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Abstract

A fundamental goal in theoretical cryptography is to identify the conceptually simplest

abstractions that generically imply a collection of other cryptographic primitives. For

symmetric-key primitives, this goal has been accomplished by showing that one-way

functions are necessary and sufficient to realize primitives ranging from symmetric-key

encryption to digital signatures. By contrast, for asymmetric primitives, we have no

(known) unifying simple abstraction even for a few of its most basic objects. Moreover,

even for public-key encryption (PKE) alone, we have no unifying abstraction that all

known constructions follow. The fact that almost all known PKE constructions exploit

some algebraic structure suggests considering abstractions that have some basic algebraic

properties, irrespective of their concrete instantiation.

We make progress on the aforementioned fundamental goal by identifying simple and

useful cryptographic abstractions and showing that they imply a variety of asymmetric

primitives. Our general approach is to augment symmetric abstractions with algebraic

structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge”

between symmetric and asymmetric primitives. We introduce two algebraic frameworks

that capture almost all concrete instantiations of (asymmetric) cryptographic primitives,

and we also demonstrate their applicability by showing their cryptographic implications.

Therefore, rather than manually building different cryptosystems from a new assumption,

one only needs to build one (or more) of our simple structured primitives, and a whole

host of cryptosystems immediately follows.
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CHAPTER 1

Introduction

A symmetric-key encryption scheme requires two or more parties to share a secret key through
some secret channel prior to encryption and decryption. By contrast, in a public-key encryption
(PKE) scheme, the public keys (which are needed for encryption) can be distributed publicly,
including to the attacker. Although the history of symmetric-key cryptography goes back millennia,
public-key cryptography is a relatively recent development, dating to the mid-20th century. In a
celebrated work, Impagliazzo [Imp95] proposed five “worlds” and their implications for algorithms
and cryptography, which range from Algorithmica—where “efficient” algorithms for all (worst-case)
problems in NP exist and cryptography is essentially nonexistent—to Cryptomania, a world in
which public-key cryptography exists. Only two of Impagliazzo’s worlds allow for cryptography:
Minicrypt, where symmetric cryptographic primitives exist but public-key cryptography does not,
and the aforementioned Cryptomania.

It turns out that Minicrypt is a fairly simple world, and all Minicrypt primitives can be based on a
simple abstraction called a one-way function (OWF). An OWF is an efficiently computable function
that it is hard to invert on the image of a random input. A number of famous works have shown how
to build the most commonly studied and used Minicrypt primitives from one-way functions in a
generic manner. For instance, one-way functions imply pseudorandom generators [BM82, HILL99],
which in turn can be used to build pseudorandom functions [GGM84]. From these primitives,
it has long been known how to generically build symmetric-key encryption schemes and digital
signature schemes [Rom90]. As Barak [Bar17] points out, “it seems that you cannot throw a rock
without hitting a one-way function,” and we can base candidate OWFs on a variety of problems
from different domains such as algebra, logic, and combinatorics.

By contrast, Cryptomania has no unifying abstraction even for a few of its most basic objects.
Moreover, even for PKE alone, we have no unifying abstraction that all known constructions follow.
To get PKE we have to rely on a limited class of two “strains” of problem types [Bar17], namely

1



“algebraic” and “noisy linear” problems, which all relate to algebraic structures. Even within each
strain there is no unifying way of viewing the PKE constructions. For instance, in the ElGamal PKE
scheme [ElG84] the decryption algorithm performs multiplication/exponentiation, whereas in the
Goldwasser-Micali PKE scheme [GM82] the decryption algorithm tests for quadratic residuosity.

A fundamental goal in theoretical cryptography is to identify the conceptually simplest objects
that generically imply a collection of others. Ideally, we want the situation of Cryptomania to
be more like Minicrypt, with many objects implied by (if not equivalent to) a common simple
abstraction or a small set thereof. This raises a fundamental question in the complexity of public-key
cryptography: do there exist such objects for Cryptomania? The fact that almost all known PKE
constructions exploit some common algebraic structure suggests considering abstractions that have
some basic algebraic properties, irrespective of their concrete instantiation. Hence, the question
essentially is what should the particular primitives look like (in a huge design space), such that:

• they are easily instantiated from different concrete assumptions (such as the Diffie-Hellman
assumptions in appropriately chosen groups, or the Quadratic Residuosity assumption);

• they generically imply (almost) all of the objects that have previously been obtained from
these concrete assumptions;

• each of these primitives is conceptually and syntactically simple—in particular, simpler than
Cryptomania objects that they imply.

1.1 A Bridge from Minicrypt to Cryptomania1

We make progress on the above-described goal by identifying three simple cryptographic objects
and showing their applications. Our approach is to augment Minicrypt abstractions with simple
algebraic structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge”
between Minicrypt and Cryptomania. We focus on the well-studied Minicrypt primitives one-way
function (OWF), weak unpredictable function (wUF), and weak pseudorandom function (wPRF).

A keyed function family is a function F : K ×X → Y such that K is the key space and X ,Y
are input and output spaces, respectively. Typically, the sets X , Y , and K are parameterized by the
security parameter λ, which is a parameter used to quantify resource requirements of a cryptographic
protocol. We often use the notation Fk(x) to denote F (k, x). If G : X → Y is a function, let G$

denote a randomized oracle that, when invoked, samples x← X uniformly and outputs (x,G(x)).

1The results of this section are taken from the paper [AMPR19].
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A weak unpredictable function (wUF) family is an efficiently computable (keyed) function family
F such that for all probabilistic polynomial-time adversaries A we have

Pr[AF $
k (x∗) = Fk(x

∗)] ≤ negl(λ),

where negl(λ) denotes some negligible function of λ and k ← K, x∗ ← X are uniformly sampled
elements from K,X , respectively. Basically, the security requirement is that given access to
polynomially many (random) input-output pairs of the form (xi, Fk(xi)), no attacker can predict
Fk(x

∗) with non-negligible probability for a fresh uniformly chosen x∗ ← X .
A weak pseudorandom function (wPRF) family is an efficiently computable (keyed) function

family F such that for all probabilistic polynomial-time adversaries A we have∣∣∣Pr[AF $
k = 1]− Pr[AU$

= 1]
∣∣∣ ≤ negl(λ),

where k ← K, and U : X → Y is a truly random function. Roughly speaking, the security
requirement is that given access to polynomially many (random) input-output pairs of the form
(xi, yi), no attacker can distinguish between the real experiment where yi = Fk(xi) and the ideal
experiment where yi = U(xi) for a truly random function U .

To define our structured primitives, we augment OWF/wUF/wPRF with a group homomorphism.
An input-homomorphic weak UF/PRF (IHwUF/IHwPRF) F is a weak UF/PRF with a group
homomorphism over the input and output space. That is, (X ,⊕) and (Y ,⊗) are groups with
efficiently computable group operations such that for every k ∈ K the function Fk : X → Y is a
group homomorphism, i.e., we have

F (k, x1 ⊕ x2) = F (k, x1)⊗ F (k, x2) .

A Homomorphic One-Way Function (HOWF) is a one-way function f : X → Y such that X and Y
are groups with efficiently computable group operations and f is a group homomorphism.

We also consider bounded homomorphisms, where we have a bounded number of invocations
for which the homomorphism property holds. This restriction lets us work with lattice-based and
other “noisy” cryptographic assumptions.

We present a framework for building cryptographic primitives from Minicrypt primitives with
algebraic structure, and we show that many cryptographic primitives can be realized (in a generic
manner) from HOWF/IHwUF/IHwPRF. We refer the reader to Figure 1.1 for an overview of our
framework. To name a few, we show that
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• HOWF implies collision-resistant hash function (CRHF), which is a compressing function
such that it is hard (for all polynomially bounded attackers) to find two distinct inputs that
hash to the same value. Consequently, HOWF gets us outside Minicrypt (because CRHF is
not known to follow from ordinary OWF [Sim98]), but not quite to Cryptomania.

• IHwUF implies PKE, along with a variety of rich Cryptomania objects that are considered
quite a bit more powerful that ordinary PKE. For instance, IHwUF implies trapdoor function
(TDF), which is an OWF with some extra trapdoor (which can be generated together with the
description of the function) that makes inversion easy. IHwUF also implies identity-based
encryption, which is a richer form of encryption in which any string (such as an email address)
can be used as a public key.

• IHwPRF implies private information retrieval (PIR), which is a useful primitive that allows a
user to retrieve an item from a database without revealing which item is retrieved. A nontrivial
PIR requires that the total communication complexity of the protocol should be sublinear in
the size of database. IHwPRF also implies the powerful notion of lossy trapdoor function,
which is known to be sufficient for realizing many cryptographic primitives, ranging from
chosen ciphertext-secure cryptosystem to oblivious transfer [PW08].

Instantiations from concrete assumptions. We show that “mainstream” concrete cryptographic
assumptions such as Decisional Diffie-Hellman (DDH) and Learning With Errors (LWE) naturally
imply (bounded) HOWF/IHwUF/IHwPRF. We also show that a (bounded) group-homomorphic
PKE implies a (bounded) IHwPRF. This allows instantiating these primitives from any concrete
assumption that implies a (bounded) homomorphic PKE (e.g., Quadratic Residuosity assumption).
Unfortunately, there is a caveat to this: the transformation from homomorphic PKE to IHwPRF
comes with a disadvantage that the input space may depend on the key.1 The reader may refer to
Figure 1.2 for an overview of instantiations from concrete assumptions.

Building cryptosystems from new assumptions. One of the benefits of our framework is the
implications for new assumptions. Rather than manually building different cryptosystems from a
new assumption, one only needs to build one (or more) of our simple structured primitives, and a
whole host of cryptosystems immediately follows. Ideally, it will be easy to show the existence of
many cryptographic primitives from new assumptions using our results.

1This property is necessary to realize certain cryptographic primitives from IHwUF or IHwPRF. We refer to
Section 3.4 for a discussion on this property and the details of the instantiations.
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Minicrypt and Homomorphism

(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF
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OT and MPC
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*§5.4

*§5.5

§6.1

*§6.2

§6.3

U: Unbounded homomorphism with abelian groups.
*: The input space is independent of the key.

Figure 1.1: Cryptographic primitives from HOWF/IHwUF/IHwPRF.

1.2 Homomorphism Over the Key Space1

So far, we only considered realizing strong asymmetric primitives from input-homomorphic weak
PRF. However, there is also a primitive that is homomorphic with respect to the key (rather that the
input), known as key-homomorphic weak PRF (KHwPRF). Roughly speaking, a key-homomorphic
(weak) PRF family is a (weak) PRF family with the following homomorphism property over the
key and output space:

F (k1 ⊕ k2, x) = F (k1, x)⊗ F (k2, x) .

Key-homomorphic (weak) pseudorandom functions were first implicitly shown in [NPR99]
in the random oracle model and then formally defined and constructed in the standard model
with slightly relaxed approximate homomorphism property in [BLMR13]. Key-homomorphic
(weak) PRF has been used to build primitives like distributed PRF [NPR99, BLMR13], updatable
encryption [EPRS17, LT18], and PRF with security against related-key attacks [LMR14].

Following the work of Boneh et al. [BLMR13], there have been a few works constructing
improved variants of approximate KHPRF [BP14, BV15, BFP+15]. However, all of the known

1The results of this section are taken from the paper [AMP19].
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(Bounded) HOWF (Bounded) IHwUF (Bounded) IHwPRF

Discrete Log

Search (Ring-)LWE

Factorization

CDH

RSA

DDH/MDDH/DLIN

Decision (Ring-)LWE

Quadratic Residuosity

Nth Residuosity

Approximate GCD

Hidden Number Problem

Finite Field Isomorphism

(Bounded) Homomorphic PKE

U

*

*

U: Unbounded homomorphism with abelian groups.
*: The input space may depend on the key.

Figure 1.2: Instantiations from concrete assumptions

constructions of KHPRF still require strong “PKE assumptions.” For instance, we only know
how to build (exact) key-homomorphic PRF in the standard model from multilinear maps or
related assumptions [BLMR13]. Even constructions in the random oracle model require public-key
assumptions like DDH [NPR99].

The assumptions required for the aforementioned constructions of KHPRF are seemingly
heavyweight for an ostensibly symmetric-key primitive that is typically targeted for applications
in the symmetric-key setting. This leads us to a natural question: can we construct more efficient
key-homomorphic PRFs, or is there some fundamental lower bound limiting their efficiency?
Boneh et al. [BLMR13] optimistically state, “Another interesting area of research is to construct
key-homomorphic PRFs whose performance is comparable to real-world block ciphers such as
AES,” but so far there are no known realizations of such a KHPRF.

We prove that any key-homomorphic weak PRF (KHwPRF) F : K ×X → Y with an abelian
output group Y implies noninteractive key exchange. In fact, we show that a KHwPRF with
an abelian output group implies a much stronger primitive, namely input-homomorphic wPRF.
By the results of previous section [AMPR19], IHwPRF implies a large number of public-key
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primitives, including identity-based encryption (IBE) [DG17b, BLSV18], private information
retrieval (PIR) [KO97], and lossy trapdoor function (LTDF) [PW08]. In essence, our results indicate
that it is seemingly unlikely that KHwPRF, and hence KHPRF, with abelian output groups are
implied by symmetric-key primitives [IR89, GHMM18]. Our results also hold in the bounded
setting with abelian output groups (encompassing nearly all applications of almost KHPRF from
lattice-based assumptions). To our knowledge, all existing constructions of KHwPRF (and almost
KHwPRF) have abelian output groups.

In addition, we show that any exact (not bounded) homomorphic one-way function (HOWF)
with abelian input and output groups can be broken in polynomial time using a quantum computer.
This immediately rules out the existence of abelian, exact KHwPRF (and hence KHPRF) in the
quantum setting. In other words, over abelian groups, KHwPRF (and KHPRF) with bounded
homomorphism are the best that we can hope for in the quantum world. We refer to Section 4.4 for
more details.

Finally, we demonstrate a construction of Naor-Reingold style PRF [NR97] from any KHwPRF.
As we explain in Section 7.5, this allows us to construct parallel and potentially efficient PRF from
any KHwPRF. To the best of our knowledge, it was not known how to construct a Naor-Reingold
style PRF from a generic primitive.

1.3 A Framework Based on Group Actions1

In the previous sections, we discussed the power of basic symmetric primitives endowed with
some algebraic structure, namely group homomorphism. However, there are certain cryptographic
constructions that are not captured in the homomorphism-based framework, most notably the
isogeny-based cryptography. The study of isogeny-based cryptography was initiated in 1997 by
Couveignes [Cou06], but began in earnest in the late 2000s with several new ideas around collision
resistant hashing [CLG09], key exchange [RS06, Sto10], signatures [Sto09] and key escrow [Tes06].
Isogeny-based cryptography became much more popular after the introduction of the SIDH key
exchange scheme [JD11, DJP14], the first practical post-quantum scheme based on isogenies, and a
precursor to the NIST competition candidate SIKE [AKC+17].

One of the most recent additions to the isogeny portfolio is CSIDH [CLM+18], an efficient
variant of the original key-exchange proposal of Couveignes, Rostovtsev, and Stolbunov. CSIDH
spurred a fair amount of new research in isogeny-based schemes, notably signatures [DG19,
BKV19]. Indeed, among all isogeny-based assumptions, CSIDH, its predecessors, and its derivatives

1The results of this section are taken from the paper [ADMP20].
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are the only ones amenable to group actions.

Isogenies. In a nutshell, an isogeny is a morphism of elliptic curves, i.e., a map from a curve to
another curve that preserves the group structure. The central objects of study in isogeny-based
cryptography are isogeny graphs, i.e., graphs whose vertices represent elliptic curves, and whose
edges represent isogenies between them. There is a large variety of isogeny graphs, depending on
which kinds of curves and isogenies are chosen. One such choice would be complex multiplication

graphs, which arise from so-called horizontal isogenies of complex mutliplication elliptic curves;
indeed, these graphs are isomorphic to Cayley graphs of quadratic imaginary class groups, and
thus present a natural group action.

Constructions from isogenies. Known constructions from isogeny-based assumptions amenable
to group actions include noninteractive key exchange [CLM+18], interactive zero-knowledge
protocols and signatures [DG19, BKV19], multi-round UC-secure oblivious transfer against passive
corruptions [dOPS18], and threshold signatures [DM20].

In addition, known constructions from isogeny-based assumptions not amenable to group
actions include PKE [JD11, AKC+17], ephemeral key exchange [JD11], interactive zero-knowledge
protocols and signatures [DJP14, YAJ+17, GPS17], collision-resistant hash function [CLG09],
multi-round UC-secure oblivious transfer against passive corruptions [BOB18, dOPS18, Vit19],
and verifiable delay functions [DMPS19].

Cryptographic group actions. In order to simplify the presentation and understanding of certain
isogeny-based constructions, some prior works have chosen to use group actions as an abstraction
for them, including the first presentations [Cou06]. Informally, a group action is a mapping of the
form ? : G × X → X , where G is a group and X is a set, such that for any g1, g2 ∈ G and any
x ∈ X , we have

g1 ? (g2 ? x) = (g1g2) ? x.

From a cryptographic point of view, we can endow group actions with different hardness
properties. For instance, a one-way group action [BY91] is endowed with the following property:
given randomly chosen set elements x1, x2 ∈ X , it is hard to find a group element g ∈ G such that
g ? x1 = x2 (assuming such a g exists). Similarly, one could define a weakly pseudorandom group
action with following property: for a randomly chosen secret group element g ∈ G, an adversary
that sees many tuples of the form (xi, g ? xi) cannot distinguish them from tuples of the form (xi, ui)

8



where each xi and ui are sampled uniformly and independently from X .1 We refer to group actions
endowed with such hardness properties as cryptographic group actions.

As an example, we note that a simple cryptographic group action is implied by the DDH
assumption. If we set X = H (where H is some group of prime order p) and G = Z∗p, then the
mapping z ? h 7→ hz where

? : Z∗p ×H→ H

is a weakly pseudorandom group action assuming that the DDH assumption holds over H. We
note that here the “set” H is actually structured. However, there exist candidate quantum-resistant
cryptographic group actions where the set may not be a group.

Cryptographic group actions have received less attention compared to traditional group-based
assumptions. Nonetheless, there has been a small number of works studying various candidate
cryptographic group actions [GS10, JQSY19] and their hardness properties [BY91, GPSV18]. In
terms of public-key primitives, these works have demonstrated that cryptographic group actions
endowed with some hardness properties imply PKE and non-interactive key exchange (NIKE).

In terms of cryptographic capabilities, group-theoretic assumptions have been studied extensively
over the past couple of decades. At present, we have a reasonably comprehensive understanding of
what is (and is not) constructible from the most commonly encountered group-theoretic assumptions
such as DLOG, CDH, and DDH2 (barring a few breakthrough results using novel non-black-box
techniques, e.g., [DG17b]). The cryptographic capabilities of these assumptions have also been
explained from the point of view of their underlying algebraic structure [AMPR19]. On the other
hand, our understanding of the cryptographic capabilities of group actions is still somewhat limited.

A natural question to ask is what primitives can we build from cryptographic group actions?
We believe that it is important to understand the cryptographic capabilities of group actions given
that they capture the algebraic structure underlying some candidate post-quantum cryptographic
assumptions, namely isogeny-based cryptography amenable to group actions.

Cryptographic group actions and isogenies. One of the key objects associated with an elliptic
curve is its endomorphism ring. In the cases that interest us here, this ring is known to be isomorphic
to an imaginary quadratic order O, i.e., a 2-dimensional Z-lattice and a subring of an imaginary
quadratic number field Q(

√
D). An elliptic curve with endomorphism ring isomorphic to a given O

is said to have complex multiplication (CM) by O.
1We note that sampling directly from the uniform distribution over the set X may not be possible in certain cases.

We elaborate more on this later.
2Discrete Logarithm, Computational Diffie-Hellman, and Decisional Diffie-Hellman assumptions.
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The celebrated theory of complex multiplication establishes a correspondence between the ideal

classes of O and the isogenies between elliptic curves with CM by O. More precisely, it defines a
regular abelian group action

Cl (O)× Ek (O)→ Ek (O)

of the class group Cl (O) on the set Ek (O) of elliptic curves, defined over a field k, with complex
multiplication by O. Moreover, each element of Cl (O) corresponds to a unique class of isogenies,
which can be leveraged to evaluate the group action. We refer to [De 17] for more details.

Unfortunately, the correspondence between isogenies and the CM group action becomes less
than ideal when we start contemplating algorithmic properties. Indeed, a natural requirement for
a cryptographic group action is that given any group element g ∈ G and a set element x ∈ X ,
computing g ? x can be done efficiently. However this does not hold for the CM group action, which
can be evaluated efficiently only for a small subset of group elements.

The usual workaround adopted in isogeny-based cryptography is to represent elements of Cl (O)

as Z-linear combinations of a fixed set of “low norm” generators gi for which evaluating the group
action is efficient, i.e., as a =

∏`
i=1 g

ai
i . Then, evaluating the action is efficient as long as the

exponents ai are polynomial in the security parameter. This trick is not devoid of consequences:
group elements do not have a unique representation, sampling uniformly in the group may not be
possible in general, and even testing equality becomes tricky. We will capture the limitations of this
framework in our definition of a Restricted Effective Group Action (REGA).

To illustrate the limitations of REGA, we refer to SeaSign [DG19], which is the Fiat-Shamir
transform of an interactive authentication protocol based on CSIDH. To prove the knowledge of a
secret s ∈ G s.t. y = s ? x, the basic idea is to first commit to r ? x for some random r, and then
reveal s−br depending on a bit b sent by the challenger. While it is straightforward to prove that this
protocol is zero-knowledge when the elements of G have unique representation and are sampled
uniformly, the proof breaks down for CSIDH if we do not have a unique representation of Cl (O),
which happens for some choices of parameters. To fix this issue, SeaSign uses a rejection sampling
technique [Lyu09], which considerably increases parameters and signature/verification time.

An alternative fix is to compute the group structure of Cl (O), in the form of a relation lattice of
the low norm generators. This restores the ability to represent uniquely and to sample uniformly the
elements of the group. This is the approach taken by the isogeny-based signature CSI-FiSh [BKV19],
which pre-computes the group structure.

While the approach taken by CSI-FiSh to build a full-fledged cryptographic group action extends
the capabilities of isogeny-based cryptography, recent results [Pei20, BS20] showed quantum attacks
against CSIDH for certain choice of parameters. Unfortunately, computing the group structure of a
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larger class group seems out of reach today, due to the subexponential complexity of the classical
algorithms. This limitation will go away once quantum computers become powerful enough to
apply Shor’s algorithms to this group order computation, but until then we believe that REGA can
be a fundamental tool to construct post-quantum cryptographic protocols based on isogenies.

Bilinear maps gained popularity in cryptography partly because works such as [BF01, GPS08]
presented them in a generic, easy-to-use manner that effectively abstracted the mathematical
details underlying Weil or Tate pairings. Similarly, an easy-to-use abstraction for isogeny-based
assumptions might make them more accessible to cryptographers.

We improve the state of the art of cryptographic group actions as follows:

• We formally define different notions of cryptographic group actions endowed with natural
hardness properties such as one-wayness, weak unpredictability, and weak pseudorandomness.
We then show how certain isogeny-based assumptions can be modeled using our definitions.

• We show several applications of cryptographic group actions (based on our definitions above)
which were not previously known from isogeny-based assumptions. These include smooth
projective hash functions, dual-mode PKE, and two-message statistically sender-private OT.

• We introduce a new assumption over cryptographic group actions called the linear hidden shift

(LHS) assumption. We present some discussions on the security of the LHS assumption and
show that it implies symmetric KDM-CPA secure encryption, which in conjunction with PKE
implies many primitives that were not previously known from isogeny-based assumptions.

(Restricted) Effective Group Action. We introduce new definitions for group actions endowed
with hardness properties. As we have alluded earlier, not all isogeny-based assumptions can be
modeled by a cryptographic group action. So, building upon the definitions of Brassard and
Yung [BY91] and Couveignes [Cou06] as starting points, we create new definitions that allow
us to model a larger class of isogeny-based assumptions. Our first new definition is that of an
effective group action (EGA). This models the standard notion of cryptographic group actions. In
Section 8.1 we present the formal definitions for effective group actions and the associated axioms
of mathematical structure. While our definitions bear some resemblance to existing works, they
are more amenable to cryptographic constructions in the post-quantum setting. Much of the early
work on cryptographic group actions [BY91, Cou06] either predates the major advances in quantum
cryptanalysis like Shor’s algorithm [Sho97] or did not focus on post-quantum applications. We note
that CSI-FiSh [BKV19] can be modeled as an effective group action defined above (plausibly as a
weakly pseudorandom effective group action).

11



Our definition of effective group action does not capture isogeny-based assumptions such as
CSIDH [CLM+18], where we cannot compute the group action efficiently for all g ∈ G. To address
this, we introduce the notion of a restricted effective group action (REGA). The basic idea is the
following: in an REGA the group action is efficiently computable for some small subset of G. Note
that we can still “simulate” the effect of a general group action by computing the group action on a
sequence of different elements from this subset.

New constructions. We show new constructions from our group-action based primitives, which
can be concretely instantiated from some isogeny-based assumptions. We refer to Figure 1.3 for an
overview of our results.

• Statistically Sender-Private OT (SSP-OT): We show how to build two-message statistically
sender-private OT [NP01] in the plain model from any weakly pseudorandom EGA/REGA.
SSP-OT has many cryptographic applications, such as non-malleable commitments [KS17],
two-round witness indistinguishable proofs with private-coin verifier [JKKR17, BGI+17,
KKS18], and three-message statistical receiver-private OT in the plain model [GJJM20]. To
our knowledge, these primitives were not previously known from isogeny-based assumptions.

• Dual-mode PKE: We demonstrate a construction of dual-mode PKE [PVW08] from any
weakly pseudorandom EGA/REGA. Dual-mode PKE implies UC-secure1 round-optimal OT
protocols in the common reference string model against malicious parties. Such OT protocols
are in turn sufficient to construct UC-secure round-optimal multi-party computation (MPC)
protocols for general functionalities in the same security model [GS18] . Our construction
implies the first round-optimal OT and MPC protocols from isogeny-based assumptions.
Previously known constructions of OT from isogenies [BOB18, dOPS18, Vit19] were neither
round-optimal nor UC secure against malicious parties.

• Hash Proof System (HPS): We demonstrate a construction of HPS [CS02] from any
weakly pseudorandom EGA/REGA. Hash proof system has many applications such as
chosen-ciphertext secure (CCA-secure) PKE [CS02], password authenticated key-exchange
(PAKE) [GL03], and privacy-preserving protocols [BPV12]. To our knowledge, this is the
first hash proof system from isogeny-based assumptions. In particular, our result implies the
first CCA-secure encryption scheme in the standard model from isogenies. Previously known
CCA-secure encryption schemes from isogenies [CLM+18] were in the random oracle model.

