, and the positive

constant d represents the cost for each observation. Note that the observer has two

controls: she controls the observation sequence τ̂ , and also needs to decide when the

change happened, which is the role of τ .

Problem (4.3) can be formulated as a control problem in terms of the a posteriori

probability process

(4.4) Πτ̂
t := Pπ(Θ ≤ t

∣∣F τ̂t )

as

(4.5) V (π) = inf
τ̂∈T

inf
τ∈S τ̂

ρπ(τ̂ , τ),

where

ρπ(τ̂ , τ) := Eπ

[
1− Πτ̂

τ + c

∫ τ

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ}

]
.

The computations are analogous to, e.g., [68, Proposition 5.8]. Observe that we can

restrict ourselves to stopping times with E[τ ] <∞.
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Remark 4.1.1. Clearly, V (π) ≥ 0. Moreover, choosing τ = 0 yields V (π) ≤ 1− π.

For π = 1, the a posteriori probability process Πτ̂
t is constantly equal to 1. If

π ∈ [0, 1), then Πτ̂
t can (see [16] and [30]) be expressed recursively as

(4.6) Πτ̂
t =


π t = 0,

1− (1− Πτ̂
τk−1

)e−λ(t−τk−1) τk−1 < t < τk,

j(τk−τk−1,Π
τ̂
τk−1

,Xτk−Xτk−1
)

1+j(τk−τk−1,Πτ̂τk−1
,Xτk−Xτk−1

)
t = τk,

where k ≥ 1, τ0 := 0, and

j(t, π, x) = exp

{
αx+ (λ− α2

2
)t

}
π

1− π
+ λ

∫ t

0

exp

{
(λ+

αx

t
)u− α2u2

2t

}
du.

Thus at an observation time τk, the process Πτ̂ jumps from

1− (1− Πτ̂
τk−1

)e−λ(τk−τk−1)

to

j(τk − τk−1,Π
τ̂
τk−1

, Xτk −Xτk−1
)

1 + j(τk − τk−1,Πτ̂
τk−1

, Xτk −Xτk−1
)
.

Moreover, (t,Πτ̂
t ) with respect to Fτ̂ is a piece-wise deterministic Markov process in

the sense of [28, Section 2] and therefore has the strong Markov property.

At time t = 0, the observer could decide that he will not be making any obser-

vations (by setting τ1 = ∞). Then Πτ̂ evolves deterministically (see (4.6)), and the

corresponding cost of following that strategy is thus given by

F (π) = inf
t≥0

{
1− Πτ̂

t + c

∫ t

0

Πτ̂
sds

}
= inf

t≥0

{
(1− π)e−λt + ct− c(1− π)

1− e−λt

λ

}

=


c
λ

(
π + log (λ+c)(1−π)

c

)
π < λ

c+λ
;

1− π π ≥ λ
c+λ

.

92



Moreover, the optimizer t∗ is given by

(4.7) t∗(π) =


1
λ

log (λ+c)(1−π)
c

π < λ
c+λ

;

0 π ≥ λ
c+λ

.

For a given sequence τ̂ ∈ T of observations, let S τ̂0 ⊆ S τ̂ denote the set of Fτ̂ -

stopping times τ such that Pπ-a.s. τ = τk for some k = k(ω).

Proposition IV.1. The quickest detection problem with costly observations V (π) in

(4.3) can be represented as

V (π) = inf
τ̂∈T

inf
τ∈S τ̂0

Eπ
[
F (Πτ̂

τ ) + cτ − c

λ

∞∑
k=0

(1− Πτ̂
τk

)(1− e−λ(τk+1−τk))1{τk+1≤τ}

+ d
∞∑
k=1

1{τk≤τ}

]
,

(4.8)

i.e. the value function is a combined optimal stopping and impulse control problem.

Proof. It follows from Lemma 4.1.1 that any stopping time τ̄ ∈ S τ̂ can be written

as τ̄ = τ + t̄, for τ ∈ S τ̂0 and for some Fτ̂τ -measurable random variable t̄. Then by

conditioning at τ first, optimizing over the stopping times in S τ̂ and then taking

expectations we obtain

(4.9) V (π) = inf
τ̂∈T

inf
τ∈S τ̂0

Eπ

[
F (Πτ ) + c

∫ τ

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ}

]
.

The rest of the proof can be done using (4.6) and partitioning the integral into

integrals over [τi, τi+1).

