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Abstract 

 

Mucosal surfaces in the lung interface with the outside environment for breathing 

purposes, but also provide the first line of defense against invading pathogens. The intricate 

balance of effective immune protection at the pulmonary epithelium without problematic 

inflammation is not well understood, but is an important consideration in complex lung diseases 

such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). 

Although IPF is a fibrotic interstitial lung disease of unknown origin and COPD is an obstructive 

lung disease, they do share some similarities. Both are heterogeneous and progressive in nature, 

have no cure and few treatment options, advance through unknown mechanisms, and involve an 

aberrant immune response. As research has focused into the role the immune system plays in IPF 

and COPD, it has become clear that disease progression is caused by a complex dysregulation of 

immune factors and cells across the tissue compartments of the lungs and blood.  

Data-driven modeling approaches offer the opportunity to infer protein interaction 

networks, which are able to identify diagnostic and prognostic biomarkers and also serve as the 

basis for new insight into systems-level mechanisms that define a disease state. Additionally, 

these approaches are able to integrate data from across multiple tissue compartments, allowing 

for a more holistic picture of a disease to be formed. Here, we have applied data-driven modeling 

approaches including partial least squares discriminant analysis, principal component analysis, 

decision tree analysis, and hierarchical clustering to high-throughput cell and cytokine 

measurements from human blood and lung samples to gain systems-level insight into IPF and 

COPD. 



 xxviii 

Overall we found that these approaches were useful for identifying signatures of proteins 

that differentiated disease state and progression better than current classifiers. We also found that 

integrating protein and cell measurements across tissue compartments generally improved 

classification and was useful for generating new mechanistic insight into progression and 

exacerbation events. In evaluating IPF progression, we showed that the blood proteome of 

progressors, but not of non-progressors, changes over time, and that our data-driven modeling 

techniques were able to capture these changes. Curiously, our models showed that complement 

system components may be associated with both COPD disease state and IPF disease 

progression. Lastly, though our analysis suggested that circulating blood cytokines were not 

useful for differentiating disease state or progression, preliminary work suggested that cell-cell 

communication networks arising from stimulated peripheral blood proteins may be more useful 

for classification and gaining mechanistic insight from minimally invasive blood samples. 

Overall, we believe that this approach will be useful for studying the mucosal immune response 

present in other diseases that are also progressive or heterogeneous in nature.  
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Chapter 1 Introduction 

 

Besides being the site of respiration, the lung is also a key site of immunity because it 

interfaces with the outside environment. However, there is still much that is not understood about 

how the body maintains proper protection without experiencing an excessive immune response at 

this surface1. The importance of this problem is highlighted by the increasing number of global 

cases of chronic respiratory disease from 1990 to 2017 and the rise in the incidences of asthma, 

interstitial lung diseases, and pulmonary sarcoidosis over the past 15 years2. This intricate 

balance of effective immune protection without dysregulation is affected in lung diseases 

idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). 

Although IPF and COPD differ in both their clinical presentation and their natural history, they 

are both progressive and heterogeneous diseases with few treatment options, and the mechanisms 

underlying development and progression are not well understood. Better understanding of the 

complex immunological mechanisms that are associated with disease state and disease 

progression will be a critical step on the path to development of better diagnostic and treatment 

options. This thesis aims to use systems-focused, data-driven modeling approaches to help 

identify signatures of key immune factors associated with IPF and COPD in order to gain 

increased insight into potential mechanisms associated with these two lung diseases. 

1.1 Idiopathic pulmonary fibrosis disease pathogenesis and treatment 

Idiopathic pulmonary fibrosis is a progressive and heterogeneous interstitial pneumonia 

of unknown origin with a median survival rate of 3-5 years3,4. The diagnosis process for IPF can 

be challenging, and there are few treatment options available to patients. It presents in patients as 
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shortness of breath (dyspnea), dry cough, and fatigue5. IPF is more commonly diagnosed in older 

populations who have a history of smoking or occupation-related exposure to inhaled particles, 

especially in men4, and there are also genetic variants that are associated with increased risk for 

the disease.  

Although the exact mechanisms behind disease pathogenesis are unknown, current 

hypotheses involve some environmentally-caused repetitive injuries to lung alveolar epithelial 

cells (AECs). Additionally, there are certain genetic predisposition towards IPF as well, which 

includes mutations in genes coding for surfactant proteins A2 and C6, single nucleotide 

polymorphisms (SNP) in the mucin 5B (MUC5B) gene (rs35705950)7–10, and SNPs in the Toll-

interacting protein (TOLLIP) gene7. Overall disease pathogenesis is attributed to a dysregulated 

healing response11 that results in both the collapse of alveoli, which decreases the surface area 

available for gas exchange in the lung, and in the fibrosis of the interstitial surfaces, which can 

spread and cause symptoms associated with restrictive lung diseases12. This response is enacted 

in part by neutrophils, macrophages, and T cells. Neutrophils have been reported to be increased 

in the bronchoalveolar lavage (BAL) fluid of IPF patients compared to healthy controls13 and 

classically secrete the protease neutrophil elastase (NE), pro-inflammatory cytokines, and 

reactive oxygen species (ROS)14. According to patterns seen in other chronic inflammatory 

diseases, macrophages may start out in the lung with a pro-inflammatory phenotype due to 

activation by lipopolysaccharide (LPS) or interferon γ (IFNγ), but as the disease progresses, 

macrophages activated by IL-13 may become more abundant and could be the cause of increases 

in CCL18 seen in IPF patients15,16. Although there is much literature that describes macrophage 

activation on the classically activated/M1 vs. alternatively activated/M2 axis, other studies have 

shown that macrophage activation is more complex than originally understood and is better 
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described as a spectrum rather than an axis17–19, and must be kept in mind when discussing 

cellular mechanisms. Th1 and Th2 CD4+ T cells have also been historically reported as being 

associated with IPF, with newer studies linking Th17, Th9, and Tregs to IPF pathogenesis as 

well, although the balance of these cells’ action in humans is still not well understood16. In this 

environment, some AECs are reprogrammed to transition into mesenchymal cells, whereas some 

experience senescence or apoptosis. The transition of the epithelial cells to a more mesenchymal 

state and the increase in the number of IL-13-activated macrophages result in the secretion of 

pro-fibrotic cytokines and growth factors that attract fibroblasts to the interstitial space 

surrounding the alveoli. Once recruited, the fibroblasts can also differentiate into myofibroblasts 

if they experience an environment characterized by high mechanical stress or high concentrations 

of signaling molecules such as transforming growth factor β1 (TGF-β1) or specialized matrix 

proteins such as the fibronectin ED-A splice variant20. Myofibroblasts are a type of mesenchymal 

cell with the ability to secrete extracellular matrix (ECM) proteins like fibroblasts, and can also 

generate contractile forces through the production of α-smooth muscle actin (α-SMA), like 

smooth muscle cells21. Additionally, others have reported that myofibroblasts in IPF may also 

arise from other cell sources, such as epithelial cells that experience epithelial to mesenchymal 

transition (EMT)22, lung-resident mesenchymal cells23, or potentially from bone marrow 

progenitor recruitment in murine models of pulmonary fibrosis24. However, as El Agha et al. 

have summarized over multiple studies, the origin of the myofibroblast may determine if it has a 

pathogenic effect in the development of IPF or not25. Once present, both fibroblasts and 

myofibroblasts secrete high levels of ECM and other pro-fibrotic signaling cytokines to 

encourage more ECM production and fibroblast growth26.  
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IPF progression, like the disease state itself, is both heterogeneous and not well 

understood. Patients experience progression as increased shortness of breath and cough, which is 

accompanied by decreased quality of life27. Progression is generally tracked in clinical trials 

through lung function measurements such as forced vital capacity (FVC) and the diffusion 

capacity of the lung for carbon monoxide (DLCO)27,28. Unfortunately, in IPF, once lung function 

is lost, it cannot be regained. Patients heterogeneously lose lung function over time, with some 

patients experiencing steep declines in lung function, others progressing slowly but steadily, and 

others experiencing times of relative stability interspersed with periods of steep decline3,29. The 

causes of those periods of extreme worsening may be directly due to an infection or a 

comorbidity, or could be caused by an acute exacerbation of IPF (AE-IPF), which could have 

been triggered by an external stimulus or could have an unknown cause27,30. AE-IPF events can 

present as increases in shortness of breath, cough, fever, and/or sputum production3, and are 

associated with up to 46% of the deaths in IPF30. They are more common in patients with 

advanced disease, though this could be due to patients with advanced disease being more likely 

to seek treatment30. Much like the slower progressive periods in IPF, the mechanisms behind 

AE-IPF events remain unclear, though it is hypothesized that neutrophils or anti-inflammatory 

macrophages potentially activated by IL-4 or IL-13 could be involved due to their presence in 

the lungs of IPF patients experiencing an exacerbation31,32.  

To improve patients’ quality of life, in the past decade clinicians and researchers have 

focused on discovering new diagnostic and prognostic markers as well as pharmacological 

treatment options to better patient outcomes. Since a proper diagnosis of IPF can be a challenge, 

streamlining this process has been the goal of many international pulmonary organizations. As 

reported by Raghu et al., the current guidelines for IPF diagnosis involve first ruling out any 
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other environmental or genetic causes of the fibrosis33. If no other potential cause of the fibrosis 

can be identified, then chest high-resolution computed tomography (HRCT) scans are taken and 

analyzed for the presence of usual interstitial pneumonia (UIP) patterns, which includes fibrosis 

in a honeycomb pattern that is primarily present in the subpleural and basal regions of the lung. 

There are then multidisciplinary discussions with pulmonologists, radiologists, and pathologists 

over the patient’s history and HRCT scans, especially in cases where the UIP pattern is not 

obvious, to gauge next steps. For patients with indeterminate UIP patterns on their HRCT scans 

and no history of a co-existing rheumatological disease, a surgical lung biopsy may be 

recommended to confirm the presence of the UIP pattern in the lung tissue itself33 in order to 

completely validate an IPF diagnosis. While a biopsy is not always required for an IPF diagnosis, 

this procedure does present a challenge because not all patients are healthy enough to undergo a 

lung biopsy due to the risk of further injury that could result in a progressive event. Thus the 

current diagnostic guidelines could result in an unclear diagnosis in some patients33.  

Challenges associated with the diagnosis process for IPF involve the low prevalence of 

the disease due to high lethality rates (it is estimated to affect between 10-60 people out of 

100,00026), the large number of other diseases that share the same presenting symptoms as IPF, 

and the lack of biomarkers specific for the disease. The presenting symptoms of IPF are very 

similar to more common lung afflictions, such as asthma or pneumonia, as well as other 

interstitial lung diseases (ILDs) or other immunological diseases affecting the pulmonary 

environment (such as hypersensitivity pneumonitis or sarcoidosis). The Interstitial Lung Disease 

Patient Diagnostic Journey (INTENSITY) survey reported that out of 600 ILD patients, over half 

(55%) received at least one misdiagnosis before receiving their current diagnosis34. Misdiagnosis 

is problematic because it prevents patients from receiving helpful treatment in a timely manner 
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and could mean that they receive potentially harmful treatment based on their incorrect 

diagnosis. Thus, researchers have begun exploring potential molecular biomarkers from 

peripheral blood or the lungs that could help in the diagnosis of IPF and also predict the course 

of the disease. Some promising single biomarkers have been identified (matrix metalloproteinase 

7 (MMP-7)35,36, surfactant protein D (SP-D)36,37, human mucin-1 (MUC1/KL-6)36) that can 

differentiate IPF from some ILDs or IPF from healthy controls, but biomarkers that are specific 

to only an IPF diagnosis have not yet been identified38. On the prognostic biomarker side, blood 

MMP-739,40, CCL1841, KL-636,42, and SP-D43,44 have shown promising results. However, it has 

been difficult to replicate these findings in other cohorts38,45, especially when validating the exact 

concentration cut off of single biomarkers to use for diagnostic or prognostic purposes46, and 

thus there are currently no biomarkers recommended for clinical use33.  

There has been great improvement in treatment options for IPF patients in the past 

decade, but currently there is still no cure other than lung transplantation. It was originally 

thought that IPF was mostly an inflammatory disease until it was reported in the PANTHER-IPF 

(Prednisone, Azathioprine, and N-Acetylcysteine: A Study That Evaluates Response in IPF) 

study that patients on an immunosuppressive, anti-inflammatory three-drug combination had 

increased risk of death and hospitalization as compared to the placebo group47. Since then, two 

anti-fibrotic drugs, pirfenidone48 and nintedanib49, were approved for the treatment of IPF. 

Believed to act through different mechanisms, both drugs have been shown to temporarily slow 

disease progression (as measured by decline in FVC), but current studies did not report 

significant improvements in quality of life or shortness of breath and were not powered to 

investigate the drugs’ effect on AE-IPF occurrence or mortality50. Altogether, the result is that 

the only current option for an IPF cure is a lung transplant. However, this procedure comes with 
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a high risk of rejection (median survival of 4.5 years post-transplantation51) and is not 

recommended for patients over 70 years of age52. 

1.2 Chronic obstructive pulmonary disease pathogenesis 

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease associated 

with smoking that is currently the fourth leading cause of death in the United States53. It was 

estimated that at least 174 million people were living with COPD worldwide in 2015 (although 

underdiagnosis is common54,55), and that it resulted in the death of 3.2 million people that same 

year56. COPD is a costly disease, with an estimated healthcare-related spending of $36 billion in 

2010 that is only projected to increase57. COPD is diagnosed via lung spirometry and patient 

history/experiences, with COPD patients meeting the following criteria: (1) a ratio of the 

recorded post-bronchodilator forced expiratory volume in one second (FEV1) to FVC 

(FEV1/FVC) that is less than 70%; (2) the presence of symptoms such as cough, sputum 

production, shortness of breath, and wheezing; and (3) significant exposure to harmful stimuli, 

such as cigarette or biomass smoke58,59. According to the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) guidelines, disease severity can be characterized by 

comparing the measured FEV1 to the FEV1 that is predicted based on the patient’s age, sex, and 

height. The lower the measured FEV1 is compared to the predicted, the more severe the airflow 

obstruction and the higher the GOLD stage, with stages ranging from GOLD 1 (patients with 

FEV1 ≥ 80% predicted) to GOLD 4 (patients with FEV1 ≤ 30% predicted)58. Although all COPD 

patients share similar spirometry patterns and general symptoms, the underlying biological 

processes causing these test results and symptoms can vary across patients. Some patients may 

experience these symptoms due to emphysema-related processes, in which alveolar tissue is 

destroyed, leading to gas trapping and hyperinflation; whereas others may experience symptoms 
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due to small airways disease-related processes, which involves airway remodeling and narrowing 

at the bronchiole level60.  

Although COPD is most commonly associated with smoking, the exact factors that lead 

to disease development and that are involved in disease pathogenesis are not well understood. 

Not all smokers develop COPD, and other risk factors for developing the disease include 

genetics, environmental exposure (workplace or biomass fuels exposure, for example), and poor 

lung growth and development60–62. In general, the disease is believed to develop due to repeated 

exposure to harmful stimuli, though most of the research into disease pathophysiology comes 

from studying the effects of cigarette smoke. It is hypothesized that reactive oxygen species 

present in cigarette smoke accumulate in the lung and lead to an increased expression of genes 

involved in mucus secretion, inflammation, and anti-protease inactivation63. COPD is 

characterized by increased pulmonary and systemic inflammation, especially with severe 

disease60, and this inflammation involves mediators from both the adaptive and the innate 

immune system. On the innate side, macrophages have been found to be increased in the sputum 

and bronchoalveolar lavage (BAL) fluid of COPD patients64. It is hypothesized that due to the 

oxidant/anti-oxidant dysregulation, epithelial cell injury caused by cigarette smoke, and 

underlying genetic and epigenetic factors65,66, macrophages increase secretion rates of pro-

inflammatory cytokines and chemokines to recruit other immune cells into the lung and also 

display decreased phagocytic responses66,67. Pro-inflammatory macrophages are commonly 

found within the lung tissue itself, but macrophages that are anti-inflammatory in function have 

also been reported in the epithelial lining fluid of the alveoli64. More research into the spectrum 

of macrophage activation is needed to fully understand the significance of the location of these 

different macrophage populations in COPD. Neutrophils are also a major source of inflammation 
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in COPD and are increased in the sputum and BAL of patients66. Neutrophil secretions add to the 

tissue destruction associated with emphysema by secreting neutrophil elastase and proteinases, 

and a higher number of the cells in the sputum is associated with increasingly severe disease63,68. 

From the adaptive immune response, CD4+ and CD8+ T cells are both increased in the lungs of 

COPD patients, with Th1 T cells especially contributing to the pro-inflammatory environment66. 

Unfortunately, cessation of smoking is only able to slow FEV1 decline in COPD patients, but 

does not result in a decrease of inflammation in the lung69,70. 

COPD symptomology is also characterized by acute exacerbation (AE-COPD) events, 

which are deadly, with inpatient mortality rates reported to be between 3.9-7%71–73. They are the 

most costly event associated with the disease55, with each hospital visit due to exacerbation 

averaging an estimated $40,00073. AE-COPD events are characterized by acute increases in 

inflammation and in symptoms severity such as cough, sputum production and shortness of 

breath that does not return to baseline levels without either a change in medication or a hospital 

stay58. The effects of exacerbations can be permanent, as reported in a longitudinal study where 

only 75% of patients returned to their baseline peak expiratory flow rates within 35 days of 

experiencing an AE-COPD event, and 7% of patients did not experience a full return to baseline 

values 90 days after exacerbation74. Overall, AE-COPD events can lead to a downward spiral of 

worsening symptoms: they have a negative impact on the patient’s quality of life, increase the 

rate of lung function decline, and are associated with hospital stays and death75. As another 

example of the heterogeneity of the disease, there may be a subset of “frequent exacerbator” 

patients who experience more exacerbations than the average COPD patient, which is defined as 

more than two per year76,77. For these frequent exacerbator patients, the negative impacts of 
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exacerbations are even greater78; however, it has also been shown that frequent exacerbators may 

not consistently experience two exacerbations every year79.  