1Universal Composability (UC) is a frameowork for the analysis of cryptographic protocols that guarantees security
under a general composition operation [Can01].
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Linear Hidden Shift assumption. We introduce a new assumption over group actions that we
call the Linear Hidden Shift (LHS) assumption and provide some evidence for its security. We
describe the assumption informally below.

Let G be a multiplicative group. For a vector of group elements g ∈ Gn and a binary vector
s ∈ {0, 1}n, let 〈g, s〉 denote the subset product

∏n
i=1 g

si
i . Informally, the LHS assumption states

that for any m that is polynomial in the security parameter, it holds that

{(xi,gi, (〈gi, s〉) ? xi)}i∈[m]

c
≈ {(xi,gi, ui)}i∈[m],

where gi ← Gn, s← {0, 1}n, xi ← X , and ui ← X (all sampled independently).
The LHS assumption is sufficient to realize symmetric-key KDM-CPA secure encryption, and

enables us to realize many primitives such as TDF and designated-verifier NIZK, which were
previously not known from isogeny-based assumptions. We believe that the LHS assumption is of
independent interest and may have other cryptographic applications.

On the LHS assumption. We show some evidence to support the claim that LHS assumption
holds over any weakly pseudorandom EGA/REGA. We first show a search to decision reduction:
namely, that the decision variant of the LHS assumption mentioned above is equivalent to its search
variant, which states that no PPT adversary can recover s. Next, we show that in certain settings an
additive variant of the LHS assumption is equivalent to the weak pseudorandom EGA if G = Z∗N
and the elements are sampled from a structured distribution. Based on this evidence, it appears likely
that the LHS assumption holds with respect to some of the known group-action based isogenies.

Weak Pseudorandom EGA

Hash Proof System

Dual-Mode PKE

SSP-OT

LHS Assumption

KDM-CPA SKE

+

KDM-CCA PKE

TDF

DV-NIZK

[KM19]

[KMT19]

[LQR+19]

Figure 1.3: Overview of our results and implications
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1.4 Organization

The preliminaries and detailed constructions (and proofs) are organized as follows:

• Chapter 2 presents preliminary background material.

• Chapter 3 formally defines (bounded) HOWF/IHwUF/IHwPRF/KHwPRF, describes a general
protocol to build primitives from IHwUF/IHwPRF, and shows instantiations from concrete
assumptions.

• Chapter 4 describes how to construct some primitives from (bounded) HOWF, and shows the
impossibility of HOWF with exact homomorphism in the quantum setting.

• Chapter 5/6 shows constructions of various primitives from (bounded) IHwUF/IHwPRF, and
describes how to instantiate them from the general protocol.

• Chapter 7 shows constructions of various primitives (including Naor-Reingold style PRF)
from (bounded) KHwPRF. It also presents a discussion on the output group of KHwPRF.

• Chapter 8 introduces our group action-based framework and describes constructions of
different primitives from a weakly pseudorandom EGA/REGA. It also presents the LHS
assumption and describes a construction of symmetric-key KDM-CPA encryption scheme.
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CHAPTER 2

Preliminaries

2.1 Notation

For any positive integer n, we use [n] to denote the set {1, . . . , n}. We use λ for the security
parameter. We use the symbols ⊕, ⊗, and � as group operations defined in the context. For two
equal-length strings s1 and s2 we denote their bitwise XOR as XOR(s1, s2). For a finite set S, we
use s← S to sample uniformly from the set S. We use the notations

s
≈ and

c
≈ to denote statistical

and computational indistinguishability, respectively.
Let Y = {yij} ∈ Ym×n be an m× n matrix of group elements. Let s = (s1, . . . , sn) ∈ {0, 1}n

be an arbitrary binary vector. We denote by Ys ∈ Ym the vector of group elements( ⊗
j:sj=1

y1,j, . . . ,
⊗
j:sj=1

ym,j

)
.

We naturally extend this notation to matrices of group elements. Let S = [s1 | . . . | s`] ∈ {0, 1}n×`

be an arbitrary binary matrix whose columns are s1, . . . , s`. We denote by YS ∈ Ym×` the matrix
of group elements [Ys1 | . . . | Ys`].

2.2 Cryptographic Primitives

If {X (i)
λ }i∈[`] be an ensemble of distributions (where each distribution is parameterized by λ) such

that ` ∈ poly(λ) and X (i)
λ

c
≈ X (i+1)

λ for i ∈ [n− 1], then X (1)
λ

c
≈ X (n)

λ .
A keyed function family is a function F : K ×X → Y such that K is the key space and X, Y

are input and output spaces, respectively. We often use the notation Fk(x) to denote F (k, x). If
G : X → Y is a function, let G$ denote a randomized oracle that, when invoked, samples x← X

uniformly and outputs (x,G(x)).
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Weak Unpredictable Function. A weak unpredictable function (wUF) family is an efficiently
computable (keyed) function family F (where K,X, Y are indexed by the security parameter λ)
such that for all probabilistic polynomial-time adversaries A we have

Pr[AF $
k (x∗) = Fk(x

∗)] ≤ negl(λ),

where k ← K, x∗ ← X are uniformly sampled elements from K,X , respectively. Basically, the
security requirement is that given access to polynomially many (random) input-output pairs of
the form (xi, Fk(xi)), no attacker can predict Fk(x∗) with non-negligible probability for a fresh
uniformly chosen x∗ ← X .

Unpredictable Function. An unpredictable function (UF) family is an efficiently computable
(keyed) function family F such that for all probabilistic polynomial-time adversaries A we have

Pr[AF (k,·) = (x∗, F (k, x∗))] ≤ negl(λ),

where k ← K and x∗ is any element that has not been queried by A. We remark that in case of UF,
the inputs are adaptively chosen, and the adversary does not need to prepare its queries beforehand.

Weak Pseudorandom Function. A weak pseudorandom function (wPRF) family is an efficiently
computable (keyed) function family F such that for all probabilistic polynomial-time adversaries A
we have ∣∣∣Pr[AF $

k = 1]− Pr[AU$

= 1]
∣∣∣ ≤ negl(λ),

where k ← K, and U : X → Y is a truly random function. Roughly speaking, the security
requirement is that given access to polynomially many (random) input-output pairs of the form
(xi, yi), no attacker can distinguish between the real experiment where yi = Fk(xi) and the ideal
experiment where yi = U(xi) for a truly random function U .

Pseudorandom Function. A pseudorandom function (PRF) family is an efficiently computable
(keyed) function family F such that for all probabilistic polynomial-time adversaries A we have

∣∣Pr[AFk = 1]− Pr[AU = 1]
∣∣ ≤ negl(λ),

where k ← K, and U : X → Y is a truly random function.
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Collision-Resistant Hash Function. Let {H : {0, 1}`(λ) → {0, 1}m(λ)}H∈H be family of (keyed)
hash functions. We sayH is a collision-resistant hash function (CRHF) family if m(λ) < `(λ) and
for any PPT adversary A

Pr
H←H

[(x, x′)← A(H) s.t. x 6= x′ ∧H(x) = H(x′)] ≤ negl(λ).

Trapdoor Function. A tuple of algorithms (G,F, F−1) is said to be a trapdoor function (TDF)
family if it satisfies the following properties:

• G(1λ) outputs (pp, t) where Fpp(·) computes an injective function whose input space is
{0, 1}n, and F−1

t (·) computes the inverse of Fpp(·).

• For any adversary A we have

Pr
pp←G(1λ)
x←{0,1}n

[x← A(pp, Fpp(x))] ≤ negl(λ).

We refer the reader to [Gol01, Gol04, KL14] for a comprehensive treatment of well-known
cryptographic primitives.

2.3 Min-entropy and Leftover Hash Lemma

For a discrete random variable Z with sample space Ω, its min-entropy is defined as

H∞(Z) = min
ω∈Ω
{− log Pr[Z = ω]}.

We will use the following lemma, which is a simplified version of the Leftover Hash Lemma (LHL).
We refer the reader to [HILL99] for a proof of LHL.

Lemma 2.3.1. Let {Hs : Z → Y }s∈S be a family of pairwise independent hash functions, and let

Z and S be discrete random variables over Z and S , respectively. If H∞(X) > log |Y |+2 log(ε−1)

we have

∆[(S,HS(X)), (S, U)] ≤ ε,

where U denotes the uniform distribution over the set Y .

We will also use the following corollary of the leftover hash lemma.
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Lemma 2.3.2. Let G be a (multiplicative) finite group, and let n be a positive integer such that

n > log |G|+ ω(log(λ)). If g← Gn and s← {0, 1}n, we have

(g,
n∏
i=1

gsii )
s
≈ (g, u),

where u← G is a uniformly chosen element from G.
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CHAPTER 3

A Framework Based on Homomorphism

3.1 Building Blocks

Definition 3.1.1. (Homomorphic One-Way Function.) A one-way function f : X → Y is called a
homomorphic one-way function (HOWF) if the following conditions hold:

1. (X ,⊕) and (Y ,⊗) are both efficiently samplable groups.

2. The group operations⊕ and⊗, and inverse operation in each group are efficiently computable.

3. For every x1, x2 ∈ X , we have

f (x1 ⊕ x2) = f (x1)⊗ f (x2) .

We also consider a notion of bounded homomorphism, in the sense that the homomorphism is
preserved for an a priori bounded number of group operations in the input group of one-way function.
We formally describe this notion as γ-bounded homomorphism, where the parameter γ reflects the
maximum number of group operations that the homomorphism can tolerate.

Definition 3.1.2. (γ-Bounded Homomorphic OWF.) A one-way function f : X → Y is called a
γ-bounded homomorphic one-way function (γ-bounded HOWF) if the following conditions hold:

1. (X ,⊕) and (Y ,⊗) are both efficiently samplable groups.

2. The group operations⊕ and⊗, and inverse operation in each group are efficiently computable.

3. If (x1, . . . , xL)← X L and L ≤ γ, it holds that

Pr
[
f
(⊕
j∈[L]

xj

)
=
⊗
j∈[L]

f (xj)
]
≥ 1− negl(λ).
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Definition 3.1.3. (Input-Homomorphic Weak UF.) A function family {F (k, ·) : X → Y}k∈K is
called an Input-Homomorphic Weak UF (IHwUF) family if the following conditions hold:

1. {F (k, ·) : X → Y}k∈K is a weak UF family.

2. (X ,⊕) and (Y ,⊗) are both efficiently samplable groups.

3. The group operations⊕ and⊗, and inverse operation in each group are efficiently computable.

4. For every k ∈ K and for every x1, x2 ∈ X , we have

F (k, x1 ⊕ x2) = F (k, x1)⊗ F (k, x2) .

Definition 3.1.4. (Input-Homomorphic Weak PRF.) A function family {F (k, ·) : X → Y}k∈K
is called an Input-Homomorphic Weak PRF (IHwPRF) family if it satisfies the aforementioned
requirements and additionally, F is a weak PRF family.

We also consider a notion of bounded homomorphism, in the sense that input homomorphism is
preserved only for an a priori bounded number of group operations in the input group of the weak
UF/PRF. We formally describe this notion as γ-bounded homomorphism, where the parameter γ
reflects the maximum number of group operations that the homomorphism can tolerate.

Definition 3.1.5. (γ-Bounded Input-Homomorphic Weak UF.) A family {F (k, ·) : X → Y}k∈K is
called a γ-bounded IHwUF family if there exists a universal mappingR : Y → Z such that:

1. {F (k, ·) : X → Y}k∈K and {R (F (k, ·)) : X → Z}k∈K are weak UF families.

2. (X ,⊕) and (Y ,⊗) are both efficiently samplable groups.

3. The group operations⊕ and⊗, and inverse operation in each group are efficiently computable.

4. If (x1, . . . , xL)← X L and L ≤ γ, it holds that

Pr
[
R
(
F
(
k,
⊕
j∈[L]

xj
))

= R
(⊗
j∈[L]

F (k, xj)
)]
≥ 1− negl(λ).

Definition 3.1.6. (γ-Bounded Input-Homomorphic Weak PRF.) A family {F (k, ·) : X → Y}k∈K is
called a γ-bounded IHwPRF family if it satisfies the aforementioned requirements and additionally,
F is a weak PRF family.
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Definition 3.1.7. (Key-Homomorphic Functions.) A function family {F (k, ·) : X → Y}k∈K is
key-homomorphic if the following conditions hold:

• (K,⊕) and (Y ,⊗) are efficiently samplable groups, and the group operations and the inverse
operation in each group are efficiently computable.

• For any pair of keys k1, k2 ∈ K and any input x ∈ X , we have

F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2, x) .

A key-homomorphic weak PRF (KHwPRF) family is a weak PRF family that is key homomorphic.
Similarly, a key-homomorphic PRF (KHPRF) family is a PRF family that is also key homomorphic.

Definition 3.1.8. A weak pseudorandom function family {F (k, ·) : X → Y}k∈K is a γ-bounded
KHwPRF family if there exists (efficiently computable) universal mappings Rin : Y → Zin and
Rout : Zin → Zout such that

• (K,⊕), (Y ,⊗), and (Zin,�) are efficiently samplable groups, and the group operations and
the inverse operation in each group are efficiently computable.

• For a randomly chosen key vector (k1, . . . , kL) ← KL such that L ≤ γ, and a randomly
chosen input x← X , the following holds with overwhelming probability:

Rin

(
F
(⊕
j∈[L]

kj, x
))

= Rin

(⊗
j∈[L]

F (kj, x)
)
,

Rout

(⊙
j∈[L]

Rin

(
F (kj, x)

))
= Rout

(
Rin

(⊗
j∈[L]

F (kj, x)
))
.

3.2 A Family of Collision-Resistant One-Way Functions

The starting point our framework is a family of CR-OWFs from IHwUFs (and hence, IHwPRFs).
Informally, given an IHwUF F : K × X → Y , subset-sum on uniformly random vectors x ∈ X n is
both one-way and collision-resistant when n is sufficiently large. This family has a few interesting
features. Firstly, the evaluation procedure involves n homomorphic operations, where n is apriori
bounded, meaning that the family is equivalently implied by any γ-bounded IHwUF for γ ≥ n.
Secondly, evaluation correctness, one-wayness and collision-resistance hold even if the input and
output group of the IHwUF are nonabelian. Thirdly, the resulting function family does not use the
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key space of F explicitly. As we will see later, this feature will be helpful to construct asymmetric
cryptographic primitives.

Construction. Let F : K ×X → Y be an IHwUF. Fix n > log |X |+ ω(log(λ)) and sample 2n

uniformly random group elements from X as

x = {xj,b ← X}j∈[n],b∈{0,1} .

Define the family of functions OWFx : {0, 1}n → X as

OWFx (r = (r1, . . . , rn)) =
⊕
j∈[n]

xj,rj .

One-Wayness. We first prove the one-wayness of the aforementioned family of functions. Let
F : K ×X → Y be an IHwUF. Define the experiment ExptOWF−IHwUF as follows.

1. The challenger uniformly samples group elements {xj,b ← X}j∈[n],b∈{0,1} and a binary
string r = (r1, · · · , rn)← {0, 1}n.

2. The challenger computes x∗ =
⊕

j∈[n] xj,rj and sends the tuple
(
{xj,b}j∈[n],b∈{0,1} , x

∗
)

to the adversary A.

3. Eventually, the adversary A outputs a binary string r′ = (r′1, . . . , r
′
n) ∈ {0, 1}n.

For any PPT adversary A we define AdvOWF−IHwUF(A) to be the probability of x∗ =
⊕

j∈[n] xj,r′j .

Lemma 3.2.1. For all PPT adversaries A, we have AdvOWF−IHwUF(A) = negl(λ).

Proof. Suppose that there exists a PPT adversary A such that AdvOWF−IHwUF(A) is non-negligible.
We construct a PPT algorithm B such that B breaks the weak unpredictability of F . B proceeds as
follows:

1. B queries its oracle 2n times and receives {xj,b, yj,b = F (k, xj,b)}j∈[n],b∈{0,1}. The algorithm
B also gets a (uniformly random) challenge x∗ ∈ X .

2. B forwards the tuple
(
{xj,b}j∈[n],b∈{0,1} , x

∗
)

to the adversary A.
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3. Eventually, A outputs a binary string r = (r1, · · · , rn) ∈ {0, 1}n.

4. If x∗ =
⊕

j∈[n] xj,rj , B outputs y∗ =
⊗

j∈[n] yj,rj . Otherwise B outputs a random y∗ ← Y .

By the leftover hash lemma, we know that (x,
⊕

j∈[n] xj,rj) is statistically indistinguishable from
(x, x∗). Hence B correctly simulates the one-wayness game for A. By input-homomorphism of F ,
we have

F (k, x∗) = F
(
k,
⊕
j∈[n]

xj,rj

)
=
⊗
j∈[n]

yj,rj = y∗.

It follows that AdvIHwUF(B) is negligibly different from AdvOWF−IHwUF(A), as desired.

Collision Resistance. We prove that the aforementioned OWF family is also collision-resistant.
Let F : K × X → Y be an IHwUF. For a fixed n > log |X | + ω(log(λ)), define the experiment
ExptCRHF−IHwUF as follows.

1. The challenger samples {xj,b ← X}j∈[n],b∈{0,1} and sends them to the adversary A.

2. A outputs r = (r1, · · · , rn) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.

For any PPT adversary A we define AdvCRHF−IHwUF(A) to be the probability of the event that⊕
j∈[n]

xj,rj =
⊕
j∈[n]

xj,r′j .

Lemma 3.2.2. For all PPT adversaries A, we have AdvCRHF−IHwUF(A) = negl(λ).

Proof. Suppose that there exists a PPT adversary A such that AdvCRHF−IHwUF(A) is non-negligible.
We construct a PPT algorithm B such that B breaks the weak unpredictability of F as follows:

1. B queries its oracle 2n times and receives {xj,b, yj,b = F (k, xj,b)}j∈[n],b∈{0,1}. The algorithm
B also gets a (uniformly random) challenge x∗ ∈ X .

2. B uniformly randomly picks i← [n] and b∗ ← {0, 1}, and sets xi,b∗ := x∗. It then forwards
{xj,b}j∈[n],b∈{0,1} to the adversary A.

3. A outputs r = (r1, · · · , rn) ∈ {0, 1}n and r′ = (r′1, · · · , r′n) ∈ {0, 1}n.
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4. B proceeds as follows:

• If
⊕

j∈[n] xj,rj 6=
⊕

j∈[n] xj,r′j or ri = r′i, B outputs a random y∗ ← Y .

• Otherwise, assume wlog that ri = b∗. The following must hold:

x∗ =
( ⊕
j∈[i−1]

xj,rj

)−1

⊕
(⊕
j∈[n]

xj,r′j

)
⊕
( ⊕
j∈[i+1,n]

xj,rj

)−1

,

where the right-hand side is independent of x∗. B now outputs y∗ as

y∗ =
( ⊗
j∈[i−1]

yj,rj

)−1

⊗
(⊗
j∈[n]

yj,r′j

)
⊗
( ⊗
j∈[i+1,n]

yj,rj

)−1

.

By the input-homomorphism of F , we have F (k, x∗) = y∗.

Observe that if A outputs a valid collision (r, r′), the probability that r and r′ differ in the ith bit for
a randomly chosen i← [n] is at least 1/n. It follows that

AdvIHwUF(B) ≥
(
AdvCRHF−IHwUF(A)

n

)
,

which is non-negligible, as desired.

Note 3.2.3. The aforementioned OWF/CRHF family can be instantiated using a γ-bounded IHwUF
family, subject to the restriction that n ≤ γ. The proofs of one-wayness and collision resistance
also follow similarly.

3.3 The Framework

In this section, we present a framework for designing (asymmetric) cryptographic primitives from a
combination of wUF/wPRF evaluations and subset-sum/subset-product operations. The protocol
consists of four phases: initialization, pre-evaluation, evaluation and post-evaluation. The evaluation
phase is based on wUF/wPRF evaluations, while the pre-evaluation and post-evaluation phases are
based on subset-sum/subset-product operations over group elements. For the sake of clarity, we
exemplify each phase of the framework using an equivalent framework in the discrete-log setting.
More specifically, we show how our framework subsumes a generic methodology of constructing
cryptographic primitives from the CDH/DDH assumptions over prime order groups.
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1. Initialization:

• Publish
(
G, g, N∗, N̄ , N̂

)
, where G describes a cyclic group (G, ·) of prime order p with

uniform generator g, and N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ) are fixed functions.

• Let F be the description of an IHwUF/IHwPRF F : K ×X → Y over groups (X ,⊕)

and (Y ,⊗). Fix n > log |X | + ω(log(λ)), N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ),
and publish

(
F ,X, n,N∗, N̄ , N̂

)
, where X is a tuple of 2n uniform elements (called

base elements) from X as

X = {xj,b ← X}j∈[n],b∈{0,1} .

2. Pre-Evaluation:

• Given the generator g, sample N∗ random elements from Zq as

{αn∗ ← Zq}n∗∈[N∗] ,

and output the tuple
A = {g∗n∗ = gαn∗}n∗∈[N∗] .

• Given the tuple of base elements X, sample N∗ random strings as

{sn∗ = (sn∗,1 . . . , sn∗,n)← {0, 1}n}n∗∈[N∗] ,

and output the tuple

X∗ =
{
x∗n∗ =

n⊕
j=1

xj,sn∗,j

}
n∗∈[N∗]

.

3. Evaluation:

• Given the generator g and the pre-evaluation output A, sample β1, . . . , βN̄ ← Zq and
output B,B∗ where

B =
{
hn̄ = gβn̄

}
n̄∈[N̄ ]

, B∗ =
{
h∗n̄,n∗ = (g∗n∗)

βn̄
}
n̄∈[N̄ ],n∗∈[N∗]

.
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• Given base elements X and the pre-evaluation output X∗, sample k1, . . . , kN̄ ← K and
output the tuple

(
Y,Y∗

)
, where

Y =
{
y

(n̄)
j,b = F (kn̄, xj,b)

}
n̄∈[N̄ ],j∈[n],b∈{0,1}

,Y∗ =
{
y∗n̄,n∗ = F (kn̄, x

∗
n∗)
}
n̄∈[N̄ ],n∗∈[N∗]

.

4. Post-Evaluation:

• Given the generator g and the evaluation outputs (h1, . . . , hN̄), sample N̂ random
elements from Zq as

{γn̂ ← Zq}n̂∈[N̂ ] ,

and output
C =

{
ĝn̂ = gγn̂ , ĥn̄,n̂ = hγn̂n̄

}
n̄∈[N̄ ],n̂∈[N̂ ]

.

• Given X and the evaluation output Y =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

, sample N̂ random

binary vectors as
{rn̂ = (rn̂,1 . . . , rn̂,n)← {0, 1}n}n̂∈[N̂ ] ,

and output (X̂, Ŷ), where

X̂ =
{
x̂n̂ =

n⊕
j=1

xj,rn̂,j

}
n̂∈[N̂ ]

, Ŷ =
{
ŷn̄,n̂ =

n⊗
j=1

y
(n̄)
j,rn̂,j

}
n̄∈[N̄ ],n̂∈[N̂ ]

.

Functionality. The following claim is a direct consequence of the input homomorphism of F .

Claim 3.3.1. For each n∗ ∈ [N∗], n̂ ∈ [N̂ ], n̄ ∈ [N̄ ], we have:

y∗n̄,n∗ = F (kn̄, x
∗
n∗) =

⊗
j∈[n]

y
(n̄)
j,sn∗,j

,

ŷn̄,n̂ =
⊗
j∈[n]

y
(n̄)
j,sn̂,j

= F (kn̄, x̂n̂) .
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Remark 3.3.2. If F is a γ-bounded IHwUF/IHwPRF for γ > n, the relations above are modified as
follows:

R
(
y∗n̄,n∗

)
= R (F (kn̄, x

∗
n∗)) = R

(⊗
j∈[n]

y
(n̄)
j,sn∗,j

)
,

R (ŷn̄,n̂) = R
(⊗
j∈[n]

y
(n̄)
j,sn̂,j

)
= R (F (kn̄, x̂n̂)) .

Security (IHwPRF). The following theorem captures the security guarantees provided by the
general framework when instantiated using an IHwPRF.

Theorem 3.3.3. Let F : K × X → Y be an IHwPRF. Then for any n > log |X |+ ω(log(λ)), for

all functions N∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), and for any PPT adversary A, it holds that∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A (UX,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1

]∣∣∣ ≤ negl(λ),

where

• The tuple (X,X∗, X̂,Y,Y∗, Ŷ) is as defined in the protocol above,

• UX,UX∗ , and UX̂ are tuples of 2n, N∗, and N̂ uniformly sampled group elements from X ,

• UY, UY∗ , and UŶ are tuples of (2n · N̄), (N∗ · N̄), and (N̂ · N̄) uniform elements from Y .

Proof. The proof proceeds in two stages. The first stage applies the leftover hash lemma, while
the second stage relies on the weak pseudorandomness of F .

Applying LHL. Let UX∗ = {u∗1, . . . , u∗N∗} be a tuple of N∗ uniformly sampled group elements
in X , and let

ŨY∗ =
{
y∗1,n∗ , . . . , y

∗
N̄,n∗

}
n∗∈[N∗]

,

where y∗n̄,n∗ = F (kn̄, u
∗
n∗) for each n̄ ∈ [N̄ ], n∗ ∈ [N∗], and k1, . . . , kN̄ ∈ K are the same PRF keys

as used in the “real” protocol. We use the following lemma.

Lemma 3.3.4. For any n > log |X | + ω(log(λ)), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and

N̂ = N̂(λ), and for any PPT adversary A, we have∣∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
] ∣∣∣∣ ≤ negl(λ),
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Proof. The proof of this lemma follows from the leftover hash lemma. Recall that in the “real”
experiment for each n∗ ∈ [N∗] the binary string sn∗ ∈ {0, 1}n used to generate x∗n∗ is uniformly
and independently sampled. By the leftover hash lemma, it follows that (X∗,Y∗) and

(
UX∗ , ŨY∗

)
are statistically indistinguishable. This completes the proof of Lemma 3.3.4.

Similarly, let UX̂ =
{
û1, . . . , ûN̂

}
be a tuple of N̂ uniformly sampled group elements in X , and let

ŨŶ =
{
ŷ1,n∗ , . . . , ŷN̄,n̂

}
n̂∈[N̂ ]

,

where ŷn̄,n∗ = F (kn̄, ûn∗) for each n̄ ∈ [N̄ ] and each n̂ ∈ [N̂ ], and k1, . . . , kN̄ ∈ K are the same
PRF keys as used in the “real” protocol. We also use the following lemma.

Lemma 3.3.5. For any n > log |X | + ω(log(λ)), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and

N̂ = N̂(λ), and for any PPT adversary A, we have∣∣∣∣Pr
[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
] ∣∣∣∣ ≤ negl(λ).

Pseudorandomness. We use the weak pseudorandomness of F to prove the following lemma.