4.2 A functional characterization of the value function

In this section we study the value function V and its relation to a certain operator

J . To define the operator J , let

F := {f : [0, 1]→ [0, 1] measurable and such that f(π) ≤ 1− π}
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and set

J f(π) = min{F (π), inf
t>0
J0f(π, t)}

for f ∈ F, where

J0f(π, t) := d+ Eπ
[
f

(
j(t, π,Xt)

1 + j(t, π,Xt)

)
+ c(t−Θ)+

]
.

Note that

Eπ
[
(t−Θ)+

]
= t− (1− π)

1− e−λt

λ
,

so

(4.10) J0f(π, t) = d+ Eπ
[
f

(
j(t, π,Xt)

1 + j(t, π,Xt)

)
+ ct− c(1− π)

1− e−λt

λ

]
.

Proposition IV.2. The operator J

(i) is monotone: f1 ≤ f2 =⇒ J f1 ≤ J f2;

(ii) is concave: J (af1 + (1− a)f2) ≥ aJ f1 + (1− a)J f2 for a ∈ [0, 1];

(iii) satisfies J0(π) = min{F (π), d};

(iv) has at most one fixed point f ∈ F such that f = J f ;

(v) is concavity preserving: if f ∈ F is concave, then also J f is concave.

Proof. (i) and (iii) are immediate. For (ii), let f1, f2 ∈ F and let a ∈ [0, 1]. Then

J (af1 + (1− a)f2) = min
{
F, inf

t>0
{aJ0f1 + (1− a)J0f2}

}
≥ inf

t>0
{amin{F,J0f1}+ (1− a) min{F,J0f2}}

≥ aJ f1 + (1− a)J f2.

For (iv) we argue as in [28, Lemma 54.21]; assume that there exist two distinct

fixed points of J , i.e. f1 = J f1 and f2 = J f2 for f1, f2 ∈ F such that f1(π) < f2(π)

(without loss of generality) for some π ∈ [0, 1). Let a0 := sup{a ∈ [0, 1] : af2 ≤ f1},
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and note that a0 ∈ [0, 1). From (iii) it follows that there exists κ > 0 such that

κJ 0 ≥ 1− π, π ∈ [0, 1], so using (i) and (ii) we get

f1 = J f1 ≥ J (a0f2) ≥ a0J f2 + (1− a0)J 0 ≥ (a0 + (1− a0)κ−1)f2,

which contradicts the definition of a0.

For (v), first note that F is concave. Since the infimum of concave functions is

again concave, it therefore follows from (4.10) that it suffices to check that

Eπ
[
f

(
j(t, π,Xt)

1 + j(t, π,Xt)

)]
is concave in π for any t > 0 given and fixed. To do that, define measures Qπ,

π ∈ [0, 1), on σ(Xt) by

dQπ :=
eλt

(1− π)(1 + j(t, π,Xt))
dPπ.

Then

Eπ
[
dQπ

dPπ

]
=

eλt

1− π

∫
R

1

1 + j(t, π, y)
Pπ(Xt ∈ dy).

Denoting by ϕ the density of the standard normal distribution, we have

Pπ(Xt ∈ dy)

1− π
=

π

1− π
Pπ(Xt ∈ dy|Θ = 0) + λ

∫ t

0

Pπ(Xt ∈ dy|Θ = s)e−λsds

+Pπ(Xt ∈ dy|Θ > t)e−λt

=
π

(1− π)
√
t
ϕ

(
y − αt√

t

)
+

λ√
t

∫ t

0

e−λsϕ

(
y − α(t− s)√

t

)
ds

+
e−λt√
t
ϕ

(
y√
t

)
= e−λt(1 + j(t, π, y))ϕ

(
y√
t

)
.

Thus

Eπ
[
dQπ

dPπ

]
=

1√
t

∫
R
ϕ

(
y√
t

)
dy = 1

95



so Qπ is a probability measure. Furthermore, the random variable Xt is N(0, t)-

distributed under Qπ; in particular, the Qπ-distribution of Xt does not depend on

π.

Since j(t, π, x) is affine in π/(1− π), the function

π 7→ (1− π)f

(
j(t, π, x)

1 + j(t, π, x)

)
(1 + j(t, π, x))

is concave if f is concave. It thus follows from

Eπ
[
f

(
j(t, π,Xt)

1 + j(t, π,Xt)

)]
= (1− π) exp{−λt}EQπ

[
f

(
j(t, π,Xt)

1 + j(t, π,Xt)

)
(1 + j(t, π,Xt))

]
and (4.10) that π 7→ J0f(π, t) is concave, which completes the proof.