Current treatment options for COPD aim at managing symptoms and preventing 

exacerbations80, but better definitions of COPD subgroups may hold the key to the development 

of more effective and personalized treatment options in the future. Common pharmacological 

treatments prescribed for the stable state of COPD include a combination of long-acting β2 

agonists (LABAs), long-acting muscarinic antagonists (LAMAs), and inhaled corticosteroids 

(ICS), depending on the patient’s symptoms and exacerbation risk80. Pharmacologic treatments 

for severe exacerbations include antibiotics for bacterial infection-associated exacerbations, 

systemic corticosteroids, and bronchodilators81. Due to the heterogeneity of the disease, it can be 

difficult to find an effective treatment regimen for each patient. Looking forward, one of the 

goals for clinicians and researchers is to identify and define subpopulations of COPD patients in 

order to easily prescribe personalized treatment. Some researchers and clinicians focus on 

subpopulations that can be identified through biomarkers, as these patients may all share 

common mechanisms of action for disease pathogenesis and will be explored in depth below, 

whereas others focus on groups of patients who exhibit similar symptoms (e.g. frequent 

exacerbators and the GOLD ABCD classification based on symptom severity and exacerbation 

history58), as these patients may share a common phenotype82. Identifying these subgroups of 

patients is of importance so that more personalized treatments can be administered. Shifting 

gears to disease progression, although AE-COPD events are common and are associated with 

progression, the precise definition of these events is still debated by physicians, as COPD 

patients may experience changes in therapy that are not caused by the presence of an 



 11 

exacerbation83. Thus, a stronger definition or marker of exacerbation would aid clinicians in 

prescribing the correct treatments to patients.   

To aid in identification of COPD subgroups and AE-COPD events, researchers have been 

focusing on genetic, cellular, and proteomic biomarkers that could help distinguish between 

patients with COPD and smokers without airway obstruction, help define patient subgroups 

within COPD, and help understand and predict exacerbation events. In terms of markers for 

COPD, alpha-1 antitrypsin (A1AT) deficiency, which is caused by a mutation in the SERPINA1 

gene, is commonly reported in COPD patients (both ex-smokers and never smokers) and may 

also be responsible for a faster rate of emphysema development after exposure to cigarette 

smoke84. In terms of potential COPD patient subgroups, it has been reported that high levels of 

eosinophils are associated with a subset of COPD patients that tends to respond well to inhaled 

corticosteroid (ICS) in terms of FEV1 decline85,86 and exacerbation frequency86,87, but this has 

not been seen in all studies85. It has also been reported that some COPD patients may be 

characterized by an IL-17 airway epithelial response, and that these patients are less responsive 

to corticosteroids88. For AE-COPD events specifically, many studies have reported single 

biomarkers that are associated with the exacerbated state as opposed to the stable state (e.g. 

blood C-reactive protein (CRP)89–91, sputum IL-1β92,93, and blood growth differentiation factor 

15 (GDF-15)90,91). However, these markers are not always unique to AE-COPD alone89,94, and 

replication across multiple cohorts has been difficult95. Currently plasma fibrinogen is the only 

marker that is associated with AE-COPD, but it can only be used as an enrichment tool for 

clinical trials studying exacerbation96. A new focus in the field has involved taking a 

computational approach to the analysis of imaging scans to better view and predict disease 

progression. Computed tomography (CT) scans have recently been reported to be able to identify 



 12 

the presence of small airway damage in COPD with the use of parametric response mapping 

(PRM) analysis, which could identify unexpected damage in patients and could be used to track 

disease progression97. It has also been reported that many patients entering the hospital for AE-

COPD events present with consolidation (the presence of liquid in the lung where air should be) 

on their chest X-rays, and that this is associated with higher mortality and may require different 

therapeutic steps83. The next steps in this area are to explore if these imaging patterns are 

associated with biological expression of genes, cells, or proteins that could lead to mechanistic 

insight into disease progression. Overall, positive steps have been made towards better 

identification of COPD patients, subgroups of COPD patients, and exacerbations, yet the 

challenge still remains to identify robust biomarkers and therapies. 

1.3 Systems biology approaches to immunological disorders 

Although it is clear that IPF and COPD do not act through the exact same mechanisms, 

they do share some similarities. As discussed above, pathogenesis of both diseases involves 

tissue reorganization, as seen in the aberrant collagen deposition in IPF and the airway 

remodeling or breakdown in COPD. Additionally, there is evidence that immune dysregulation 

and inflammation are involved to some extent in both, although inflammation may play a greater 

role over time in COPD than in IPF, especially in the disease natural history26,47,66,68. Lastly, our 

current understanding of each disease has led to similar focus areas in the related research: 

identification of diagnostic and prognostic biomarkers is of key importance in each disease, as is 

determination of the key mechanistic underpinnings of disease state and progression for the 

purposes of developing more targeted treatments.  

Current difficulties in identifying biomarkers and treatment options suggests it may be 

possible that no single factor entirely accounts for disease development or progression. As IPF 
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and COPD are complex, immunological diseases and the associated disease progression in both 

is multifaceted and heterogeneous, it is plausible that both the development and progression of 

both conditions result from disrupted systems of immune cells and cytokine communication 

networks rather than individual events. Approaches to infer these key players and the associated 

networks could provide valuable new insight into systems-level relationships driving each 

disease and the associated progressive events.  

Systems biology-focused computational approaches, including data-driven modeling, 

may aid in identifying key networks of immune cells and factors involved in lung disease. These 

approaches add value in that they allow for evaluation of how components may interact together 

in a physiological system of interest, rather than as individual proteins, genes, or cells in isolated 

environments98. The increasing ease and decreasing cost of collecting quality “omics” data from 

biological systems has made the application of these analytical approaches more accessible over 

the past 20 years99. Data-driven modeling approaches can be applied to high-throughput data to 

identify small signatures of proteins, cells, or genes that covary with each other and are 

associated with clinically relevant groups of interest. Importantly, these approaches do not rely 

on prior knowledge of the system in order to identify these signatures. Additionally, 

unsupervised modeling approaches could be used to identify potentially novel subgroups within 

a patient population100. Through the use of knowledge-based bioinformatics databases and 

experimental follow-up and validation, the identified signatures can then be linked to 

mechanisms or cell types involved in disease phenotypes or pathogenic states. The identification 

of critical players in the network and the linkage to mechanisms provide starting points for 

potential diagnostic or prognostic criteria, insight into specific disease biology, and identification 

of potential targets for combinatorial therapeutic intervention101. In the future, these tools can 
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also be used to help differentiate heterogeneous responses to drugs and can connect these 

responses to the potential underlying biology with the patient population99. 

Data-driven modeling approaches have already been applied with success to identify 

signatures associated with inflammation and infectious disease susceptibility in mucosal tissues 

of the female reproductive tract102,103, in identifying potential sub-groups of systemic lupus 

erythematosus (SLE) patients104,105, and in gaining deeper understanding into abnormal CD4+ T 

cell and fibroblast response in rheumatoid arthritis (RA)106,107. These approaches have likewise 

been recently applied to better understand IPF and COPD disease state and disease progression. 

For example, in IPF, researchers have identified and validated a data-driven signature of 15 

transcripts measured in lung samples that accurately distinguished healthy controls and IPF 

subjects108. In another study, a combinatorial classifier of 5 plasma proteins (MMP-7, MMP-8, 

MMP-1, TNRSF1A, and IGFBP1) was found via decision tree analysis to differentiate healthy 

controls and IPF patients with 98.6% sensitivity and 98.1% specificity35. This same study also 

reported MMP-7 and MMP-1 expression as increased in IPF compared to patients with 

hypersensitivity pneumonitis, but not in COPD or sarcoidosis35. In IPF progression, one study 

applied multivariate analysis to identify a signature of plasma proteins that differentiated IPF 

patients by progression-associated outcomes (e.g. decline in FVC and DLCO) and were 

associated with epithelial cell function109. In COPD, Christenson et al. identified a signature of 

transcripts associated with the response of airway epithelial cells to IL-17A exposure that was 

increased in a subset of COPD patients in two independent COPD studies, and corresponded 

with more severe airway obstruction in these patients88. For COPD disease progression, Bafadhel 

et al. used feature selection and unsupervised modeling techniques to identify signatures of 

proteins associated with four biologic clusters of COPD exacerbations: bacterial, eosinophil- or 
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viral- predominant, or “pauciinflammatory”. These model-identified biological clusters were 

found to be very similar to previously defined clinical phenotypes of exacerbations92.  

While data-driven models have been promising in identifying potential diagnostic and 

prognostic markers and associated mechanisms, the limitation in current applications in IPF and 

COPD is that the approaches used have emphasized only the additive significance of each 

protein in differentiating clinical groups, rather than co-variance, which may improve 

classification ability and can better assist with network inference110–112. Additionally, there is 

currently a lack of studies that incorporate data from multiple tissue compartments into single 

models. Based on the number of previously identified markers of disease state and disease 

progression from the blood, it is likely that although IPF and COPD are localized in the lung, 

these diseases also exert measurable systemic changes. It is then plausible that systemic factors 

may also influence the pulmonary environment in return, and that characterizing these cross-

tissue compartment proteomic and cellular networks will lead to a deeper understanding of the 

natural history of COPD and IPF. 

1.4 Structure of thesis 

With this background in mind, the goal of this study was to identify key relationships 

between cytokines, secreted factors, and immune cells in the blood and lungs of human patients 

that suggested new systems-level mechanisms of action that underpin the disease state and 

disease progression of IPF and COPD. We decided to focus our analysis on proteins and cells in 

IPF and COPD because these are biologically active factors that directly reflect the current state 

in patients. We also wanted to highlight relationships between proteins across tissue 

compartments as, to our knowledge, there is a lack of published work in this area. We 
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accomplished our goal through the following three aims, with part A of each aim focused on IPF 

and part B focused on COPD: 

Aim 1 will use quantitative models of high-throughput data to infer protein relationships 

in the blood that define patients’ disease state and progression status. 

Aim 2 will use computational systems analytical techniques to infer relationships in the 

lungs from omics samples and datasets that are associated with disease state and progression. 

Aim 3 will use data-driven analytical techniques to integrate multiple types of data across 

various tissue compartments and assays to characterize proteomic, transcriptomic, and cellular 

relationships associated with disease state and progression. 

Completion of these aims will be presented in the following format: Chapter 2 presents 

published work that describes how these approaches can be used to identify a proteomic blood 

signature that differentiates healthy and IPF patients with high accuracy (Aim 1A). The related 

supplemental materials for this work are presented in Appendix A. Chapter 3 describes 

published work in which these approaches were applied to identify temporal and cross-tissue 

compartment signatures of blood and bronchoalveolar lavage (BAL) proteins that were able to 

differentiate IPF progressors and non-progressors (Aim 1A and 3A). The related supplemental 

materials are presented in Appendix B. Chapter 4 presents unpublished work of signatures of 

BAL proteins that differentiated healthy and IPF patients, as well as IPF progressors and non-

progressors, which highlighted the importance of lung cytokines in IPF progression status (Aim 

2A). Chapter 5 includes published work to identify mechanistic hypotheses related to acute 

exacerbations of COPD (Aim 1B, 2B, and 3B), with the related supplemental materials presented 

in Appendix C. Chapter 6 presents unpublished work, where plasma and BAL signatures 

successfully differentiated COPD disease state and severity (Aim 1B, 2B, and 3B). The 
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supplementary materials for this work are presented in Appendix D. Chapter 6 also presents 

preliminary results illustrating how evaluation of immune cell-cell communication networks in 

peripheral blood mononuclear cells (PBMCs) may be useful in evaluating lung disease (Aim 

1B). Chapter 7 contains a discussion of the key findings discovered throughout all the aims. 

Chapters 2, 3, and 5 are based off of previously published manuscripts and are presented 

in this thesis with minimal changes compared to their published counterparts. Appendix E 

contains details and figures on sets of models that were not included in this thesis and 

explanations of why we made these decisions. 
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2.1 Abstract 

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia. The 

disease pathophysiology is poorly understood and the etiology remains unclear. Recent advances 

have generated new therapies and improved knowledge of the natural history of IPF. These gains 

have been brokered by advances in technology and improved insight into the role of various 

genes in mediating disease, but gene expression and protein levels do not always correlate.   

Thus, in this paper we apply a novel, large scale, high throughput aptamer approach to identify 

more than 1100 proteins in the peripheral blood of well-characterized IPF patients and normal 

volunteers. We use systems biology approaches to identify a unique IPF proteome signature and 

give insight into biological processes driving IPF. We found IPF plasma to be enriched for 

proteins involved in defense response, wound healing and protein phosphorylation when 

compared to normal human plasma. Analysis also revealed a minimal protein signature that 

differentiated IPF patients from normal controls, which may allow for accurate diagnosis of IPF 

based on easily-accessible peripheral blood. This report introduces large scale unbiased protein 

discovery analysis to IPF and describes distinct biological processes that further inform disease 

biology.   

2.2 Introduction 

Idiopathic Pulmonary Fibrosis (IPF) is the most common idiopathic interstitial 

pneumonia and is a fatal progressive disease with a median survival of 2 to 3 years3. The 

etiology of IPF remains unclear and, despite recent advances in therapy, IPF persists as an 

incurable disease48,49. IPF is characterized by certain clinical features with radiological and 

histopathological findings of usual interstitial pneumonia3. The disease results in progressive 

fibrotic remodeling of the pulmonary parenchyma with loss of structural integrity, impaired gas 



 20 

exchange, and respiratory failure. The pathophysiology of IPF features a paradigm that involves 

injury, loss of the epithelial cell barrier with aberrant re-epithelialization, fibroblast activation, 

and unregulated myofibroblast deposition of extracellular matrix components6.  

The natural history of IPF is variable and patients can experience different and dynamic 

clinical courses with phenotypes ranging from accelerated disease with early mortality to slowly 

progressive disease113. Considerable resources have been employed to facilitate prediction and 

early identification of these phenotypes to improve transplantation strategies and the selection of 

appropriate patients for therapeutic trials.  Studies have identified proteins and chemokines that 

may discriminate between disease phenotypes and predict clinical outcomes35,41,114. Several 

genomic expression profiles have reported associations with disease progression in IPF115,116 and 

the peripheral blood transcriptome may discriminate between mild and severe disease graded by 

diffusion capacity117. Genetic risk loci include single nucleotide polymorphisms in the Toll 

interacting (TOLLIP) gene, toll like receptor (TLR) 3 gene and MUC5B promoter7,118,119. These 

key advances have elucidated new potential mechanisms and therapeutic targets and have 

advanced the role of “omics” in IPF. However, a greater understanding of the relationship 

between genomic risks and the mechanistic impact on IPF pathophysiology is required. For 

instance, disease susceptibility is increased by the MUC5B polymorphism yet survival is 

improved120.  The genome is subject to post transcriptional manipulation by micro-RNA 

(miRNA). Altered levels of miR-200 and miR-21 have reported associations with fibrogenesis in 

experimental models and human IPF patients121,122. Furthermore, circulating miRNA’s have been 

found in the blood of IPF patients and several miRNAs are differentially expressed in rapidly 

progressive disease123. Micro-RNA may act as regulators of disease progression and therefore 

the transcriptome and genome may be subject to significant modifications in IPF. An accurate 
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“snapshot” of disease biology may require analysis of protein or the “proteome” in IPF patients.  

IPF is heterogeneous with distinct individual variation in the clinical courses that patients 

encounter. It is plausible that distinct and dynamic biological processes manifest as a common 

clinical phenotype, as evidenced by the UIP pattern on histopathology and imaging.  The 

application of a new approach focused on identifying these processes or “molecular endotypes” 

may facilitate improved understanding of disease biology, molecular pathways, and the 

mechanisms behind the IPF clinical phenotypes124,125. 

Studies of the IPF proteome to date have focused on bronchoalveolar lavage fluid 

(BALF) and lung tissue analysis126–129. Novel targets have been reported including CCL24126, 

and putative molecular pathways have been identified including the unfolded protein response 

through proteomic studies127. While BALF may be desirable for analysis given it is an accessible 

component of the lung environment, it is acquired through an invasive endoscopic procedure and 

subject to variability in representative sampling and processing. Furthermore, many patients may 

be unable to undergo the sampling procedure; thus, accurate analyses from peripheral blood 

would be optimal for patients. New proteomic assays have been developed that utilize modified 

aptamers termed SOMAmers© (slow off rate modified aptamers)130. This assay can readily 

analyze over 1,000 proteins at varying levels of abundance in the peripheral blood. The 

SOMAmer© platform has been employed in biomarker discovery in several diseases to date131–

135. We have previously published a panel of 6 SOMAmer© measured proteins which accurately 

predicts disease progression in IPF136. In this paper, for the first time, we apply aptamer 

technology to identify on a large scale the differentially expressed proteins in the blood of IPF 

patients compared to normal controls. We then use this information to describe in detail the 

biological processes and molecular pathways that may discriminate the disease biology of IPF. 
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The ultimate goal of this work is not to identify or validate particular proteins as biomarkers, but 

rather to understand what biological pathways are aberrant in IPF vs. control patients based on 

the peripheral blood proteome. 

2.3 Results 

2.3.1 The peripheral proteome of IPF patients is distinct from controls 

The demographics and clinical characteristics of study subjects are summarized in 

Supplementary Table A.S1 in Appendix A. This population of IPF patients was a sub cohort of 

the COMET trial. The initial proteomic analysis included all 1129 available analytes which span 

a wide variety of biological processes and molecular pathways. Relevant comorbidities are 

reported in Supplementary Table A.S2 in Appendix A. We applied analysis (see schematic in 

Supplemental Figure A.S1) to the blood proteins measured in the SOMAscan assay in order to 

find differences in the blood protein profiles of healthy and fibrotic patients. From a total of 1129 

plasma proteins, 203 were found to have a mean value that was significantly different (both 

upregulated and downregulated) than the mean value of the same analyte in control patients, with 

a Bonferroni corrected α of 1% (P < 0.0000089) (Fig 2.1A). The top 10 significantly different 

values (all significant after Bonferroni correction with P < 4E-19) included glycogen synthase 

kinase-3 alpha/beta (GSK3A/GSK3B; 3.73 fold change), proto-oncogene tyrosine-protein kinase 

Src (SRC; 3.85 fold change), complement C1r subcomponent (C1R; 4.39 fold change), 

Proprotein convertase subtilisin/kexin type 7 (PCSK7; fold change 2.07), cGMP-specific 3',5'-

cyclic phosphodiesterase (PDE5A; 4.44 fold change), sphingosine kinase 1 (SPHK1; 4.92 fold 

change), tyrosine-protein kinase BTK (BTK; 10.45 fold change), B-cell activating factor (BAFF; 

fold change 2.13), nascent polypeptide-associated complex subunit alpha (NACA; 2.28 fold 

change), and GTP-binding nuclear protein Ran (RAN; 10.78 fold change). Interestingly, these 10 
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proteins that were most significantly different between control and IPF patients were all 

increased in the IPF patients. 