Lemma 3.3.6. For any n > log |X | + ω(log(λ)), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and

N̂ = N̂(λ), and for any PPT adversary A, we have∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr [A (X,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]

∣∣∣∣ ≤ negl(λ),

where UY, UY∗ and UŶ denote tuples of (2n · N̄), (N∗ · N̄) and (N̂ · N̄) uniform elements in Y ,
respectively, while ŨY∗ and ŨŶ are as described in Lemmas 3.3.4 and 3.3.5, respectively. We prove
this lemma through a sequence of hybrid arguments. Define the collection {Y(n̄)}n̄∈[0,N̄ ] as follows:

• Y(0) is identical to Y as output by the “real” protocol.

• Y(N̄) is identical to UY.

• For each n̄ ∈ [N̄ ], Y(n̄) is identical to Y(n̄−1) except that the subtuple of elements {y(n̄)
j,b }j∈[n],b∈{0,1}

is replaced by 2n elements sampled uniformly at random from Y .

Similarly, define the collection {Ũ(n̄)
Y∗ }n̄∈[0,N̄ ] as follows.

• Ũ
(0)
Y∗ is identical to ŨY∗ as described in Lemma 3.3.4.
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• Ũ
(N̄)
Y∗ is identical to UY∗ .

• For each n̄ ∈ [N̄ ], Ũ
(n̄)
Y∗ is identical to Ũ

(n̄−1)
Y∗ except that the subtuple of elements {y∗n̄,n∗}n∗∈[N∗]

is replaced by N∗ elements sampled uniformly at random from Y .

Finally, define the collection {Ũ(n̄)

Ŷ
}n̄∈[0,N̄ ] as follows.

• Ũ
(0)

Ŷ
is identical to ŨŶ as described in Lemma 3.3.5.

• Ũ
(N̄)

Ŷ
is identical to UŶ.

• For each n̄ ∈ [N̄ ], Ũ
(n̄)

Ŷ
is identical to Ũ

(n̄−1)

Ŷ
except that the subtuple of elements {ŷn̄,n̂}n̂∈[N̂ ]

is replaced by N̂ elements sampled uniformly at random from Y .

We first prove the following auxiliary lemma.

Lemma 3.3.7. For any n > log |X | + ω(log(λ)), for all functions N∗ = N∗(λ), N̄ = N̄(λ) and

N̂ = N̂(λ), and for any PPT adversary A,∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣

is negligible in the security parameter λ.

Proof. To prove this lemma, suppose that there exists a PPT adversary A such that∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
−Pr

[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣

is non-negligible for some n̄ ∈ [N̄ ]. We construct a PPT algorithm B that breaks the weak
pseudorandomness of F . B proceeds as follows:

1. B queries its oracle (2n+N∗ + N̂) times and receives the following tuples{
{xj,b, yj,b}j∈[n],b∈{0,1} , {x

∗
n∗ , y

∗
n∗}n∗∈[N∗] , {x̂n̂, ŷn̂}n̂∈[N∗]

}
.
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2. It then samples (N̄ − n̄) keys as kn̄+1, . . . , kN̄ ← K and sets the following for each n′ ∈ [N̄ ]:

y
(n′)
j,b =


yj,b if n′ = n̄,

F (kn′ , xj,b) if n′ > n̄,

y ← Y otherwise.

for j ∈ [n], b ∈ {0, 1}

y∗n′,n∗ =


y∗n∗ if n′ = n̄,

F (kn′ , x
∗
n∗) if n′ > n̄,

y ← Y otherwise.

for n∗ ∈ [N∗]

ŷn′,n̂ =


ŷn̂ if n′ = n̄,

F (kn′ , x̂n̂) if n′ > n̄,

y ← Y otherwise.

for n̂ ∈ [N̂ ]

3. B then sets the following:

X = {xj,b}j∈[n],b∈{0,1} , UX∗ = {x∗n∗}n∗∈[N∗] , UX̂ = {x̂n̂}n̂∈[N∗] ,

Y′ =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

,

Ũ′Y∗ =
{
y∗1,n∗ , . . . , y

∗
N̄,n∗

}
n∗∈[N∗]

, Ũ′
Ŷ

=
{
ŷ1,n̂, . . . , ŷN̄,n̂

}
n̂∈[N∗]

,

and sends the tuple
(

X,UX∗ ,UX̂,Y
′, Ũ′Y∗ , Ũ

′
Ŷ

)
to A.

4. Eventually, A outputs a bit b. B outputs the same bit b.

Observe the following:

• When B interacts with the weak PRF, the distribution of
(
Y′, Ũ′Y∗ , Ũ

′
Ŷ

)
is identical to the

distribution of
(
Y(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
.

• When B interacts with a random function, the distribution of
(
Y′, Ũ′Y∗ , Ũ

′
Ŷ

)
is identical to the

distribution of
(
Y(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
.

It follows that AdvIHwUF(B) is negligibly different from the advantage of A, which completes the
proof of Lemma 3.3.7.
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To prove Lemma 3.3.6, observe that∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr [A (X,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]

∣∣∣∣
≤

N̄∑
n̄=1

∣∣∣∣Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄−1), Ũ

(n̄−1)
Y∗ , Ũ

(n̄−1)

Ŷ

)
= 1
]
−

Pr
[
A
(

X,UX∗ ,UX̂,Y
(n̄), Ũ

(n̄)
Y∗ , Ũ

(n̄)

Ŷ

)
= 1
] ∣∣∣∣ ≤ negl(λ).

This completes the proof of Lemma 3.3.6.

Putting everything together. Using Lemmas 3.3.4, 3.3.5, and 3.3.6 we have∣∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr [A (UX,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]

∣∣∣∣
≤

∣∣∣∣Pr
[
A
(

X,X∗, X̂,Y,Y∗, Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
] ∣∣∣∣+∣∣∣∣Pr

[
A
(

X,UX∗ , X̂,Y, ŨY∗ , Ŷ
)

= 1
]
− Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
] ∣∣∣∣+∣∣∣∣Pr

[
A
(

X,UX∗ ,UX̂,Y, ŨY∗ , ŨŶ

)
= 1
]
− Pr [A (X,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]

∣∣∣∣+∣∣∣∣Pr [A (X,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]− Pr [A (UX,UX∗ ,UX̂,UY,UY∗ ,UŶ) = 1]

∣∣∣∣
≤ negl(λ),

since X and UX are both distributed uniformly over X 2n. This completes the proof of Theorem 3.3.3.

Security (IHwUF). The following theorem captures the security guarantees provided by the
general framework when instantiated using an IHwUF.

Theorem 3.3.8. Let F : K × X → Y be an IHwUF. For any n > log |X | + ω(log(λ)), for all

functionsN∗ = N∗(λ), N̄ = N̄(λ) and N̂ = N̂(λ), for any arbitrary (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ],

and for any PPT adversary A = (A∗, Â), we have

Pr
[
A∗
(
X,X∗, X̂,Y

)
= y∗n̄,n∗

]
+ Pr

[
Â
(
X,X∗, X̂,Y

)
= ŷn̄,n̂

]
≤ negl(λ),

where the tuple (X,X∗, X̂,Y, y∗n̄,n∗ , ŷn̄,n̂) for (n∗, n̂, n̄) ∈ [N∗] × [N̂ ] × [N̄ ] is as defined in the

protocol above.
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Proof. Suppose that there exists a PPT adversary A = (A∗, Â) such that

Pr
[
A∗
(
X,X∗, X̂,Y

)
= y∗n̄,n∗

]
+ Pr

[
Â
(
X,X∗, X̂,Y

)
= ŷn̄,n̂

]
is non-negligible for some (n∗, n̂, n̄) ∈ [N∗]× [N̂ ]× [N̄ ].

• Assume that there exists (n∗, n̄) ∈ [N∗] × [N̄ ] such that Pr
[
A∗(X,X∗, X̂,Y) = y∗n̄,n∗

]
is

non-negligible. We construct a PPT algorithm B that breaks the weak unpredictability of F .
B proceeds as follows:

1. B queries its oracle 2n times and receives the tuple {xj,b, yj,b}j∈[n],b∈{0,1}, and a challenge
x∗ ∈ X .

2. It then samples (N̄ − 1) PRF as k1, . . . , kn̄−1, kn̄+1, . . . , kN̄ ← K and sets the following
for each n′ ∈ [N̄ ], j ∈ [n], b ∈ {0, 1}:

y
(n′)
j,b =

yj,b if n′ = n̄

F (kn′ , xj,b) otherwise.

3. B then samples (N∗ − 1) random group elements as

x∗1, . . . , x
∗
n∗−1, x

∗
n∗+1, x

∗
N∗ ← X

and sets x∗n∗ = x∗, where x∗ is the input challenge to B.

4. B additionally samples N̂ group elements {x̂n̂}n̂∈N̂ and sends the tuple
(
X,X∗, X̂,Y

)
to A, where

X = {xj,b}j∈[n],b∈{0,1} , X∗ = (x∗1, . . . , x
∗
N∗) , X̂ = (x̂1, . . . , x̂N̂) ,

Y =
{
y

(1)
j,b , . . . , y

(N̄)
j,b

}
j∈[n],b∈{0,1}

.

5. Eventually, A outputs y∗ ∈ Y . B outputs the same y∗.

By the leftover hash lemma, the distributions of X∗ and X̂ are statistically indistinguishable
from those of the real protocol. It follows that AdvIHwUF(B) is negligibly different from the
advantage of A∗.
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• A similar argument shows that if there exists a pair of indices (n̂, n̄) ∈ [N̂ ]× [N̄ ] such that
Pr
[
Â(X,X∗, X̂,Y) = ŷn̄,n̂

]
is non-negligible, then there exists an attacker against the weak

unpredictability of F with non-negligible advantage.

Combining the aforementioned items, for any (n∗, n̂, n̄) ∈ [N∗] × [N̂ ] × [N̄ ], and for any PPT
adversary A = (A∗, Â), we have

Pr
[
A∗
(
X,X∗, X̂,Y

)
= y∗n̄,n∗

]
+ Pr

[
Â
(
X,X∗, X̂,Y

)
= ŷn̄,n̂

]
≤ negl(λ),

which completes the proof of Theorem 3.3.8.

Lemma 3.3.9. Let F : K × X → Y be an IHwUF. For any n > log |X | + ω(log(λ)), for any

s ∈ {0, 1}n and any (fixed) i ∈ [n], if xj,b ← X and k ← K we have

(
s, {xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ {F (k, xi,1−si)},HardCore(F (k,

⊕
j∈[n]

xj,sj))
) c
≈

(
s, {xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ {F (k, xi,1−si)}, β)

)
,

where β ← {0, 1} is a uniform bit.

Proof. Since F (k, xi,1−si) is not given, by the input homomorphism of F , it is enough to show the
following statement

(
{xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ F (k, xi,b∗),HardCore(F (k, xi,b∗))

) c
≈(

{xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ F (k, xi,b∗), β)
)
,

which follows from the weak unpredictability of F .

Corollary 3.3.10. Let F : K ×X → Y be an IHwUF. For any n > log |X |+ ω(log(λ)) and any

(fixed) i ∈ [n], if xj,b ← X , s← {0, 1}n, and k ← K we have

(
{xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ {F (k, xi,1−si)},HardCore(F (k,

⊕
j∈[n]

xj,sj))
) c
≈

(
{xj,b}j∈[n],b∈{0,1}, {F (k, xj,b)}j∈[n],b∈{0,1} \ {F (k, xi,1−si)}, β)

)
,

where β ← {0, 1} is a uniform bit.

Proof. The proof is similar to the proof of Lemma 3.3.9.
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3.4 Instantiations from Cryptographic Assumptions

In this section, we provide instantiations of IHwUFs/IHwPRFs from concrete assumptions. We start
with Diffie-Hellman assumption as an easy example. We then provide an example of IHwPRF where
the input space depends on the secret key. After that we provide an example of IHwPRF where a
bounded number of homomorphisms is allowed. Finally, we prove that any (group-)homomorphic
PKE implies an IHwPRF family, providing constructions of IHwPRF family from different concrete
assumptions.

CDH/DDH. Given a group (G, ·) of order q with generator g, define the function F : Zq×G→ G
as F (k, h) = hk. We prove that F is an IHwPRF assuming DDH assumption. It is easy to see that
for any h1, h2 ∈ G we have F (k, h1 · h2) = F (k, h1) · F (k, h2). Let A be an attacker against the
weak pseudorandomness of F , and let n be the number of queries of the attacker. It is enough to
show that

((gx1 , gkx1), (gx2 , gkx2), . . . , (gxn , gkxn))
c
≈ ((gx1 , gr1), (gx2 , gr2), . . . , (gxn , grn)),

where k, xi, ri ← Zq are uniform and independent for i ∈ [n], and (gxi , gkxi) is the answer to the
ith query.

Given a DDH-challenge tuple (gk, gx
∗
, y) where y is either gkx∗ or a random element of G,

the reduction first samples n pairs of random elements: {(si, ti) ← Z2
q}i∈[n]. It then outputs the

following tuple: (
(gs1(gx

∗
)t1 , (gk)s1yt1), . . . , (gsn(gx

∗
)tn , (gk)snytn)

)
.

Observe that when y = gkx
∗ the tuple above is identical to the “real” game where all queries

answered as PRF output, and y random corresponds to the “ideal” game where all queries answered
as a random function. Therefore, an attacker against the weak pseudorandomness of F with
advantage ε implies a DDH distinguisher with advantage ε. A similar argument shows that F is an
IHwUF under CDH assumption.

Matrix-DDH. The DDH problem has been generalized to several different algebraic problems,
like Decisional Linear (DLIN [BBS04]) and k-linear [HK07, Sha07]. Escala et al [EHK+13]
generalized all these assumptions into one framework called the matrix-DDH assumptions. Given
a cyclic group (G, ·) of order q with generator g and a Zq-matrix A, they adopted the notation
[A] to denote the component-wise exponentiation gA. The matrix-DDH problem is parameterized
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by a distribution D`,k on Z`×kq matrices with (` > k), where the top k × k matrix, denoted Ā, is
overwhelmingly invertible. The remaining (` − k) × k bottom matrix is denoted A. The D`,k
matrix-DDH assumption states that with A← D`,k and (w, r)← Zkq × Z`−kq :

(
[Āw], [Aw]

) c
≈
(
[Āw], [r]

)
.

We now show that any D`,k-matrix-DDH assumption can give us an IHwPRF. The key sampling
algorithm is as follows: first sample A← D`,k and then compute key K = Ā−1A. Now we define
the function F : Zk×(`−k)

q × Gk → G`−k as F (K, [x]) = K[x] = [Kx]. We prove that F is an
IHwPRF assuming the D`,k-Matrix-DDH assumption. It is easy to see that for any [x1], [x2] ∈ Gk

we have
F (K, [x1 + x2]) = F (K, [x1]) + F (K, [x2]).

Let A be an attacker against the weak pseudorandomness of F , and let n be the number of queries
of the attacker. It is enough to show that

(([x1], [Kx1]), . . . , ([xn], [Kxn]))
c
≈ (([x1], [r1]), . . . , ([xn], [rn])) ,

where xi, ri are uniform and independent for i ∈ [n], and [xi], [Kxi] is the answer to the i-th query.
It was shown in [EHK+13] that by the random self-reducibility of matrix-DDH samples, the

advantage of any attacker in distinguishing the above distributions is bounded by a multiplicative
factor of (`− k) over a single sample matrix-DDH advantage. Therefore, an attacker against the
weak pseudorandomness of F with advantage ε implies a Matrix-DDH distinguisher with advantage
ε/(` − k). A similar argument shows that F is an IHwUF under the computational analog of
matrix-DDH assumption.

Quadratic Residuosity. Let N = pq be a composite modulus where p and q are randomly
generated equal-size primes, and let J +1

N be the set of all elements in Z∗N with Jacboi symbol 1.
Define F (k = (p, q), x ∈ J +1

N ) as follows:

F (k, x) =

0 if x ∈ QRN ,

1 if x /∈ QRN .

First, given the factorization of N one can efficiently determine whether an element x ∈ J +1
N is
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a quadratic residue. Moreover, Observe that for any x1, x2 ∈ J +1
N we have

F (k, x1x2) = F (k, x1) + F (k, x2)

where x1x2 is the product of x1 and x2 in Z∗N , and + is addition modulo 2.1 A simple hybrid
argument similar to the case of DDH construction implies the weak pseudorandomness of F . It
follows that F is an IHwPRF under QR assumption.

Remark 3.4.1. We note that although F is an IHwPRF (and hence IHwUF), it has a limitation that
the input space depends on the key. In some applications, it is necessary to know the input space
before generating the key.

By a similar argument it is also possible to construct an IHwUF from RSA assumption. However,
similar to the case of QR, the input space (implicitly) depends on the choice of the key.

LWE. We now sketch a construction of IHwPRF from the LWE assumption [Reg05]. Let n, q
be the parameters of the LWE assumption where n is the dimension of the secret and q is the
modulus. Also, let χ denote the (Gaussian-like) noise distribution. Let GSamp be a Gaussian
sampler algorithm that on a uniformly chosen input u ← {0, 1}`, outputs a sample according to
χ. First, we use a weak PRF FN : KN × Znq → {0, 1}` to generate the randomness for GSamp

algorithm.2 We define the bounded IHwPRF3 F : K × Znq → Zq as

F ((k, s), a) = 〈s, a〉+ GSamp(FN(k, a))

R(b ∈ Zq) =

0 |b| ≤ q/4

1 |b| > q/4

where K = KN × Znq , k ← KN and s ← Znq . The weak pseudorandomness of F follows from a
simple hybrid argument, and we omit the details here. As for bounded homomorphism, observe that
if q is sufficiently large (superpolynomial in n), for any γ = poly(n) ≤ q/n we have

R
(
F
(

(k, s),
∑
i∈[γ]

ai

))
= R

(∑
i∈[γ]

F ((k, s), ai)

)
.

1Recall that for any x1, x2 ∈ J +1
N , the product x1x2 is a quadratic non-residue if and only if exactly one of them is

a quadratic non-residue.
2Note that we do not need any homomorphism for FN , and it is just used to generated the noise for LWE samples.
3See Definition 3.1.6 for a formal definition of bounded IHwPRF.
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Remark 3.4.2. It is easy to see that if q is polynomial in n, the probability that the equality above
does not hold is bounded by 1/ poly(n). We remark that for almost all of the applications in this
thesis (except the case of non-interactive key exchange) one can use polynomial modulus simply by
repeating cryptographic protocol with independent randomness.1 One can analogously construct a
bounded IHwPRF family based on the Ring LWE assumption [LPR10].

DCR/FFI/AGCD/HNP. We now show that an IHwUF/IHwPRF is implied by any assumption that
yields a (group-)homomorphic PKE. Informally, the decryption algorithm of any homomorphic PKE
can be viewed as an IHwPRF, where the ciphertext space and the message space are the input space
and the output space of the IHwPRF, respectively. We stress that here we use a slight generalization
of the definition of weak pseudorandomness where the input/key is sampled according to some
efficiently samplable distribution over the input/key space and these distributions are not necessarily
uniform. However, most of the instantiations from concrete assumptions results in a uniform
distribution over the key/input space.

Lemma 3.4.3. Let (Gen,Enc,Dec) be a CPA-secure homomorphic PKE. Let K, (M,⊗), and

(C,⊕) be the key space, message space, and ciphertext space of Π, respectively. The function family

F defined as

(sk,pk)← Gen(1λ), F (sk ∈ K, c ∈ Cpk) = Dec(sk, c) = m ∈M,

is an IHwPRF family, where Cpk denotes to set of all valid ciphertexts under the public key pk.

Proof. Observe that by homomorphism of Π, for any c1, c2 ∈ Cpk we have

F (sk, c1 ⊕ c2) = F (sk, c1)⊗ F (sk, c2),

which implies the (γ-bounded) homomorphism of F . Now we show the weak pseudorandomness
of F . We define a distribution D over Cpk as follows. To sample according to D, first generate a
uniform m ←M and let c = Enc(pk,m) be the encryption of m using a fresh randomness. Let
A be an adversary against the weak pseduorandomness of F , and let n be the number of queries
made by A. We define n + 1 hybrids as follows. Let Hj be a hybrid that the first j − 1 queries
of the adversary are answered as (ci ← D, F (sk, ci)) for i ∈ [j − 1], and the remaining queries
are answered as (ci,mi) where mi is generated randomly and independent of ci. It is enough to

1As an example, for the case of PKE, the encryptor publishes polynomially many encryptions of the same message,
and the decryptor can recover the message with probability 1− negl(λ) simply by taking a majority over the decrypted
messages.
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show that for each i ∈ [n] the hybrids Hi−1 and Hi are computationally indistinguishable. To do so,
given an attacker A that distinguishes Hi−1 and Hi, we build an attacker B that breaks the semantic
security of Π. The attacker B answers jth query of A as follows:

• If j ∈ [i− 1], B samples m←M and computes c← Enc(pk,m). It then sends (c,m) to A.

• If i = j, B samples two uniform messages m(0),m(1) ←M and sends them to its challenger.
Upon receiving c∗ (challenge ciphertext), B sends (c∗,m(1)) to A.

• If i+ 1 ≤ j ≤ n, B samples m←M and computes c← Enc(pk,m). It then sends (c, r) to
A where r is sampled independently and uniformly overM.

If A outputs 1, B also outputs 1. Otherwise, B outputs 0. Since both of m(0) and m(1) are generated
uniformly at random, c∗ is distributed according to D. If c∗ is an encryption of m(1) we have
F (sk, c∗) = m(1) and hence the reduction maps encryption of m(1) to a valid weak PRF output. On
the other hand, if c∗ is an encryption of m(0), then c∗ is independent of m(0) and hence the reduction
maps encryption of m(0) to a random pair (c∗,m(0)) where c∗ is distributed according to D and m(0)

is uniform. Therefore, the advantage of B in the CPA security game is equal to the advantage of A
in distinguishing Hi−1 and Hi.

Observe that a similar proof also shows that a γ-bounded homomorphic PKE implies a bounded
IHwPRF. Therefore, Lemma 3.4.3 immediately yields an IHwPRF from the Decisional Composite
Residuosity [Pai99] assumption. It also yields constructions of (γ-bounded) IHwPRF family from
several assumptions, e.g., Hidden Number Problem [BV96], Approximate GCD [How01], and
Finite Field Isomorphism [DHP+18].

Instantiations of HOWF from Cryptographic Assumptions. It is easy to see that the following
assumptions yields HOWF family. Specifically:

• The function family defined by fg(x) = gx is an HOWF family based on discrete log
assumption since fg(x1 + x2) = gx1 · gx2 = fg(x1) · fg(x2).

• Let N = pq be an RSA modulus where p and q are equal-size prime numbers. The function
family defined by fN(x) = x2 is an HOWF family based on factorization assumption since
fN(x1x2) = fN(x1) · fN(x2).

• Let N = pq be an RSA modulus as above, and let e ← Z∗ϕ(N). The function family
defined by fN,e(x) = xe is an HOWF family based on RSA assumption since it holds that
fN,e(x1x2) = fN,e(x1) · fN,e(x2).
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It is also easy to describe instantiations of (γ-bounded) HOWF family from assumptions other than
the few ones mentioned above. See instantiations of IHwUF/IHwPRF for more details.
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CHAPTER 4

Primitives from HOWF

In this chapter, we present constructions of various cryptographic primitives from (bounded) HOWF,
including collision-resistant hash function (CRHF), Schnorr-style signature and chameleon hash
function. Collision-resistant hash function (and Schnorr-like protocols) from structured primitives
have been around for many years. Ogata and Kurosawa [OK93] demonstrated that homomorphic

one-way permutations imply claw-free permutations. Ishai et al. [IKO05] constructed CRHF from
homomorphic encryption and homomorphic one-way commitments. Maurer [Mau09] showed
Schnorr-style zero-knowledge proof of knowledge protocols from (unbounded) HOWF.

4.1 Collision-Resistant Hash Function

In this section, we show that any HOWF implies a collision-resistant hash function family. Given
any HOWF f : X → Y , let x = {xj,b ← X}j∈[n],b∈{0,1} be a vector of 2n uniform elements for
some fixed n > log |X |+ ω(log(λ)). Define y as

y = {yj,b = f(xj,b)}j∈[n],b∈{0,1} .

Now, define the function familyHy : {0, 1}n → Y as

Hy (r = (r1, · · · , rn)) =
⊗
j∈[n]

yj,rj .

Collision resistance. We now show that the function familyHy is collision resistant. Define the
experiment ExptCRHF−HOWF as follows.
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1. The challenger uniformly samples {xj,b ← X}j∈[n],b∈{0,1}.

2. The challenger sets yj,b = f(xj,b) for j ∈ [n], b ∈ {0, 1} and sends {yj,b}j∈[n],b∈{0,1} to
the adversary A.

3. The adversary A outputs two strings r ∈ {0, 1}n and r′ = {0, 1}n.

For any PPT adversary A we define AdvCRHF−HOWF(A) to be the probability of the event that⊗
j∈[n]

yj,rj =
⊗
j∈[n]

yj,r′j .

Lemma 4.1.1. For all PPT adversaries A, we have AdvCRHF−HOWF(A) = negl(λ).

Proof. Let A be a PPT adversary such that AdvCRHF−HOWF(A) is non-negligible. We construct a
PPT algorithm B that breaks the one-wayness of f . B proceeds as follows:

1. B receives a challenge query y∗ ∈ Y such that y∗ = f(x∗) for some (randomly chosen)
x∗ ← X .

2. B samples 2n uniformly random elements from X as {xj,b ← X}j∈[n],b∈{0,1} and sets yj,b as

yj,b = f(xj,b) for j ∈ [n], b ∈ {0, 1}.

3. B uniformly samples i ← [n] and b∗ ← {0, 1}, and resets yi,b∗ := y∗. It then forwards
{yj,b}j∈[n],b∈{0,1} to the adversary A.

4. A outputs r ∈ {0, 1}n and r′ ∈ {0, 1}n.

5. B proceeds as follows:

• If
⊗

j∈[n] yj,rj 6=
⊗

j∈[n] yj,r′j or ri = r′i, it outputs a uniformly random x∗ ← X .

• Otherwise, assume wlog that ri = b∗. Then, the following must hold

y∗ =
( ⊗
j∈[i−1]

yj,rj

)−1

⊗
(⊗
j∈[n]

yj,r′j

)
⊗
( ⊗
j∈[i+1,n]

yj,rj

)−1

,
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where the right-hand side is independent of y∗. Finally, B outputs x∗ as

x∗ =
( ⊕
j∈[i−1]

xj,rj

)−1

⊕
(⊕
j∈[n]

xj,r′j

)
⊕
( ⊕
j∈[i+1,n]

xj,rj

)−1

.

By the input homomorphism of f , we have f(x∗) = y∗.

Observe that if A outputs a valid collision (r, r′), the probability that r and r′ differ in the ith bit for
a randomly chosen i← [n] is at least 1/n. It follows that

AdvHOWF(B) ≥
(
AdvCRHF−HOWF(A)

n

)
,

which is non-negligible, as desired.

Note 4.1.2. The aforementioned CRHF family may be equivalently instantiated from any γ-bounded
HOWF family, subject to the restriction that n ≤ γ.