Next we define a sequence {fn}∞n=0 of functions on [0, 1] by setting

f0(π) = F (π), fn+1(π) = J fn(π), n ≥ 0.

Proposition IV.3. For {fn}∞n=1 we have that

(i) the sequence is decreasing;

(ii) each fn is concave.

Proof. Clearly, f1 ≤ F = f0, so Proposition IV.2 (i) and a straightforward induction

argument give that fn is decreasing in n. Hence the pointwise limit f∞ := limn→∞ fn

exists. Furthermore, since F is concave, each fn is concave by Proposition IV.2

(v).

Thus the pointwise limit f∞ := limn→∞ fn exists. Since the pointwise limit of

concave functions is concave, it follows that also f∞ is concave.
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Lemma 4.2.1. Let f ∈ F be continuous. For fixed π ∈ [0, 1], the function t 7→

J0f(π, t) attains its minimum for some point t ∈ [0,∞). Denote the first of these

minimums by t(π, f), i.e.

(4.11) t(π, f) := inf{t ≥ 0 : inf
s
J0f(π, s) = J0f(π, t)}.

Then π 7→ t(π, f) is measurable.

Proof. Observe that (t, π) 7→ J0f(π, t) is a finite continuous function which ap-

proaches ∞ as t→∞. It follows that t(π, f) is finite.

We will prove the measurability of π 7→ t(π, f) by showing that it is lower semi-

continuous. Let πi → π∞ and let ti = t(πi, f). Because t → ct is the dominating

term in t 7→ J0f(π, t), it is clear that the sequence {ti}i∈N is bounded. It follows

that t∞ := lim inf ti < ∞; let {tij}∞j=1 be a subsequence such that tij → t∞. Then,

by the Fatou lemma,

J0f(π∞, t∞) ≤ lim inf
j→∞

J0f(πij , tij) = lim
j→∞
J0f(πij , tij) = J0f(π∞, t∞).

Thus

t(π∞, f) ≤ t∞ = lim inf
i→∞

t(πi, f),

which establishes the desired lower semi-continuity.

Proposition IV.4. The function f∞ is the unique fixed point of the operator J .

Proof. Since the operator J is monotone and fn ≥ f∞, it is clear that f∞ ≥ J f∞.

On the other hand,

fn+1(π) = J fn(π) ≤ min{F (π),J0fn(π, t(π, f∞))},

where t(π, f∞) is defined as in (4.11). Letting n→∞ and using the monotone con-

vergence theorem we obtain that f∞ is a fixed point. Since uniqueness is established

in Proposition IV.2, this completes the proof.
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Next we introduce the problem of an agent who is allowed to make at most n

observations:

(4.12) Vn(π) := inf
τ̂∈T

inf
τ∈S τ̂0 ,τ≤τn

ρπ(τ̂ , τ).

These functions can be sequentially generated using the integral operator J .

Proposition IV.5. We have Vn = fn, n ≥ 0.

Proof. First note that V0 = f0 = F . Now assume that Vn−1 = fn−1 for some n ≥ 1.

Step 1: Vn(π) ≥ fn(π).

For any τ̂ ∈ T and τ ∈ S τ̂0 we have

Eπ

[
F (Πτ∧τn) + c

∫ τ∧τn

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ∧τn}

]
(4.13)

= Eπ
[
1{τ1=0}F (π)

]
+Eπ

[
1{τ1>0}

(
F (Πτ∧τn) + c

∫ τ∧τn

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ∧τn}

)]

≥ 1{τ1=0}F (π) + 1{τ1>0}Eπ
[(
d+ c

∫ τ1

0

Πτ̂
sds+ Vn−1(Πτ1)

)]
= 1{τ1=0}F (π) + 1{τ1>0}Eπ

[(
d+ c

∫ τ1

0

Πτ̂
sds+ fn−1(Πτ1)

)]
≥ J fn−1(π) = fn(π),

where we used the fact that τ1 is deterministic and the Markov property of Πτ̂ . We

obtain the desired result from (4.13) by taking the infimum over strategy pairs (τ̂ , τ).

Step 2: Vn(π) ≤ fn(π).

We only need to prove this for the case J fn−1(π) < F (π) (since otherwise fn(π) =

J fn−1(π) = F (π) ≥ Vn(π) already).