Figure 2.1. The peripheral plasma in IPF is distinct from normal controls.  
(a) Volcano plots highlight fold change (x axis) and the significance level the y axis of the blood proteins measured by the 

SOMAmer Aptamer assay in the COMET study. Points in red indicate proteins that are significantly different in the healthy 

versus IPF patients when correcting for multiple comparisons using the Bonferroni method with a corrected P-value of 0.01. 

Points in blue are the top ten most significant proteins when age is not considered. (b) Volcano plot with age adjustment. Points 

in red indicate proteins that are significantly different between healthy and IPF patients when adjusted for the age difference 

between the two groups and when correcting for multiple comparisons using the Bonferroni method with a corrected P-value of 

0.01. (c) Hierarchical clustering of age-adjusted blood proteins that were determined to be significantly different and biologically 

relevant between healthy and IFP patients show visually distinct blood proteomes between healthy and IPF patients. With the 

exception of two individuals, this subset of proteins in the blood was able to perfectly differentiate between healthy and IPF 

patients. This abundance of each protein is shown in color, with red meaning overabundant proteins, white unchanged, and blue 

being underabundant proteins, all compared to the mean (color bar scale is to the left of the figure). Hierarchical clustering of 

proteins was generated by unsupervised average linkage using Pearson’s correlation as the distance metric. 
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We next applied a secondary method to account for age differences between control and 

IPF cohorts. This screen identified 48 proteins which were expressed at significantly elevated or 

upregulated levels ( 1.5 fold) in the blood of IPF patients at screening when compared to 

controls (Supplementary Table A.S3). This represents 4.3% of total screened analytes. The 

screening process further identified 116 proteins which were expressed at significantly reduced 

or downregulated levels (0.75 fold) in the blood of IPF patients when compared to controls 

(Supplementary Table A.S4). This represents 10.3% of the screened analytes. A list of all 

significant proteins with their fold expression is reported in Supplementary Table A.S5. These 

biologically relevant, age-adjusted, significantly different proteins were then highlighted in a 

volcano plot (Fig 2.1B). The top ten significantly different, age-adjusted proteins were 

hepatoma-derived growth factor-related protein 2 (HDGFRP2; fold change 0.06), inactivated 

complement 3b (iC3b; fold change 0.53), tyrosine-protein kinase FYN (FYN; fold change 0.16), 

pulmonary surfactant-associated protein D (SFTPD; fold change 0.23), eukaryotic translation 

initiation factor 5 (EIF5; fold change 0.26), prefoldin subunit 5 (PFDN5; fold change 0.25), 

tyrosine-protein phosphatase non-receptor type 11 (PTPN11; fold change 0.33), prostaglandin 

G/H synthase 2 (PTGS2; fold change 0.30) 40S ribosomal protein S7 (RPS7; fold change 0.19), 

interleukin-8 (IL8; fold change 0.034). Interestingly, when the effects of age were addressed 

when performing the t-tests, the top ten significantly different proteins were all increased in 

healthy patients.   

To better visualize how this age-adjusted, biologically relevant protein signature 

differentiated the two groups, we performed hierarchical clustering on the 48 upregulated and the 

116 downregulated, age-adjusted, significantly different proteins (identified in Fig 2.1B) 

between healthy and IPF patients. The result was almost ideal differentiation of the healthy and 
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IPF groups (Fig 2.1C). Overall this analysis indicated visually distinct proteomes could be 

measured in healthy and IPF patients using a subset of 164 analytes within the SOMAscan 

Assay®.  

 The two most common co-morbidities in this patient cohort were gastroesophageal reflux 

disease (GERD) and obstructive sleep apnea (OSA) (Supplementary Table A.S2). Principal 

component analysis demonstrates that the greatest differences in the proteomic data arise from 

variation between the healthy and IPF groups, with no apparent clustering due to the co-

morbidities (Supplementary Figure A.S2). Comorbidity information was not available for the 

healthy controls. 

2.3.2 Enrichment and network analysis of the upregulated IPF plasma proteome 

The next step was to utilize our differentially expressed proteins to gain systems level 

insight into the disease biology of IPF. This was achieved through enrichment analysis using the 

online DAVID software tool. DAVID associates proteins to hierarchically clustered functional 

terms (Gene Ontology, Kegg Pathway), and an enrichment score is calculated. The most 

significantly enriched processes included protein amino acid phosphorylation, VEGF signaling, 

and intracellular signaling cascade (see Fig 2.2A).    

We next looked at possible networks and relationships between these proteins using the 

ClueGo application in Cytoscape. Proteins are clustered within enriched terms (Gene Ontology, 

Kegg Pathway) and the degree of similarity between clusters is calculated using Kappa statistics. 

The significantly enriched clusters included platelet activation (P = 17.0E-12), the regulation of 

cardiac muscle hypertrophy (P = 2.9E-6) and complement and coagulation cascades (P = 53.0E-

6) (Fig 2.2B). The level of agreement between each cluster and term is reported by Kappa 

statistics (supplemental Fig A.S3). Statistical values for each reported term are listed in 
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Supplemental Table S6. In order to biologically validate our proteomic pathway discovery 

findings, we analyzed threshold values of transcriptomic data from peripheral blood cells in the 

same patients and report that VEGF-related genes correlate with VEGF-related proteins as 

measured by aptamers (data not shown). These differentially expressed VEGF-related genes 

Figure 2.2. Enrichment and network analysis of the upregulated IPF plasma proteome.  
(a) DAVID enrichment analysis was employed to select the most significantly enriched terms within the sample of upregulated 

proteins (n = 48). Bonferroni corrected P value, Benjamini-Hochberg (BH) P value and False Discovery Rates (FDR) are 

reported. Kappa statistics reporting similarity to most significant term (low > 0.25, moderate 0.25-0.5, high 0.5-0.75, very high 

0.75-1). (b) ClueGO visualization and analysis of biological role (GO, Kegg pathways) was undertaken. GO terms are mapped 

in clusters by Kappa statistics [Hexagon=Kegg pathway, Ellipse=Gene ontology term, arrow depicts direction of association]. 

The major overview term (smallest P value within the cluster) is depicted in color. Node size depicts Bonferroni corrected P 

value < 0.0005 for all terms reported. Further details can be found in online supplement/Appendix A. 
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when analyzed by Kegg pathway are enriched in biological pathways that are plausibly related to 

VEGF signaling, providing biological validation for our findings. 

2.3.3 Enrichment and network analysis of the downregulated IPF plasma proteome 

The downregulated proteins were analyzed for enrichment using the DAVID online 

software tool. The most significantly enriched terms (GO ontology, Kegg pathway) included 

Figure 2.3. Enrichment and network analysis for the downregulated IPF plasma proteome. 

 

(a) DAVID enrichment analysis was employed to select the most significantly enriched terms within the sample of 

downregulated proteins (n=116). Bonferroni corrected P value, BH P value and FDRs are reported. Kappa statistics reported 

similarity to most significant term (low > 0.25, moderate 0.25-0.5, high 0.5-0.75, very high 0.75-1). (b) ClueGO visualization 

and analysis of biological role (GO, Kegg pathways) was undertaken. GO terms are mapped in clusters by Kappa statistics 

[Hexagon = Kegg pathway, Ellipse = Gene ontology term, arrow depicts direction of association]. The major overview term 

(smallest P value within cluster) is depicted in color. Node size depicts Bonferroni corrected P value < 0.0005 for all terms 

reported. Further details can be found in Appendix A. 
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defense response, anti-apoptosis and immune response (see Fig 2.3A). Cytoscape and ClueGo 

were then utilized to examine possible networks and relationships between enriched terms and 

their associated proteins. These significant clusters included acute inflammatory response (P = 

740.0E-9), response to peptide hormone (P = 3.4E-15), phagocytosis (P = 1.8E-6), regulation of 

endopeptidase activity (P = 14.0E-12), leukocyte proliferation (P = 25.0E-9), ERK1/2 cascades 

(P = 150.0E-12), granulocyte chemotaxis (P = 22.0E-9), positive regulation of a response to an 

external stimulus (P = 74.0E-24), TNF signaling pathway (P = 4.2E-6), proteoglycans in cancer 

(P = 530.0E-9), and cytokine activity (P = 140.0E-15) (Fig 2.3B). Kappa statistics for similarity 

between gene, terms and clusters can be found in Supplement Figure A.S4. Statistical values 

for each reported term are listed in Supplemental Table A.S7.   

2.3.4 A unique protein signature involved in immune processes differentiates IPF patients 

from controls 

We next wanted to find a minimum set of proteins that best differentiated the healthy and 

IPF patients based on covariance, or relationships between proteins. This signature could 

potentially be used as a diagnostic tool based on non-invasive measurements made from 

peripheral blood. To identify the minimum multivariate protein signature that differentiated 

healthy and IPF patients, we used the Least Absolute Shrinkage and Selection Operator 

(LASSO) method as a feature selection tool, followed by Partial Least Squares Determinant 

Analysis (PLSDA) to assess the usefulness of the identified signature. LASSO identified an age-

adjusted signature of eight proteins that best differentiated the healthy patients from the patients 

with IPF. A PLSDA model of these eight selected proteins classified the two groups perfectly, 

with 100% calibration accuracy and 100% cross-validation accuracy, as well as 100% sensitivity 

and specificity for both the healthy and the IPF groups. Latent variable 1 (LV1) was able to 
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completely differentiate between healthy patients (negative scores on LV1) and patients with IPF 

(positive scores on LV1; Fig 2.4A). Two of the eight proteins were loaded positively on LV1 

(Fig 2.4B), indicating that they were positively associated with the IPF patients, whereas six 

proteins  were loaded negatively on LV1, indicating that they were negatively associated with 

Figure 2.4. LASSO/PLSDA identified a minimum protein signature of 8 age-adjusted proteins that best differentiated 

healthy and IPF patients.  
(a) LASSO identified an 8-protein signature that differentiated healthy (purple) and IPF (cyan) patients, with 100% calibration 

accuracy and 100% cross-validation accuracy, with 100% sensitivity and specificity for both healthy and IPF patients. Latent 

variable 1 (LV1) accounted for 71.48% of the variance in the data, and latent variable 2 (LV2) accounted for 6.15% of the 

variance in the data. (b) The loadings plot indicates protein contributions to the LASSO-identified signature, with positive 

loadings positively associated with IPF, and negative loadings comparatively reduced in IPF. (c) Hierarchical clustering further 

emphasizes the visual difference between healthy and IPF patients based on the LASSO-identified signature. Abundance of 

each protein is shown in color, with red indicating overabundance, white unchanged, and blue indicating underabundant 

proteins compared to the mean. Color bar scale is to the left of figure. 
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the IPF patients (Fig 2.4B). Not surprisingly, all of the proteins identified by LASSO were also 

found to be significantly different between healthy and IPF patients in the volcano plot (Fig 

2.1B). LASSO and PLSDA were able to successfully separate individuals that were healthy from 

individuals with IPF; this suggests that the eight proteins in the signature may have relationships 

that are of biological interest. The LASSO-signature does include proteins that have clear 

immunological functions: inactivated (iC3b) and tumor necrosis factor ligand superfamily 

member 14 (TNFSF14 or LIGHT). This further suggests the potential importance of immune 

processes in the pathogenesis of IPF and warrants further investigation. 

In order to better visualize patient clustering using our LASSO-identified signature, we 

performed hierarchical clustering and created a heat map of the LASSO-identified protein 

signature (Fig 2.4C). The result was readily-identifiable, near-perfect clustering of the healthy 

and IPF patients, with only one patient being misclassified. Interestingly, the two proteins in the 

hierarchical cluster that were overabundant in the IPF patients are the same two proteins that 

PLSDA identified as being positively associated with the IPF patients. Recalling that all eight of 

the proteins were also included in the biologically relevant, age-adjusted significantly different 

protein panel, these findings validate the LASSO-identified blood protein signature as being the 

preferred signature to differentiate the two groups of patients, and also support the idea that there 

are large differences in the blood proteome seen in healthy and IPF patients. We also analyzed 

the LASSO-identified protein signature using GO terms for biological process and molecular 

function. The most significantly upregulated functional annotation cluster involved peptidase 

inhibitors, endopeptidase regulators and catalytic activity (FE = 3.46, Bonferroni corrected P 

value = 0.0135) (Supplementary Figure A.S5).  Overall these results provide proof-of-concept 

and suggest value for these approaches in the future development of a non-invasive diagnostic or 
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prognostic assay for IPF. This could be especially useful for a diagnosis of IPF with relatively 

normal pulmonary function levels and/or atypical radiological findings. 

2.4 Discussion 

IPF remains a disease of unknown etiology with poorly understood pathophysiological 

mechanisms. Major advances have occurred in recent years through hypothesis-driven studies of 

potential biomarkers of the genome, transcriptome, chemokines and cytokines. In this paper we 

apply novel modified aptamer technology to produce large scale studies of proteins of variable 

abundance in the blood of IPF patients and normal controls for the first time. This novel 

approach to IPF has generated new hypothesis-provoking insight regarding the possible key 

functional biological abnormalities in IPF. The design and main focus of this study was to 

identify differentially expressed proteins in the blood of IPF patients compared to normal healthy 

controls and, through the employment of systems biology and bioinformatics tools, generate 

knowledge about the enriched biological processes that these proteins may represent. 

Analysis of the downregulated protein profile identified a role for defense response 

encompassing a reaction to the presence of a foreign body or injury with an associated attempt to 

restrict damage and initiate repair. This is the most significantly enriched process within the 

downregulated protein panel. These data suggest that compared to a normal host, IPF patients 

have reduced levels of circulating proteins that support host defense. Indeed, the cohort of 

patients studied in this work (COMET study cohort) was previously employed in a project that 

supported a role for dysbiosis in the lung and disease progression. Alterations in the microbiome, 

namely an increase in Streptococcal and Staphylococcal operational taxonomic units were 

associated with disease progression in IPF137. Molyneaux et al. have reported an association 

between disease progression and increased bacterial burden in the lung138. An increased quantity 
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of Streptococcus species was noted.  Knippenberg et al. using murine models have demonstrated 

a mechanism by which a pneumococcal toxin, pneumolysin, exacerbates pulmonary fibrosis139. 

Our study of the proteome at trial screening suggesting a reduction in processes supporting host 

defense, supports a potential role for pathogens, particularly given further findings in the 

downregulated proteome involving the regulation of responses to external stimuli.  These data 

enrich the evidence for a potential role for dysbiosis in IPF progression.    

Features of acute inflammation including leucocyte chemotaxis, proliferation and 

phagocytosis are subject to downregulation in the blood compared to normal controls in our 

study. Several proteins involved in regulating the response to wounding appear inhibited in the 

plasma of patients with IPF compared to controls. We hypothesize that this finding is indicative 

of the recurrent injury and loss of the alveolar epithelial barrier. The proteome findings in this 

study support the paradigm of recurrent injury or wounding with aberrant repair. Indeed, our 

findings support an intrinsic impairment of the immune response to stimuli which may, in turn, 

promote insufficient or even exuberant responses to improve pathogen clearance but worsen 

bystander damage. The response of Toll like receptors (TLRs) and other pathogen recognition 

receptors to pathogen associated molecular patterns (PAMPs) and danger associated molecular 

patterns (DAMPs) is crucial to mounting a response to infection and injury140. IPF patients may 

have impaired responses to DAMPs and PAMPs. Studies of pathogen recognition receptors 

involved in responses to PAMPs/DAMPs including TLR 3 and TOLLIP have reported 

associations with IPF pathophysiology7,119. Furthermore, the role of immunosuppression is 

associated with poorer survival and higher levels of hospitalization in IPF patients47. The 

addition of agents responsible for attenuated immune responses may contribute negatively to a 

disease biology that features impaired responses to PAMPs and DAMPs. 
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The upregulated protein profile identified T cell co-stimulation as a process 

discriminating between normal and IPF patients. The role of T cell co-stimulation in regulation 

of lung fibrosis is controversial and complicated by the fact that measurements have been based 

on samples taken from different human compartments versus murine models. Studies to date 

have supported a role for decreased expression of inducible T cell co-stimulator (ICOS) in 

peripheral blood mononuclear cells (PBMCs) as a marker of disease progression and a predictor 

of poor survival outcomes115,116.  However, animal models of bleomycin-induced pulmonary 

fibrosis reported higher levels of ICOS ligand (ICOSL) expression on macrophages and B cells 

in ICOS deficient mice compared to wild type which correlated with higher levels of fibrosis, 

thus highlighting a role for ICOSL expression in positively regulating pulmonary fibrosis. ICOS 

deficient mice had attenuated pulmonary fibrosis upon bleomycin challenge141. The role of ICOS 

and T cell co-stimulation warrants further study given our findings of enrichment of this process 

in the upregulated proteins when comparing IPF patients to normal controls. We have shown that 

ICOS may be secreted by activated T lymphocytes137 and hypothesize that the loss of ICOS 

expression on cells may correlate with elevated plasma levels and that this may be accompanied 

by reduced transcription. Taken together, these changes suggest a crucial regulatory step in the 

pathobiology of IPF. Interestingly, the positive regulation of T cell activation is notably enriched 

within the downregulated plasma proteome in IPF patients suggesting that overall, IPF patients 

may have impaired T cell activity and this may be linked to disease biology, potentially via 

impaired defense against pathogens such as herpesviruses142. 