4.2 Schnorr Signature

We show how to construct a Schnorr-style signature scheme from any HOWF family. The signature
scheme is existentially unforgeable against adaptive chosen-message attacks in the programmable
random oracle model.

• Setup(1λ): Let f : X → Y be an HOWF, and let H : Y × {0, 1}∗ → {0, 1}n be a hash
function (modeled as a random oracle in the security proof). The setup algorithm fixes some
integer n > log |X |+ ω(log(λ)) and outputs the public parameter pp as

pp = (f, n,H) .

• Gen (pp): The key generation algorithm samples 2n elements as {xj,b ← X}j∈[n],b∈{0,1} and
computes yj,b = f(xj,b) for j ∈ [n] and b ∈ {0, 1}. It outputs the signing key sk and the
verification key vk as

sk = {xj,b}j∈[n],b∈{0,1}, vk = {yj,b}j∈[n],b∈{0,1}.

• Sign (sk,m): Given the signing key sk = {xj,b}j∈[n],b∈{0,1} and a message m ∈ {0, 1}∗,
the algorithm samples x ← X and sets y = f(x). It then sets the vector r ∈ {0, 1}n as
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r = H (y,m). Finally, it outputs the signature σ = (r, x̂, y) ∈ {0, 1}n ×X × Y , where

x̂ = x⊕
(⊕
j∈[n]

xj,rj

)−1

.

• Ver (vk,m, σ): Given the verification key vk = {yj,b}j∈[n],b∈{0,1}, a message m ∈ {0, 1}∗,
and a signature σ = (r, x̂, y), the verification algorithm checks if the following holds:

r = H (y,m) , y = f(x̂)⊗
(⊗
j∈[n]

yj,rj

)
.

If yes, it accepts the signature. Otherwise, it rejects.

Correctness follows from the homomorphism of f . In order to prove existential unforgeability under
an adaptively chosen-message attack in the programmable random oracle model, we resort to the
forking lemma [PS00]. We first prove the following lemma.

Lemma 4.2.1. If H is modeled as a random oracle, there exists a PPT simulator S that produces

(with non-negligible probability) a signature σ̃ on any arbitrary message m without the knowledge

of the signing key sk such that the distribution of σ̃ is statistically indistinguishable from that of

σ ← Sign (sk,m) .

Proof. The simulator S receives the verification key vk = {yj,b}j∈[n],b∈{0,1} and proceeds as follows:

• The simulator S uniformly samples r = (r′1, . . . , r
′
n)← {0, 1}n and x̃← X .

• It sets y′ = f(x̃)⊗
(⊗

j∈[n] yj,r′j
)

and returns the signature σ̃ = (r′, x̃, y′).

Observe that in the simulation, we must have y′ = f(x′), where

x′ = x̃⊕
(⊕
j∈[n]

xj,r′j

)
.

Since x̃ is uniform in X , so is x′. Hence, the distribution of (x̃, y′ = f(x′)) in the simulation is
statistically indistinguishable from that of (x̂, y∗ = f (x∗)) in the real signing algorithm. Finally,
under the assumption that H is a random oracle, the distribution of the string r′ in the simulation is
also statistically indistinguishable from that of the string r = H(y∗,m) in the real signing algorithm.
This completes the proof of Lemma 4.2.1.
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Let A be a PPT adversary that performs an existential forgery attack against the aforementioned
signature scheme with probability ε, while making Q1 = Q1(λ) signing queries and Q2 = Q2(λ)

random oracle queries, such that ε ≥ 10(Q1 + 1)(Q1 +Q2)/2λ. Let (m, σ) be the resulting forgery,
where σ = (r, x̂, y∗). As shown by Pointcheval and Stern in [PS00], Lemma 4.2.1 implies the
following forking lemma.

Lemma 4.2.2. A polynomial-time replay of the adversary A where its interactions with the signing

oracle are replaced by interactions with the simulator S as described above, produces two valid

message-signature pairs (with non-negligible probability)

(m, σ = (r, x̂, y)), (m, σ′ = (r′, x̃, y′)),

such that σ 6= σ′.

Finally, given a PPT adversary that forges a pair of non-identical signatures on the same message
with non-negligible probability, one can construct a PPT adversary that outputs a collision on the
CRHF family described in Section 4.1 with the same probability. This completes the proof of
existential unforgeability for the signature scheme.

Note 4.2.3. The aforementioned signature scheme has an a priori bounded number of homomorphic
operations, which allows it to be instantiated using a γ-bounded HOWF family, subject to the
restriction that n+ 1 ≤ γ.

4.3 Chameleon Hash Function

We now show how to construct a chameleon hash function family from any HOWF. The formal
definition of chameleon hash functions is presented below.

Definition 4.3.1. (Chameleon Hash Function.) A chameleon hash function family is defined as a
tuple of PPT algorithms (Setup,CHash,TrpCollision) described below.

• Setup(1λ): Given λ, it outputs the public parameter pp and a trapdoor t.

• CHash (pp, s; r): Given pp, a string s ∈ {0, 1}n (where n = n(λ) is included in pp) and
randomness r, it outputs a hash h.

• TrpCollision (t, (s, r) , s′): Given the trapdoor t, a string s ∈ {0, 1}n, some randomness r, and
a string s′ ∈ {0, 1}n, it outputs some randomness r′.
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The following properties must be satisfied:

• Uniformity: If (pp, t) ← Setup(1λ), then for all string pairs s, s′ ∈ {0, 1}n and uniformly
sampled randomness pairs (r, r′), the two distributions CHash (pp, s; r) and CHash (pp, s′; r′)
are statistically indistinguishable.

• Collision resistance: For any PPT adversary A if (pp, t)← Setup(1λ), it holds that

Pr[s 6= s′ ∧ CHash (pp, s; r) = CHash (pp, s′; r′)] ≤ negl(λ),

where ((s, r), (s′, r′))← A(pp).

• Trapdoor collisions: If (pp, t)← Setup(1λ), then for all s, s′ ∈ {0, 1}n and randomness r,
it holds that

CHash (pp, s; r) = CHash (pp, s′; r′) ,

where r′ = TrpCollision (pp, (s, r) , s′).

Construction from HOWF. We construct a chameleon hash function family from any HOWF as
follows.

• Setup
(
1λ
)
: Given an HOWF f : X → Y , the setup algorithm samples 2n elements from

X as {xj,b ← X}j∈[n],b∈{0,1} for some fixed n > log |X | + ω(log(λ)). It outputs the public
parameter pp and the trapdoor t as:

pp =
(
f, {yj,b}j∈[n],b∈{0,1}

)
, t = {xj,b}j∈[n],b∈{0,1} ,

where yj,b = f (xj,b) for j ∈ [n] and b ∈ {0, 1}.

• CHash (pp, s; r): Given the public parameter pp =
(
f, {yj,b}j∈[n],b∈{0,1}

)
, a binary vector

s ∈ {0, 1}n, and randomness r ← X , the hashing algorithm outputs the hash h as

h =
(⊗
j∈[n]

yj,sj

)
⊗ f (r) .

• TrpCollision (t, (s, r) , s′): Given the trapdoor t = {xj,b}j∈[n],b∈{0,1}, a string s ∈ {0, 1}n,
some randomness r ∈ X , and another string s′ = (s′1, . . . , s

′
n) ∈ {0, 1}n, the equivocation
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algorithm outputs r′ ∈ X as

r′ =
(⊕
j∈[n]

xj,s′j

)−1

⊕
(⊕
j∈[n]

xj,sj

)
⊕ r.

We now argue that the aforementioned construction satisfies the desired properties of a chameleon
hash function.

• Uniformity: Let s = (s1, . . . , sn) ∈ {0, 1}n and s′ = (s′1, . . . , s
′
n) ∈ {0, 1}n be arbitrary

binary strings, and let r, r′ ← X be uniformly random elements in X . Let

x∗ =
(⊕
j∈[n]

xj,sj

)
⊕ r, x′ =

(⊕
j∈[n]

xj,s′j

)
⊕ r′.

It is easy to see that both x∗ and x′ are uniformly distributed over X so long as r and r′ are
uniform and independent. This in turn implies that the distributions

CHash (pp, s; r) = f (x∗) , CHash (pp, s′; r′) = f (x′) ,

are both statistically indistinguishable from the distribution {f(x)}x←X . This completes the
proof of uniformity.

• Collision resistance. Suppose that there exists a PPT adversary A that produces with non-
negligible probability ε a tuple ((s, r), (s′, r′)) such that (s, r) 6= (s′, r′) and

CHash (pp, s; r) = CHash (pp, s′; r′) .

An argument similar to the one used in proof of Theorem 4.1.1 can be used to demonstrate
the existence of a a PPT algorithm B that breaks the one-wayness of f with non-negligible
probability.

• Trapdoor Collisions: It is straightforward to verify that trapdoor collisions produced by the
scheme are valid.

Note 4.3.2. The aforementioned chameleon hash construction has an a priori bounded number of
homomorphic operations, which allows it to be instantiated similarly using a γ-bounded HOWF
family, subject to the restriction that n+ 1 ≤ γ.
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Implications. The following are some implications of chameleon hash functions:

• Chameleon hash function implies (in a black-box manner) noninteractive statistically hiding
and computationally binding trapdoor commitment scheme [KR00], which in turn implies
resettable zero-knowledge proof for NP [CGGM00].

• Chameleon hash function implies chameleon signature [KR00], which is a noninteractive
undeniable signature that guarantees both non-repudiation and non-transferability.

4.4 On the Existence of HOWF in Quantum Setting

We show that any homomorphic one-way function (HOWF) with exact homomorphism over abelian
groups can be broken using a quantum algorithm. Since exact KHwPRF over abelian groups
trivially imply unbounded HOWF, it follows that there is no secure construction of an unbounded
KHwPRF in quantum world. As a result, a secure KHwPRF either needs to have an approximate
homomorphism, or the homomorphism should hold over a nonabelian group.

At a high level, given any abelian group with certain conditions there are known quantum
algorithms to determine the structure of the group. That is, given an abelian group G, there is an
efficient quantum algorithm to find (an efficiently computable) isomorphismψ : G → Zq1⊕· · ·⊕Zqm .
We apply this to both the input and output group of a candidate HOWF f . Then we show a simple
classic algorithm that given these isomorphisms over the input and output group of f , one can
simply break one-wayness of f .

Theorem 4.4.1. Let f : X → Y be a (classic) HOWF such that X and Y are abelian groups, and

there exists an efficient algorithm to find a generating set for Y . There exists a polynomial quantum

algorithm that breaks the one-wayness of f with non-negligible advantage.1

First we recall the following fact from algebra. A proof can be found in any standard textbook.

Theorem 4.4.2. Any finite abelian group is isomorphic to a direct sum of cyclic groups, and each

cyclic group has a prime power order.

We rely on the following quantum algorithm (see [CM01] and Section 6.2 of [Chi17] for more
details).

1Note that a set of uniform elements with size 3 log|Y| forms a generating set with an overwhelming probability.
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Theorem 4.4.3. Let G be a finite abelian group such that (1) each element of G has a unique

decoding, (2) there is an efficient algorithm to do group operations on the elements of G, and (3)

there is an efficient algorithm to find a generating set for G. There is a polynomial time quantum

algorithm such that decomposes the group G as

G = 〈g1〉 ⊕ · · · ⊕ 〈gM〉,

in terms of the generators g1, . . . , gM , and for every m,m′ ∈ [M ] such that m 6= m′ we have

〈gm〉 ∩ 〈gm′〉 = {e}, where e is the identity element of G. Moreover, the isomorphism

ψ : G → Z|〈g1〉| ⊕ · · · ⊕ Z|〈gM 〉|,

(in both ways) can be computed efficiently.

Now we are ready to proceed to the proof of Theorem 4.4.1. Let f : X → Y be an unbounded
HOWF such that X and Y are abelian groups. Given a challenge y∗ ∈ Y such that y∗ := f(x∗) for
some uniform x∗ ← X , we want to find a preimage x such that f(x) = y∗. Let

X̃ := Zp1 ⊕ · · · ⊕ ZpM , Ỹ := Zq1 ⊕ · · · ⊕ ZqN

be the decomposition of groups X and Y , respectively, where pi (respectively, qj) is a prime power
for m ∈ [M ] (respectively, n ∈ [N ]). We fix some arbitrary order for the cyclic groups, and
we call X̃ an explicit representation of X . Using Theorem 4.4.3, we can efficiently compute the
isomorphisms ψX , ψY (and their inverses) for any element in the domain of the isomorphisms where

ψX : X → X̃ , ψY : Y → Ỹ .

Define f̃ : X̃ → Ỹ as the analog of f over the explicit representations of X and Y , i.e., define

f̃(x̃) = ψY(f(ψ−1
X (x̃))).

It is not hard to see that f(x) = y is equivalent to f̃(ψX (x)) = ψY(y). Because the isomorphisms
ψX , ψY and their inverses are efficiently computable, it is enough to show an attack against the
one-wayness of f̃ .

For each n ∈ [N ], we define en ∈ Zp1 ⊕ · · · ⊕ZpN to be the (unit) vector whose nth component
is 1, and all other components are 0.1 For an element ỹ ∈ Ỹ , let [ỹ]m ∈ Zqm be the mth component

1Notice that each component may live in a different cyclic group.
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of ỹ. We compute the index set Im for each m ∈M as

Im = {n ∈ [N ] | [f̃(en)]m 6= 0}.

All index sets {Im}m∈[M ] can be computed efficiently since both N and M are polynomially
bounded. Define a vector of variables z = (z1, . . . , zN) ∈ ZN , and for each m ∈ [M ], consider the
following system of modular equations where {zi}i∈Im are the (unknown) variables:

Sm :
∑
i∈Im

zi[f̃(ei)]m ≡ [ỹ]m (mod qm).

Consider the following observations:

• Without loss of generality we can assume that for two distinct m,m′ ∈ [M ], we have
gcd(qm, q

′
m) = 1. If qm = q′m, we can simply merge Sm and Sm′ . If qm < qm′ and

gcd(qm, q
′
m) > 1, we can “lift” the equation in Sm′ simply by multiplying the both sides by

qm
′
/qm and adding the resulting equation to Sm′ . We refer to this part as “merging” step.

• Observe that for any two prime powers p and q, if there is a non-trivial homomorphism from
Zp to Zq then either p | q or q | p. Therefore, if zn appears in Sm (or equivalently n ∈ Im),
we either have pn | qm or qm | pn.

Let M ⊆M be the set of indices after the “merging” step. Using the previous observations, it
follows that

• For any two distinct m1,m2 ∈M , we have gcd(qm1 , qm2) = 1.

• For any n ∈ N , there is at most one m ∈M such that the variable zn appears in Sm.

Each system of equation(s) Sm can be seen as a system of linear equation(s) over the group Zqm ,
and it can solved using the known algorithms for solving linear equations over finite abelian groups,
e.g., [GR02]. One can equivalently interpret each Sm as a system of equations over the finite ring

Zqm (since qm is not necessarily prime).
By solving each system Sm, we can determine the vector z ∈ ZN . Finally, we output x̃ as a

preimage of ỹ where
x̃ = (z1 mod p1, . . . , zN mod pn).

By construction, we know that the vector z satisfies all system of equation(s) {Sm}m∈M . It
follows that f̃(x̃) = ỹ, as required.
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CHAPTER 5

Primitives from IHwUF

We present constructions of various cryptographic primitives from (bounded) IHwUF. We also show
how to instantiate these constructions using the general protocol of Chapter 3.

5.1 Noninteractive Key Exchange

We present a noninteractive key exchange protocol between non-uniform PPT algorithms A =

(A0,A1) and B = (B0,B1). It allows exchange of a single bit and is obtained from an IHwUF in a
black-box manner (note that Ab and Bb operate in parallel for b ∈ {0, 1}).

• Setup(1λ): Given the security parameter λ, the setup algorithm creates a description FIHwUF

for an IHwUF F : K × X → Y . It uniformly samples {xj,b ← X}j∈[n],b∈{0,1} for a fixed
n > log |X |+ ω(log(λ)), and outputs the public parameter pp as

pp =
(
FIHwUF , {xj,b}j∈[n],b∈{0,1}

)
.

• A0 (pp): On input pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, the algorithmA0 first samples a random

s = (s1, . . . , sn)← {0, 1}n and then outputs (stA, x∗A), where

stA = s , x∗A =
⊕
j∈[n]

xj,sj .

• B0 (pp): On input pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, the algorithm B0 first samples a key

k ← K and computes yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}. It then outputs
(stB,yB), where

stB = k , yB =
(
{yj,b}j∈[n],b∈{0,1}

)
.
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• A1 (pp, stA,yB): On input stA = s and yB, the algorithm A1 computes the final bit as

k∗ = HardCore
(⊗
j∈[n]

yj,sj

)
.

• B1 (pp, stB, x∗A): On input stB = k and x∗A, the algorithm B1 computes the final bit as

k∗ = HardCore (F (k, x∗A)) .

Instantiation from the general protocol. The aforementioned NIKE scheme can be instantiated
from the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K × X → Y with description
FIHwUF, a fixed n > log |X |+ ω(log(λ)), N∗ = 1, N̄ = 1, and N̂ = 0. Set pp = X.

• Pre-Evaluation: Let X∗ = {x∗} be the output of the pre-evaluation phase. Set x∗A = x∗.

• Evaluation: Let Y and Y∗ = {y∗} be the outputs of the evaluation phase. Set yB = Y and
k∗ = HardCore (y∗).

Correctness and security of the scheme follow from Claim 3.3.1 and Theorem 3.3.8, respectively.

Note 5.1.1. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with
the following minor modification to the final key-generation step:

k∗ = HardCore
(
R
(⊗
j∈[n]

yj,sj

))
= HardCore (R (F (k, x∗A))) ,

whereR : Y → Z is a universal map (see Definition 3.1.5).

Note 5.1.2. The aforementioned NIKE protocol can only be instantiated using an IHwUF family
for which the input space is independent of the key.1

5.2 Passively Secure Encryption

We present a CPA-secure public-key encryption scheme from any IHwUF. First we provide a formal
definition of a CPA-secure PKE scheme and next we state the construction.

1Note that this property does not hold for some instantiations from concrete assumptions, e.g., QR assumption. See
Section 3.4 for more details.
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Definition 5.2.1. (CPA-Secure PKE.) Let Π = (Setup,Gen,Enc,Dec) be a public-key encryption
scheme. Π is said to be CPA-secure if for all PPT adversaries A, the views of A in the games
Exptind-cpa

0 and Exptind-cpa
1 are computationally indistinguishable.

Experiment Exptind-cpa
b :

1. The challenger runs the setup algorithm and generates (pk, sk)← Gen (pp), and provides
pk to the adversary A.

2. The adversary A issues a challenge encryption query for a pair of messages (m0,m1).
The challenger creates the challenge ciphertext

ct∗ ← Enc (pk,mb) ,

and sends ct∗ to the adversary A.

We now present a CPA-secure PKE from any IHwUF family.

• Setup(1λ): The setup algorithm creates a description FIHwUF for an IHwUF F : K×X → Y .
It also fixes some integer n > log |X |+ ω(log(λ)). The algorithm outputs FIHwUF and n as
the public parameter pp.

• Gen (pp): The key-generation algorithm samples {xj,b ← X}j∈[n],b∈{0,1} and a key k ← K,
and outputs

sk = k , pk = {xj,b, yj,b}j∈[n],b∈{0,1},

where yj,b = F (k, xj,b) for each j ∈ [n] and b ∈ {0, 1}.

• Enc (pk,m): Given the public key pk = {xj,b, yj,b}j∈[n],b∈{0,1} and a single bit m ∈ {0, 1},
the encryption algorithm uniformly samples r = (r1, . . . , rn) ← {0, 1}n and outputs the
ciphertext ct = (c,e), where

c =
⊕
j∈[n]

xj,rj , e = XOR
(

HardCore
(⊗
j∈[n]

yj,rj

)
,m
)
.
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• Dec (sk, ct): Given the secret key sk = k and the ciphertext ct = (c,e), output the bit

m′ = XOR (HardCore (F (k, c)) ,e) .

Instantiation from the general protocol. The aforementioned PKE scheme can be instantiated
from the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K × X → Y with description
FIHwUF, a fixed n > log |X |+ ω(log(λ)), N∗ = 0, N̄ = 1 and N̂ = 1. Set pk1 = X.

• Evaluation: Set sk = k and pk2 = Y, where Y is the output of the evaluation phase. Output
(sk,pk = (pk1,pk2)).

• Post-Evaluation: Let X̂ = {x̂} and Ŷ = {ŷ} be the outputs of the post-evaluation phase.
Set:

c = x̂, e = XOR (HardCore(ŷ),m) ,

where m is the message.

Correctness and security of the scheme follow from Claim 3.3.1 and Theorem 3.3.8, respectively.

Note 5.2.2. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with
the following minor modification to the encryption algorithm:

e = XOR
(

HardCore
(
R
(⊗
j∈[n]

yj,rj

))
,m
)
,

and the following minor modification to the decryption algorithm:

m′ = XOR (HardCore (R (F (k, c))) ,e)

whereR : Y → Z is a universal map (see Definition 3.1.5).

Note 5.2.3. The aforementioned PKE can also be instantiated using a (γ-bounded) IHwUF family
for which the input space depends on the key with the following modification: the setup algorithm
only outputs the description of the key space and the output space of the IHwUF, while the
description of the input space is published along with the public key by the key generation algorithm.
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5.3 Trapdoor Functions

In this section, we show that IHwUFs imply trapdoor functions with almost-perfect correctness. Garg
and Hajiabadi [GH18] introduced a primitive called recyclable one-way function with encryption

(OWFE), and they showed that recyclable OWFEs imply TDFs (in a black-box way) with negligibly
small inversion error. In this section, we demonstrate how to construct recyclable OWFE from
IHwUF. We begin by presenting the formal definition of recyclable OWFE from [GH18], followed
by our construction.

Definition 5.3.1. (Recyclable One-Way Function with Encryption.) A recyclable OWFE scheme is
a tuple of four PPT algorithms OWFE = (Setup,OWF,Enc,Dec) defined as follows:

• Setup
(
1λ
)
: Given the security parameter λ, it sets n = n(λ) and ` = `(λ) for some fixed

polynomial functions and outputs pp for a one-way function OWF : {0, 1}n → {0, 1}`.

• OWF (pp, s): Given the public parameter pp, it maps a string s ∈ {0, 1}n to an image
h ∈ {0, 1}`.

• Enc (pp, h, (i, b∗)): Given the public parameter pp, an image h ∈ {0, 1}`, an index i ∈ [n]

and a bit b∗ ∈ {0, 1}, it outputs a ciphertext ct and an additional bit e ∈ {0, 1}.

• Dec (pp, s, (i, b∗), ct):1 Given the public parameter pp, a preimage string s, an index i ∈ [n],
a bit b∗ ∈ {0, 1} and a ciphertext ct, it outputs e′ ∈ {0, 1} ∪ {⊥}.

The following correctness and security properties must be satisfied:

• Correctness: If pp ← Setup
(
1λ
)
, then for all s = (s1, . . . , sn) ∈ {0, 1}n and all i ∈ [n],

letting h = OWF (pp, s) and b∗ = si, it holds with overwhelming probability over the
randomness of Enc that if (ct,e)← Enc (pp, h, (i, b∗)), then we have

Dec (pp, s, (i, b∗), ct) = e.

• One-Wayness: For any PPT adversary A we have

Pr[OWF(pp,A(h)) = h] ≤ negl(λ),

where pp← Setup(1λ), s← {0, 1}n and h = OWF(pp, s).
1Notice that although e is part of the output of the encryption algorithm, the decryption algorithm does not take e

as part of its input. The aim of the decryption algorithm is in fact to output e given only the ciphertext ct. This property
is used in the construction of TDFs. See [GH18] for details.
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• Security: For b ∈ {0, 1}, define the experiment Exptind-OWFE
b between a challenger and an

adversary A as follows:

Experiment Exptind-OWFE
b :

1. The adversary A takes as input 1n and 1`, and sends a string s = (s1, . . . , sn) ∈ {0, 1}n

and an index i ∈ [n] to the challenger.

2. The challenger generates pp ← Setup
(
1λ
)
. It computes h = OWF (pp, s) and

(ct∗,e∗0)← Enc (pp, h, (i, 1− si)). Finally, it samples e∗1 ← {0, 1} and sends (pp, ct∗,e∗b)
to the adversary.

An OWFE scheme is said to be secure if for all PPT adversaries A, the views of the adversary
in Exptind-OWFE

0 and Exptind-OWFE
1 are computationally indistinguishable.

• Recyclability: An OWFE scheme is said to be recyclable if for all pp ∈ Setup
(
1λ
)
, all

s1, s2 ∈ {0, 1}n, all i ∈ [n], all b∗ ∈ {0, 1}, and all randomness r, letting

(ct1,e1)← Enc (pp, h1 = OWF (pp, s1) , (i, b∗) ; r) ,

(ct2,e2)← Enc (pp, h2 = OWF (pp, s2) , (i, b∗) ; r) ,

we have ct1 = ct2.1

Recently, Garg et al. [GGH19] introduced an enhanced version of recyclable OWFE called smooth

recyclable OWFE. A recyclable OWFE = (Setup,OWF,Enc,Dec) is said to be (`, n)-smooth if for
any two (`, n)-sources S1 and S2 and for any PPT adversary A, we have

|Pr [A(pp,OWF(pp, s1)) = 1]− Pr [A(pp,OWF(pp, s2)) = 1]| ≤ negl(λ),

where pp← Setup(1λ), s1 ← S1 and s2 ← S2.

Construction from IHwUF. We show a black-box construction of smooth recyclable OWFE
from any IHwUF family.

• Setup
(
1λ
)
: Given the security parameter λ the setup algorithm creates a description FIHwUF

for an IHwUF F : K ×X → Y , and fixes some integer n > log |X |+ ω(log(λ)). It samples
1Informally, this means that the ct component is independent of the image h.
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2n elements as {xj,b ← X}j∈[n],b∈{0,1} and outputs the public parameter pp as

pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
.

• OWF (pp, s): Given pp and a string s ∈ {0, 1}n, generate the corresponding image as

h =
⊕
j∈[n]

xj,sj .

• Enc (pp, h, (i, b∗)): Given pp, an image h, an index i ∈ [n] and b∗ ∈ {0, 1}, the encryption
algorithm samples k ← K and computes the following

yi,b∗ = F (k, xi,b∗) , yi,1−b∗ = ⊥,

yj,b = F (k, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1} .

It finally outputs the pair

(ct,e) =
(
{yj,b}j∈[n],b∈{0,1} ,HardCore (F (k, h))

)
.

• Dec (pp, s, (i, b∗), ct): Given pp, a string s, and ct =
(
{yj,b}j∈[n],b∈{0,1}

)
, the decryption

algorithm outputs

e′ =

HardCore
(⊗

j∈[n] yj,sj
)

if si = b∗

⊥ otherwise.