Note that V0 = F = f0. We will assume that the assertion holds for n − 1 and

then prove it for n. We will follow ideas used in the proof of Theorem 4.1 in [19].
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Denoting tn := t(π, fn−1), let us introduce a sequence τ̂ of stopping times

(4.14) τ1 = tn, τi+1 =
∑
k

τ ki ◦ θtn1{Πτ̂tn∈Bk}, i = 1, · · · , n− 1,

where (Bk)k is a finite partition of [0, 1) by intervals and τ k are ε-optimal observation

times for when the process Π starts from the centre of these intervals. 1

Since Vn−1 is continuous, and the expected value (before optimizing) is a continu-

ous function of the initial starting point for any strategy choice, which is due to the

continuity of Π with respect to its starting point, the above sequence is a O(ε) if the

intervals are chosen to be fine enough.

Now we can write

fn(π) = ctn + d− c

λ
(1− π)(1− e−λtn) + Eπ[Vn−1(Πτ̂

tn)]

≥ ctn + d− c

λ
(1− π)(1− e−λtn)−O(ε)

+Eπ

[
Eπ

[(
F (Πτ̂

τ∧τn−1
) +

∫ τn−1∧τ

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ∧τn−1}

)
◦ θtn

∣∣∣∣F τ̂tn
]]

= Eπ
[
F (Πτ̂

τ∧τn) +

∫ τ∧τn

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ∧τn}

]
−O(ε)

≥ Vn(π)−O(ε),

where we used the fact that

c

∫ tn

0

Πτ̂
sds = ctn −

c

λ
(1− π)(1− e−λtn).

Since ε > 0 can be made arbitrary small, this shows that Vn(π) ≤ fn(π).

Theorem 4.2.1. We have that V = f∞, i.e., V is the unique fixed point of J .

Proof. Since Vn = fn → f∞, it suffices to show limn→∞ Vn = V . It follows by

definition that V (π) ≤ Vn(π) for any n ≥ 1 and π ∈ [0, 1]. We thus only need to

1θ is the shift operator in the Markov process theory, see e.g. [20]
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prove that limn Vn(π) ≤ V (π). Assume that a pair (τ̂ , τ) where τ̂ ∈ T and τ ∈ S τ̂0 is

an ε-optimizer for (4.9). Then

Vn(π) ≤ E

[
F (Πτ̂

τ∧τn) +

∫ τ∧τn

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ∧τn}

]
(4.15)

≤ E

[
F (Πτ̂

τ∧τn) +

∫ τ

0

Πτ̂
sds+ d

∞∑
k=1

1{τk≤τ}

]
.

Note that since τ(ω) = τk(ω) for some k = k(ω), we have Πτ̂
τ∧τn(w) = Πτ̂

τ (ω) if n ≥

k(ω). As a result, and since F is bounded and continuous, the bounded convergence

theorem applied to (4.15) gives

lim
n→∞

Vn(π) ≤ V (π) + ε.

Since ε > 0 is arbitrary, this completes the proof.

4.3 The optimal strategy

In this section we study the optimal strategy for the detection problem with

costly observations. More precisely, we seek to determine an optimal distribution

of observation times τ̂ and an optimal stopping time τ . The optimal strategy is

determined in terms of the continuation region

C := {π ∈ [0, 1] : V (π) < F (π)}.

Note that for π ∈ C we have

V (π) = inf
t≥0
J0V (π, t)

by the definition of J . Denote by t(π) := t(π, f∞) = t(π, V ), and note that since

J0V (π, 0) = d+ V (π), we have t(π) > 0 on C.

Moreover, define t∗ by

t∗(π) =

 t(π) for π ∈ C

∞ for π /∈ C
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Using the function t∗, we construct recursively an observation sequence τ̂ ∗ and a

stopping time τ ∗ as follows.

Denote by τ ∗0 = 0 and Π0 = π. For k = 1, 2..., define recursively

τ ∗k := τ ∗k−1 + t∗(Πτ∗k−1
)

and

Πτ∗k
:=

j(τ ∗k − τ ∗k−1,Πτ∗k−1
, Xτ∗k

−Xτ∗k−1
)

1 + j(τ ∗k − τ ∗k−1,Πτ∗k−1
, Xτ∗k

−Xτ∗k−1
)
.