Protein phosphorylation is a fundamental mechanism of signal transduction and is 

achieved by kinase activity. The high signal for phosphorylation in our upregulated proteome 

may represent heightened kinase activity and both these processes are enriched within the 
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upregulated proteome. In vitro studies and animal models have produced robust evidence to 

support a central role for protein kinase activity in pulmonary fibrosis, particularly tyrosine 

kinase activity including platelet derived growth factor (PDGF), epidermal growth factor (EGF), 

fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF)143. Nintedanib, a 

novel and approved tyrosine kinase inhibitor for IPF, robustly inhibits VEGF receptor, PDGF 

receptor, and FGF receptor with resultant modification of IPF fibroblast biology and improved 

patients outcomes49,144,145. VEGF signaling was additionally enriched within the upregulated 

plasma proteome of IPF patients in our work, consolidating its role in IPF pathogenesis. A key 

downstream event of ligation between these tyrosine kinases and their receptors is 

autophosphorylation and phosphatidylinositide 3-kinase activity146,147. ErbB signaling 

enrichment is also notable. These are a family of tyrosine kinase receptors, which include Her1 

(epidermal growth factor receptor (EGFR)), Her2, Her3, and Her4. Several of these receptors 

have reported roles in epithelial remodeling and proliferation, and are found to play significant 

roles in models of fibrosis148–150. Further dysfunction within this pathway is supported by the 

finding of enrichment within the downregulated proteome for EGFR (Her1) signaling. EGFR is 

vital for normal epithelial repair so downregulation of this pathway could indicate impaired 

wound healing. Alternatively, we cannot rule out the possibility that EGFR signaling within the 

lung promotes fibrosis, but that the signature is lost in peripheral blood. Further investigation of 

the role of ErbB signaling in the pathogenesis of IPF is likely needed. 

Platelet activation leads to the release of several profibrotic mediators and IPF patients 

have reported evidence of increased platelet reactivity and activation in a previous study151. It is 

possible that this is reflective of the IPF plasma environment. Complement and coagulation 

cascades have reported associations with IPF. Complement receptor polymorphisms may be 
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associated with the development of IPF152. Furthermore, complement can augment epithelial 

injury in pulmonary fibrosis through crosstalk with Transforming Growth Factor-β (TGF-β)153. 

Gu et al. demonstrated that the inhibition of both complement component C3a and C5a receptors 

can lead to the arrest of fibrosis and may have therapeutic potential in IPF154. The enrichment 

within the plasma proteome of platelet activation and complement cascades is suggestive of 

ongoing injury that is detectable in the blood and will require further study. 

The LASSO/PSLDA proteome signature we have identified includes novel proteins that 

have no previous reported associations with IPF. Armed with these target proteins however, it is 

interesting to speculate on their putative roles in pulmonary fibrosis. TNFSF14 (Tumor necrosis 

factor ligand superfamily member 14 or LIGHT) is an inflammatory molecule and a member of 

the TNF superfamily that our analysis also shows to be downregulated in IPF plasma compared 

to normal. Seemingly contradictory, the genetic deletion of LIGHT attenuates bleomycin-

induced pulmonary fibrosis in animal models through the abolition of Thymic stromal 

lymphopoietin (TSLP) expression155. In addition, Herro et al. demonstrated that the 

administration of recombinant LIGHT to murine models produced features of fibrotic lung 

disease similar to the bleomycin fibrotic phenotype, via a TSLP-dependent mechanism. Human 

bronchial epithelial cells challenged with LIGHT in vitro generate TSLP production155. LIGHT 

appears to have potential as a regulator of fibrosis and its role in IPF requires further exploration. 

LIGHT can function as a mediator of herpes viral cell entry, hence its acronym Herpes Virus 

Entry Mediator (HVEM), and one may speculate a further mechanistic role for LIGHT in this 

context given the evolving roles of herpes virus in fibrotic lung disease exacerbations142, but it 

may be informative to compare circulating vs. tissue measurements. Glycogen synthase kinase-3 

alpha/Glycogen synthase kinase-3 beta(beta (GSK3A/GSK3B) are negative regulators of glucose 
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homeostasis, Wnt signaling, and transcription factors, and this protein is positively associated 

with IPF. GSK3A/GSK3B inhibition in bleomycin-exposed mice has been shown to reduce 

alveolitis, lung fibrosis, and alveolar cell apoptosis156. GSK3A/GSK3B inhibition also decreased 

the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) and tumor necrosis factor-

α (TNF-α) by lung macrophages after bleomycin exposure in this study. Plasma serine protease 

inhibitor (SERPINA5), a molecule we find at elevated levels in IPF relative to control patients, 

has been shown to be upregulated in the intra-alveolar space of patients with interstitial lung 

diseases (IPF included), and is involved in the inhibition of fibrinolysis, especially in IPF157. A 

reduction in fibrinolysis causes more collagen, fibrin, and other extracellular matrix fibers to 

accumulate in the intra-alveolar space of these patients, leading to a stiffer lung and to formation 

of a matrix where fibroblasts can proliferate and release more collagen158. 

The acquisition of a distinct signature in the blood proteome of IPF patients that allows 

for discrimination between IPF and healthy controls is a significant proof of concept discovery.  

While we recognize that a blood test is not necessary to diagnose IPF patients from healthy 

volunteers, our work suggests that this methodology could be employed to help diagnose IPF 

from other forms of chronic lung disease. This will require further validation with larger 

numbers of patients, and exploration in other chronic lung diseases to determine whether 

differential signatures are producible in similar diseases. If true, the potential for change in 

clinical practice is considerable. The use of peripheral blood to identify disease-specific 

signatures may result in obviating the need for biopsy in patients who present with imaging 

features that are not consistent with IPF or possibly improve diagnostic confidence in patients 

who are not suitable for a surgical biopsy. Previous studies of plasma proteins in IPF patients 

identified both MMP-7 and MMP-1 as predictors of disease progression that were differentially 
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expressed compared to normal plasma35. While there remain significant methodological 

differences between studies, we have found that MMP-7 is also upregulated in IPF plasma 

compared to normal. 

There are several limitations to our study. The study numbers are limited and the IPF 

cohort, while extensively characterized, was not subject to death over the course of 80 week 

follow up. This population may not be fully representative of the IPF disease spectrum and we 

are not able to adjust for all potential confounding variables including co-morbidities within the 

IPF population. The absence of a validation cohort is a weakness; however, the main goal of this 

work was to generate hypotheses based on the proteomic data accrued. The use of slow off rate 

modified aptamers is novel and the aptamer results may not correlate with other protein 

measurement platforms. The aptamers bind to non-linear sequences with very high specificity for 

the selected target; this may explain some of the variance when measuring identical targets with 

other platforms such as ELISA130. However, several studies have demonstrated very high levels 

of agreement between the modified aptamer platform and ELISA136,155. 

Although we did not have a validation cohort to test the accuracy of our PLSDA model, 

we did investigate model accuracy through cross-validation. This involved excluding a small 

portion of the data (called the test set), building a model based on the rest of the data, and testing 

the accuracy of the model using the test set. By repeating this process many times and using 

different test sets, we were able to obtain the cross-validation accuracy by averaging the 

accuracy of each individual model. Thus despite the fact that there was not a validation cohort, 

we were still able to report a metric of model accuracy, which was calculated based on testing 

the model with unseen data. The final model we have reported on performed perfectly during 

cross-validation testing with 100% cross-validation accuracy. 
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Our work identified biological processes that discriminate IPF from healthy controls and 

generates hypotheses and new targets for investigation into disease mechanisms. Our study 

patients were recruited to a clinical trial with the highest standards of diagnostic approach and 

management. The prime purpose of this work was to introduce the approach of large scale 

unbiased biomarker screening and the generation of subsequent mechanistic hypotheses.   

However, given the proposed single organ nature of IPF, the biological signal detectable in blood 

is dilute and may not accurately reflect ongoing change within the lung. However, the peripheral 

blood has been employed in several biomarker studies in IPF to date35,114,116 and represents an 

easily-accessible compartment for analysis. The fact that the identified proteome clustered 

differently between IPF and controls gives some confidence that analyses of peripheral blood 

may be useful. 

In conclusion, this work furthers the evolving evidence supporting impaired host defense 

as a key marker of IPF disease biology and validates some of our current understanding. We 

generate further hypotheses about novel potential therapeutic targets and introduce a new 

approach to biomarker studies in IPF.  The ability to identify a minimal signature that allows 

clinicians and researchers alike to discriminate IPF cases from normal serves as a proof of 

principle that this approach may have potential in defining other forms of chronic interstitial lung 

disease and the further evaluation of molecular endotyping in pulmonary fibrosis. 

2.5 Methods 

2.5.1 Study population 

Subjects included in this analysis were a subset of patients who participated in a 

prospective observational study correlating biomarkers with disease progression 

(clinicaltrials.gov, clinical trials ID no. NCT01071707) (Correlating Outcomes with biochemical 
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Markers to Estimate Time-progression in Idiopathic Pulmonary Fibrosis - COMET). This cohort 

consisted of 60 patients who had samples available for analysis for at least 3 follow up time 

points, but this report focuses only on the baseline samples. Inclusion criteria required patients to 

be aged 35-80 years with a diagnosis of IPF. Exclusion criteria included a diagnosis of IPF that 

was >4 years prior to screening, a diagnosis of collagen-vascular disorder, FEV1/FVC<0.6, 

evidence of active infection at screening, or comorbid conditions other than IPF likely to result in 

death within one year. Subject follow up was for 80 weeks. Informed consent was obtained from 

all participating patients. The study protocol was reviewed and approved by the institutional 

review board of each participating center and methods were carried out in accordance with the 

relevant guidelines and regulations. Participating centers included: University of California Los 

Angeles. Los Angeles, CA, United States—University of California, San Francisco. San 

Francisco, CA, United States—National Jewish medical and Research Center, Denver, CO, 

United States—University of Chicago, Chicago, IL, United States—University of Michigan Ann 

Arbor, MI, United States—Cleveland Clinical Foundation, Cleveland, OH, United States—

Temple University, Philadelphia, PA, United States—Brown University, Providence, RI, United 

States—Vanderbilt University, Nashville, TN, United States. Patients were enrolled from March 

2010 to March 2011.  Blood samples and demographic data were also acquired from healthy 

human controls (n = 21). Demographics are displayed separately for IPF patients and healthy 

normal participants, with mean and standard deviation for the continuous predictor age and the 

number and percentage enrolled for the categorical variable gender. Statistical significance of 

differences between the two groups of people for age and gender were assessed via Student’s t 

test and Pearson’s Chi-squared test, respectively (Supplementary Table A.S1). Patients were 

diagnosed as having IPF using a multidisciplinary approach as per published international 
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guidelines3. In brief, the diagnosis of IPF was on the basis of features on computed tomography 

(CT) scans of the chest or usual interstitial pneumonia (UIP) pathology confirmed by lung 

biopsy. Cases were reviewed with expertise from radiologists, pathologists and clinicians at the 

local enrolling center. The number of biopsy proven cases was 35 of 60 patients, representing 

57% of the study cohort. All cases and controls were of Caucasian ethnicity. 

2.5.2 Sample acquisition and preparation 

Peripheral blood was collected in EDTA-containing vacutainers at study centers and 

samples were shipped by overnight mail using cold packs to the University of Michigan.  

Samples were collected at 3 time points, namely screening, week 48 and week 80. Samples from 

healthy human controls were obtained from MedImmune and analyzed simultaneously with the 

COMET specimens. Whole blood was centrifuged at 2500 rpm for 10 minutes and plasma was 

collected and frozen at -80°C in small aliquots. Samples were shipped to SomaLogics for 

analysis on the SOMAscan® panel (1129 analytes). Plasma samples were diluted at 3 different 

concentrations for analysis on the aptamer array at the optimal concentrations for each 

SOMAmer©. 

2.5.3 SOMAscan assay 

The SOMAscan® proteomic assay has been described extensively in previous 

publications130. In brief, each of the listed proteins is measured using a modified aptamer reagent 

and measured quantitatively in relative fluorescence units (RFU’s) using a custom Agilent 

hybridization chip.  Normalization and inter-run calibration were performed according to 

SOMAscan v3 assay data quality-control procedures as defined in the SomaLogic good 

laboratory practice quality system. A complete list of SOMAscan© analytes may be found online 
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(http://www.somalogic.com/somalogic/media/Assets/PDFs/SSM-045-REV-1-SOMAscan-

Assay-1-3k-Content.pdf). 

2.5.4 Statistical analysis of SOMAscan assay results 

Proteomic data is reported quantitatively as RFU’s for 1129 analytes in 60 IPF patients 

and 21 healthy controls. For a graphic summary of our investigative approach see Supplemental 

Figure A.S1.  

The initial approach first identified 203 proteins that differentiated IPF from controls.  

Relative fold change in blood protein levels were calculated by dividing the average intensity in 

IPF samples by the average intensity in the healthy samples. Statistical analysis between the 

healthy and IPF patients was performed by a standard two-tailed and two-sample t-test. 

Graphical representation of the proteomic data was created using GraphPad Prism software 

(v6.01 for Windows, GraphPad Software, La Jolla, CA). Significantly different proteins were 

those that passed a set false discovery rate threshold of 1%. Hierarchical clustering of 

significantly different proteins was generated by unsupervised average linkage hierarchical 

clustering using Pearson’s correlation coefficient as the distance metric159. 

Upon comparison of epidemiological factors between the two groups, we found age to be 

slightly increased in the normal group. To account for this and identify age-adjusted proteomic 

differences, we performed linear regression with all biomarkers and age as predictors based on 

comparison between the IPF and normal cohort, and assessed mean analyte differences between 

IPF patients and controls adjusted for age. To account for multiple comparisons, we considered 

Benjamini-Hochberg false discovery rate methods160, but eventually decided upon a more 

conservative Bonferroni correction to maintain an overall type I error of 0.01 and more 

aggressively screen analytes from the pool of candidates161,162. Altogether, this resulted in a 
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refined volcano plot showing the age-adjusted proteome. Hierarchical clustering was then used 

to visualize how these proteins differentiated the healthy and IPF patients. 

2.5.5 Analysis of the differentially expressed IPF proteome with DAVID and Cytoscape 

To identify significantly enriched biological process that differentiated IPF from control, 

those proteins that passed initial screening steps (a Bonferroni correction and linear regression 

modelling for age) were catalogued into “upregulated” and “downregulated” profiles. In brief, 

proteins that were meaningfully “upregulated” or “downregulated” were deemed to have 

potentially significant biological roles in IPF patients compared to the control cohort. A fold 

increase over control mean of 1.5 and a fold decrease below control mean of 0.75 were used as 

thresholds for “upregulated” and “downregulated” proteins, respectively. These criteria selected 

out 48 upregulated proteins and 116 downregulated proteins when comparing IPF patients to 

controls (Supplementary Table A.S2 and A.S3). Certain proteins were measured in 

combination (see Supplementary Table A.S2 and A.S3). Certain proteins, i.e. inactivated or 

splice variants, measured by the SOMAscan array do not have unique UniProt identifiers 

available, and therefore the parent protein UniProt Identifier is reported. Functional annotation 

and visualization was employed using the Cytoscape (v3.3.0) software environment and the 

ClueGO (v2.2.5) plugin application163,164. In brief, for ClueGo analysis, Gene ontology levels 

and Kegg Pathways were explored with medium specificity and a Kappa score of >0.4. The 

Bonferroni correction was employed for each P value calculation. GO fusion was used to reduce 

redundancy with child-parent term fusion. P value of 0.05 was regarded as significant. 

Visualization was applied with Overview term labelling and term P value for nodal size.  

Functional annotation clustering and enrichment analysis was performed using Gene Ontology 

(GO) biological processes (BP FAT), molecular function (MF FAT), Kyoto Encyclopedia of 
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Genes and Genomes (KEGG). Enrichment analysis was undertaken by submitting these proteins 

to the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

(http://david.abcc.ncifcrf.gov/)165,166. Enrichment analysis was performed on the basis of 

uniprot_accession as identifier and gene list as list type, medium stringency and Bonferroni 

correction was applied. Enrichment chart analysis was performed using Gene Ontology (GO) 

biological processes (BP FAT), GO molecular function (MF FAT) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG). The top functional annotation clusters with significant enrichment 

scores were identified.  

2.5.6 Identification of a minimal IPF proteomic signature with hierarchical clustering and 

PLSDA 

The Least Absolute Shrinkage and Selection Operator (LASSO) method159 was used to 

identify a minimum, age-adjusted protein signature that best differentiated IPF and normal 

proteomes and was implemented using Matlab software167 (Mathworks, Natick, MA). K-fold 

cross-validation was used to generate the model that had the lowest possible mean squared error 

for prediction. Associated features for this model were chosen as the minimum set of biomarkers.  

In order to allow for age-adjustment in the LASSO model, age was forced into the model as a 

parameter and assigned zero penalty. PLSDA assessed the usefulness of the LASSO-identified 

protein signature for differentiating healthy and IPF patients. Data were normalized with mean 

centering and variance scaling, and cross-validation was performed by iteratively excluding 

random subsets in groups of 9-10 data points during model calibration. Excluded data samples 

would then be used to test model predictions. Hierarchical clustering of LASSO-identified 

proteins was generated by unsupervised average linkage hierarchical clustering using Pearson’s 

correlation coefficient as the distance metric.  
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2.5.7 Investigating the effect of comorbidities in IPF had on the LASSO and PLSDA 

analysis 

To investigate whether or not the comorbidities present in some IPF patients affected the 

feature selection by LASSO or the clustering in PLSDA, we performed a principal component 

analysis (PCA) on all of the measured blood proteins in the healthy and IPF patients. PCA was 

chosen as the method of analysis due to the lack of knowledge of the comorbidities seen within 

the healthy cohort. Gastroesophageal reflux disease (GERD) and obstructive sleep apnea (OSA) 

were examined based on their prevalence in the IPF patients (34 patients with GERD and 12 

patients with OSA). 
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3.1 Abstract 

 Idiopathic pulmonary fibrosis (IPF) is a progressive and heterogeneous interstitial lung 

disease of unknown origin with a low survival rate. There are few treatment options available 

due to the fact that mechanisms underlying disease progression are not well understood, likely 

because they arise from dysregulation of complex signaling networks spanning multiple tissue 

compartments. To better characterize these networks, we used systems-focused data-driven 

modeling approaches to identify cross-tissue compartment (blood and bronchoalveolar lavage) 

and temporal proteomic signatures that differentiated IPF progressors and non-progressors. 