Instantiation from the general protocol. The aforementioned OWFE scheme can be instantiated
from the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K × X → Y with description
FIHwUF, a fixed n > log |X |+ ω(log(λ)), N∗ = 1, N̄ = 1 and N̂ = 0. Set pp = (FIHwUF,X).

• Pre-Evaluation. In the generic protocol, the pre-evaluation phase samples a uniformly
random binary string s ∈ {0, 1}n. One may view this as an input to the OWF. If X∗ = {x∗}
is the output of the post-evaluation phase, set the image h = x∗.

• Evaluation: Let Y = {yj,b}j∈[n],b∈{0,1} and Y∗ = {y∗} be the outputs of the evaluation
phase. For a given i ∈ [n] and b∗ ∈ {0, 1}n, set the ciphertext ct = Y \ {yi,1−b∗} and the bit
e = HardCore (y∗).
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To see that the instantiation satisfies the desired properties of a recyclable OWFE scheme, consider
the following:

• Correctness follows from Claim 3.3.1. More specifically, given a binary string s ∈ {0, 1}n

and ct such that (ct, e) = Enc (pp, h, (i, b∗)) for h = OWF(pp, s) and si = b∗, the decryption
algorithm does not need yi,1−b∗ to recover the bit e.

• One-wayness follows from Lemma 3.2.1.

• Security follows from Lemma 3.3.9.

• Recyclability follows from the fact that ct does not depend on the image h.

Finally, the aforementioned OWFE scheme is (`, n)-smooth for any choice of ` ≥ log |X |+ω(log λ).
This follows directly from the leftover hash lemma. More specifically, let (S1,S2) be (`, n)-sources
for ` ≥ log |X |+ω(log λ). Then, for any pp← Setup(1λ), s1 ← S1 and s2 ← S2, the distributions
of OWF(pp, s1) and OWF(pp, s2) are statistically close to uniform by the leftover hash lemma.

Implications. Garg et al. [GGH19] showed that an (`, n)-smooth recyclable OWFE scheme
implies:

1. TDF with almost-perfect correctness, which is an improvement over TDFs with negligible
inversion error (see [GH18, GGH19] for details).

2. CCA2-secure deterministic encryption, where the CCA2-security guarantee holds with respect
to plaintexts sampled from (`, n)-sources.

Note 5.3.2. The aforementioned construction has an apriori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with
the following minor modification to the encryption algorithm:

e = HardCore (R (F (k, h))) ,

and the following minor modification to the decryption algorithm:

e′ =

HardCore
(
R
(⊗

j∈[n] yj,sj

))
if si = b∗,

⊥ otherwise.

whereR : Y → Z is a universal map (see Definition 3.1.5).
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Note 5.3.3. The aforementioned construction can only be instantiated from a (bounded) IHwUF
family for which the input space is independent of the key.

5.4 Blind Batch Encryption

In this section, we show that IHwUF imply batch encryption, a cryptographic primitive introduced
by Brakerski et al. in [BLSV18].1 We now present the formal definition of blind batch encryption,
followed by our construction.

Definition 5.4.1. (Batch Encryption.) A batch encryption scheme is a tuple of four PPT algorithms
(Setup,Gen,Enc,Dec) defined as follows:

• Setup
(
1λ
)
: Given the security parameter λ, it outputs the public parameter pp.

• Gen (pp, s): Given pp, it projects the string s ∈ {0, 1}n to a hash value h where n = n(λ) is
some fixed polynomial included in pp.

• Enc (pp, h, (i,m0,m1)): Given pp, a hash value h, an index i ∈ [n] and a message pair
(m0,m1), it outputs a ciphertext ct = (ct1, ct2).

• Dec (pp, s, i, ct): Given pp, a string s, an index i ∈ [n] and a ciphertext ct, it outputs a
message m.

The following completeness, succinctness, security, and blindness properties must be satisfied:

• Correctness: If pp ← Setup
(
1λ
)
, then for all s ∈ {0, 1}n, all i ∈ [n], and all message

pairs (m0,m1), letting h = Gen (pp, s) and ct ← Enc (pp, h, (i,m0,m1)) it holds with
overwhelming probability over the randomness of Enc that

Dec (pp, s, i, ct) = msi .

• Succinctness. A batch encryption scheme is fully succinct if for some string s ∈ {0, 1}n,
letting pp ← Setup

(
1λ
)

and h = Gen (pp, s) , we have |h| ≤ poly (λ) for some fixed

polynomial in the security parameter λ.

• Security: For each bit b ∈ {0, 1}, define the following experiment Exptind-batch
b between a

challenger and an adversary A:
1See [DGHM18] for a closely relative primitive known as hash encryption.
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Experiment Exptind-batch
b :

1. The adversary A takes 1λ and 1n as input. It chooses an index i ∈ [n] and a binary string
s ∈ {0, 1}n, and sends (s, i) to the challenger.

2. The challenger generates pp← Setup(1λ), and sends pp to the adversary A.

3. The adversary A generates m(0) =
(
m(0)

0 ,m(0)
1

)
and m(1) =

(
m(1)

0 ,m(1)
1

)
such that

m(0)
si = m(1)

si , and sends them to the challenger.

4. The challenger computes the hash h = Gen (pp, s), generates the ciphertext

ct∗ ← Enc
(
pp, h,

(
i,m(b)

0 ,m(b)
1

))
,

and sends ct∗ to the adversary A.

A batch encryption scheme is said to be secure if for all PPT adversaries A, the views of the
adversary in Exptind-batch

0 and Exptind-batch
1 are computationally indistinguishable.

• Blindness: Let (Setup,Gen,Enc,Dec) be a batch encryption scheme such that one can view
a ciphertext produced by the encryption algorithm as ct = (ct1, ct2), where ct1 is produced by
the subroutine Enc1 and ct2 is produced by the subroutine Enc2. Also, for b ∈ {0, 1}, define
the experiment Exptblind-batch

b between a challenger and an adversary A as follows:

Experiment Exptblind-batch
b :

1. The adversary A takes 1λ and 1n as input, and sends a string s ∈ {0, 1}n, and an index
i ∈ [n] to the challenger.

2. The challenger generates pp← Setup
(
1λ
)

and h = Gen (pp, s).

3. The challenger randomly generates m = (m0,m1) and creates:

ct∗1 ← Enc1 (pp, h, (i,m0,m1)) , ct∗2 ← Enc2 (pp, h, (i,m0,m1)) .

– If b = 0, the challenger sets ct∗ = (ct∗1, ct∗2).

– If b = 1, the challenger sets ct∗ = (ct∗1, σ∗) where σ∗ ← {0, 1}|ct∗2|.

4. Finally, the challenger sends (pp, ct∗) to the adversary A.
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A batch encryption scheme (Setup,Gen,Enc,Dec) is said to be blind if:

1. The encryption subroutine Enc1 does not depend on either the value h or the message pair
(m0,m1). Hence Enc1 can be written as Enc1 (pp, h, (i,m0,m1) ; r) = Enc1 (pp, i; r).

2. For all PPT adversaries A, the views of the adversary in Exptblind-batch
0 and Exptblind-batch

1

are computationally indistinguishable.

Construction from IHwUF. We present a construction of fully succinct blind batch encryption
from any IHwUF family.

• Setup(1λ): Given the security parameter λ the setup algorithm creates a description FIHwUF

for an IHwUF F : K × X → Y . It then fixes some integer n > log |X | + ω(log(λ)) and
samples {xj,b ← X}j∈[n],b∈{0,1}. It outputs the public parameter pp as

pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
.

• Gen (pp, s): Given pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
and a binary string s, output the corre-

sponding hash value as
h =

⊕
j∈[n]

xj,sj .

• Enc (pp, h, (i,m0,m1)): Given pp =
(
FIHwUF, {xj,b}j∈[n],b∈{0,1}

)
, a hash value h, an index

i ∈ [n], and (m0,m1) ∈ {0, 1} × {0, 1}, the encryption algorithm samples k0, k1 ← K and
computes the following

y
(0)
i,0 = F (k0, xi,0) , y

(1)
i,1 = F (k1, xi,1) , y

(0)
i,1 = y

(1)
i,0 = ⊥.

y
(0)
j,b = F (k0, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1} ,

y
(1)
j,b = F (k1, xj,b) for j ∈ [n] \ {i} , b ∈ {0, 1} ,

e0 = XOR (HardCore (F (k0, h)) ,m0) ,

e1 = XOR (HardCore (F (k1, h)) ,m1) .

It finally outputs the ciphertext

ct =
(

ct1 =
{
y

(b′)
j,b

}
j∈[n],(b,b′)∈{0,1}2 , ct2 = (e0,e1)

)
.
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• Dec (pp, s, i, ct): Given pp, a string s, and a ciphertext ct the decryption algorithm outputs

m′si = XOR
(

HardCore
(⊗
j∈[n]

y
(si)
j,sj

)
,esi

)
,

where ct =
(

ct1 =
{
y

(b′)
j,b

}
j∈[n],(b,b′)∈{0,1}2 , ct2 = (e0,e1)

)
.

Instantiation from General Protocol. The aforementioned BE scheme can be instantiated from
the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwUF F : K × X → Y with description
FIHwUF, a fixed n > log |X | + ω(log(λ)), N̄ = 2 and N̂ = 0. Set pp = (FIHwUF,X), where
X is the set of base elements.

• Pre-Evaluation. In the general protocol, the pre-evaluation phase samples a uniformly
random binary string s ∈ {0, 1}n. One may view this as an input to the generation algorithm.
Consequently, if X∗ = {x∗} is the output of the post-evaluation phase, set the image h = x∗.

• Evaluation: Let Y = {y(0)
j,b , y

(1)
j,b }j∈[n],b∈{0,1} and Y∗ = (y∗0, y

∗
1) be the tuples output by the

evaluation phase. For a given i ∈ [n], set ct = (ct1, ct2) where

ct1 = Y \
{
y

(0)
i,1 , y

(1)
i,0

}
,

ct2 =
(
e0 = HardCore (y∗0) ,e1 = HardCore (y∗1)

)
.

To see that the instantiation satisfies the properties of a blind batch encryption scheme, consider the
following:

• Correctness follows from Claim 3.3.1. Specifically, given a binary string s ∈ {0, 1}n and a
ciphertext ct = Enc (pp, h, (i,m0,m1)) such that h = Gen(pp, s) and si = b∗, the decryption
algorithm does not need y(b∗)

i,1−b∗ to recover the message m.

• One-wayness follows from Lemma 3.2.1.

• To show the security of the scheme, observe that msi = m′si and hence it is enough to show
that for any s ∈ {0, 1}n it holds that

(
s, {xj,b}j∈[n],b∈{0,1}, {F (k1−si , xj,b)}j∈[n],b∈{0,1} \ {F (k1−si , xi,si)},HardCore(F (k1−si , h))

) c
≈(

s, {xj,b}j∈[n],b∈{0,1}, {F (k1−si , xj,b)}j∈[n],b∈{0,1} \ {F (k1−si,, xi,si)}, β
)
,
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where β ← {0, 1} is a uniform bit and h = ⊕j∈[n]xj,sj . This follows from Lemma 3.3.9.

• Blindness follows from the fact that the component ct1 does not depend on the image h.

We showed that IHwUF implies blind batch encryption. As IHwUF is also enough to construct
blind garbled circuits, it follows that any IHwUF implies the above three primitives.

Note 5.4.2. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with
the following minor modification to the encryption algorithm:

e0 = XOR (HardCore (R (F (k0, h))) ,m0) ,

e1 = XOR (HardCore (R (F (k1, h))) ,m1) ,

and the following minor modification to the decryption algorithm:

m′si = XOR
(

HardCore
(
R
(⊗
j∈[n]

y
(si)
j,sj

))
,esi

)
,

whereR : Y → Z is a universal map (see Definition 3.1.5).

Note 5.4.3. The aforementioned construction can only be instantiated from a (bounded) IHwPRF
family for which the input space is independent of the key.

Implications. Brakerski et al. [BLSV18] showed that fully succinct blind batch encryption
scheme along with blind garbled circuit (which can be constructed from any one-way function)
imply:

1. Anonymous IBE,

2. Bounded KDM-secure PKE,

3. Leakage-resilient PKE with resilience to leakage of a (1− o (1))-fraction of the secret key.

5.5 Hinting PRG

In this section, we show that IHwUF implies hinting PRG, which is a stronger variant of traditional
PRG. Hinting PRG, which has been introduced by Koppula and Waters in [KW19], can be used to
generically transform any CPA-secure ABE into a CCA-secure one.
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Informally, a hinting PRG takes n bits as input and outputs n · L output bits for some fixed
polynomials n = n(λ) and L = L(λ), such that no PPT adversary can distinguish between 2n

uniformly random strings and 2n strings such that half the strings are output by the PRG, and
the remaining half are uniformly random, even if the strings are arranged as a 2 × n matrix as
follows: in the ith column of this matrix, the top entry is pseudorandom if the ith bit of the seed is 0;
else, the bottom entry is pseudorandom. Note that such a matrix-based arrangement carries some
information (or “hint”) about the seed, and the indistinguishability guarantee in the presence of such
an arrangement is what makes a hinting PRG stronger than a traditional PRG.

Below, we provide the formal definition of Hinting PRG from [KW19]. The formal definition is
slightly different from the informal description in terms of output length. Specifically, the formal
definitions states that the PRG outputs (n+ 1) · L bits, where the first L bits of the output do not
contain any hint about the seed.

Definition 5.5.1. (Hinting PRG.) A hinting PRG is a pair of PPT algorithms (Setup,Eval) defined
as follows:

• Setup(1λ): Given the security parameter λ, it sets n = n(λ) and L = L(λ) for some fixed
polynomial functions and outputs (pp, n, L), where pp is the public parameter.

• Eval(pp, s, i∗): Given the public parameter pp, a seed s ∈ {0, 1}n, and an index i∗ ∈ {0}∪[n],
it outputs a string e ∈ {0, 1}L.

Security. For b ∈ {0, 1}, define the experiment ExptHPRGb between a challenger and an adversary
A as follows:

Experiment ExptHPRGb :

1. The challenger generates (pp, n, L)← Setup(1λ) and provides it to the adversary A.

2. The challenger uniformly samples s = (s1, . . . , sn)← {0, 1}n and sets the following:

t̄(0) = Eval(pp, s, 0), t̄(1) ← {0, 1}L,

t
(0)
i,si

= Eval(pp, s, i), t
(0)
i,1−si ← {0, 1}

L for each i ∈ [n],

t
(1)
i,b′ ← {0, 1}L for each i ∈ [n], b′ ∈ {0, 1},

and sends {t̄(b), t
(b)
j,b′}j∈[n],b′∈{0,1} to the adversary A.
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A hinting PRG is secure if for all PPT adversaries A, the views of the adversary in ExptHPRG0 and
ExptHPRG

1 are computationally indistinguishable.

Construction from IHwUF. We show a black-box construction of hinting PRG from any IHwUF
family.

• Setup
(
1λ
)
: Given the security parameter λ the setup algorithm creates a description FIHwUF

for an IHwUF F : K×X → Y , and fixes n > log |X |+ω(log(λ)) and L = L(λ). It samples
2n group elements from X and (2n+ 1) · L keys from K as

{xj,b ← X}j∈[n],b∈{0,1} ,
{
k̄` ← K

}
`∈[L]

, {ki,`,β ← K}(i,`,β)∈[n]×[L]×{0,1} .

For each ` ∈ [L], it creates an n×2 matrix Ȳ(`) ∈ Yn×2 such that for each (j, b) ∈ [n]×{0, 1}
we have

Ȳ
(`)
j,b = F (k̄`, xj,b).

In addition, for each (i, `, β) ∈ [n]× [L]× {0, 1}, it creates an n× 2 matrix Y(i,`,β) ∈ Yn×2

such that for each (j, b) ∈ [n]× {0, 1}, we have

Y
(i,`,β)
j,b =

⊥ if (i, β) = (j, 1− b),

F (ki,`,β, xj,b) otherwise.

Finally, it outputs (pp, n, L) where1

pp =
(
FIHwUF,

{
Ȳ(`)

}
`∈[L]

,
{
Y(i,`,β)

}
(i,`,β)∈[n]×[L]×{0,1}

)
.

• Eval(pp, s, i∗): The evaluation algorithm outputs (t1, . . . , tL) where for each ` ∈ [L] we have

t` =

HardCore
(⊗

j∈[n] Ȳ
(`)
j,sj

)
if i∗ = 0,

HardCore
(⊗

j∈[n] Y
(i∗,`,si∗ )
j,sj

)
otherwise.

Instantiation from the general protocol. The aforementioned HPRG can be instantiated from
the general protocol described in Section 3.3 as follows:

1In [KW19], Koppula and Waters explicitly include the randomness for generating hardcore bits in pp. Here, we
implicitly assume that every element in the output group of the IHwUF has a deterministic hardcore bit. If this is not
the case, the randomness for hardcore bit generation should be included in pp.
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• Initialization. Instantiate the protocol using an IHwUF F with description FIHwUF, a fixed
n > log |X |+ ω(log(λ)), N∗ = 0, N̄ = (2n+ 1) · L, and N̂ = 1. Set pp1 = (FIHwUF, n, L).

• Evaluation: Let Y be the output of the evaluation phase where

Y =
({
ȳ

(`)
j,b

}
(`,j,b)∈[L]×[n]×{0,1},

{
y

(i,`,β)
j,b

}
(i,`,β,j,b)∈[n]×[L]×{0,1}×[n]×{0,1}

)
.

For each ` ∈ [L], create an n× 2 matrix Ȳ(`) ∈ Yn×2 such that for each (j, b) ∈ [n]× {0, 1}
we have

Ȳ
(`)
j,b = ȳ

(`)
j,b ,

and set
pp2 =

{
Ȳ

(`)
j,b

}
(`,j,b)∈[L]×n×{0,1}.

In addition, for each (i, `, β) ∈ [n]× [L]×{0, 1} create an n× 2 matrix Y(i,`,β) ∈ Yn×2 such
that for each (j, b) ∈ [n]× {0, 1} we have

Y
(i,`,β)
j,b =

⊥ if (i, β) = (j, 1− b),

y
(i,`,β)
j,b otherwise.

Set pp as pp = (pp1,pp2,pp3) where pp3 =
{
Y(i,`,β)

}
(i,`,β)∈[n]×[L]×{0,1}.

• Post-Evaluation: Recall that in the general protocol, the post-evaluation phase samples
n̂ = 1 uniform string s← {0, 1}N . One may view this as the input string to the evaluation
algorithm of the HPRG (along with some index i∗ ∈ {0} ∪ [n]). Let Ŷ be the output of the
post-evaluation phase where

Ŷ =
( {
ŷ(`)
}
`∈[L]

,
{
ŷ(i,`,β)

}
(i,`,β)∈[n]×[L]×{0,1}

)
.

Let t̄ ∈ {0, 1}L be a string whose `th component is

t̄` = HardCore
(
ŷ(`)
)
.

In addition, for each i ∈ [n] let ti ∈ {0, 1}L be a string whose `th component is

ti,` = HardCore
(
ŷ(i,`,si)

)
.

Set the output of the hinting PRG as (t̄, {ti}i∈[n]).
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Consider the following hybrids:

• H0: This is the real experiment, so the challenger generates (pp, n, L) and sends evaluations
{t̄(b), t

(b)
j,b′}j∈[n],b′∈{0,1} to the adversary.

• H1: This is similar to the real experiment, except that the challenger generates t(1)
i,b′ in the

following way: for each ` ∈ L, the `th bit of t(1)
i,b′ is equal to⊗

j∈[n]

F
(
ki,`,1−si , xj,sj

)
= F

(
ki,`,1−si ,

⊕
j∈[n]

xj,sj
)
.

• H2: This is similar to the previous hybrid, except that the challenger uses a uniform u← X
instead of

⊕
j∈[n] xj,sj to generate t̄(0), t(0)

i,b′ , and t
(1)
i,b′ . So the `th bit of t̄(0), t(0)

i,b′ , and t
(1)
i,b′ is

equal to
F (k̄`, u), F (ki,`,si , u), F (ki,`,1−si , u),

respectively.

• H3: This hybrid is the ideal experiment where all strings are generated uniformly.

By Corollary 3.3.10 the hybridsH0 andH1 are computationally indistinguishable. H1 andH2 are
statistically indistinguishable by the leftover hash lemma. Computational indistinguishability
of H2 and H3 follows from Theorem 3.3.8. It follows that H0 and H3 are computationally
indistinguishable, as required.

Note 5.5.2. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwUF if γ ≥ n, with
the following minor modification to the evaluation algorithm:

e` = HardCore
(
R
(⊗
j∈[n]

Y
(i,`,si)
j,sj

))
.

Note 5.5.3. The aforementioned construction can only be instantiated from a (bounded) IHwPRF
family for which the input space is independent of the key.
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CHAPTER 6

Primitives from IHwPRF

We present constructions of various (asymmetric) cryptographic primitives from (bounded) IHwPRF.
We also show how to instantiate these constructions using the general protocol of Chapter 3.

6.1 Private Information Retrieval

A (single-database) private information retrieval (PIR) scheme is a two-party protocol between
a sender and a receiver. The sender holds a public database (say, for concreteness, a string
s = (s1, . . . , sn) ∈ {0, 1}n), and the receiver wishes to query an item in the database (say, the bit si
for some i ∈ [n]) without revealing which item was queried (that is, i is not revealed to the sender).
Note that in this model, the database is public, which implies that the unqueried items/bits need
not be hidden from the receiver. A trivial solution is where the sender sends s to the receiver in
the clear, which of course preserves receiver privacy. The total communication in such a protocol,
measured as the number of bits exchanged between the sender and the receiver, is n. A non-trivial

PIR protocol is one that securely achieves the aforementioned functionality with communication
strictly smaller than n bits, where n is the size of the database. Black-box constructions of PIR
protocols are known from different assumptions, e.g., group-homomorphic encryption [KO97],
smooth subgroup assumptions [CMS99, GR05], and trapdoor permutations [KO00].

As a warm-up, we first demonstrate an inefficient PIR protocol that has a communication
overhead of O(n · `(λ)) bits, where ` is the maximum number of bits needed to encode a group
element in either X or Y . While this is even worse than the trivial protocol, we subsequently show
how the efficiency of this protocol may be boosted to achieve a non-trivial PIR protocol, without
any additional assumptions.

Inefficient PIR from IHwPRF. Let F : K ×X → Y be an IHwPRF:
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1. On input an index i ∈ [n], the receiver samples 2 elements {xj,b ← X}j∈[n],b∈{0,1} and a key
k ← K. Let ỹ be a non-identity element of Y . It then sets the following

yi,0 = F (k, xi,0)

yi,1 = F (k, xi,1)⊗ ỹ

yj,b = F (k, xj,b) for j ∈ [n] \ {i}, b ∈ {0, 1}

and sends {xj,b, yj,b}j∈[n],b∈{0,1} to the sender.

2. The sender, on input a string s = (s1, . . . , sn) ∈ {0, 1}n and {xj,b, yj,b}j∈[n],b∈{0,1}, sends
(x∗, y∗) to the receiver where

(x∗, y∗) =
(⊕
j∈[n]

xj,sj ,
⊗
j∈[n]

yj,sj

)
.

3. The receiver retrieves the bit si as

si =

0 if y∗ = F (k, x∗) ,

1 otherwise.

Boosting efficiency. We now apply a generic efficiency-boosting technique introduced in [KO97]
to convert the inefficient protocol into a PIR protocol with a communication overhead ofO(

√
n·`(λ))

bits. Quite evidently, such a PIR protocol is non-trivial in the sense that the overall communication
complexity is strictly smaller than n bits for sufficiently large n. The idea is to view the database
string s = (s1, . . . , sn) ∈ {0, 1}n as a binary matrix S ∈ {0, 1}

√
n×
√
n such that:1

Sj1,j2 = s(j1−1)
√
n+j2 for j1, j2 ∈ [

√
n]

The receiver sends across only 4
√
n group elements in its first message to the sender, as opposed to

4n in the inefficient protocol, while the receiver performs 2
√
n subset-sum/subset-product operations

over these elements (one per column of the matrix S) and sends back 2
√
n group elements to the

receiver. The detailed protocol is as follows:

1. On input an index i ∈ [n], the receiver uniformly samples 2
√
n elements from X as

{xj1,b ← X}j1∈[
√
n],b∈{0,1} and k ← K. Let ỹ be a non-identity element of Y , and let

1We assume that n is an integer for the sake of simplicity.
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i1 = di/
√
ne. The receiver sets the following

yi1,0 = F (k, xi1,0) ,

yi1,1 = F (k, xi1,1 ⊕ x̃) ,

yj1,b = F (k, xj1,b) for j1 ∈ [
√
n] \ {i1}, b ∈ {0, 1} ,

and sends {xj1,b, yj1,b}j1∈[
√
n],b∈{0,1} to the sender.

2. The sender, on input a string s = (s1, . . . , sn) ∈ {0, 1}n and {xj1,b, yj1,b}j1∈[
√
n],b∈{0,1}, creates

a binary matrix S ∈ {0, 1}
√
n×
√
n where

Sj1,j2 = s√n(j1−1)+j2 for j1, j2 ∈ [
√
n].

It then sends {x∗j2 , y
∗
j2
}j2∈[

√
n] to the receiver where

x∗j2 =
⊕

j1∈[
√
n]

xj1,Sj1,j2 for j2 ∈ [
√
n],

y∗j2 =
⊗

j1∈[
√
n]

yj1,Sj1,j2 for j2 ∈ [
√
n].

3. The receiver computes i2 = i mod
√
n and retrieves the bit si as

si =

0 if y∗i2 = F
(
k, x∗i2

)
,

1 otherwise.

Instantiation from the general protocol. Let |DB| denote the size of the database string in the
PIR scheme. This scheme can be instantiated from the general protocol described in Section 3.3 as
follows:

• Initialization. Instantiate the protocol using an IHwPRF F : K×X → Y , a fixed n =
√
|DB|

such that n > log |X |+ ω(log(λ)), N∗ = 0, N̄ = 1 and N̂ = n.

• Evaluation: Let Y = {yj,b}j∈[n],b∈{0,1} be the output of the evaluation phase. For a given
i ∈ [|DB|], set i1 = di/ne and reset yi1,1 := yi1,1 ⊗ ỹ, where ỹ is a non-identity element in Y .
Set the first message of the receiver to the sender as (X,Y).

• Post-Evaluation: Recall that in the protocol, the post-evaluation phase samples N̂ = n

binary strings, each of size n. One may view this as a random binary matrix of size n× n. If
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X̂ and Ŷ are the outputs of the post-evaluation phase, set the message from the sender to the
receiver as (X̂, Ŷ).

Correctness and security of the scheme follow from Claim 3.3.1 and Theorem 3.3.3, respectively.

Note 6.1.1. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwPRF if γ ≥ n,
with the following minor modification to the final step:

si =

0 ifR
(
y∗i2
)

= R
(
F
(
k, x∗i2

))
,

1 otherwise.

whereR : Y → Z is a universal map (see Definition 3.1.6).