Then τ̂ ∗ := {τ ∗k}∞k=1 ∈ T . Moreover, let

n∗ := min{k ≥ 0 : Πτ∗k
/∈ C} = min{k ≥ 0 : τ ∗k =∞},

and define τ ∗ := τ ∗n∗ . Then τ ∗ ∈ S τ̂∗ , and n∗ is the total number of finite observation

times in τ̂ ∗.

Theorem 4.3.1. The strategy pair (τ̂ ∗, τ ∗) is an optimal strategy.

Proof. Denote by

V ∗(π) = Eπ
[
F (Πτ∗) + cτ ∗ − c

λ

n∗−1∑
k=0

(1− Πτ∗k
)(1− e−λ(τ∗k+1−τ

∗
k )) + dn∗

]
,

Clearly, by the definition of V , we have V ∗(π) ≥ V (π). It thus remains to show

V ≥ V ∗(π).

For n ≥ 0, let τ ′n := τ ∗n ∧ τ ∗ = τ ∗n∧n∗ .

Claim: We have

V (π) = Eπ

[
V (Πτ ′n) + cτ ′n −

c

λ

n∧n∗−1∑
k=0

(1− Πτ∗k
)(1− e−λ(τ∗k+1−τ

∗
k ))

]
+Eπ [d(n ∧ n∗)](4.16)

=: RHS(n)

for all n ≥ 0.
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To prove the claim, first note that τ ′0 = 0, so V (π) = RHS(0). Furthermore, by

the Markov property we have

RHS(n+ 1)−RHS(n)

= Eπ
[(
V (Πτ∗n+1

)− V (Πτ∗n) + c(τ ∗n+1 − τ ∗n)

− c

λ
(1− Πτ∗n)(1− e−λ(τ∗n+1−τ∗n)) + d

)
1{n∗≥n+1}

]
= Eπ

[(
EΠτ∗n

[
V (Πτ∗1

) + cτ ∗1
]
− V (Πτ∗n)

− c

λ
(1− Πτ∗n)EΠτ∗n

[
1− e−λτ∗1

]
+ d
)
1{n∗>n}

]
= 0,

which shows that (4.16) holds for all n ≥ 0.

Note that it follows from (4.16) that n∗ < ∞ a.s. (since otherwise the term

Eπ[d(n ∧ n∗)] would explode as n→∞). Therefore, letting n→∞ in (4.16), using

bounded convergence and monotone convergence, we find that

V (π) = Eπ

[
V (Πτ∗) + cτ ∗ − c

λ

n∗−1∑
k=0

(1− Πτ∗k
)(1− e−λ(τ∗k+1−τ

∗
k )) + dn∗

]

= Eπ

[
F (Πτ∗) + cτ ∗ − c

λ

n∗−1∑
k=0

(1− Πτ∗k
)(1− e−λ(τ∗k+1−τ

∗
k )) + dn∗

]
= V ∗(π),

which completes the proof.

4.4 Numerical Examples

In Figure 4.1, we illustrate Proposition IV.3. We use the same parameters that

were used for Figure 2 in [16], where d = 0 .

Clearly, the value functions Vn increase in the cost parameters. Figure 4.2 displays

the value functions V1, ..., V10 for the same parameters as in Figure 4.1 but for a larger

cost c. Similarly, the sensitivity with respect to the observation cost parameter d
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is pictured in Figure 4.3. x In Figure 4.4 we compute the function t defined in

(4.11), when f in the definition is replaced by Vn, for various values of n. While

it appears that t(π, Vn) is decreasing in n (the more observation rights one has, the

more inclined one is to make early observations) and decreasing in π, we have not

been able to prove these monotonicities.

Finally, in Figure 4.5 we determine π∗(n) = inf{π : t∗(π, Vn) = ∞}. Our obser-

vations consistently indicate that the continuation region for taking observations is

an interval of the form [0, π∗(n)); also here, an analytical proof of this remains to be

found.

Figure 4.1: c = 0.01, λ = 0.1, α = 1, d = 0.001, n = 0, 1, · · · , 10.
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Figure 4.2: c = 0.1, λ = 0.1, α = 1, d = 0.001, n = 0, 1, · · · , 10.

Figure 4.3: c = 0.1, λ = 0.1, α = 1.
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Figure 4.4: c = 0.01, λ = 0.1, α = 1, d = 0.001.

Figure 4.5: c = 0.01, λ = 0.1, α = 1, d = 0.001.
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