Partial least squares discriminant analysis identified a signature of 54 baseline (week 0) blood 

and lung proteins that differentiated IPF progression status by the end of 80 weeks of follow-up 

with 100% cross-validation accuracy. Overall we observed heterogeneous protein expression 

patterns in progressors compared to more homogenous signatures in non-progressors, and found 

that non-progressors were enriched for proteomic processes involving regulation of the 

immune/defense response. We also identified a temporal signature of blood proteins that was 

significantly different at early and late progressor time points (p<0.0001), but not present in non-

progressors. Overall, this approach can be used to generate new hypotheses for mechanisms 

associated with IPF progression and could readily be translated to other complex and 

heterogeneous diseases.  

3.2 Introduction 

Idiopathic pulmonary fibrosis (IPF) is a heterogeneous and irreversible interstitial 

pneumonia, with symptoms including progressive cough, shortness of breath, and ultimately 

respiratory failure, with a median survival of only 3-5 years post diagnosis5. The disease is 

believed to be caused by a dysregulated wound healing response to various epithelial injuries 
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leading to fibrosis of the lung interstitium5. Two medications (nintedanib49 and pirfenidone48) are 

effective treatments for IPF; both are able to temporarily slow disease progression without 

reversing established fibrosis168. Thus, lung transplantation is currently the only option to cure 

IPF3, even though this procedure has the highest failure rate of all organ transplantation options 

(54% at 5 years169). Better understanding of mechanisms underpinning progression of pulmonary 

fibrosis could lead to improved outcomes via identification of new therapeutic targets. 

To add to the complexity surrounding IPF, disease progression is also heterogeneous, 

with some individual patients experiencing long-term stability and others rapid loss of lung 

function. A number of longitudinal cohort studies have been created with the goal of better 

characterizing IPF pathobiology using proteomic measurements137,170–172. These efforts have 

identified individual proteins, including blood MMP-739,40, CCL1841, and blood surfactant 

protein D43,44, as potential prognostic biomarkers. However, it has been difficult to replicate 

these findings across multiple cohorts36,45, especially when attempting to validate specific, 

prognostically-relevant cut-off concentrations45,46. 

One potential explanation for failure to validate a specific prognostic biomarker is that 

disease progression is driven by dysregulated proteomic signaling networks rather than 

individual proteins. This hypothesis is supported by the multiple known actions of the two FDA-

approved drugs that slow IPF progression: nintedanib173 and pirfenidone173. The use of 

quantitative approaches to capture individual proteins within large clinical “omics” data sets has 

become a useful way to find new proteins associated with disease progression. Groups of 

proteins associated with progression that were identified by these approaches were characterized 

by biologically relevant functions, such as involvement in the immune system111,114,136, tissue 

reorganization109,114,136, and epithelial cell function109. While these results have highlighted 
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potential prognostic biomarkers and biological functions associated with IPF progression, many 

of the techniques used in these discoveries emphasize the additive significance of each protein’s 

individual ability to differentiate progression status but do not capture protein “signatures”, or 

take into account potential protein networks associated with progression. In addition, none of 

these large scale blood proteomics studies investigated quantitative proteomic relationships 

across other tissue compartments such as the lung. 

Data-driven (“machine learning”) modeling approaches are able to integrate data across 

multiple tissue compartments and assays to identify signatures of factors that are associated with 

the disease state92,102. They serve as valuable tools for network inference by identifying co-

varying factors that aid in generating new hypotheses for mechanisms of action based on protein 

interaction pathways rather than individual proteins. Once identified and validated, these 

signatures may be used for diagnostic or prognostic purposes, or for generating new hypotheses 

for future experimental work. We have previously used these approaches to successfully identify 

a blood protein signature that differentiated healthy and IPF patients with high accuracy174, as 

well as signatures based on blood and sputum proteins and blood cell markers that differentiated 

stable and exacerbated chronic obstructive pulmonary disease (COPD) patients175. 

In this work, we applied data-driven modeling approaches to blood and bronchoalveolar 

lavage (BAL) samples from patients enrolled in the COMET-IPF (Correlating Outcomes with 

Biochemical Markers to Estimate Time-progression in Idiopathic Pulmonary Fibrosis) study to 

gain insight into cross-tissue compartment and temporal mechanisms of action associated with 

IPF progression. We identified a signature of blood and BAL proteins that differentiated IPF 

progressors and non-progressors with high accuracy. This signature indicated more 

heterogeneous progressor subgroups compared to non-progressors, and that proteins elevated in 
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non-progressors were enriched for regulation of immune, defense, and inflammatory responses. 

Lastly, using measurements across multiple time points, we were able to identify a signature 

indicative of temporal changes in the blood of progressors that was not present in non-

progressors. Overall these results provide insight into mechanisms of IPF progression that could 

be investigated further in follow-up murine studies. 

3.3 Results 

3.3.1 Only a small number of individual blood proteins are differentially expressed across 

IPF progressors and non-progressors 

We evaluated a subset of participants (n=59) with an IPF diagnosis enrolled in the 

COMET IPF study. Participants were defined as progressors (n=34) if at the end of the 80 week 

study they had experienced death, lung transplantation, an acute exacerbation of IPF (AE-IPF), 

or a drop in forced vital capacity (FVC) of >10% or in diffusing capacity of the lung for carbon 

monoxide (DLCO) of >15%137. Otherwise participants were defined as non-progressors (n=25; 

demographics in Supplemental Table B.S1). Three blood draws from these 59 participants at 

week 0/baseline, 48, and 80 were used to measure the concentration of 1129 proteins (enriched 

for inflammation and cancer involvement) with SOMAmer© (slow off rate modified aptamer) 

technology (SomaLogic). One baseline (week 0) BAL sample was also collected from 51 

individuals (31 progressors and 20 non-progressors, 50 of whom also had a baseline blood draw 

included in this analysis; demographics in Supplemental Table B.S2), and the concentration of 

29 cytokines were measured with Luminex technology. There were no significant differences in 

demographic variables between the progressors and non-progressor groups, and all patients 

survived until the end of the 80-week study. Correlations in periostin SOMAmer aptamer and 

ELISA measurements within these samples have previously been published136. To build on this, 
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in Supplemental Table B.S3 we report significant Pearson’s correlations (all p < 0.03) between 

Figure 3.1. Schematic illustrating the number of 

samples and the computational tools used in 

analyses focusing on (a) comparing the inclusion of 

data from across multiple tissue compartments 

into data-driven models, and (b) comparing 

expression of proteins in the same patients over 

time. 
P, progressor; NP, non-progressor; BAL 

bronchoalveolar lavage; LASSO, least absolute 

shrinkage and selection operator; PLSDA, partial 

least squares discriminant analysis; VIP, variable 

importance in projection; DAVID, database for 

annotation, visualization, and integrated discovery; 

PC1, principal component 1. 
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SOMAmer and ELISA concentrations for CCL22, CCL18, and CCL2, but not for IL-10 or 

CXCL12 (both p > 0.45). Our analysis pipeline is illustrated in Figure 3.1: Figure 3.1A focuses 

on analyses of baseline (week 0) expression of proteins in the blood and/or BAL samples of 

COMET patients, and Figure 3.1B focuses on analyses of the temporal change in blood protein 

expression (week 0, week 48, and week 80).  

We first determined which of the measured baseline (week 0) 1129 blood and 29 BAL 

proteins were individually differentially expressed between IPF progressors (n=30) and non-

progressors (n=20; demographics of these 50 patients are found in Table 3.1). A two-sample t-

test was applied to each protein expression in progressors and non-progressors and revealed that 

28 blood proteins were significantly different across the two groups; 17 proteins were increased 

in the progressors (fold change greater than 1) (Figure 3.2A; blue markers indicate a p < 0.05 

and red indicate p < 0.01). The ten most significantly different blood proteins included E-

Cadherin (cadherin E; fold change 1.19); DC-SIGN (CD209 antigen; fold change 1.30); a2-

macroglobulin (fold change 1.24); ficolin-2 (FCN2; fold change 0.86); interleukin 17D (IL-17D; 

fold change 0.91); legumain (LGMN; fold change 0.87); C5b,6 complex (fold change 0.93); 

apolipoprotein B (ApoB; fold change 1.38); and neuroligin-4, X-linked (NLGNX; fold change 

1.24). Except for TGM3 (protein-glutamine gamma-glutamyltransferase E; fold change of 2.47), 

all significant proteins had fold change values that ranged from 0.80 to 1.48. No BAL proteins 

Table 3.1. Demographic and lung function test descriptions from progressors and non-progressors whose baseline blood 

and BAL protein measurements were used in creating models based on the combination of blood and BAL proteins. 
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were found significantly differentially expressed (Figure 3.2B). No proteins in blood or BAL 

were significant after application of the Bonferroni correction for multiple comparisons.   

3.3.2 Data-driven analyses identify best signatures in single tissue compartments that 

differentiate IPF progression status 

Due to the low number of significantly differentially expressed proteins in the univariate 

analysis, we next explored whether data-driven modeling techniques could identify signatures of 

proteins from single tissue compartments that differentiated IPF progressors and non-

progressors. Our analysis pipeline that focused on baseline (week 0) expression of proteins in the 

blood and/or BAL samples of COMET patients is visualized in Figure 3.1A. We used the least 

absolute shrinkage and selection operator (LASSO159) as a feature selection tool to identify a 

signature of baseline (week 0) blood proteins that would best differentiate COMET participants 

based on progression status at 80 weeks. For every LASSO model in this analysis, k-fold cross-

a b 

Proteins with a fold change greater than one are increased in progressors; fold changes less than one indicates elevation in non-

progressors. Blue protein markers have a p-value < 0.05 after a two-tailed, two-sample t-test; red markers indicate p-value < 0.01 

after the same test. No blood or BAL proteins were significantly different between progressors and non-progressors after 

adjusting for multiple comparisons using the Bonferroni correction. 

 

Figure 3.2. Volcano plot of blood (a) and BAL (b) proteins measured in COMET progressors and non-progressors. 
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validation (k=10; see Methods) was performed to prevent over-fitting. Feature selection was 

accomplished in the BAL proteins through the use of variable importance in projection (VIP) 

scores. We then employed partial least squares discriminant analysis (PLSDA176) in order to 

visualize the separation power of the identified signatures. By highlighting co-varying 

relationships within protein signatures, PLSDA aids in generating new hypotheses about 

proteomic pathways associated with each group. For every PLSDA model in this analysis, we 

calculated calibration and k-fold cross-validation accuracy (k=10) to use as metrics of model 

performance for comparing PLSDA models generated from data in different tissue compartments 

(see Methods). LASSO identified a signature of 61 blood proteins that differentiated 25 non-

progressors and 34 progressors (demographics in Supplemental Table B.S1); a PLSDA model 

based on this signature had 100% calibration and 96.53% cross-validation accuracy, and 97.06% 

sensitivity and 99.56% specificity for progressor identification (Supplemental Figure B.S1A 

and B.S1B; ROC curves in Supplemental Figure B.S2). The PLSDA model based on 12 VIP-

selected baseline (week 0) BAL proteins differentiated 20 non-progressors and 31 progressors 

(demographics in Supplemental Table B.S2) with 78.55% calibration and 67.82% cross-

validation accuracy (Supplemental Figure B.S3A and B.S3B; ROC curves in Supplemental 

Figure B.S4). Although these models performed with moderate to excellent accuracy, we 

wanted to explore the unique biological insight that might be gained from a model based on the 

combination of the data from the two tissue compartments. 

3.3.3 Cross-tissue compartment signature differentiates COMET participants based on 

progression status 

We combined measurements of the 1129 blood proteins and 29 BAL proteins from 

baseline samples to identify a cross-tissue compartment signature of co-varying proteins 
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associated with progression. LASSO identified a signature of 54 baseline (week 0) proteins (51 

Figure 3.3. The LASSO-identified signature based on blood and BAL proteins separated progressors and non-progressors 

with high accuracy and significantly outperformed analyses based on individual factors. 
(a) PLSDA scores plot based on blood and BAL proteins highlights strong differentiation between progressors (cyan) and 

non-progressors (purple); the model separated the two groups with 100% cross-validation and calibration accuracy. (b) The 

loadings on latent variable 1 (LV1) captured 8.75% of the total variance in the data, with negatively loaded proteins being 

comparatively increased in progressors and positively loaded proteins being comparatively reduced. (continued on next page) 
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in blood and 3 in BAL) that best separated progressors and non-progressors (comparison of 

protein signature expression in progressors and non-progressors can be found in Supplemental 

Figure B.S5). A PLSDA model based on this signature classified the two groups with 100% 

cross-validation and calibration accuracy (Figure 3.3A), with 100% sensitivity and specificity 

for each group (ROC curves in Supplemental Figure B.S6) and with positive and negative 

predictive values of 100%. Latent variable 1 (LV1) differentiated progressors (negative scores on 

LV1) from non-progressors (positive scores on LV1) (Figure 3.3B). Interestingly, we did not 

find significant Pearson’s correlations between the scores on LV1 in this signature and the 

concentration of KL-6 (r= 0.15, p=.31), MMP7 (r = -0.08, p=0.60), or CCL18 (r = 0.04, p=0.77), 

which were other previously identified individual biomarkers of progression. However, we did 

see a significant correlation between the LV1 scores and the change in FVC percent predicted 

over the 80 weeks of the study (r = 0.534, p = 0.00011, Pearson’s correlation coefficient).  

We compared this model to cross-validated PLSDA analyses based on single significant 

proteins identified in the volcano plot, as well as a cross-validated PLSDA model based on the 

collection of the 28 differentially expressed blood proteins in the volcano plot (ROC curves for 

last model shown in Supplemental Figure B.S7). The model based on the LASSO-identified 

signature had significantly higher calibration accuracy than all of the analyses based on the 

individual proteins and the collection of the differentially expressed proteins (Figure 3.3C; 

Cochran’s Q test with McNemar’s post hoc test). In terms of cross-validation accuracy, the 

Figure 3.3 caption continued (c) Comparison of the calibration accuracies between analyses based on data-driven 

signatures and univariate factors. The LASSO-selected PLSDA model based on blood and BAL proteins had significantly 

higher calibration accuracy than all analyses based on single proteins and a model based on the collection of all 28 

significantly different proteins identified in Figure 3.2 (Cochran’s Q test with McNemar’s post hoc test; * indicates p < 0.05 

and *** indicates p < 0.001). (d) Comparison of cross-validation accuracies between analyses based on data-driven 

signatures and univariate factors. The LASSO-selected PLSDA model based on blood and BAL proteins had significantly 

higher cross-validation accuracy than all analyses based on single proteins and trended towards better cross-validation 

accuracy than a model based on the 28 proteins identified in Figure 3.2 (one-way ANOVA with Tukey’s post hoc test; * 

indicates p < 0.05 and *** indicates p < 0.001). (e) Comparison of sensitivity between the LASSO-selected PLSDA model 

based on blood and BAL proteins and previously published models of IPF progression (serum fibulin-1177, plasma MMP-

7178, plasma SP-A178, and an additive combination of blood factors136. (f) Comparison of specificity between the LASSO-

selected PLSDA model based on blood and BAL proteins and previously published models of IPF progression. 
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LASSO-identified model also significantly outperformed analyses based on all of the individual 

Proteins, and trended towards outperforming the model based on the collection of the 28 

differentially expressed proteins (Figure 3.3D; one-way ANOVA). 

We also compared this model to other previously published single markers and 

combinations of markers that were shown to differentiate IPF progression status. The model 

based on our signature had 100% sensitivity and specificity, which outperformed previously 

published models that predicted IPF progression based on single factors (serum fibulin-1, 70% 

sensitivity and 71% specificity177; plasma MMP-7, 45.3% sensitivity and 68.5% specificity178; 

and plasma SP-A, 60.9% sensitivity and 53.9% specificity178), as well as a previously published 

model based on an additive combination of blood factors, where a score of ≥7 on the created 

index had a 66% sensitivity and 100% specificity for progression136 (Figure 3.3E, 3.3F). 

We next sought to determine if the PLSDA model based on the combination of blood and 

BAL proteins was a better classifier than models based on signatures of blood or BAL proteins 

alone. The model based on blood proteins alone and the model based on blood and BAL proteins 

combined had significantly higher calibration accuracy than the model based on BAL proteins 

alone (Supplemental Figure B.S8A, p = 0.0016 for marked comparisons; Cochran’s Q test with 

McNemar’s post hoc test applied to calibration accuracy of patients that were included in all 

three models). McNemar’s post hoc test could not be applied when comparing the calibration 

accuracies of the blood protein model and the combination model because all patients were 

classified correctly in both models. When comparing cross-validation accuracies across the three 

models, again the model based only on BAL proteins performed significantly worse than the 

blood protein model and the combination model (Supplemental Figure B.S8B, p = 0.0001 for 

the blood protein vs. BAL protein model comparison and p < 0.0001 for the BAL protein vs. 
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combination model comparison, one-way ANOVA with Tukey’s post hoc test applied to cross-

validation accuracy based on all patients in all three model). 

One reason the model based on BAL proteins had lower calibration and cross-validation 

accuracies might involve the high number of measured blood versus BAL proteins (1129 blood 

proteins vs. 29 BAL proteins). To investigate the potential effect of signature size on model 

accuracy, we created two new PLSDA models: one based on the top 12 loaded features of the 

blood signature; and the other based on the top 11 loaded proteins (all of which were blood 

proteins) and the top loaded BAL protein in the combination signature, for a total of 12 proteins 

in this shortened combination signature. When comparing the calibration accuracies of these 

models with the same signature size, there was no significant difference between the 

performance of the BAL protein model and the shortened blood protein model (p = 0.78, 

Cochran’s Q test with McNemar’s post hoc test). However, the calibration accuracy of the 

shortened combination model trended towards being significantly better than both of the BAL 

protein and the shortened blood protein models (p = 0.052 for both comparisons, Cochran’s Q 

test with McNemar’s post hoc test, Supplemental Figure B.S9A). There were no significant 

differences in cross-validation accuracy across any of the models, but again the shortened 

combination model trended towards significantly outperforming the BAL protein model (p = 

0.12, one-way ANOVA with Tukey’s post hoc test; Supplemental Figure B.S9B). Overall this 

suggests that the model based on blood proteins alone may have performed well due to the large 

panel of proteins measured, though the combination model still trends towards being 

significantly better than the BAL model even when the signature is shortened. We next explored 

the biological significance of the combination signature. 
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3.3.4 Non-progressors have enriched regulation of immune and defense response, and 

protein expression patterns suggest more heterogeneity in progressors 

The database for annotation, visualization and integrated discovery (DAVID165) 

determined the proteins that were comparatively increased in the non-progressors in the LASSO-

identified signature based on blood and BAL proteins were significantly enriched for processes 

involving immune and defense response regulation (Figure 3.4, enrichment score (ES) 4.83). 