Note 6.1.2. The aforementioned construction can also be instantiated using a (γ-bounded) IHwPRF
family for which the input space depends on the key. In particular, since the receiver chooses the
PRF key, it can set up the input space accordingly, and sample a random 2n-vector of elements from
this space. This in turn allows instantiating the PIR scheme from all concrete assumptions that give
rise to (γ-bounded) IHwPRFs, including the ones with key-dependent input space (see Section 3.4).

6.2 Lossy Trapdoor Functions

We begin with the formal definition of a lossy trapdoor function family from [PW08], and then we
show how to construct lossy TDF family from IHwPRFs.

Definition 6.2.1. (Lossy Trapdoor Function.) A lossy trapdoor function family is a tuple of four
PPT algorithms LTDF = (GenInjective,GenLossy,Eval, Invert) defined as follows:

• GenInjective
(
1λ
)
: Given the security parameter λ, the algorithm outputs the public parameter

pp for an injective function, along with a trapdoor t.

• GenLossy
(
1λ
)
: Given the security parameter λ, the algorithm outputs the public parameter

pp for a lossy function. It does not produce a trapdoor. (See below for a formal definition of
lossiness.)

• Eval (pp, s): Given the public parameter pp and a preimage string s ∈ {0, 1}n (where
n = n(λ) is included in pp), the evaluation algorithm outputs the corresponding image h.
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• Invert (t, h): Given the trapdoor t and an image h, the inversion algorithm outputs s′ ∈ {0, 1}n.

The following completeness and security properties must be satisfied:

• Completeness: If (pp, t) ← GenInjective(1λ), then for all preimage strings s ∈ {0, 1}n, it
holds with overwhelming probability over the random coins of GenInjective that

Invert (t, h = Eval (pp, s)) = s.

• One-wayness without trapdoor: For any PPT adversary A we have

Pr[Eval(pp,A(h)) = h] ≤ negl(λ),

where pp← GenInjective(1λ), s← {0, 1}n and h = Eval(pp, s).

• Lossiness: A TDF family (GenInjective,GenLossy,Eval, Invert) is said to be ε-lossy if for any
unbounded adversaryA we have Pr[A(h) = s] ≤ ε where pp← GenLossy(1λ), s← {0, 1}n

and h = Eval(pp, s).

• Indistinguishability of modes: For any PPT adversary A we have

∣∣Pr[A(pp0) = 1]− Pr[A(pp1) = 1]
∣∣ ≤ negl(λ),

where pp0 ← GenInjective(1λ) and pp1 ← GenLossy(1λ).

Construction from IHwPRF. We present a black-box construction of a lossy TDF family from
any IHwPRF family. The construction is inspired by the DDH-based lossy TDF family proposed by
Peikert and Waters in [PW08]. First, create a description FIHwPRF for an IHwPRF F : K ×X → Y ,
and fix some integer n such that n > log |X |+ ω(log(λ)).

• GenInjective(1λ): In the injective mode, the algorithm samples 2n uniform elements from
X as {xj,b ← X}j∈[n],b∈{0,1}. It also samples n uniform keys as {ki ← K}i∈[n]. Let ỹ be a
non-identity element of Y . The algorithm sets the following:

y
(i)
i,0 = F (ki, xi,0) for i ∈ [n],

y
(i)
i,1 = F (ki, xi,1)⊗ ỹ for i ∈ [n],

y
(i)
j,b = F (ki, xj,b) for (i, j) ∈ [n]× [n], i 6= j, b ∈ {0, 1} .
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It outputs the public parameter pp and the trapdoor t as

pp =
(
FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {y

(i)
j,b}(i,j)∈[n]×[n],b∈{0,1}

)
,

t = {ki}i∈[n] .

• GenLossy(1λ): The algorithm samples 2n uniform elements fromX as {xj,b ← X}j∈[n],b∈{0,1}

and n uniform keys as {ki ← K}i∈[n], and sets the following

y
(i)
j,b = F (ki, xj,b) for (i, j) ∈ [n]× [n], b ∈ {0, 1} .

It outputs the public parameter pp as

pp =
(
FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {y

(i)
j,b}(i,j)∈[n]×[n],b∈{0,1}

)
.

• Eval (pp, s): Given pp = (FIHwPRF, {xj,b}j∈[n],b∈{0,1} , {y
(b)
i,j }i,j∈[n],b∈{0,1}) and s ∈ {0, 1}n,

the evaluation algorithm computes

x∗ =
⊕
j∈[n]

xj,sj ,

y∗i =
⊗
j∈[n]

y
(i)
j,sj

for i ∈ [n].

It outputs the tuple (x∗, {y∗i }i∈[n]).

• Invert (t, h): Given the trapdoor t = {ki}i∈[n] and an image h = (x∗, {y∗i }i∈[n]), the inversion
algorithm recovers the preimage bit si for each i ∈ [n] as

si =

0 if y∗i = F (ki, x
∗) ,

1 otherwise.

Finally, it outputs the recovered string s = (s1, . . . , sn).

Instantiation from the general protocol. The lossy trapdoor function family described above
can be instantiated from the general protocol described in Section 3.3 as follows:

• Initialization. Instantiate the protocol using an IHwPRF F : K ×X → Y with description
FIHwPRF, a fixed n such that n > log |X |+ ω(log(λ)), N̄ = n and N̂ = 1.
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• Evaluation: Let Y = {y(i)
j,b}(i,j)∈[n]×[n],b∈{0,1} be the output of the evaluation phase.

– In the lossy mode, output pp = (FIHwPRF,X,Y).

– In the injective mode, reset y(i)
i,1 := y

(i)
i,1 ⊗ ỹ for each i ∈ [n] and output the public

parameter as pp = (FIHwPRF,X,Y).

• Post-Evaluation: Recall that in the protocol, the post-evaluation phase uniformly samples a
binary string s ∈ {0, 1}n. One may view this as an input to the lossy TDF. If X̂ and Ŷ are the
outputs of the post-evaluation phase, set the evaluation output of the lossy TDF as (X̂, Ŷ).

To see that the instantiation satisfies the properties of a lossy TDF family, consider the following:

• Completeness in the injective mode follows from Claim 3.3.1.

• One-wayness without trapdoors follows from Lemma 3.2.1.

• Indistinguishability of modes follows from Theorem 3.3.3.

• To argue lossiness, let h = (x∗, {y∗i }i∈[n]) be the output of the evaluation algorithm on input
s ∈ {0, 1}n in the lossy mode. Observe that the number of possible outputs in the lossy
mode is upper bounded by |X |, while the number of possible inputs is 2n for some fixed
n > log |X | + ω(log(λ)). Hence, the lossiness of the TDF family is n − log |X |. (The
lossiness can be made arbitrarily large by choosing a large enough n.)

Note 6.2.2. The aforementioned construction has an a priori bounded number of homomorphic
operations, which allows it to be instantiated equivalently using a γ-bounded IHwPRF if γ ≥ n,
with the following minor modification to the inversion algorithm:

si =

0 ifR (y∗i ) = R (F (ki, x
∗)) ,

1 otherwise.

Note 6.2.3. The aforementioned construction can only be instantiated from a (bounded) IHwPRF
family for which the input space is independent of the key.

Implications. The following are some of the implications of a lossy TDF..

• CCA-secure PKE. Peikert and Waters [PW08] showed that CCA2-secure PKE can be
constructed from any lossy TDF family. Their construction uses a closely related primitive
called All-But-One TDF (which can be built from any lossy TDF family). The decryption
algorithm in the resulting PKE is witness recovering.
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• Selective Opening Attack (SOA)-secure PKE. Bellare et al. [BHY09] showed that PKE
schemes that are secure against selective opening attacks can be constructed from any lossy
TDF family.1 It follows that (bounded) IHwPRFs are sufficient to construct SOA-secure PKE.

6.3 Oblivious Transfer and Multi-Party Computation

We show how to construct round-optimal maliciously secure OT2 and MPC in the plain model from
IHwPRF. We use a recent result of Friolo et al. [FMV19] in which they showed that:3

1. A CPA-secure PKE with pseudorandom public keys over a group (i.e., the distribution of
public keys are computationally indistinguishable from the uniform distribution over an
efficiently samplable group) implies (in a black-box way) a two-round strongly uniform

key-exchange protocol, where the distribution of messages sent by one of the parties is
computationally indistinguishable from the uniform distribution over an efficiently samplable
group, even when the other party is malicious.

2. For any t ≥ 2, a t-round strongly uniform secure key-exchange protocol is black-box
equivalent to a t-round strongly uniform semi-honestly secure OT protocol in the plain
model, where the distribution of all the messages sent by the receiver are computationally
indistinguishable from the uniform distribution over an efficiently samplable group, even
when the sender is malicious.

3. For any odd t ≥ 3, a t-round strongly uniform semi-honestly secure OT protocol in the plain
model together with a noninteractive statistically binding commitment scheme, implies (in a
black-box manner) a (t+ 1)-round maliciously secure OT protocol in the plain model.

In addition, a recent result of Choudhuri et al. [CCG+19] showed that 4-round maliciously secure
OT protocol implies a 4-round maliciously secure MPC protocol.

Construction from IHwPRF. We now demonstrate that the framework of Friolo et al. [FMV19]
can be instantiated using any IHwPRF family. We use an IHwPRF (instead of an IHwUF) in the
construction of Section 5.2 to get a PKE with pseudorandom public keys. As a result, pk and sk for

1See [BHY09] for the details of the construction.
2Two-round semi-honest OT in the plain model is implied by lossy TDF [BL18], which can be based on IHwPRF.
3For the sake of succinctness, we state the results informally. See [FMV19] for the formal description.
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the modified scheme will have the form

sk = k, pk = {(xj,b, yj,b = F (k, xj,b))}j∈[n],b∈{0,1},

where yj,b are the evaluations of the IHwPRF. It is easy to see that the modified scheme satisfies CPA
security. Moreover, any PPT algorithm that distinguishes the public key in the modified scheme
from a uniform tuple breaks the weak pseudorandomness of F . Finally, the aforementioned PKE
constructions immediately implies a noninteractive statistically binding commitment scheme.

By combining the observations above with the recent results of Friolo et al. [FMV19] and
Choudhuri et al. [CCG+19], it follows that

• Any (bounded) IHwPRF implies a 4-round maliciously secure OT in the plain model.

• Any (bounded) IHwPRF implies a 4-round maliciously secure MPC in the plain model.
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CHAPTER 7

Primitives from KHwPRF

In this section we show how to construct PKE and input-homomorphic weak PRF (IHwPRF) from
a key-homomorphic weak PRF (KHwPRF). First, we introduce a hardness assumption over the
output group of a KHwPRF. This hardness assumption has the advantage that it does not directly
involve the input set X of the KHwPRF, which may be algebraically unstructured. Here (and in the
following two sections), we assume that the KHwPRF has unbounded (or exact) homomorphism.
Later in this chapter, we show how to extend our results to bounded KHwPRF. Finally, we provide
a construction of Naor-Reingold style PRF from an exact KHwPRF.

7.1 On the Output Group of a KHwPRF

We formally state a hardness assumption which can be based on the security of a KHwPRF. As
before, we denote the security parameter by λ.

Theorem 7.1.1. Let F : K × X → Y be a KHwPRF, and let m = poly(λ) be an (arbitrary)

positive integer. Assume that d = poly(λ) be a positive integer such that d > log|K|+ ω(log(λ)).

Let Y ∈ Ym×d be a matrix of group elements such that each entry yi,j (for i ∈ [m], j ∈ [d]) is

drawn uniformly and independently from Y . If s← {0, 1}d, then for any PPT adversary we have

(Y,Ys)
c
≈ (Y,u),

where u← Ym is a a vector of m uniformly chosen elements from Y .

Proof. Let F ∈ Ym×d be a matrix formed in the following way: first sample m uniform elements
from X as {xi ← X}i∈[m], and generate d uniform elements from K as {kj ← K}j∈[d]. Now we set
Fi,j = F (kj, xi), i.e., each row (respectively, column) has the same input (respectively, key).
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In the first part we prove that F
c
≈ Y. We define the hybridsHj over the columns as follows:

letHj be the hybrid that the first j columns are generated using the weak PRF and the remaining
columns are generated using uniform and independent values. By construction, we haveH0 ≡ Y

and Hd ≡ F. It is enough to show that Hj−1
c
≈ Hj for each j ∈ [d]. Given access to an oracle

O which is either F or a truly random function, the reduction invokes its oracle m times and
receives {xi′ ,O(xi′)}i′∈[m]. It then samples j − 1 keys as {kj′ ← K}j′∈[j−1] and forms the matrix
M ∈ Ym×d as follows:

• If j′ < j, set Mi′,j′ = F (kj′ , xi′) .

• If j′ = j, set Mi′,j′ = O(xi′) .

• If j′ > j, for each i′ ∈ [m] and j′ ∈ {j + 1, . . . , d} sample a fresh y ← Y and set Mi′,j′ = y.

Observe that M ≡ Hj−1 ifO corresponds to a truly random function, and M ≡ Hj ifO corresponds
to the pseudorandom function F . It follows thatHj−1

c
≈ Hj .

In the second part of the proof, we show that (F,Fs)
c
≈ (F,u). Given an attacker A that

distinguishes (F,Fs) from (F,u), we describe an attacker B against the weak pseudorandomness
of F . Given access to an oracle O which is either F or a truly random function, B invokes its oracle
m times and receives {xi,O(xi)}i∈[m]. The reduction then samples d keys as {kj ← K}j∈[d] and
forms the matrix F as Fi,j = F (kj, xi). Define the vectors y∗ ∈ Ym and k ∈ Kd as

k = (k1, . . . , kd), y∗ := (O(x1), . . . ,O(xm)) .

Finally, B runs A on the input (F,y∗) and B outputs whatever A outputs. It is easy to see that if
O is a truly random function we have (F,y∗) ≡ (F,u). Observe that by the leftover hash lemma,
we have (k,

⊕
s k)

s
≈ (k, k∗) where k∗ is uniform over K. If y∗ corresponds to the weak PRF

outputs (O is the weak PRF), by key homomorphism of F we have

Fs =


F (
⊕

s k, x1)

F (
⊕

s k, x2)
...

F (
⊕

s k, xm)

 s
≈


F (k∗, x1)

F (k∗, x2)
...

F (k∗, xm)

 ≡ y∗.

Therefore, the advantage of B (in the weak PRF game) is negligibly different from the advantage of
A. It follows that (F,Fs)

c
≈ (F,u), as required.
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Using the first part of the proof by a straightforward reduction we have (Y,Ys)
c
≈ (F,Fs) and

(F,u)
c
≈ (Y,u). Using the second part, it follows that

(Y,Ys)
c
≈ (F,Fs)

c
≈ (F,u)

c
≈ (Y,u),

and hence we get (Y,Ys)
c
≈ (Y,u).

7.2 Public-Key Encryption

We now describe a noninteractive key-exchange protocol (which is sufficient to realize PKE) based
on any KHwPRF whose output group is abelian. Later, we demonstrate a construction of an
IHwPRF from any KHwPRF, which in turn implies a variety of cryptographic primitives. We first
start with an inefficient protocol, and then we show how to improve its efficiency.

Given a KHwPRF F : K ×X → Y such that Y is an abelian group, fix some positive integer
m > log|K|+ω(log(λ)) and let Y ∈ Ym×m be a matrix of uniformly chosen group elements fromY .
Alice (respectively, Bob) chooses binary vector r← {0, 1}m (respectively, s← {0, 1}m), and sends
rtY (respectively, Ys) to Bob (respectively, Alice). The final secret will be rt(Ys) = (rtY)s ∈ Y .
The following figure is a simple visualization of the aforementioned protocol.

pp: Y ← Ym×mAlice

r← {0, 1}m

rtY ∈ Ym

K = rt(Ys) ∈ Y

Bob

s← {0, 1}m

Ys ∈ Ym

K = (rtY)s ∈ Y

We sketch the security proof for the mentioned protocol. It is enough to show

(Y, rtY,Ys, rtYs)
c
≈ (Y,y1,y2, y),

where Y ← Ym×m, r← {0, 1}m, s← {0, 1}m,y1 ← Ym,y2 ← Ym, y ← Y .
Observe that by Theorem 7.1.1 and a simple hybrid argument we can replace rtY with a random

vector u← Ym and so
(Y,u,Ys,us)

c
≈ (Y,y1,y2, y).
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Now let Ŷ ∈ Y(m+1)×m be the matrix that has Y as its top submatrix and u as its last row. By
applying Theorem 7.2.1 again, it follows that

(Ŷ, Ŷs)
c
≈ (Ŷ, y),

as required.
The reader may notice that the aforementioned key exchange protocol is too expensive in terms

of communication complexity, i.e, to agree on some group element the parties need to exchange
2m2 group elements. Using the following lemma, we immediately get a key exchange protocol for
which the whole cost of communication is twice the size of the final secret (like DDH).

Lemma 7.2.1. Let F : K × X → Y be a KHwPRF, and let m > log|K|+ ω(log λ) be a positive

integer. For any PPT adversary we have

(Y,RY,YS,RYS)
c
≈ (Y,Y′,Y′′,Y′′′),

where Y,Y′,Y′′,Y′′′ are matrices of uniform group elements in Ym×m, and S, R are uniform

binary matrices, i.e., R← {0, 1}m×m and S← {0, 1}m×m.1

Proof. The lemma follows from Theorem 7.1.1, and a standard hybrid argument.

7.3 Input-Homomorphic weak PRF

Here we show a simple construction of an IHwPRF from any KHwPRF. We remark that although
an IHwPRF implies a variety of cryptographic primitives, the constructions will not be necessarily
efficient. More efficient constructions can be obtained by directly building the primitive using the
assumption in Theorem 7.1.1.

Lemma 7.3.1. Let F : K×X → Y be a KHwPRF. If d > log |K|++ω(log λ) be a positive integer

and Y is an abelian group, the function F̃ : {0, 1}d × Yd → Y defined as

F̃
(
s = (s1, . . . , sd),y = (y1, . . . , yd)

)
=
⊗
s

y =
⊗
j:sj=1

yj

is an IHwPRF.
1Notice that for the correctness of key exchange, we require the group Y to be abelian.
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Proof. First, observe that F̃ is input homomorphic since for any y,y′ ∈ Yd and s ∈ {0, 1}d we
have

F̃ (s,y)⊗ F̃ (s,y′) =
(⊗

s

y
)
⊗
(⊗

s

y′
)

=

( ⊗
j:sj=1

yj

)
⊗
( ⊗
j:sj=1

y′j

)
=
⊗
j:sj=1

(yj ⊗ y′j)

=
⊗
s

(y ⊗ y′) = F̃ (s,y ⊗ y′).

Given m = poly(λ) samples of the form (yi,O(yi)), form the matrix Y ∈ Ym×d such that the
ith row of Y is yi. In addition, define y∗ as y∗ := (O(y1), . . . ,O(ym)). Observe that if O is a
truly random function then y∗ is uniformly distributed in Ym. On the other hand, if O is the weak
PRF, we have y∗ = Ys for some uniform s ∈ {0, 1}d. By applying Theorem 7.1.1 and observing
the fact that m = poly(λ), it follows that F is a weak PRF.

Implications. By plugging in the results of Chapter 5 and Chapter 6, and using the Lemma 7.3.1
it follows that KHwPRF imply noninteractive key exchange, private information retrieval [KO97],
lossy trapdoor functions [PW08], identity-based encryption (in a non-blackbox manner) [DG17b,
DG17a, BLSV18], and hinting PRG [KW19].

We remark that KHwPRF trivially implies homomorphic one-way function (HOWF) and hence
using the results of Chapter 4, KHwPRF implies collision-resistant hash function, Schnorr signature,
and chameleon hash function.

7.4 Asymmetric Primitives from Bounded KHwPRF

In this part, we show that the “approximate” (some prior works called it “almost”) version of
key-homomorphic weak PRF with certain properties imply a variety of asymmetric primitives, such
as public-key encryption (PKE). Approximate KHwPRF has the property that Fk⊕k′(x) is close to
Fk(x)⊗ Fk′(x) where closeness is measured with respect to some distance function.

An Algebraic Definition. Formalizing a general definition for “approximate” homomorphism
requires a somewhat involved geometric definition that needs a distance function, which also does
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not nicely fit into the (algebraic) framework of Chapter 3. Therefore, we use the algebraic definition
of bounded key-homomorphic weak PRF, which is similar to the definition of bounded IHwPRF
(see Section 3.1 for more details).

Bounded KHwPRFs and LWR. All of the currently known instantiations of “approximate”
key-homomorphic (weak) PRF use Learning With Rounding (LWR) [BPR12] as their underlying
assumption. It is easy to see that if the output group of some LWR-based KHwPRF is Znp for some
superpolynomial modulus p and some dimension n, we can define the mappingRin (respectively,
Rout) to be rounding with respect to some modulus pin (respectively, pout) such that p/pin and
pin/pout are both superpolynomial.

The reader may note that the resulting construction of bounded KHwPRF from LWR has a triple
rounding, one that is embedded in the (weak) PRF F and one for each mappingRout andRin in the
definition of bounded KHwPRF. Although this property is inherent for the LWR-based construction,
in general there may not be any similarity between F andRin orRout for a bounded KHwPRF.

PKE Construction from Bounded KHwPRF. We show a construction of public-key encryption
scheme from a bounded KHwPRF. The construction is almost identical to the case of unbounded
KHwPRF, with the difference being applying the mappingsRin andRout of the bounded KHwPRF.
The argument for the security is also similar to the exact/unbounded case, and we omit the details.

Given a γ-bounded KHwPRF F : K × X → Y (with mappings Rin and Rout defined as in
Section 3.1) such that Y and Zin are abelian groups and γ > log|K|+ω(log(λ)), fix some integer m
such that γ ≥ m > log|K|+ ω(log(λ)) and let Y ∈ Ym×m be a matrix of uniformly chosen group
elements from Y . Alice (respectively, Bob) chooses a binary vector r ← {0, 1}m (respectively,
s← {0, 1}m), and sendsRin(r

tY) (respectively,Rin(Ys)) to Bob (respectively, Alice). The final
secret will be

Rout

(
rtRin(Ys)

)
= Rout

(
Rin(r

tY)s
)
∈ Zout.

Bounded IHwPRF from Bounded KHwPRF. We now construct a bounded IHwPRF from a
bounded KHwPRF. The construction is almost identical to the case of unbounded KHwPRF, with
the difference being applying the mappingsRin andRout of the bounded KHwPRF.

Let F : K × X → Y be a γ-bounded KHwPRF (with mappings Rin and Rout defined as in
Section 3.1) such that Y and Zin are abelian groups and γ > log|K|+ω(log(λ)). Let d be an integer
such that log|K| + ω(log(λ)) < d ≤ γ. We define a bounded IHwPRF F̃ : {0, 1}d × Yd → Zin
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with its associated mapping R̃ : Zin → Zout as

F̃
(
s = (s1, . . . , sd),y = (y1, . . . , yd)

)
= Rin

(⊗
s

y
)

= Rin

( ⊗
j:sj=1

yj

)
,

where R̃ (the associated mapping with F̃ ) is identical toRout. The security proof is similar to the
exact/unbounded case, and we omit the details.

7.5 Naor-Reingold PRF

Here we show a construction of Naor-Reingold style PRF from any KHwPRF. Before we do so,
we provide some background on the Naor-Reingold PRF and explain why PRFs in this style are
important. We start by recalling the original Naor-Reingold PRF [NR97]:

Let G be a DDH-hard group of order p, and let FNR : Z(`+1)
p × {0, 1}` → G be the function

family defined by

FNR
(
{αj}j∈[0,`] ∈ Z(`+1)

p ,x ∈ {0, 1}`
)

= gα0
∏`
i=1 α

xi
i ,

where the values α0, α1, . . . , α` form the key and x is the input. Informally, a Naor-Reingold style
PRF requires a constant number of computations (for instance, the exponentiation in FNR) on
which the assumption related to its hardness depends, while all of the operations that scale with
the length of the input (for instance, the integer multiplications in the exponent of FNR) are less
expensive. This feature allows Naor-Reingold style PRFs to be potentially efficient. In particular,
assuming that the underlying operations have reasonably low circuit depth, such PRFs typically
have polylogarithmic evaluation circuits.

We now show a simple construction of Naor-Reingold style PRF from any exact KHwPRF
with abelian output group. Our construction involves a subset product of binary matrices and one
“multiplication” of a group matrix and an integer matrix. The depth of the PRF evaluation circuit is
polylogarithmic provided that the group operation can be done efficiently.

Theorem 7.5.1. Let F̃ : K×X → Y be a KHwPRF, and fix some integer m > log|K|+ω(log(λ)).

Let Y ∈ Ym×m be a (public) matrix of group elements such that each entry yi,j (for i ∈ [m], j ∈ [m])

is drawn uniformly and independently from Y . The function F : Y(`+1)×m2 × {0, 1}` → Ym×m

defined as

F
(

(S0,S1, . . . ,S`),x = (x1, . . . , x`)
)

= YS0

∏̀
i=1

Sxii
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is a pseudorandom function where Si ← {0, 1}m×m for i ∈ {0, . . . , `}.

Proof. To prove this theorem, we use the following lemma.

Lemma 7.5.2. Let Y1, . . . ,YQ ∈ Ym×m be matrices with uniformly and independently sampled

entries from Y for some Q = poly(λ), and let S ← {0, 1}m×m be a uniformly sampled binary

matrix. Then for any PPT adversary we have

{(Yq,YqS)}q∈[Q]

c
≈ {(Yq,Uq)}q∈[Q].

where for each q ∈ [Q], Uq ← Ym×m is a matrix of uniformly chosen elements from Y .

This lemma follows directly from Theorem 7.1.1, and a standard hybrid argument over the columns
of YqS. The proof of pseudorandomness now proceeds via a series of (`+ 1) hybrids, where for
each j ∈ [0, `], the j th hybrid is as described below.

1. The challenger samples (`− j) uniform binary matrices as Si ← {0, 1}m×m for i ∈ [j + 1, `].
It also maintains a list L of m ×m matrices over the group Y . Initially, this list is empty.
The challenger also creates and stores an m × m matrix Y0 consisting of uniformly and
independently sampled entries from Y .

2. The adversary adaptively issues a maximum of Q = poly(λ) PRF queries of the form
x1, . . . ,xQ, where for each q ∈ [Q], we have xq = (x1,q, . . . , x`,q). For ease of representation,
we divide each query string as xq = (x

(0)
q ,x

(1)
q ), where

x(0)
q = (x1,q, . . . , xj,q), x(1)

q = (xj+1,q, . . . , x`,q).

3. Upon receipt of the qth query, the challenger proceeds as follows:

(a) If j = 0, it sets Yq = Y0.

(b) Otherwise, it checks if there exists a q′ < q such that x(0)
q = x

(0)
q′ .

i. If yes, it sets Yq = Yq′ .

ii. Otherwise, it sets Yq to be an m ×m matrix with uniformly and independently
sampled entries from Y .