Other functions enriched in non-progressors included cell signaling and regulation of basic cell 

processes (Supplemental Figure B.S10A, ES 2.57), and regulation of inflammatory, defense, 

and immune responses (Supplemental Figure B.S10B, ES 2.50). DAVID identified that 

proteins that were comparatively increased in progressors were only enriched for stress response 

regulation (Supplemental Figure B.S11, ES 2.05). 

We next used hierarchical clustering to visualize the individual expression of the proteins 

in the blood and BAL protein signature across all the patients. We saw four clusters that 

corresponded to the two groups, with one cluster composed only of non-progressors and three 

clusters that were mostly progressors (Figure 3.5). Only 5 non-progressors were misclassified 

out of 50 patients total (90% classification accuracy; 100% sensitivity and 75% specificity for 

Figure 3.4. DAVID enrichment analysis of the blood and BAL LASSO-identified proteins that were comparatively 

elevated in the non-progressor group in the PLSDA loadings plot showed enrichment for pathways involved in the 

regulation of the inflammatory, defense, and immune responses after application of the Bonferroni correction 

(enrichment score 4.83). 
Black squares indicate protein involvement in a particular pathway, while white squares indicate non-involvement. 
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identification of progressors). There were minor differences in classification accuracy of the 

PLSDA model and hierarchical cluster, likely due to underlying algorithmic differences 

associated with unsupervised identification of groups via the Pearson distance metric 

(hierarchical clustering) vs. supervised identification of groups based on maximized covariance 

in protein expression (PLSDA). Interestingly, there was heterogeneity within the progressor 

cluster, which was characterized by expression of different proteins. One of the progressor 

clusters had many apolipoproteins overexpressed compared to the mean (apolipoproteins E2, E3, 

and B), as well as cadherin E and DC-SIGN. Other progressors had high expression levels of 

Figure 3.5. Hierarchical clustering of the COMET IPF patients by the LASSO-identified blood and BAL protein 

signature highlights a single group of non-progressors (purple) and three groups of progressors (cyan) with distinct 

expression levels of various proteins in the signature. 
Only 5 out of the 50 patients were misclassified. Protein expression level is shown in the color scale on the left of the figure, 

with red indicating higher concentration compared to the mean, and blue lower concentration compared to the mean. 
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proteins that were also highly expressed in the first group of progressors (apolipoproteins E3 and 

B, and cadherin E), as well as proteins that were expressed highly in the non-progressor cluster 

(CTLA-4, MPIF-1/CCL23, and IL-17B receptor). The third group of progressors was 

characterized by high expression of TNFSF15 (also known as vascular endothelial growth 

inhibitor) and PSD7 (26S proteasome non-ATPase regulatory subunit 7). The presence of the 

three progressor groups in the hierarchical cluster may suggest heterogeneity among progressors 

compared to relative homogeneity among non-progressors, however based on the small sample 

size in this data it is not possible to determine whether these groups arise from other co-variates 

and/or random effects. We did evaluate whether any of the progressor clusters could be 

explained by other clinical and radiological variables collected during the COMET study, 

including progression metric (e.g. through AE-IPF or a >10% drop in FVC, etc.), smoking status, 

each participant’s genotyping at the MUC5B rs35705950 and the TOLLIP rs5743890 SNPs, and 

the presence of ground glass and honeycombing in their baseline CT scan. We did not find any 

apparent clustering by any of these other variables (Supplemental Figures B.S12A-H). 

3.3.5 Non-progressors exhibit fewer and stronger protein correlations at baseline (week 0) 

than progressors 

Interestingly, when we used correlation networks to explore relationships between 

proteins in the LASSO-identified signature based on blood and BAL proteins, we found the 

network based on signature expression levels in progressors had a larger number of overall 

weaker correlations than the network based on non-progressors. The protein correlation network 

based on progressors’ protein expression (Figure 3.6A) contained seven proteins with at least 

four significant correlations to other proteins. We speculate that the presence of numerous 

proteins with high numbers of significant correlations (i.e. hub proteins) may suggest a network 
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with multiple potential drivers, especially when compared to the correlation network based on 

non-progressors’ protein expression (Figure 3.6B), which only contained two proteins with four 

or more significant correlations. Blood caspase-2, CTLA-4, and ApoB, and BAL IL-4 were hub 

proteins in the progressor network, while blood CTLA-4 and ApoB were the hub proteins in non-

progressors. When comparing the two networks, it was clear that there were fewer (45 

correlations vs. 33 in the non-progressor network), but significantly stronger (higher absolute 

value; p = 0.0002, two-sample t-test) correlations present in the non-progressor network. 

3.3.6 Trajectory principal component analysis (PCA) identified significant differences in 

the temporal signature of progressors that were not present in non-progressors 

Finally, we found a time-dependent shift in protein expression in progressors that was not 

present in non-progressors. Our temporal analysis pipeline is illustrated in Figure 3.1B. We used 

LASSO and associated cross-validation to identify signatures that differentiated three time points 

of blood protein expression (week 0/baseline, week 48, and week 80) within progressors and 

Figure 3.6. Protein correlation networks of the LASSO-identified blood and BAL protein signature present in progressors 

(a) and non-progressors (b) suggest that non-progressors have a higher degree of control over their proteomic networks 

than progressors. 

 

A line connecting two proteins indicates the presence of a significant (p<0.05) correlation, as calculated by Pearson’s 

correlation coefficient. Brighter and thicker lines indicate stronger, more significant correlations, respectively. The value of the 

correlation coefficient for both networks is displayed in the color bar scale on the right, with red indicating a positive 

relationship and blue a negative relationship. Node size is proportional to degree of connectivity. 
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non-progressors. We then created trajectory principal component analysis (PCA) models179 

based on these signatures to judge temporal separation. The trajectory PCA based on progressor 

measurements found significant differences in the temporal signature for week 0 and week 80 

measurements, with week 48 time points falling in between the other two (Figure 3.7A). A one-

way ANOVA with Tukey’s post hoc test found that week 0 progressor scores on principal 

component 1 (PC1) were significantly different than scores from week 48 and week 80 (p < 

0.0001 for both comparisons). We also created a kernel density plot based on the progressor 

scores on PC1 to further illustrate the differences in the spread of scores between week 0 and 

week 80 (Figure 3.7B). The accompanying loadings plot (Figure 3.7C) indicated a relative 

Figure 3.7. Trajectory PCA highlights changes in blood protein expression over time in progressors that is not seen in 

non-progressors. 
(a) A trajectory PCA model based on three time points of progressor blood protein measurements highlights the change in 

protein expression patterns over time in IPF progressors. The week 0 scores on principal component 1 (PC1) were found to be 

significantly different from both the week 48 scores (p < 0.001) and the week 80 scores (p < 0.001) by one-way ANOVA with 

Tukey’s post hoc test. The week 48 and week 80 scores were not found to be significantly different from one another by the 

same test (p = 0.16). (b) The kernel density plot of the scores on PC1 provides another way of viewing the differences in the 

scores distribution on PC1 of across all three time points of progressors. (c) The LASSO-identified signature separates the three 

time points of progressor measurements while capturing 49.95% of the natural variance in the data across the first two principal 

components. (d) A trajectory PCA model based on three time points of non-progressor protein measurements does not show 

clear separation across the three time points. None of the scores on PC1 of the three time points were significantly different 

from each other after one-way ANOVA with Tukey’s post hoc test (all p > 0.05). (e) The kernel density plot of the scores on 

PC1 highlights the overlapping of the scores on PC1 from the three time points of non-progressors.  
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increased expression of inactivated complement C3b (iC3b) compared to matrix 

metalloproteinase 9 (MMP-9), methionine aminopeptidase 2 (AMPM2), cofilin-1, protein 

tyrosine kinase 6 (PTK6), and protein FAM107B at week 80, but relative increase of MMP-9, 

AMPM2, cofilin-1, PTK6, and protein FAM107B compared to iC3b at week 0. In contrast, a 

trajectory PCA model for non-progressors (Figure 3.7D) and a one-way ANOVA with Tukey’s 

post hoc test indicated there were no significant differences in PC1 scores across the three time 

points (p > 0.05 for all comparisons; loadings plot shown in Supplemental Figure B.S13). The 

kernel distribution plot of the non-progressors’ scores on PC1 highlights how all three time 

points are spread out among the same range of scores (Figure 3.7E). 

3.4 Discussion 

In this work we have identified cross-tissue compartment and temporal proteomic 

signatures that highlight differences between IPF progressors and non-progressors and generated 

new hypotheses for potential mechanisms of IPF progression. We discovered a multivariate 

signature based on proteins from the blood and lung tissue compartments that differentiated IPF 

progressors and non-progressors with 100% cross-validation and calibration accuracy and 100% 

sensitivity and specificity in a PLSDA model. This signature performed significantly better than 

analyses based on single proteins and a signature of BAL proteins. Through the use of other 

computational tools, we found that non-progressors were enriched for regulation of immune 

regulatory processes, and that the proteome of progressors had significantly weaker and a larger 

number of correlations than that of non-progressors. Using data from across multiple time points, 

we were able to identify significant proteomic differences in IPF progressors between week 0 

and week 80 measurements that were not present in non-progressors. These results illustrate the 

value of data-driven modeling approaches for integrating measurements over different tissue 
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compartments and experimental assays, and suggested potential prognostic signatures for 

progressive IPF for future validation. 

The combined use of LASSO with PLSDA allowed us to find small signatures out of 

hundreds of proteins that were able to accurately differentiate clinical groups of interest. PLSDA 

and LASSO were able to incorporate data from multiple tissue compartments and assays in the 

same model to enable a more holistic understanding of IPF progression. The signature of co-

varying blood and BAL proteins that we reported has the highest cross-validation and calibration 

accuracy compared to models based on single proteins, and either outperformed or matched the 

sensitivity and specificity of previously reported markers of IPF progression. Evaluating 

signature components allowed for further investigation of potential proteomic relationships and 

pathways associated with progression. Our identified signature was enriched for processes 

involving immune system regulation in non-progressors, which echoes results from other 

studies109,111,136, and also included 4 of the 6 proteins previously identified in the COMET cohort 

as an index of IPF progression136. The complement cascade has also previously been associated 

with IPF disease severity111. Interestingly, our identified signature did not include MMP-7, 

which has been linked to IPF progression in several other studies35,109,114, though some proteins 

in our signature did have proteolytic function (legumain, PSD7). 

There were several limitations associated with this study. While we were able to integrate 

SOMAmer- and Luminex-based measurements in our models, the SomaLogic platform 

measured many more proteins than the Luminex platform, potentially biasing results toward 

blood measurements and toward the functions of the 29 BAL cytokines measured with Luminex. 

Larger (in the case of BAL proteins) and less directed screens of blood and BAL proteins in 

future experiments may uncover more unbiased signatures. Another consideration is that aptamer 
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measurements do not always significantly correlate with ELISA concentrations, which could be 

due to different actions and binding sites of aptamers vs. antibodies. All subjects in the COMET 

study lived through the study end date, which means that our presented hypotheses might not 

representative of end-stage IPF patients. Although the model based on both blood and BAL 

proteins was found to be the most accurate at differentiating IPF progression status, this model 

would not currently be useful as a prognostic test due to 1) challenges associated with obtaining 

BAL measurements; and 2) the large number of proteins currently in the signatures. However, 

because our model is able to investigate covariation in protein expression across tissue 

compartments, we do believe that the analysis is useful for generating new insight into potential 

systemic and proteomic relationships associated with IPF progression. The blood protein 

signature identified here holds more promise as a prognostic signature (cross-validation accuracy 

of 96% was only moderately lower than the combined model); however, it would still require 

reduction in the number of proteins before it would be useful. Furthermore, development of a 

true prognostic signature for clinical use would require validation in new, larger cohorts. To our 

knowledge there is currently no appropriate validation cohort available, and the SOMAmer 

platform is no longer accessible for academic use. Therefore, we are unable to confirm the 

diagnostic or prognostic merit in any of the identified signatures. We did employ cross-validation 

which suggests that future validation of prognostic biomarkers could be valuable. 

 We identified signatures in our study to investigate potential mechanistic differences 

between IPF progressors and non-progressors, and found several emerging trends. A prior 

knowledge database (DAVID) indicated that significantly enriched processes in non-progressors 

involved regulation of immune or defense system responses, suggesting that this regulation is 

potentially lacking or deficient in progressors. We speculate that this idea that non-progressors 
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have better control of proteomic processes was also reflected in the protein correlation networks, 

where non-progressors had fewer hub proteins and fewer significant correlations present, but 

these correlations were significantly stronger than those in the progressor network. We 

hypothesize that this finding indicates a more stable protein network in non-progressors that 

would be difficult to perturb. Stronger correlations could also indicate that non-progressors have 

finer control over the expression of these proteins, suggesting that the biological pathways these 

proteins are involved in are less dysregulated than they are in progressors. Additional 

experimental analysis would be needed to confirm these ideas. 

IPF progressors were characterized by more heterogeneous proteomic expression across 

tissue compartments. Heterogeneity was suggested by both the correlation network (the large 

number of significant but weak correlations present in progressors), and also in the hierarchical 

cluster, which exhibited three progressor clusters that were characterized by unique expression 

patterns of proteins.  We speculate this may suggest potential subgroups (endotypes) are present 

within the progressors; however, this study did not have the power to eliminate the effects of 

other co-variates or random influence. One progressor cluster showed increased expression of 

many apolipoproteins, in addition to DC-SIGN, E-cadherin, ficolin-1, and other proteins. 

Intriguingly, another cluster of progressors exhibited increased expression of both proteins that 

were also highly expressed in the non-progressor cluster and proteins that were highly expressed 

in another progressor cluster. We investigated this group of progressors but did not find a 

significant difference in the time from COMET enrollment to date of progressive event between 

this group and the other two groups of progressors identified in the hierarchical cluster. 

Unsupervised analytical and clustering techniques could be used in other larger studies to better 

characterize and confirm potential endotypes of IPF progressors. 
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Intriguingly, proteins from the complement system were signature components in both 

the temporal-focused and in the tissue compartment analyses. We observed that progressors at 

later time points (48 or 80 weeks post-baseline) were characterized by comparatively increased 

expression of iC3b compared to other proteins in the signature. iC3b plays a critical role in 

pathogen binding and clearance, and also regulates other functions including phagocytosis and 

IL-12 secretion180,181. To our knowledge there have been no studies directly focused on IPF and 

iC3b, but complement 3 (C3)’s involvement in IPF has been previously studied, with C3 gene 

expression reported to be higher in the lungs of IPF patients vs. those of healthy controls182. 

Likewise, C3 deficient mice exhibited reduced lung injury after exposure to bleomycin than their 

wild type counterparts182, and depletion of the serum complement system inhibited bleomycin-

induced lung collagen deposition in rats183. Although these studies investigated C3 expression 

and fibrosis, in our data progressor iC3b expression was positively and significantly correlated 

with progressor C3 expression over all time points (Pearson’s correlation coefficient, ρ = 0.52, p-

value = 2.1*10-8), suggesting that changes in iC3b expression levels may reflect similar changes 

in C3 concentration. Although appearances of iC3b in identified signatures suggest an 

association with IPF progression, future experimental and clinical studies would be needed to 

confirm any mechanistic role. 

In conclusion, we were able to use systems-focused, data-driven modeling approaches to 

identify temporal and cross-tissue compartment proteomic signatures that led to increased insight 

into mechanisms associated with IPF progression. Overall, this work highlighted the ability of 

quantitative, systems-focused analytical techniques to aid in generating novel hypotheses for 

proteomic mechanisms associated with IPF progression. We envision these approaches could be 
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easily applied to integrate spatiotemporal data in clinical samples from other diseases that have a 

progressive and/or heterogeneous patient population.     

3.5 Methods 

3.5.1 Ethical approval statement 

All clinical investigations were conducted according to the Declaration of Helsinki. The 

human study protocol was approved by the institutional review board of all participating centers 

and methods were carried out in accordance with the relevant guidelines and regulations 

(University of California Los Angeles, Los Angeles, CA, United States; University of California, 

San Francisco, San Francisco, CA, United States; National Jewish Medical and Research Center, 

Denver, CO, United States; University of Chicago, Chicago, IL, United States; University of 

Michigan Ann Arbor, MI, United States; Cleveland Clinic Foundation, Cleveland, OH, United 

States; Temple University, Philadelphia, PA, United States; Brown University, Providence, RI, 

United States; Vanderbilt University, Nashville, TN, United States). 

3.5.2 Subject population 

The Correlating Outcomes with Biochemical Measurements to Estimate Time 

Progression in IPF study (COMET-IPF) (clinical trials ID no. NCT01071707) was a multi-

center, prospective observational cohort aimed at identifying markers of IPF progression. All 

data and samples used in this study were de-identified.  The study design has been described 

previously137,174, but in brief, eligible patients were aged 35-80 with a multidisciplinary IPF 

diagnosis (confirmed by clinical history, chest computed tomography (CT) scan, and a lung 

biopsy when necessary). Subjects with an IPF diagnosis >4 years prior to screening, diagnosed 

collagen-vascular disorder, FEV1/FVC < 0.60, evidence of active infection at screening, or 

comorbid conditions likely to result in death within one year were excluded. Informed consent 
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was obtained from all participating patients. Progression during an 80-week follow-up period 

was dichotomized by the composite occurrence of a relative decline in FVC of ≥10% or in the 

diffusion capacity of the lungs for carbon monoxide (DLCO) of >15%, acute exacerbation, lung 

transplant, or death. Seventy-one patients were originally screened for inclusion in the COMET 

cohort, of which 60 were included in the analysis described here. Patients were excluded from 

analysis based on a lack of blood samples at all three time points or missing data such as DLCO 

or 6 minute walk test as described in the original study137. 

3.5.3 Sample acquisition and measurements 

Peripheral blood samples were collected from 60 COMET patients at three time points 

(week 0/baseline, week 48 and week 80). Slow off-rate modified aptamers (SOMAmer©) 

technology was used to measure 1129 proteins present in blood samples at each collection time 

point. A small number of blood proteins in fifteen of these samples were later also measured by 

ELISA; the concentrations of the two platforms were correlated using Pearson’s correlation 

coefficient. 

Bronchoscopy was performed at enrollment in patients who were clinically stable and 

without evidence of active infection. Luminex FlexMAP 3D (Luminex Corporation, Austin, TX) 

technology was used to measure 29 cytokines/chemokines in the BAL samples. Samples below 

the lower limit of detection were set to be ½ the lowest minimum detectable concentration across 

the standard curves of all analytes. Before inclusion in any analyses, all BAL protein 

concentrations were normalized to total protein concentration as quantified by a Pierce 

bicinchoninic acid (BCA) Protein Assay Kit (Pierce Protein Biology, Rockford, IL). 

For more details on peripheral blood and BAL sample collection, please see Appendix B. 

3.5.4 Data processing 



 70 

Before beginning any analysis, a PCA model was created to identify potential negative 

drivers in the multivariate model. Negative drivers were defined as samples which 

disproportionally drove the final model such that model parameters solely explained the driver’s 

variance, and were characterized as samples with a Hotelling’s Reduced T2 statistic value > 5. 

The sample with the highest Hotelling’s Reduced T2 statistic greater than 5 was subsequently 

removed and another PCA model was generated based on the remaining data. This process was 

iteratively implemented until all samples produced Hotelling’s Reduced T2 statistics <5, resulting 

in 4 unique datasets with the following features: (1) baseline blood proteins (59 samples; 34 

progressors and 25 non-progressors; demographics detailed in Supplemental Table B.S1), (2) 

BAL proteins (51 samples; 31 progressors and 20 non-progressors; demographics in 

Supplemental Table B.S2), (3) baseline blood and BAL proteins (50 samples; 30 progressors 

and 20 non-progressors; demographics in Table 3.1), (4) temporal-dependent blood proteins for 

trajectory PCA (102 progressor and 71 non-progressor time point measurements in total). The 

associated univariate analyses contained the same spread of samples. All proteins, both those 

measured by SOMAmer aptamers and by Luminex, were measured in both progressors and non-

progressors and included in the initial LASSO analysis. 

3.5.5 Statistical analysis of differential protein expression in clinical cohorts 

Two volcano plots illustrated individual blood and BAL proteins that were significantly 

and differentially expressed across IPF progressors and non-progressors. Relative fold-changes 

in blood and BAL protein levels were calculated by dividing the average expression of each 

protein in progressors by that in non-progressors. Statistical analysis between protein expression 

in the cohorts was performed by standard two-sample t-tests. P-values < 0.05 were regarded as 

significant. 
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3.5.6 Identification of proteomic signatures with feature selection tools and PLSDA 

PLSDA was used in conjunction with feature selection tools to determine the protein 

signature which best differentiated clinical cohorts in various datasets. Prior to any analysis, data 

were normalized with mean centering and variance scaling. The LASSO was used when finding 

the minimum signature based on SOMAmer blood protein data. For all LASSO models, k-fold 

cross-validation (k=10) was used to generate the model with the lowest possible mean squared 

error for prediction, such that random subsets were iteratively excluded from the data set during 

model calibration and were later used to evaluate model predictions. VIP scores identified the 

differentiating signature of BAL proteins, with a VIP cutoff score for inclusion in the model of 

≥1. All PLSDA models were built using k-fold cross-validation (k=10) and were orthogonalized 

to improve interpretability. ROC curves were generated based on the classification ability of a 

PLSDA model. 

3.5.7 Analysis of differentially expressed proteome with DAVID 

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was 

used to identify significantly enriched biological processes based on the protein signatures 

identified by multivariate methods. Protein signatures which resulted from these approaches 

were sorted into profiles based on their relative expression levels in progressor or non-progressor 

cohorts. The sign of the PLSDA loadings on LV1 determined if the protein was comparatively 

increased in progressors (negative loadings) or non-progressors (positive loadings). The resulting 

clustering and enrichment diagrams from DAVID were created by searching through Gene 

Ontology (GO) biological processes (BP FAT), GO molecular function (MF FAT), and Kyoto 

Encyclopedia of Genes and Genomes (KEGG). Only the clusters and pathways which were 

significant after applying the Bonferroni correction within DAVID were reported. 
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3.5.8 Comparison of PLSDA model performance parameters 

In order to quantitatively compare calibration accuracy across multiple PLSDA models, 

each model of interest was probed to determine whether it correctly or incorrectly classified each 

individual patient. Patients who were not included in all of the models to be compared were 

unable to be included in this comparative analysis of calibration accuracy, which only affected 

the comparison of models based on multiple tissue compartments. A matrix of matched sets of 

proportions was generated where each patient’s classification state (e.g. correctly or incorrectly 

classified by the model) was represented as dichotomous values for each of the models of 

interest. These proportions were then compared using Cochran’s Q test in conjunction with 

McNemar’s post hoc test; significance was defined as the adjusted p<0.05. 

To compare cross-validation accuracy between models, we split the total data into ten 

groups (5-6 samples in each group) and then iteratively generated PLSDA models based on nine 

groups of data (training set), and tested the model with the unused group of data (test set). We 

recorded if these test samples were accurately classified by the model, and compared the percent 

accuracy from all ten groups associated with one overall PLSDA model to percent accuracy of 

other PLSDA models. Statistical significance between models was evaluated by a standard one-

way ANOVA with Tukey’s post hoc test. P-values <0.05 were deemed significant. 

3.5.9 Visualization of classification ability of LASSO-identified signature using clustering 

Hierarchical clustering of the LASSO-identified signature based on blood and BAL 

proteins was generated with supervised average linkage clustering. Pearson’s correlation 

coefficient was used as the distance metric. Samples were colored by progression status as well 

as other clinical, radiologic, and genetic variables. 

3.5.10 Exploration of network interactions between progressor and non-progressor cohorts 
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Protein correlation networks were constructed separately for progressors and non-

progressors using pairwise Pearson’s correlation coefficients between protein expression in the 

LASSO-identified signature within the two groups. Edge color and thickness correspond to 

coefficient value and statistical significance, respectively, with only significant correlations (p < 

0.05) being shown. Node size is proportional to its degree of connectedness. 

3.5.11 Investigating temporal dependences in progressor/non-progressor protein signatures 

LASSO identified the minimum blood signature that differentiated the three collection 

time points (week 0, 48 and 80) in progressors and non-progressors separately. Trajectory PCA 

models179 were then created based on each of these signatures. A one-way ANOVA with 

Tukey’s post hoc test was used to evaluate the significance of temporal differences in protein 

expression by comparing the scores on PC1 at each collection time point. P-values < 0.05 were 

considered significant. 

3.5.12 Visualization of time-dependent scores with density plots 

PC1 scores from each of the three time points in the trajectory PCA were fit to a kernel 

distribution. The kernel distribution was reconstructed into a probability density function using 

the fitdist function with the normal smoothing function and the default bandwidth value. 

3.5.13 Software summary 

All volcano plots, hierarchical clustering, heat maps, correlation networks, and density 

plots were completed using Matlab (v2016b, Matlab, Natick, MA). LASSO was implemented 

using Matlab software167. PCA and PLSDA models, ROC curves, and VIP score calculations 

were generated using the PLS toolbox available in Matlab® (v8.2.1, Eigenvector, Mason, WA). 

All statistics, with the exception of Cochran’s Q test, were performed using Prism version 7.00 
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and version 8.00 (GraphPad software, San Diego, CA). Cochran’s Q test with McNemar’s post 

hoc test was done in R software version 3.5.1 (R Core Team, Vienna, Austria).
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Chapter 4 Unpublished IPF Results 

Contributions. The COMET investigators, and Jeff Curtis and Christine Freeman were 

involved in collecting the BAL samples from the IPF patients and the healthy patients. Vibha 

Lama stored the COMET IPF BAL samples, and Drs. Curtis and Freeman stored many of the 

healthy BAL samples. 

4.1 Introduction 

In addition to the published work presented in Chapters 2 and 3, we have also generated 

additional models of IPF disease state and progression that have not been published. Key results 

in this chapter focus on analysis of BAL proteins, as well as the application of another data 

analysis tool to the IPF blood and lung protein data. The goal of this work was to identify 

proteomic signatures that could differentiate clinical groups and help us gain insight into 

processes involved in IPF disease state and progression. 

Although IPF is a disease that is localized to the lung, collecting lung tissue biopsies that 

could allow for deeper insight into pathways associated with disease state or progression can be 

dangerous due to the potential injury or exacerbation events that could result from sample 

collection. Another technique for the collection of samples that describe the pulmonary 

environment in a less injury-inducing fashion is the bronchoalveolar lavage (BAL) procedure. 

This procedure involves the injection of sterile saline into the lung followed by immediate 

collection, which provides a sample of the epithelial lining fluid (ELF), secreted cytokines, and 

cell types present inside the lung. Although this procedure still requires entry into the lung 
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environment through the trachea, there is lower risk for potential tissue damage when performed 

correctly for the BAL procedure than the surgical lung biopsy.  

However, the BAL sample collection process is variable, which has resulted in very few 

reports of BAL protein biomarkers for IPF. The quantitation issues associated with the BAL 

procedure are caused by variations in lung structure across patients that affect the amount of 

saline that is recollected after the flush; the unknown quantity of ELF that is collected with each 

saline flush; and potential contamination from bronchi-level lung cells184. Due to these factors, it 

has been difficult to deal with the unknown ELF dilution factor and identify proteins that can 

separate groups of interest, even though these samples come from the tissue compartment of 

injury. There has been some success using BAL samples in IPF: previously, IL-33 and thymic 

stromal lymphopoietin (TSP) concentrations in BAL were reported to be able to differentiate IPF 

from other interstitial lung diseases185. Additionally, monocyte chemoattractant protein 1 (MCP-

1), thymus- and activation-regulated chemokine (TARC/CCL17), and macrophage-derived 

chemokine (MDC) have been reported to be associated with poor outcomes in IPF186. However, 

there have been others who have reviewed results of studies focused on BAL samples that have 

concluded that measurements from BAL samples alone are not enough to diagnose patients with 

ILDs187–189.  

A potential reason why there are so few BAL proteins associated with disease state or 

progression could involve how both the BAL samples and the resulting proteomic data have been 

approached. There have been few studies where greater than ten BAL proteins were measured in 

each sample for IPF disease state or progression investigations126,190–193, although this seems to 

be changing as multiplex protein assays become more common and attainable. Additionally, the 

approaches taken when analyzing BAL data often involved looking at proteins one at a 
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time185,186,190,191,193–196, with only few studies considering how covariation or networks might lead 

to increased differentiation ability or increased biological insight126,192. The design of past 

experiments in this way could have potentially contributed to the lack of proteomic network-

level inferences made about lung processes involved in IPF disease state and progression. Based 

on this underutilization of BAL samples in the literature, we have applied our data-driven 

modeling techniques to identify signatures of BAL proteins that were able to differentiate IPF 

disease state and disease progression, and additionally created more cross-tissue compartment 

models using different classification algorithms, all of which led to increased insight into the 

potential role cytokines may play in IPF progression. 

4.2 Results 

4.2.1 BAL signature identified that differentiates healthy and IPF patients 

Two-sample, two-tailed t-tests were used to identify 3 proteins out of the 29 measured 

proteins which were significantly differentially expressed across the healthy and IPF 

populations: interferon α2 (IFNα2), IL-7, and IL-15 (p = 0.00012, p = 2.66*10-11, and p = 0.034, 

respectively). Variable Importance in Projection (VIP) scores selected and partial least squares 

discriminant analysis (PLSDA) visualized a signature of 4 out of 29 measured BAL proteins that 

differentiated healthy (n = 5) and IPF (n = 51) patients with 97.06% cross-validation and 

calibration accuracy (Figure 4.1A). Latent variable 1 (LV1) differentiated healthy (purple; more 

negative scores on LV1) from IPF patients (cyan; more positive scores on LV1) (Figure 4.1B). 

We then compared the calibration and cross-validation accuracy of the VIP-selected model to 

that of PLSDA analyses based on single differentially expressed proteins, and a PLSDA model 

based on all three of the significant proteins discovered. We saw that the VIP-selected model had 
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much higher calibration (Figure 4.1C) and cross-validation (Figure 4.1D) accuracy than 

analyses based on IFNα2 or IL-7, but tended to be slightly (1%) worse than analyses based on 

IL-15 alone and based on all three significant proteins.  

4.2.2 Lung signature that differentiates IPF progression status highlights importance of 

chemokines 

A 

D C 

B 

Figure 4.1. VIP-selected signature of BAL proteins classifies IPF disease state better than or just as good as single 

proteins. 
(A) The PLSDA scores plot separated healthy (purple) and IPF (cyan) subjects with 97.06% calibration and cross-validation 

accuracy. (B) The loadings on latent variable 1 (LV1) captured 50.56% of the variance in the data. Proteins loaded negatively 

on LV1 are comparatively decreased in IPF. Comparisons of calibration (C) and cross-validation (D) accuracies associated 

with models and analyses based on univariate-identified proteins shows that the VIP signature is better than or nearly as good 

as these models. 
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Due to the low number of proteins that were significantly differentially expressed across 

the progressors and non-progressors (Figure 3.2b), we then turned to data-driven modeling 

techniques to identify signatures of covarying proteins that could differentiate the two groups. As 

discussed in Chapter 3, we used VIP scores to select a signature of 12 BAL cytokines that 

differentiated IPF progressors (n = 31) and non-progressors (n = 20) with 78.55% calibration and 

67.82% cross-validation accuracy in a PLSDA model (Supplemental Figure B.S3a and 

B.S3b)197. The cytokine data included in this model were first normalized to protein albumin 

levels in the BAL samples using a bicinchoninic acid (BCA) assay (BCA-normalized BAL 

cytokines). This BCA-normalized model performed better than a model based on a signature of 

non-normalized BAL proteins, but performed significantly worse than models based on blood 

proteins alone and a model based on blood and BAL proteins combined (Chapter 3). We 

hypothesized that this might be due in part to the small number of BAL proteins measured 

compared to blood proteins, and that a targeted panel of BAL proteins (cytokines and 

chemokines) were measured compared to the less directed panel of blood proteins measured. 

While better characterization of potential cross-tissue compartment proteomic 

relationships can help create a holistic understanding of IPF progression, we also wanted to focus 

on gaining insight into the potential lung mechanisms associated with progression because the 

lungs are the main tissue compartment of injury in IPF. We created correlation networks based 

on the expression of the VIP-selected BAL protein signature in progressors (Figure 4.2A) and 

non-progressors (Figure 4.2B). In the progressor network, the proteins with the highest number 

of significant correlations to other proteins included MCP-1, IL-8, granulocyte colony 

stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), and 

epidermal growth factor (EGF). 
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4.2.3 Gradients of proteins were not able to differentiate progression status better than 

single cytokines 

We next investigated if the differential expression of proteins across the blood and the 

lungs could lead us to a deeper understanding of IPF progression. Standardized gradients have 

been successfully identified as being positively associated with higher disease risk in HIV, 

another immunological disease affecting a mucosal surface103. We applied decision tree analysis 

(DTA) to IPF to identify the gradient relationships that were best in differentiating progressors 

and non-progressors and the hierarchy of importance of these relationships in classifying the two 

groups. To calculate the gradients, we logarithmically transformed the raw blood and BAL 

protein data separately before standardizing the data by setting the mean of each protein to be 

zero and the standard deviation to be one. After that, we took these values and subtracted BAL 

protein – blood protein to find the gradient. This means that when interpreting the gradient 

A B 

Figure 4.2. Correlation network of the VIP-selected BAL protein signature present in (A) progressors and (B) non-

progressors. 

 
Proteins connected by two lines are significant (p < 0.05) correlated by Pearson’s correlation coefficient. Node size reflects the 

number of significant correlations to other proteins. Brighter and thicker lines indicate a stronger, more significant correlation, 

respectively. The value of the correlation coefficient for both networks is displayed in the color bar scale on the right, with red 

indicating a positive relationship and blue a negative relationship. 



 81 

values, a positive gradient value indicates a protein is higher in DTA highlighted eotaxin, 

followed by IL-4, as being the two most hierarchically important gradients involved in 

classifying IPF progressors and non-progressors (Figure 4.3). This model separated progressors 

and non-progressors with 76% cross-validation and 92% calibration accuracy. Interestingly, the 

majority of all progressors were found in one leaf, described by having a lower BAL eotaxin 

concentration compared to plasma, a lower BAL IL-4 concentration compared to plasma, and a 

higher BAL TNF-β concentration compared to plasma. Although we found that the DTA model 

based on the gradient concentration across the lung and blood tissue compartments nominally 

outperformed DTA models based on only blood or only BAL protein expression, the calibration 

Figure 4.3. Decision tree analysis based on gradients of protein concentrations across tissue compartments highlights 

hierarchical importance of gradient concentrations in differentiating progressors (P) and non-progressors (NP), with 

eotaxin being the most hierarchically important blood-lung gradient involved in differentiating the two groups, followed 

by IL-4.  

All gradients were calculated by logarithmically transforming the protein expression data, normalizing each protein to have a 

mean of zero and a standard deviation of one, and then subtracting BAL protein – blood proteins. A positive gradient is 

indicative of a higher concentration of the protein in the BAL sample. 
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and cross-validation accuracies of these models were very close to each other and were not 

significantly different (data not shown). 

4.3 Discussion 

In this work, we identified signatures of cytokines measured in BAL samples that were 

able to differentiate healthy and IPF patients, as well as IPF progressors and non-progressors. We 

were successfully able to detect and measure the concentrations of cytokines in BAL samples 

collected from IPF patients by doubling the volume used in our Luminex assay. We 

hypothesized that lung chemokines may play a role in IPF progression, and that these 

chemokines recruited cell types that suggested that multiple mechanisms of tissue reorganization 

may be at play in progression. These results illustrate the value of coupling Luminex 

measurements with data-driven modeling techniques in order to gain increased insight into 

proteins and potential mechanisms associated with IPF disease state and progression. 