(c) It updates the list L as L = L ∪ {Yq} and responds to the qth query as

fj,q = Yq

∏̀
i=j+1

S
xi,q
i .
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Note that in the zeroth hybrid, we replaced the component YS0 in the original PRF construction
by an m ×m matrix Y0 consisting of uniformly and independently sampled entries from Y . It
follows from Theorem 7.1.1 that this hybrid is indistinguishable from the real PRF experiment.

Now, for each j ∈ [0, `], let Fj = {fj,q}q∈[Q] be the set of responses generated by the challenger
in the j th game. The proof of Theorem 7.5.1 now follows immediately from the following claim:

Claim 7.5.3. For each j ∈ [0, `− 1] and for any PPT adversary we have

Fj
c
≈ Fj+1.

Let A be a PPT adversary such that for some j ∈ [`], A efficiently distinguishes between Fj and
Fj+1. We construct an attacker B against the assumption in Lemma 7.5.2. B receives as input a
tuple of the form {(Yq,Zq)}q∈[Q′] for some Q′ > Q, where either each Zq is of the form YqSj for
some uniformly random m×m binary matrix Sj , or each Zq is a uniformly random matrix over
Ym×m. It proceeds as follows:

1. B samples (`− j − 1) uniform binary matrices as Si ← {0, 1}m×m for i ∈ [j + 2, `]. It also
maintains a counter variable cnt. Initially, cnt = 1.

2. A adaptively issues a maximum of Q = poly(λ) PRF queries of the form x1, . . . ,xQ, where
for each q ∈ [Q], we have xq = (x1,q, . . . , x`,q). Again, for ease of representation, we divide
each query string as xq = (x

(0)
q ,x

(1)
q ), where

x(0)
q = (x1,q, . . . , xj,q), x(1)

q = (xj+1,q, . . . , x`,q).

3. Upon receipt of the qth query, B checks if there exists a q′ < q such that x(0)
q = x

(0)
q′ .

(a) If yes, it sets Ỹq = Ỹq′ and Z̃q = Z̃q′ .

(b) Otherwise, it sets Ỹq = Ycnt and Z̃q = Zcnt, and updates cnt = cnt + 1.

4. B now responds to the qth query as

f̃j,q =

Ỹq

∏`
i=j+2 S

xi,q
i if xj+1,q = 0,

Z̃q
∏`

i=j+2 S
xi,q
i if xj+1,q = 1.

5. Eventually, the adversary A outputs a bit b. B outputs the same bit b.
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Let F̃ = {f̃j,q}q∈[Q] be the set of responses generated by B. It is easy to see the following:

• If each Zq is of the form YqSj for some uniformly random m×m binary matrix Sj , then the
distribution of F̃ is identical to that of Fj .

• On the other hand, if each Zq is a uniformly random matrix over Ym×m, then the distribution
of F̃ is identical to that of Fj+1.

It now follows that the advantage of B is identical to that of A. This completes the proof of
Claim 7.5.3. The proof of Theorem 7.5.1 follows immediately.

Naor-Reingold PRF from Bounded KHwPRF. Our definition of bounded KHwPRF does not
allow a direct construction of Naor-Reingold PRF. However, there are known constructions of
Naor-Reingold PRF from lattice-based assumptions [BPR12, BLMR13, Mon18]. Our algebraic
definition of bounded KHwPRF does not encompass multiple levels of rounding, and hence we
omit constructing Naor-Reingold PRF from bounded KHwPRF.

85



CHAPTER 8

A Framework Based on Group Actions

In the previous chapters, we discussed the power of basic symmetric primitives endowed with
some algebraic structure, namely group homomorphism. However, there are certain cryptographic
constructions that are not captured in the homomorphism-based framework, most notably the
isogeny-based cryptography. In this chapter, we present a framework based on group actions.

8.1 Cryptographic Group Actions

In this section we present our definitions of cryptographic group actions. We use the definitions of
Brassard and Yung [BY91] and Couveignes [Cou06] as starting points and aim to provide definitions
that allow for easy use in cryptographic protocols. We mainly focus on regular group actions in this
thesis. Recall that a group action (G,X, ?) is said to be regular if it is both free and transitive. For
such a regular group action, the set X is called a principal homogeneous space for the group G, or
a G-torsor. We define an effective group action as follows.

Definition 8.1.1. A group action (G,X, ?) is said to be effective if the following properties are
satisfied:

• The group G is finite and there exist PPT algorithms for:

1. Membership testing, i.e., to decide if a given bit string represents a valid group element.

2. Equality testing, i.e., to decide if two bit strings represent the same group element.

3. Sampling, i.e., to sample an element g from a distribution DG on G. In this thesis, we
consider distributions that are statistically close to uniform.

4. Operation, i.e., to compute gh for any (g, h) ∈ G2.

5. Inversion, i.e., to compute g−1 for any g ∈ G.
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• The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.

2. Unique representation, i.e., given any arbitrary set element x ∈ X , compute a string x̂
that canonically represents x.

• There exists a distinguished element x0 ∈ X , called the origin, such that its representation as
a bit string is known.

• There exists an efficient algorithm that given (some bit string representations of) any g ∈ G
and any x ∈ X , outputs g ? x.

We define some basic cryptographic primitives pertaining to group actions.

Definition 8.1.2. (One-Way Group Action.) A group action is said to be (DX ,DG)-one-way if the
family of efficiently computable functions

{fx : G→ X}x∈X

is (DX ,DG)-one-way, where fx : g 7→ g ? x, and DX , DG are distributions on X , G respectively.

Definition 8.1.3. (Weak Unpredictable Group Action.) Let DX and DG be distributions on X
and G, respectively. A group action is said to be (DG,DX)-weakly unpredictable if the family
of (efficiently computable) permutations {πg : X → X}g∈G is (DG,DX)-weakly unpredictable,
where πg is defined as πg : x 7→ g ? x.

Definition 8.1.4. (Weak Pseudorandom Group Action.) Let DX and DG be distributions on X
and G, respectively. A group action is said to be (DG,DX)-weakly pseudorandom if the family
{πg : X → X}g∈G of (efficiently computable) permutations is (DG,DX)-weakly pseudorandom,
where πg : x 7→ g ? x.

In each of the definitions above, ifDG is a probability distribution onG andDX is the distribution
induced on X by taking g ← DG and outputting g ? x0, then we simply write DG-one-way group
action (OWGA) for (DX ,DG)-OW group action, and similarly for weakly unpredictable and
weakly pseudorandom group actions, abbreviated as (DG,DX)-wU-GA and (DG,DX)-wPR-GA,
respectively. If both distributions are uniform (or statistically close to uniform), we omit (DG,DX).

In what follows, we will focus on group actions where G is abelian and the action is regular.
We will characterize them by the computational assumption and their effectivity properties, and we
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assume that they are abelian and regular unless stated otherwise. Therefore, we use the abbreviations
OW-EGA/wU-EGA/wPR-EGA to denote one-way/weakly unpredictable/weakly pseudorandom
abelian regular effective group action. We remark that Couveignes used the terminology Hard

Homogeneous Space for wU-EGA, and Very Hard Homogeneous Space for wPR-EGA [Cou06];
subsequent literature on isogeny-based cryptography has mostly followed his conventions [DKS18,
CLM+18].

Generic attacks. All known generic attacks against cryptographic group actions are attacks
against the one-wayness. Given a pair (x, g ? x), Stolbunov [Sto12] called the problem of finding
g the Group Action Inverse Problem (GAIP). The best known classical algorithm for GAIP is a
meet-in-the-middle graph walk technique dating back to Pohl [Poh69], with a low-memory variant
by Galbraith, Hess and Smart [GHS02], both running in time O(

√
|G|).

Childs, Jao and Soukharev [CJS14] were the first to point out that GAIP can be formulated as a
hidden shift problem, and it can be solved by Kuperberg’s quantum algorithm and its variants [Kup05,
Reg04, Kup13], provided a quantum oracle to evaluate the group action. All of these algorithms
have subexponential complexity between exp(

√
logN) and LN(1/2) where N = |G|.

In the context of isogenies, there are known classical and quantum attacks [Gal99, GS13, BIJ18,
BS20, Pei20]. Very little is known in terms of of non-generic attacks: a recent result gives an attack
against pseudorandomness [CSV20], which applies to some isogeny-based group actions but not to
CSIDH and similar constructions.

Alternative axioms. In some circumstances, it is useful to strengthen or weaken the definition of
an effective group action (EGA) by slightly modifying the set of axioms. Here we name a couple of
most important variants.

• Uncertified EGA: Brassard and Yung [BY91] has considered group actions without the Set

Membership Testing axiom. They call certified those group actions that have Set Membership

Testing, and uncertified otherwise. It is easy to construct examples of uncertified actions, see,
e.g., [BY91, §6.2].

• Hashable OW-EGA: In an OW-EGA, one can efficiently sample from X as follows: first
sample g ← DG using the Group Sampling axiom, then output g ? x0. However in some
applications it is useful to sample from X in a way that does not automatically reveal the
group action inverse.

In a Hashable OW-EGA, the existence of the origin x0 is replaced with a Hashing to the

Set axiom, stating that there exists an efficient sampler H : [N ]→ X (where the integer N
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depends on the security parameter) such that for any adversary A

Pr[A(i, j) ? H(i) = H(j)] ≤ negl(λ),

for i, j ← [N ].

Restricted Effective Group Action. An EGA is a useful abstraction, but sometimes it is too
powerful in comparison to what is achievable in practice. A Restricted Effective Group Action

(REGA) is a weakening of EGA, where we can only evaluate the action of a generating set of small
cardinality.

Definition 8.1.5. (Restricted Effective Group Action (REGA).) Let (G,X, ?) be a group action and
let g = (g1, . . . , gn) be a (not necessarily minimal) generating set for G. The action is said to be
g-restricted effective, if the following properties are satisfied:

• G is finite and n = poly(log(|G|)).

• The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.

2. Unique representation, i.e., to compute a string x̂ that canonically represents any given
set element x ∈ X .

• There exists a distinguished element x0 ∈ X , called the origin, such that its representation as
a bit string is known.

• There exists an efficient algorithm that given any i ∈ [n] and any bit string representation of
x ∈ X , outputs gi ? x and g−1

i ? x.

Although an REGA is limited to evaluations of the form gi ? x, this is actually enough to
evaluate the action of many, and potentially all elements of G without even needing axioms on the
effectivity of G. By definition, any element of G can be represented by a word on g, however this
representation needs not be unique, nor equality needs to be efficiently testable. From the definition
of a g-REGA, it is clear that the action on x ∈ X of any word of polynomial length on g can be
computed in polynomial time.

When G is abelian, words on g can be rewritten as vectors in Zn, canonically mapped to G by

(a1, . . . , an) 7→
n∏
i=1

gaii .
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It follows from the axioms of REGA that the action of a vector a ∈ Zn can be efficiently evaluated
on any x ∈ X as long as ‖a‖ is polynomial in log(|G|), where ‖ · ‖ is any Lp-norm.

Protocols built on REGA need to sample elements from G that are statistically close to uniform
and for which the group action is efficiently computable. Prior works suggest sampling from
a distribution on the words on g in the non-abelian case, or from a distribution on vectors in
Zn in the abelian case. Some classic choices in the abelian case are balls of fixed radius in
L∞-norm [CLM+18], L1-norm [NOTT20], weighted infinity norms [Sto12, MR18], or discrete
Gaussian distribution [DG19]. The latter is plausibly sufficient for applications that require group
elements to be sampled from distributions that are statistically close to uniform [DG19].

Below, we describe a known-order EGA, which is a strengthening of EGA to the setting where
the structure of G is known.

Known-order effective group action. As a strengthening of EGA, we may assume that the
group structure of G is known. By “known order” we mean that a minimal list of generators
g = (g1, . . . , gn) together with their orders (m1, . . . ,mn) is known, which in turn is equivalent to a
decomposition

G ' Zm1 ⊕ · · · ⊕ Zmn .

An important special case is when G is cyclic, i.e., G = 〈g〉 ' Z/mZ.
Denote by L the lattice m1Z⊕ · · · ⊕mnZ, the map φ : Zn/L → G defined as

(a1, . . . , an) 7→
n∏
i=1

gaii

is an effective isomorphism, its inverse being a generalized discrete logarithm. If (G,X, ?) is an
EGA, then it is immediate to verify that (Zn/L, X, ?) is an EGA through φ. We may just use Zn/L
as the standard representation for G.

Definition 8.1.6. (Known-order Effective Group Action (KEGA).) A known-order effective group

action is an EGA (Zn/L, X, ?) where the lattice L is given by the tuple (m1, . . . ,mn).

It may look like we “lose some cryptography” when we replace the group G by its isomorphic
image Zn/L. However, we stress that the main purpose of cryptography based on group actions is
to design protocols that do not rely on discrete log assumptions. Thus, as soon as the group structure
of G is known, KEGA is a more appropriate tool to design protocols, owing to its simplicity. For
examples of protocols that require the KEGA setting, see [DM20].
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Furthermore, KEGA and abelian EGA are quantumly equivalent. Indeed, given any abelian
group G, Shor’s algorithm and its generalization [Sho97, CM01] precisely compute an isomorphism
G ' Zm1 ⊕ · · · ⊕ Zmn (along with a minimal set of generators) in quantum polynomial time.

Remark 8.1.7. An REGA of known order is not automatically a KEGA, indeed the list of generators
g of a REGA need not be minimal. As an extreme example, consider the case where G = 〈g1〉 is
cyclic, and g = (g1, . . . , gn). Any element of G can be uniquely represented as an integer in Zm1 ,
however this representation does not lead to an efficiently computable group action.

What is needed is an efficient algorithm to convert between the “minimal” representation
G ' Z/L, and products of small powers of (g1, . . . , gn). In some instances, this conversion is
possible via lattice reduction techniques [BKV19].

8.2 Two-Message Statistically Sender-Private OT

In this section, we demonstrate how to construct a two-message statistically sender-private oblivious
transfer (SSP-OT) protocol without trusted setup based on any weak pseudorandom effective group
action. We begin by recalling the definition of SSP-OT (we adopt the notation from [HLOV11,
BD18]).

Definition 8.2.1. (Two-Message SSP-OT.) A two-message SSP-OT protocol is a tuple of three
algorithms (OTR,OTS,OTD) that satisfies correctness, receiver privacy, and statistical sender
privacy (described below).

• OTR(1λ, β): Given λ and a bit β ∈ {0, 1}, outputs a message ot1 and a (secret) state st.

• OTS(1λ, (m0,m1),ot1): Given λ, a pair of bits (m0,m1), and a message ot1, outputs a
message ot2.

• OTD(1λ, st, β,ot2): Given λ, a secret state st, a bit β ∈ {0, 1}, and a message ot2, it outputs
a bit m′ ∈ {0, 1}.

The following properties should be satisfied:

Correctness. For any bit β ∈ {0, 1}, and any pair of bits m0,m1, letting

(ot1, st) = OTR(1λ, β), ot2 = OTS(1λ, (m0,m1),ot1), m′ = OTD(1λ, st, β,ot2),

we have m′ = mβ with overwhelming probability.
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Receiver Privacy. If (ot1, st)← OTR(1λ, 0) and (ot′1, st′)← OTR(1λ, 1) be the receiver’s output
on 0 and 1 respectively, then ot1

c
≈ ot′1.

Statistical Sender Privacy. For any bit β ∈ {0, 1}, any message ot1, and two pairs of bits (m0,m1)

and (m′0,m′1) such that mβ = m′β , we have

OTS(1λ, (m0,m1),ot1) ≈s OTS(1λ, (m′0,m
′
1),ot1).

Construction. Let (G,X, ?) be a weak pseudorandom effective group action and let ` = ω(log(λ))

be a parameter such thatH : X` → {0, 1} is a pairwise independent hash function. Our construction
of SSP-OT is as follows.

• OTR(1λ, β): First, sample x̄0 ← X and x̄1 ← X . Also, sample group elements s← G and
u← G such that s 6= u, and output ot1 = (x̄0, x̄1, y, x0, x1) and st = s, where

y = s ? x̄0, xβ = s ? x̄1, x1−β = u ? x̄1.

• OTS(1λ, (m0,m1),ot1): Parse ot1 = (x̄0, x̄1, y, x0, x1). If x0 = x1 output ⊥. Otherwise,
sample two vectors of group elements and two binary strings as

r(0) ← G`, r(1) ← G`, b(0) ← {0, 1}`, b(1) ← {0, 1}`.

Let (c(0), c(1)) and (d(0),d(1)) be two pairs of vectors of set elements such that for each i ∈ [`]

and each µ ∈ {0, 1} we have

c
(µ)
i = r

(µ)
i ? x̄

b
(µ)
i
, d

(µ)
i =

r
(µ)
i ? y if b(µ)

i = 0,

r
(µ)
i ? xµ if b(µ)

i = 1.

LetH be the description of a pairwise independent hash function H . Output the message ot2
as

ot2 = (H, c(0), c(1),e0,e1),

where eµ = H(d(µ))⊕mµ for each µ ∈ {0, 1}.

• OTD(1λ, st = s, β,ot2): Parse the message ot2 as (H, c(0), c(1),e0,e1), and let H be the
function whose description isH. Output the bit m′ as

m′ = H(s ? c
(β)
1 , . . . , s ? c

(β)
` )⊕ eβ.
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Correctness of the scheme follows by inspection. In the next lemmas, we prove that our
construction satisfies receiver privacy and statistical sender privacy.

Lemma 8.2.2. If (G,X, ?) be a weak pseudorandom EGA, the construction above satisfies receiver

privacy.

Proof. By the weak pseudorandomness of group action, an immediate reduction implies that the
receiver’s message to the sender when β = 0 is computationally indistinguishable from a random
tuple, i.e.,

(x̄0, x̄1, s ? x̄0, s ? x̄1, u ? x̄1)
c
≈ (x̄0, x̄1, z0, z1, u ? x̄1),

where z0 ← X and z1 ← X are uniformly chosen set elements. A similar reduction implies that the
receiver’s message to sender when β = 1 is computationally indistinguishable from a random tuple,
i.e., we have

(x̄0, x̄1, s ? x̄0, u ? x̄1, s ? x̄1)
c
≈ (x̄0, x̄1, z0, u ? x̄1, z1).

Since the receiver’s message is computationally distinguishable from a random tuple in both of the
cases β = 0 and β = 1, it follows that the scheme satisfies receiver’s privacy, as required.

Lemma 8.2.3. The construction of SSP-OT satisfies statistical sender privacy.

Proof. Let ot1 = (x̄0, x̄1, y, x0, x1) be an arbitrary message from a (possibly malicious) receiver.
Notice that if x0 = x1 the sender outputs ⊥, so we can assume that x0 6= x1. Observe that if
x0 6= x1 there is some β′ ∈ {0, 1} for which there does not exist any g ∈ G such that y = g ? x̄0

and xβ′ = g ? x̄1. Without loss of generality we can assume that β′ = 0, and we show that in this
case e0 component of sender’s message is statistically indistinguishable from a uniform bit (and
hence m0 is statistically hidden). We let h and h′ be two group elements such that h ? x̄0 = y and
h′ ? x̄1 = x0.

We make an argument similar to the proof of smoothness property for the construction of smooth
projective hash functions. Recall that the sender’s output has the form (H, c(0), c(1),e0,e1) where
eµ = H(d(µ)) ⊕ mµ for each µ ∈ {0, 1}. First, observe that for each i ∈ [`], there exists group
elements gi,0 ∈ G and gi,1 ∈ G such that for each µ ∈ {0, 1} we have

gi,µ ? x̄µ = c
(0)
i .

Since h 6= h′ it follows that for each i ∈ [`] we have H∞
(
d

(0)
i | (ot1, c

(0)
i )
)

= 1, which in turn
implies that

H∞
(
d(0) | (ot1, c(0))

)
= `.
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By the leftover hash lemma and using the fact that H is a pairwise independent hash function, it
follows that

(H, c(0), c(1),e0,e1)
s
≈ (H, c(0), c(1),e′,e1),

where e′ is a uniform bit. A similar argument implies that if β′ = 1 then

(H, c(0), c(1),e0,e1)
s
≈ (H, c(0), c(1),e0,e′).

So the construction satisfies statistical sender privacy, as desired.

The aforementioned lemmas yield the following theorem.

Theorem 8.2.4. There exists a construction of two-message SSP-OT in the plain model from any

weak pseudorandom effective group action.

Remark 8.2.5. We note that our construction and proof work in essentially the same way from a
restricted EGA provided that we can sample group elements from a distribution that is statistically

close to uniform over the group G while retaining the ability to efficiently compute the action. We
note that this is plausibly the case with respect to the instantiation of restricted EGA from CSIDH
and other similar isogeny-based assumptions. We refer the reader to [DG19] for more details.

Further Applications. Two-message statistically sender-private oblivious transfer in the plain
model has many applications such as non-malleable commitment [KS17], two-round witness
indistinguishable proofs with private-coin verifier [JKKR17, BGI+17, KKS18], and three-message
statistical receiver-private OT in the plain model [GJJM20]. Thus, the SSP-OT construction above
enables realization of these primitives from any weak pseudorandom (R)EGA.

8.3 Dual-Mode Public-Key Encryption

We recall the definition of dual-mode PKE from [PVW08] and then we show our construction of
dual-mode PKE from any weak pseudorandom EGA.

Definition 8.3.1. (Dual-Mode PKE.) A dual-mode public-key encryption scheme is a tuple of
six PPT algorithms (Setup,Gen,Enc,Dec,FindMessy,TrapKeyGen) that satisfy correctness, mode
indistinguishability, messy branch identification, and decryptability on both branches in decryption
mode (described below).
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• Setup(1λ,mode): Given the parameter λ and mode ∈ {dec,messy}, outputs a public
parameter pp and a trapdoor t.

• Gen(pp, σ ∈ {0, 1}): Given the public parameter pp and a branch σ ∈ {0, 1}, outputs
(pk, sk), where pk is a public key and sk is a corresponding secret key for the branch σ.

• Enc(pk, β ∈ {0, 1},m): Given a public key pk, a branch β ∈ {0, 1} and a message m,
outputs a ciphertext ct.

• Dec(sk, ct): Given a secret key sk and a ciphertext ct, outputs a message m′.

• FindMessy(t,pk): Given a trapdoor t and a (possibly malformed) public key pk, outputs a
branch value β ∈ {0, 1} corresponding to a messy branch of pk.

• TrapKeyGen(t): Given a trapdoor t, outputs (pk, sk0, sk1), where pk is a public key and
sk0, sk1 are corresponding secret keys for branches 0 and 1.

The following properties should be satisfied:

• Correctness: For any mode ∈ {dec,messy}, any branch β ∈ {0, 1}, and any message m,
letting (pp, t) = Setup(1λ,mode), (pk, sk) = Gen(pp, µ) we have,

Pr[Dec(sk,Enc(pk, µ,m)) = m] ≤ negl(λ).

• Mode indistinguishability: If ppdec and ppmessy be the public parameters obtained by
running Setup(1λ,dec) and Setup(1λ,messy) respectively, it holds that ppdec

c
≈ ppmessy.

• Messy branch identification: For any pair (ppmessy, tmessy)← Setup(1λ,messy) and any
(possibly malformed) public key pk, the algorithm FindMessy outputs a branch β ∈ {0, 1}
such that for any two messages m0,m1 we have

Enc(pk, β,m0)
s
≈ Enc(pk, β,m1).

• Decryptability on both branches: For any (ppdec, tdec) ← Setup(1λ,dec), the algorithm
TrapKeyGen on the input tdec outputs pk, sk0, sk1 such that for any σ ∈ {0, 1} we have

(pk, skσ)
s
≈ Gen(ppdec, σ).
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Construction. Let (G,X, ?) be a weak pseudorandom EGA and let ` = ω(log λ) be an integer
such that H : X` → {0, 1} is a pairwise independent hash function. Our construction of dual-mode
PKE is as follows.

• Setup(1λ,mode): Proceed as follows depending on mode.

If mode = dec sample x̄0 ← X and t← G, and set x̄1 = t ? x̄0. Sample h← G and output

ppdec = (x̄0, x̄1, h ? x̄0, h ? x̄1), tdec = t.

If mode = messy sample set elements x̄0 ← X and x̄1 ← X . In addition, sample t0 ← G

and t1 ← G such that t0 6= t1, and output

ppmessy = (x̄0, x̄1, t0 ? x̄0, t1 ? x̄1), tmessy = (t0, t1).

• Gen(pp = (x̄0, x̄1, x0, x1), σ ∈ {0, 1}): Sample s← G and output

sk = s, pk = (s ? x̄σ, s ? xσ).

• Enc(pk = (x̄, x), β ∈ {0, 1},m): Let pp = (x̄0, x̄1, x0, x1). Sample two vectors r← G` and
b← {0, 1}`. Let c ∈ X` and c′ ∈ X` be two vectors such that

ci =

ri ? x̄β if bi = 0

ri ? xβ if bi = 1
, c′i =

ri ? x̄ if bi = 0

ri ? x if bi = 1.

Output the ciphertext ct = (c, H(c′)⊕m).

• Dec(sk = s, ct): Parse ct = (c ∈ X`,e ∈ {0, 1}) and output the message

m′ = H(s ? c1, . . . , s ? c`)⊕ e.

• FindMessy(tmessy,pk = (x̄, x)): Let pp = (x̄0, x̄1, x0, x1) and tmessy = (t0, t1). If x 6= t0 ? x̄,
output 0 as the messy branch. Otherwise, output 1.

• TrapKeyGen(tdec = t): Let pp = (x̄0, x̄1, x0, x1). Sample s← G and output

sk0 = ts, sk1 = s, pk = (s ? x̄1, s ? x1).
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It is straightforward to see that the scheme satisfies correctness. Next, we show that our
construction satisfies the mode indistinguishability property.

Lemma 8.3.2. If (G,X, ?) be a weak pseudorandom EGA, the construction above satisfies mode

indistinguishability.

Proof. Notice that ppmessy is statistically close to a random tuple, i.e.,

(x̄0, x̄1, t0 ? x̄0, t1 ? x̄1)
s
≈ (x̄0, x̄1, u0, u1),

where u0 ← X and u1 ← X . On the other hand by the weak pseudorandomness of group action we
have

(x̄0, x̄1, h ? x̄0, h ? x̄1)
c
≈ (x̄0, x̄1, u0, u1).

It follows that ppmessy
c
≈ ppdec, which completes the proof.

Lemma 8.3.3. The construction of dual-mode PKE satisfies messy branch identification property.

Proof. Let (pp, t) = Setup(1λ,messy), and let pk be a (possibly malformed) public key. In
addition, let β = FindMessy(t,pk) be the messy branch identified by the FindMessy algorithm.
First, observe that by construction there exists group elements t0 6= t1 such that xb = tb ? x̄b for
both b = 0 and b = 1. In addition, if pk = (x̄, x) then (by construction of FindMessy algorithm) we
have tβ ? x̄ 6= x. Therefore, there exists distinct group elements ḡ and g such that

x̄ = ḡ ? x̄β, x = g ? xβ.

Now, observe that a ciphertext encrypting a message m ∈ {0, 1} under public key (x̄, x) has the
form (c, H(c′)⊕m) where

ci =

ri ? x̄β if bi = 0

ri ? xβ if bi = 1
, c′i =

ri ? x̄ if bi = 0

ri ? x if bi = 1,

and the vectors r← G` and b← {0, 1}` are the randomness for encryption. The rest of argument is
similar to the proof of smoothness property for the construction of hash proof system. Specifically,
observe that for each i ∈ [`] there exists d̄i ∈ G and di ∈ G such that

d̄i ? x̄β = di ? xβ = ci.
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This means that given the tuple of set elements (x̄β, xβ, x̄, x, ci) the bit bi in the randomness has
full entropy. In addition, since ḡ 6= g it follows that given the tuple (x̄β, xβ, x̄, x, ci), the element c′i
has one bit of entropy. By extending this argument to all components and using the leftover hash
lemma, it follows that

(x̄β, xβ, x̄, x, c, H(c′))
s
≈ (x̄β, xβ, x̄, x, c, u),

where u ← {0, 1} is a random bit. Since the last component is statistically close to uniform, it
follows that for any two messages m0 and m1 we have

Enc(pk, β,m0)
s
≈ Enc(pk, β,m1),

which completes the proof.

Lemma 8.3.4. The construction of dual-mode PKE scheme satisfies the property of decryptability

on both branches in the decryption mode.

Proof. Let (pp, t) = Setup(1λ,dec) and let

(pk, sk)← Gen(pp, σ), (pk, sk0, sk1)← TrapKeyGen(t),

for some σ ∈ {0, 1}. It is easy to see that if σ = 1 we have (pk, skσ)
s
≈ Gen(pp, σ). When σ = 0,

the algorithm TrapKeyGen will output the keys

sk = ts , pk = (s ? x̄1, s ? x1).

Observe that if s and t are uniform, the distribution of ts is also uniform (because G is a group).
Therefore, we can write

(s, s ? x̄0, s ? x0)
s
≈ (ts, ts ? x̄0, ts ? x0).

It is easy to see that (ts ? x̄0, ts ? x0) = (s ? x̄1, s ? x1). It follows that (pk, skσ)
s
≈ Gen(pp, σ) also

holds when σ = 0, and the proof is complete.

The following theorem follows from combining the aforementioned lemmas.

Theorem 8.3.5. There exists a construction of dual-mode PKE from any weak pseudorandom

effective group action.
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Remark 8.3.6. We note that our construction and proof work in essentially the same way from a
restricted EGA provided that we can sample group elements from a distribution that is statistically

close to uniform over the group G while retaining the ability to efficiently compute the action. We
note that this is plausibly the case with respect to the instantiation of restricted EGA from CSIDH
and other similar isogeny-based assumptions. We refer the reader to [DG19] for more details.

Further Applications. Dual-mode public-key encryption implies two-message OT protocols that
are UC secure in the common reference string model against corrupt receivers and senders [PVW08].
Such OT protocols are sufficient to construct round-optimal multiparty computation protocols for
general functionalities that are UC secure in the common reference string model against static,
malicious adversaries [GS18]. Hence, our construction of dual-mode PKE allows all of these
primitives to be built from any weak pseudorandom (R)EGA.

8.4 Hash Proof System

In this section, we demonstrate how to construct universal and smooth projective hashing schemes
(also known as hash proof systems or projective hash functions) from any weak pseudorandom
effective group action. We begin by recalling the definition of a universal projective hashing scheme
as in [CS02].

Definition 8.4.1. Let Λ : K × Σ → Γ be an efficiently computable function, and let L ⊂ Σ. In
addition, let α : K → P be a “projection” function. We say that the tuple Π = (Λ, K, P,Σ,Γ, L) is
a universal projective hash function if the following properties hold:

• Samplability: There exist efficient algorithms to sample uniformly from Σ and from K. In
addition, there exists an efficient algorithm to sample uniformly from L along with a witness
w that proves membership in L.

• Subset Membership Problem: If σ0 ← L and σ1 ← Σ then σ0
c
≈ σ1.

• Projective Evaluation: There exists an efficient algorithm ProjEval such that for any hk ∈ K
and any σ ∈ L with membership witness w, we have

ProjEval(α(hk), w) = Λ (hk, σ) .
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• Universality: Π is said to be ε-universal if for any σ ∈ Σ \ L, if hk← K it holds that

H∞
(
Λ (hk, σ)

∣∣(α(hk), σ)
)
≥ log(ε−1).

Universality2 and Smoothness. We also recall two stronger notions of security for projective
hash proof systems, namely universality2 and smoothness, as described in [CS02].

• Universality2: A hash proof system Π = (Λ, K, P,Σ,Γ, L) is said to be ε-universal2 if for
any σ, σ∗ ∈ Σ such that σ ∈ Σ \ (L ∪ {σ∗}), if hk← K it holds that

H∞
(
Λ (hk, σ)

∣∣(α(hk), σ, σ∗,Λ (hk, σ∗))
)
≥ log(ε−1).

• Smoothness: A hash proof system Π = (Λ, K, P,Σ,Γ, L) is said to be smooth if for any
σ ∈ Σ \ L, if hk← K and γ ← Γ it holds that

(
α(hk), σ,Λ (hk, σ)

)
≈s
(
α(hk), σ, γ

)
.

We now show how to construct a universal hash proof system from any weak pseudorandom EGA.

Construction. Let (G,X, ?) be a weak pseudorandom EGA and let ` = ω(log λ) be an integer.
Additionally, let x̄0 ← X and x̄1 ← X be publicly available set elements. We define the input space
Σ as

Σ =
{

(x0, x1) ∈ X2 : ∃(g0, g1) ∈ G2 s.t. x0 = g0 ? x̄0, x1 = g1 ? x̄1

}
.

By the regularity of the group action, this is equivalent to defining Σ = X2. We also define the
subset L ⊂ Σ as

L =
{

(x0, x1) ∈ X2 : ∃g ∈ G s.t. x0 = g ? x̄0, x1 = g ? x̄1

}
,

where the group element g is the witness for membership in L. In addition, we let Γ = X` and
K = G` × {0, 1}`, and we define the hash function Λ : K × Σ→ Γ to be

Λ
(
(h,b), (x0, x1)

)
= (h1 ? xb1 , . . . , h` ? xb`),
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where h = (h1, . . . , h`) and b = (b1, . . . , b`). We set the projection space to be P = X`, and we
define the projection function α : K → P as

α(h,b) = (h1 ? x̄b1 , . . . , h` ? x̄b`).

Subset Membership Problem. We state and prove the following lemma.

Lemma 8.4.2. If (G,X, ?) is a weak pseudorandom EGA, we have σ0
c
≈ σ1 where σ0 ← L and

σ1 ← Σ.

Proof. By the weak pseudorandomness of group action we have

(x̄0, x̄1, g ? x̄0, g ? x̄1)
c
≈ (x̄0, x̄1, x0, x1),

where g ← G and x̄1, x0, x1 are all sampled uniformly and independently from X . It is easy to
see that the “left” tuple corresponds to a uniformly sampled member σ0 ∈ L and the “right” tuple
corresponds to a uniformly sampled element σ1 ∈ Σ (because the action is regular), as required.

Projective Evaluation. We define ProjEval as

ProjEval
(
y, g
)

= (g ? y1, . . . , g ? y`),

where y = (y1, . . . , y`) and g is the witness. Let (x0, x1) = (g ? x̄0, g ? x̄1) be a member of L with
witness g, and let y = α(h,b) for some hash key (h,b) ∈ K. The algorithm ProjEval satisfies the
projective evaluation property by observing that

ProjEval
(
α(h,b), g

)
= (g ? y1, . . . , g ? y`)

= (g ? (h1 ? x̄b1), . . . , g ? (h` ? x̄b`))

= (h1 ? (g ? x̄b1), . . . , h` ? (g ? x̄b`))

= (h1 ? xb1 , . . . , h` ? xb`)

= Λ
(
(h,b), (x0, x1)

)
.

Universality. We prove the universality property as follows.

Lemma 8.4.3. If (G,X, ?) is a weak pseudorandom EGA, then the projective hash function is

2−`-universal.
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Proof. Let (x0, x1) ∈ Σ \L be an arbitrary non-member, and let (h,b)← K be a randomly chosen
hash key. We need to show that

H∞
(
Λ((h,b), (x0, x1))

∣∣(x̄0, x̄1, x0, x1, α(h,b)
))

= `.

First, observe that there exists g0 6= g1 such that (x0, x1) = (g0 ? x̄0, g1 ? x̄1) because (x0, x1) /∈ L.
In addition, let y = α(h,b), i.e., for each i ∈ [`] we have yi = hi ? x̄bi . By the regularity of the
group action, for each i ∈ [`] there exists di,0 ∈ G and di,1 ∈ G such that

di,0 ? x̄0 = di,1 ? x̄1 = yi.

In other words, given the tuple (x̄0, x̄1, x0, x1, yi), the bit bi in the hash-key component (hi, bi) has
full entropy. On the other hand, we have

hi ? xbi = hi ? (gbi ? x̄bi) = gbi ? (hi ? x̄bi) = gbi ? yi.

Since g0 6= g1, it follows that given the tuple (x̄0, x̄1, x0, x1, yi), the set element hi ? xbi = gbi ? yi

has one bit of entropy (even in the view of a computationally unbounded adversary). By extending
the same argument, we get

H∞
(
{hi ? xbi}i∈[`]

∣∣(x̄0, x̄1, x0, x1, {yi}i∈[`]

))
= `,

as desired. This completes the proof of Lemma 8.4.3.

The aforementioned lemmas yield the following theorem.

Theorem 8.4.4. There exists a construction of a 2−`-universal projective hash function for any

` > 0 from any weak pseudorandom EGA.

Remark 8.4.5. Our construction and proof work in essentially the same way from a restricted EGA
provided that we can sample group elements from a distribution that is statistically close to uniform
over the group G while retaining the ability to efficiently compute the action. We note that this is
plausibly the case with respect to the instantiation of restricted EGA from CSIDH and other similar
isogeny-based assumptions (see [DG19] for more details).

Remark 8.4.6. In the aforementioned description of the HPS scheme, the hardness of the language
membership problem crucially relies on the fact that the group element h such that x1 = h ? x0 is
computationally hidden from the adversary. Note that most applications of HPS typically assume a
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trusted setup. For applications that necessarily require an untrusted setup, our proposed HPS can
still be used, albeit from a hashable EGA.

Universal2 and Smooth Projective Hashing. Based on known reductions from Section 2.1
of [CS02], Theorem 8.4.4 implies the following corollary.

Corollary 8.4.7. Let (G,X, ?) be any weak pseudorandom EGA. Assuming the existence of an

injective function f : X` → {0, 1}m for some m = ω(log λ) and the existence of a pairwise

independent hash function H : X` → {0, 1} for some ` = ω(log λ), there exists a 2−`-universal2
projective hash function and a smooth projective hash function, respectively.

Further Applications. Smooth projective hashing implies chosen-ciphertext secure PKE [CS02],
password authenticated key-exchange (PAKE) [GL03], privacy-preserving protocols [BPV12], and
many other cryptographic primitives. Hence, our construction allows all of these primitives to be
constructed from any weak pseudorandom (R)EGA.

8.5 Linear Hidden Shift (LHS) Assumption

In this section we introduce a hardness assumption called Linear Hidden Shift (LHS) problem
and describe its cryptographic applications.

Notation. Unless stated otherwise, we use + to denote the group operation, and we assume that
e denotes the identity element of the group. For a binary vector s ∈ {0, 1}n and a group element
h ∈ G, we use h · s to denote a vector of group elements whose ith component is si · h.

For a vector of group elements g ∈ Gn and a binary vector s ∈ {0, 1}n, we use 〈g, s〉 to denote
s1 · g1 + · · ·+ sn · gn where + denotes the group operation (we remark that although the notation
resembles an inner product, we do not necessarily have an inner product space).

Given a group action ? : G×X → X , the action naturally extends to the direct product group
Gn for any positive integer n. So if g ∈ Gn and x ∈ Xn are two vectors of group elements and set
elements respectively, we use g ? x to denote a vector of set element whose ith component is gi ? xi.

Below, we formally state the search and decision versions of the assumption. Later, we show a
simple search to decision reduction for the LHS assumption.

103



Definition 8.5.1. (Search Linear Hidden Shift) Let ? : G×X → X be a regular group action, and
let n = poly(λ) be a parameter. We say that (search) LHS problem is hard over (G,X, ?) if for any
polynomial m = poly(λ) and for any PPT attacker A, we have

Pr
[
A
({

(xi,gi, (〈gi, s〉) ? xi)
}
i∈[m]

)
outputs s

]
≤ negl(λ),

where gi ← Gn, s ← {0, 1}n, xi ← X (all sampled independently), and the probability is taken
over all random coins in the experiment.

Definition 8.5.2. (Decision Linear Hidden Shift) Let ? : G × X → X be a group action, and
let n = poly(λ) be a parameter. We say that LHS assumption holds over (G,X, ?) if for any
polynomial m = poly(λ) we have

{(xi,gi, (〈gi, s〉) ? xi)}i∈[m]

c
≈ {(xi,gi, ui)}i∈[m],

where gi ← Gn, s← {0, 1}n, xi ← X and ui ← X (all sampled independently).

We naturally extend the notation 〈g, s〉 to matrices, i.e., for a matrix M ∈ Gn×` and a binary
vector s ∈ {0, 1}n, we use stM to denote a vector whose ith component is 〈mi, s〉 where mi is the
ith column of M.

Search to Decision Reduction. Using the notation described above the search LHS problem can
be stated as the problem of recovering s given a tuple of the form (x,M,Ms ? x) where x← Xn

and M← Gm×n. Similarly, the decision LHS problem states that

(x,M,Ms ? x)
c
≈ (x,M,u),

where u← Xn and m� n. Now we show a simple search to decision reduction for LHS problem,
which is similar to the reductions in [IN96, MM11] for (generalized) knapsack functions.

Lemma 8.5.3. (Search to Decision) Let A be a distinguisher that distinguishes between LHS

samples of the form (x,M,Ms ? x) and all-random tuple with probability 1 − negl(λ). There

exists a PPT attacker A′ that recovers s from an instance of search LHS problem with probability

1− negl(λ).

Proof. Given an instance of a search problem (x,M,y) where y = Ms ? x for some (unknown)
vector s, the attackerA′ does the following for each i ∈ [n]: it samples a column vector r← Gm, and
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let Ri be a matrix whose ith column is r while all other columns are identical to the corresponding
columns of M (so Ri and M only differ in the ith column). A′ runs A on the tuple (x,Ri,y). If A
outputs “LHS samples,” A′ sets si to be zero. Otherwise, A′ sets si to be 1.

Observe that if si were zero, then (x,Ri,y) is distributed as LHS samples because Ris = Ms.
On the other hand, if si = 1 then (x,Ri,y) is a random tuple because the action is regular and
hence the distribution of Ris ? x is uniform and independent of y.

Remark 8.5.4. We note that the reduction above also works if the group action is restricted (where
we can only evaluate the action of a set of small cardinality), provided that it is possible to sample a
group element from a distribution that is statistically close to uniform.

8.5.1 Symmetric KDM-CPA Security from LHS

We describe a symmetric encryption scheme that satisfies KDM-CPA security (for projection
functions) based on the LHS assumption. Let ? : G ×X → X be a group action such that LHS
holds. We assume that all parties have access to a public fixed non-identity group element h ∈ G.
Our construction of symmetric-key bit encryption Π = (Gen,Enc,Dec) scheme is as follows:

• Gen(1λ): To generate a secret key, sample a binary vector s← {0, 1}n.

• Enc(s, b ∈ {0, 1}): Sample g← Gn, x← X , and output

ct =
(
x,g, (b · h+ 〈g, s〉) ? x

)
.

• Dec(s, ct = (x,g, y)): Output 0 if y = 〈g, s〉 ? x, otherwise output 1.

Lemma 8.5.5. The scheme Π above is CPA secure.

Proof. We sketch a simple proof. Notice that a tuple of m = poly(λ) ciphertexts encrypting
m (arbitrary) bits {bi}i∈[m] in the scheme above has the form {xi,gi, (bi · h) ? yi}i∈[m] where
{xi,gi, yi}i∈[m] are LHS samples. Therefore, by the LHS assumption we have

{xi,gi, (bi · h) ? yi}i∈[m]

c
≈ {xi,gi, (bi · h) ? ui}i∈[m],

where each ui is a random set element. It follows that encryptions of {bi}i∈[m] are indistinguishable
from a (truly) random tuple, as required.
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Lemma 8.5.6. The scheme Π is KDM secure with respect to projection functions.

Proof. Observe that encryptions of all bits of the secret key have the form (x,M, (Ms+ h · s) ? x),
where x← Xn, M← Gn×n and the action is applied componentwise. By a simple rearrangement
we have (

x,M, (Ms + h · s) ? x
)

=
(
x,M, (M + h · I)s ? x

)
.

Similarly, it is straightforward to see that encryptions of {1− si}i∈[n] have the form

(x′,M′, (M′s + h · (1− s)) ? x′),

where 1 is the all-one vector. By a simple rearrangement we have

(
x′,M′, (M′s + h · (1− s)) ? x′

)
=
(
x′,M′, [(M′ − h · I)s + h · 1] ? x′

)
.

Clearly, if M (resp., M′) is a uniform matrix, then M1 := M + h · I (resp., M2 := M′ − h · I) is
also a uniform matrix. Given 2n samples of LHS challenges of the form {(xj,Mj,yj)}j∈[2] where
either {yj = Mjs ? xj}j∈[2] or {yj}j∈[2] are truly random vectors of set elements, the reduction
simulates encryptions of projection functions of the secret key by computing (x1,M1 − h · I,y1)

and (x2,M2 + h · I, (h · 1) ? y2). By the LHS assumption it follows that

(
x,M, (M + h · I)s ? x

) c
≈ (x,M,u),

(x′,M′, (M′s + h · (1− s)) ? x′)
c
≈ (x′,M′,u′),

where u ← Xn and u′ ← Xn are uniform vectors of set elements. Therefore, encryptions of all
projection functions of secret key are indistinguishable from tuples of truly random elements. On
the other hand, by Lemma 8.5.5 we know that encryptions of zero are indistinguishable from truly
random tuples. It follows that

(
{Enc(s, si)}i∈[n], {Enc(s, 1− si)}i∈[n]

) c
≈ {Enc(s, 0)}i∈[2n],

as required. Indistinguishability of multiple encryptions of a projection function of the secret key
from random tuples follows from a standard hybrid argument, and the proof is complete.

Instatiation from Restricted EGA. Notice that the reduction above does not work in case of a
restricted EGA because the relation lattice (i.e., the group structure) is not known. However, it is
possible to show that an alternative version of the scheme described above is KDM-CPA secure
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in case of a restricted EGA (for which the LHS assumption holds). Therefore, it is possible to
realize symmetric KDM-CPA encryption from a restricted EGA provided that we can sample group
elements from a distribution over the group G that is statistically close to uniform while retaining
the ability to compute the action efficiently. Note that this is plausibly true for the restricted EGAs
implied by CSIDH and other similar isogeny-based assumptions [DG19].

• Gen(1λ): To generate a secret key, sample a binary vector s← {0, 1}n.

• Enc(s, b ∈ {0, 1}): Sample g ← Gn, x ← X , and u ← X . If b = 0, output the ciphertext
ct = (x,g, 〈g, s〉 ? x). Otherwise, output ct = (x,g, u).

• Dec(s, ct = (x,g, y)): Output 0 if y = 〈g, s〉 ? x, otherwise output 1.

Lemma 8.5.7. If (G,X, ?) be a restricted EGA that satisfies the LHS assumption, the construction

above is KDM-CPA secure.

Proof. Observe that an encryption of 0 corresponds to an LHS sample while an encryption of 1
corresponds to a random tuple, so it is easy to see that the construction above is CPA secure based
on the LHS assumption. The argument for KDM security is quite similar to the search to decision
reduction for the LHS assumption (Lemma 8.5), and hence we omit the details.

Implications. Using the general amplification of [App14], one can transform a symmetric-key
KDM-secure scheme (with respect to projection functions) to a symmetric-key KDM-secure scheme
with respect to circuits of a priori bounded size. Therefore, one can construct a symmetric-key
KDM-secure scheme (with respect to bounded circuits) based on the LHS assumption. In a recent
work, Lombardi et al. [LQR+19] showed a construction of reusable designated-verifier NIZK
(DV-NIZK) argument for NP assuming any PKE and a symmetric-key KDM-secure scheme. Hence,
any PKE along with the LHS assumption implies reusable DV-NIZK arguments for NP.

In the same vein, Kitagawa and Matsuda [KM19] showed a construction of KDM-CCA PKE
assuming PKE, DV-NIZK, and symmetric-key KDM security with respect to projection functions.
Therefore, any PKE along with the LHS assumption implies KDM-CCA PKE.

Furthermore, Kitagawa et al. [KMT19] showed a construction of trapdoor function (with
adaptive one-wayness) from a randomness-recovering symmetric-key KDM-secure scheme and
a PKE scheme with pseudorandom ciphertexts. By plugging in their result, we obtain trapdoor
function with adaptive one-wayness based the LHS assumption and any weak pseudorandom EGA.
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8.5.2 On the LHS Assumption

In what follows we provide some insights on the security of the LHS assumption. We consider an
additive variant of the LHS assumption, which we call it LHS(+), where G = Z∗N and the product
term Ms is computed by a subset sum over the columns of M. We show that in this setting the
LHS assumption is equivalent to the weak pseudorandomness for (effective) group actions provided
that M is a structured matrix. We also describe an attack that breaks the search/decision LHS
assumption in certain settings, and we explain how such attacks can be avoided.

LHS(+) Assumption. Let (G,X, ?) be an EGA such that G = Z∗N and ϕ(N)/N ≥ 1− negl(λ).
Consider the following additive variant of the LHS assumption

(x,M,Ms ? x)
c
≈ (x,Ms,u),

where Ms is computed over (ZN ,+), i.e., subset sum over the columns of M modulo N . We show
that if M is a structured “rank” 1 matrix (instead of a uniformly chosen matrix), the additive LHS
assumption is equivalent to the weak pseudorandomness of the (G,X, ?).

Let M = a ⊗ b where a ← ZmN and b ← ZnN are two randomly chosen vectors of group
elements and ⊗ denotes the “tensor product” with respect to Z∗N . To put it differently, the ij th

entry of M is equal to ai · bj where · denotes the multiplication modulo N . First, observe that
Ms = a ⊗ b∗ where b∗ = bts. In addition, if n is an integer such that n > log(N) + ω(log(λ)),
then by the leftover hash lemma b∗ is distributed uniformly and independent of others. Furthermore,
given any M with the aforementioned structure, one can compute two vectors a and b such that
M = a⊗ b. Consider the rows of LHS(+) assumption, which has the following form:

(x1, a1 ⊗ b, (a1 · b∗) ? x1),

(x2, a2 ⊗ b, (a2 · b∗) ? x2),

...

(xm, am ⊗ b, (am · b∗) ? xm).

For each i ∈ [m], compute yi = ai ? xi. So, given an instance of the LHS(+) problem one can
compute the following:

(y1, b
∗ ? y1), (y2, b

∗ ? y2), . . . , (ym, b
∗ ? ym).
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Therefore, LHS(+) assumption is equivalent to the weak pseudorandomness for effective group
action in the aforementioned setting (the proof for the other direction is similar).

Attacks on LHS. To analyze the quantum security of LHS assumption, it is reasonable to assume
that discrete logarithms are easy in the group G. Then, the LHS problem becomes essentially a
linear algebra one. For example, if G is cyclic of order q, we can rewrite all elements of G as
their discrete log to a fixed basis g, the subset product 〈g, s〉 becomes the standard inner product
over (Zq)n, and LHS becomes similar to LWE [Reg05], with the main difference that the algebraic
structure is hidden by the group action, rather than by noise.

It is then evident that both decision and search LHS can be solved by breaking the one-wayness
of the group action, recovering a list of tuples (ai, 〈ai, s〉), and then using linear algebra over Zq.
The same blueprint also applies to non-cyclic groups G. To the best of our knowledge, this is the
most efficient generic attack on LHS in the post-quantum setting.

However, some instantiations may offer easier paths to attack LHS: isogenies are an interesting
example. The recent work of Castryck, Sotáková and Vercauteren [CSV20] shows that some
instantiations of group actions from isogenies are not pseudorandom EGAs. While it is not evident
how breaking pseudorandomness could help solve LHS, their technique is actually more powerful.
Indeed, it provides an efficient algorithm to compute some quadratic characters of the group G,
directly on its isomorphic representation on X . More precisely, for a fixed quadratic character χ
of the class group Cl (O), on input a pair (x, y) ∈ X2 such that y = g ? x, their algorithm outputs
χ(g) = ±1.

We can use this algorithm to solve LHS as follows. Define f : G→ {0, 1} as f = (1− χ)/2.
For any tuple (xi,gi = (g

(1)
i , . . . , g

(n)
i ), 〈gi, s〉 ? xi) we compute the following

(
f(g

(1)
i ), . . . , f(g

(n)
i ), f(〈gi, s〉)

)
.

After we collect enough tuples, we obtain a linear system over Z2, which we solve to recover s.
This is analogous to the attack on the discrete logarithm equivalent of LHS using Legendre symbols,
and applies to any other group action where the group G has low order characters which can be
“read” on X .

Castryck et al.’s attack does not apply against CSIDH, because the class group associated to
it has no quadratic characters. Even for instantiations where class groups do have quadratic order
characters, e.g., isogeny schemes based on ordinary elliptic curves, it is easy to block the attack by
restricting to the subgroup of squares inside Cl (O).

109



Bibliography

[ADMP20] N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. Cryptographic group
actions and applications. In ASIACRYPT (to Appear). 2020.

[AKC+17] R. Azarderakhsh, B. Koziel, M. Campagna, B. LaMacchia, C. Costello, P. Longa,
L. De Feo, M. Naehrig, B. Hess, J. Renes, A. Jalali, V. Soukharev, D. Jao, and
D. Urbanik. Supersingular isogeny key encapsulation, 2017.

[AMP19] N. Alamati, H. Montgomery, and S. Patranabis. Symmetric primitives with structured
secrets. In H. Shacham and A. Boldyreva, editors, CRYPTO 2019, Part I, LNCS,
pages 650–679. Springer, Heidelberg, August 2019.

[AMPR19] N. Alamati, H. Montgomery, S. Patranabis, and A. Roy. Minicrypt primitives with alge-
braic structure and applications. In V. Rijmen and Y. Ishai, editors, EUROCRYPT 2019,
Part II, LNCS, pages 55–82. Springer, Heidelberg, May 2019.

[App14] B. Applebaum. Key-dependent message security: Generic amplification and com-
pleteness. Journal of Cryptology, 27(3):429–451, July 2014.

[Bar17] B. Barak. The complexity of public-key cryptography. In Tutorials on the Foundations
of Cryptography, pages 45–77. 2017.

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August
2004.
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