To our knowledge, this was the first time that a signature of BAL cytokines had been 

identified that could differentiate IPF from healthy patients. This model outperformed all 

analyses based on differentially expressed proteins except for models based on IL-15, for which 

our VIP-selected signature was less accurate than by only 1%. We hypothesize this occurred 

because IL-15 was highly significantly different across the healthy and IPF groups (p = 2.66*10-

11, two-sample t-test). Overall, using signatures of lung proteins to differentiate disease state in 

IPF may be able to serve as a complementary tool and confirm co-variation between proteins that 

were already identified in univariate analysis, which could allow us to gain increased insight into 

the pulmonary environment of IPF.  

We hypothesized that chemokines are important in IPF progression from our results of 

protein correlation coefficient networks based on the BAL protein signature that differentiated 



 83 

IPF progressors and non-progressors in Chapter 3197. In the progressor correlation network 

based on the VIP-selected BAL protein signature, the hub proteins included MCP-1, IL-8, GM-

CSF, G-CSF, and EGF. These cytokines attract and support the growth of neutrophils (GM-CSF 

and IL-8), are chemoattractive for and stimulate the growth of monocytes (MCP-1), and increase 

fibronectin secretion in IPF fibroblasts (EGF). The interactions between these hub proteins and 

cell types are intriguing given current hypotheses surrounding IPF pathogenesis and progression: 

when recruited to the lung tissue, monocytes secrete pro-fibrotic inflammatory cytokines16 and 

can differentiate into macrophages198, which are associated with IPF pathogenesis199; neutrophils 

may be involved in regulating lung fibrosis levels through their role in ECM regulation via 

secretion of neutrophil elastase and in balancing levels of matrix metalloproteinases (MMPs) and 

tissue inhibitors of metalloproteinases (particularly MMP-8200), although their exact contribution 

to IPF fibrosis remain unclear201; EGF has been shown to cause IPF fibroblasts to secrete 

increased levels of fibronectin202. Taking these functions and the correlation network together, 

this suggests that progressors may undergo tissue reorganization through multiple pathways, and 

that each pathway is potentially affected by each other. Follow-up on these results with in vivo 

models of fibrosis will be key to see if these mechanisms are affected by each other, and if all of 

them are associated with fibrosis. 

When applying decision tree analysis to the IPF progression data, we saw that gradients 

of cytokines were only slightly better at differentiating IPF progressors and non-progressors 

compared to expression data from single tissue compartments alone. We found the IL-4 gradient 

to be somewhat surprising, as it would be expected based on the literature that alveolar 

macrophages secrete higher levels of IL-4 than compared to smokers and controls203, and that IL-

4 is increased in the BAL of IPF patients compared to controls204. This DTA result could be due 
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to the preprocessing that had to be performed before the creation of the DTA model because the 

blood and BAL proteins were measured using different platforms – the aptamer-based 

SomaLogic platform that reported blood protein concentrations in relative fluorescence units 

(RFUs), and the albumin-normalized antibody-based Luminex platform that reported BAL 

protein concentrations in pg protein/mg albumin. Overall, this result does not suggest that 

gradients of cytokines across the blood and lung tissue compartments are significantly better at 

differentiating IPF progression status.  

Limitations associated with this work come from the small sample size (especially in the 

case of the healthy patients), the nature of the COMET cohort, and the variability associated with 

obtaining BAL measurements. Healthy BAL samples are difficult to come by due to the 

invasiveness of the procedure, which is why so few healthy samples were included in this model. 

The low number of healthy samples is the reason why we did not perform any follow-up 

analyses on the signature, as the 5 healthy patients we were able to include may not be a 

complete representation of the healthy population at large. As stated in Chapter 3, all COMET 

IPF subjects lived through the end of the study, so hypotheses presented here may only apply to 

mild- to moderate-IPF and not end-stage IPF. We did not have access to new samples for model 

validation, but we did cross-validate our models whenever possible. Lastly, the BAL sample 

collection procedure is a variable process. We have done our best to account for this variability 

by normalizing protein concentrations measured by Luminex to the total protein albumin 

concentration measured by the BCA assay in each sample. We found that our models based on 

albumin-normalized protein concentrations performed better than models based on non-

normalized protein concentrations (data not shown), but it should be mentioned that there is no 
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consensus as to which BAL normalization technique best reflects the physiological concentration 

of the proteins in the lung lining fluid. 

4.4 Methods 

4.4.1 Human sample collection and protein measurements 

IPF BAL samples were collected from patients enrolled in the Correlating Outcomes with 

biochemical Markers to Estimate Time-progression in IPF (COMET) study (clinicaltrials.gov, 

clinical trials ID no. NCT01071707). Although the COMET study recruited 60 IPF patients, only 

51 IPF BAL samples were available when measuring protein concentrations (20 non-progressors 

and 31 progressors). Inclusion criteria and the definition of disease progression employed in this 

study have previously been described136,174. Informed consent was obtained from all participating 

centers, which included University of California Los Angeles. Los Angeles, CA, United States–

University of California, San Francisco. San Francisco, CA, United States–National Jewish 

Medical and Research Center, Denver, CO, United States–University of Chicago, Chicago, IL, 

United States–University of Michigan Ann Arbor, MI, United States–Cleveland Clinic 

Foundation, Cleveland, OH, United States–Temple University, Philadelphia, PA, United States–

Brown University, Providence, RI, United States–Vanderbilt University, Nashville, TN, United 

States. The study protocol was approved by the institutional review board of all participating 

centers and methods were carried out in accordance with the relevant guidelines and regulations. 

Bronchoscopy was performed at enrollment in patients who were healthy enough to undergo the 

procedure. BAL samples were collected and pooled from 4 installations of 50 mL sterile isotonic 

saline aliquots. Cell-free fluid was stored at -80°C.  

Four healthy BAL samples were collected at the Veteran’s Association Ann Arbor 

Healthcare System (VAAAHS), with the collection protocol approved by internal review boards 
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(IRBs) at the VAAAHS and at the University of Michigan Health System (UMHS). BAL was 

performed through 5 installations of 30 mL of sterile saline into each side of the lung, with all 

installations being then pooled at the end. The fifth healthy BAL sample was also collected at the 

UMHS. For this sample, 2-3 installations of 60 mL of sterile saline were flushed into the right 

lung, and all installations were later pooled. For all five healthy BAL samples, cell-free fluid was 

stored at -80°C until protein measurement occurred. 

All BAL samples were then collected and Luminex FlexMAP 3D technology (Luminex 

Corporation, Austin, TX) was used to measure 29 cytokines/chemokines in all BAL samples. For 

protein measurements in Luminex, we used a protocol that used ¼ of the recommended number 

of beads and sample to minimize bead and sample volume for the assay, which was inspired by 

Arnold et al.205. Due to low cytokine concentrations present in BAL samples206, we also ran BAL 

samples at 2X the normal volume for this protocol, which was 30 µL per well. Samples were run 

in duplicate, and those that were below the lower limit of detection were set to be ½ the lowest 

minimum detectable concentration across the standard curves of all analytes. Before inclusion in 

any analyses, all BAL protein concentrations were normalized to total protein concentration as 

quantified by a Pierce BCA Protein Assay Kit (Pierce Protein Biology, Rockford, IL).  

4.4.2 Quantitative modeling approaches 

The first step in the data-driven analysis was to determine if any samples negatively 

drove the creation of the data-driven models. All data were normalized by mean centering and 

variance scaling before any PCA models were built. Negative drivers were samples which 

disproportionally drove the final models of disease state or of disease progression such that 

model parameters solely explained the driver’s variance, and were characterized as samples with 

a Hotelling’s Reduced T2 statistic value > 5. The sample with the highest Hotelling’s Reduced T2 
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statistic that was greater than 5 were subsequently removed and another PCA model was 

generated based on the remaining data. This process was iteratively implemented until all 

samples produced Hotelling’s Reduced T2 statistics < 5. 

Once all negative drivers had been identified, we used PLSDA in conjunction with VIP 

scores to determine the protein signatures that best differentiated the healthy and IPF patients, 

and IPF progressors and non-progressors. Proteins that had a VIP score ≥ 1 were said to be 

important, and another PLSDA model was then built based only on the VIP-selected features. All 

data were normalized by mean centering and variance scaling before any PLSDA models were 

built. All PLSDA models were built using K-fold cross-validation (k = 10), and models were 

orthogonalized after VIP-selection to improve interpretability. The model of BAL proteins that 

differentiated healthy and IPF patients is discussed in depth in Chapter 3197.  

Protein correlation coefficient networks were constructed using pairwise Pearson’s 

correlation coefficient based on expression of the BAL proteins in the VIP-selected signature in 

progressors and non-progressors separately. A brighter and thicker line connecting two protein 

nodes indicates a stronger and more significant correlation, respectively, with only significant (p 

< 0.05) correlations being shown. Node size is proportional to its degree of connectedness. 

Cytokine gradients were calculated by first log10 transforming the 23 proteins that were 

measured both by Luminex technology in the BCA normalized BAL samples and by SOMAmers 

in the blood samples. The log10 transformed values were then standardized, and the gradient was 

calculated by subtracting blood values from BAL values such that a positive gradient indicated 

higher concentration in the BAL. A classification decision tree algorithm predicted the hierarchy 

of importance in gradient or raw concentration from single tissue compartments that were best at 

differentiating IPF progressors and non-progressors, with Gini Diversity Index being used as the 
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split criterion. Each tree was cross-validated using k-fold cross-validation with 10 folds. Trees 

were pruned to the level that exhibited the lowest calibration and cross-validation error. 

A two-tailed, two-sample t-test was used to determine significant differences in 

expression across the healthy and IPF groups. All quantitative models, decision trees, and 

statistical analyses were created using Matlab (v2016b, Matlab, Natick, MA). PCA, PLSDA, and 

VIP scores were calculated using the PLS toolbox available in Matlab (v8.2.1, Eigenvector, 

Mason, WA). 
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5.1 Abstract 

Introduction—Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of 

death in the United States, with high associated costs.  Most of the cost burden results from acute 

exacerbations of COPD (AE-COPD), events associated with heightened symptoms and 

mortality. Cellular mechanisms underlying AE-COPD are poorly understood, likely because they 

arise from dysregulation of complex immune networks across multiple tissue compartments.   

Methods—To gain systems-level insight into cellular environments relevant to exacerbation, we 

applied data-driven modeling approaches to measurements of immune factors (cytokines and 

flow cytometry) measured previously in two different human tissue environments (sputum and 

peripheral blood) during the stable and exacerbated state.   

Results—Using partial least squares discriminant analysis (PLSDA), we identified a unique 

signature of cytokines in serum that differentiated stable and AE-COPD better than individual 

measurements.  Furthermore, we found that models integrating data across tissue compartments 

(serum and sputum) trended towards being more accurate.  The resulting paracrine signature 

defining AE-COPD events combined elevations of proteins associated with cell adhesion 

(sVCAM-1, sICAM-1) and increased levels of neutrophils and dendritic cells in blood with 

elevated chemoattractants (IP-10 and MCP-2) in sputum. 

Conclusions—Our results supported a new hypothesis that AE-COPD is driven by immune cell 

trafficking into the lung, which requires expression of cell adhesion molecules and raised levels 

of innate immune cells in blood, with parallel upregulated expression of specific chemokines in 

pulmonary tissue. Overall, this work serves as a proof-of-concept for using data-driven modeling 

approaches to generate new insights into cellular processes involved in complex pulmonary 

diseases. 



 91 

5.2 Introduction 

Chronic obstructive pulmonary disease (COPD) is a progressive and heterogeneous lung 

disease that is the fourth leading cause of death in the United States207, with yearly U.S. medical 

costs expected to increase to nearly $50 billion in 202057. A large portion of these costs is 

attributed to acute exacerbations of COPD (AE-COPD), characterized by increased symptoms 

(dyspnea, coughing, sputum production, and fatigue) beyond day-to-day variation that require 

treatment with antibiotics or corticosteroids208. Severe exacerbations (that require 

hospitalization) have an in-hospital all-cause mortality rate of 5-7%71,72, and account for most of 

the financial burden of COPD209. Accordingly, the prediction and treatment of AE-COPD events 

are top priorities. 

Nonetheless, pathogenic cellular mechanisms underpinning AE-COPD are largely 

undefined. Local tissue and systemic inflammatory pathways are hallmarks of COPD, and are 

further increased during AE-COPD. Most AE-COPD are also associated with evidence of viral 

or bacterial infections or both92,210,211, with upregulation of IL-8, TNF-α and reactive oxygen 

species in cells and tissue environments211. Some AE-COPD are also highly eosinophilic92. 

COPD patients with persistent systemic inflammation have higher mortality and exacerbation 

rates compared to non-inflamed patients212. AE-COPD frequency is reduced by several types of 

therapies, including inhaled corticosteroids (ICS), long-acting muscarinic antagonists, scheduled 

azithromycin, and roflumilast81,213–215. The success of these treatments, which share 

immunomodulatory effects, support acutely increased inflammation as contributing to AE-

COPD, though fundamental mechanisms driving AE-COPD remain elusive. 

Despite identification of individual cell types and cytokines that are differentially 

expressed between stable and exacerbated COPD216–218, no single factor entirely accounts for 



 92 

AE-COPD, and therapies based on single targets have been unsuccessful. In the past 25 years, 

only one new class of medicine has been accepted for COPD treatment219. Plasma fibrinogen 

was recently qualified by the Food and Drug Administration as a prognostic biomarker, but only 

for subject enrichment in clinical trials of exacerbation and mortality96. Both serum C-reactive 

protein (CRP)89,220 and IL-6220,221 are upregulated in the secreted systemic environment during 

AE-COPD, but CRP alone is insufficiently sensitive as an AE-COPD biomarker222, and IL-6 

elevations are inconsistently associated with exacerbations223. New approaches to understanding 

cellular mechanisms underpinning AE-COPD pathogenesis are clearly required. 

As COPD is a complex condition exhibiting evidence of immunological 

involvement224,225, it is plausible that AE-COPD events result from disrupted networks of 

immune cells and cytokine communication, rather than from individual mediators. Data-driven 

modeling approaches offer the opportunity to infer these systems-level relationships by 

identifying small signatures of proteins or other cellular immune factors that co-vary with each 

other and are associated with disease state. These signatures can then be linked to mechanisms or 

cell types involved in phenotypes or pathogenic states, providing insight into specific disease 

biology and potential targets for follow-up experiments and therapeutic intervention. Partial 

Least Squares Discriminant Analysis (PLSDA) is a useful tool for highlighting covariance 

among variables that best classify groups of interest, which could lead to the identification of 

potential proteomic and cellular networks associated with AE-COPD. We have previously 

illustrated that PLSDA is able to identify and aid in visualizing biologically relevant proteomic 

and cellular signatures that may give insight into inflammatory pathways. We have used it to 

evaluate inflammatory signatures in the female reproductive tract mucosa102 and the blood of 
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interstitial pulmonary fibrosis (IPF) patients174, in both cases identifying new biomarkers and 

generating novel insight into key cellular mechanisms. 

In this study we apply data-driven modeling approaches to gain insight into the proteomic 

networks and cellular mechanisms in blood and lung environments that underpin AE-COPD 

using a prospective cohort study91, which collected paired sputum and peripheral blood samples 

from COPD subjects when clinically stable and again before treatment for an AE-COPD. We 

show that data-driven modeling approaches are able to 1) identify cytokine networks that may be 

better for classifying AE-COPD than individual cytokines, 2) determine key relationships 

between cytokines in different tissue compartments, and 3) integrate information measured in 

different assays to provide a more complete picture of pathogenic processes involved in AE-

COPD.    

5.3 Methods 

5.3.1 Study design, ethics and subject populations 

All samples and data in this analysis derived from a published prospective observational 

trial (ClinicalTrials.gov NCT00281216)91, which followed subjects at increased risk of AE-

COPD for up to three years. Patients were recruited at the VA Ann Arbor Healthcare System 

(VAAAHS) and the University of Michigan Health System (UMHS). All parts of the study 

adhered to the Declaration of Helsinki and obtained approval of each site’s Institutional Review 

Board, with all subjects giving written consent to the study before any procedures occurred. At 

enrollment and quarterly, participants underwent spirometry, pulmonologist clinical evaluations, 

collection of peripheral blood and spontaneously expectorated sputum, and a post visit 

questionnaire. An exacerbation of COPD was said to occur if the subject reported an increase in 

dyspnea, cough or sputum production, and if the study physician ordered antibiotics or oral 
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steroid for the patient after a physical examination and chest radiographs to rule out pneumonia. 

Only if a diagnosis of AE-COPD was made were sputum and peripheral blood samples collected 

at these unscheduled visits. After all data and sample collection occurred, then each subject 

began treatment for AE-COPD. 

5.3.2 Sample collection, processing, and measurements 

Peripheral blood was used for both leukocyte immunophenotyping and to measure 40 

analytes in serum, which was stored at -80°C until analysis. Spontaneously expectorated sputum 

was immediately processed in a 9:1 mixture of distilled water to Sputolysin® (EMD Millipore, 

Billercia, MA) as described91, and the resulting supernatant was stored at -80°C until used to 

measure 36 analytes. Serum and sputum samples were unfrozen and protein concentrations were 

measured simultaneously either using a Luminex 200 System® (Luminex Corporation, Austin 

TX) or ELISA (GDF-15, IL-18, IL-23p19 and IFN-β)91. 

Whole blood was stained with directly conjugated monoclonal antibodies on the day of 

the visit as described in the text and supplemental information of Freeman et al.91 Cells were 

analyzed using a LSR II flow cytometer (BD Bioscience, San Jose, CA) as reported in 

McCubbrey et al.226, using FACSDiva software (BD Biosciences) data with automatic 

compensation and FlowJo software (Tree Star, Ashland, OR).   

5.3.3 Data processing and systems analysis 

Samples with multiple missing measurements were removed from analysis if missing 

values were recorded for more than 25% of the proteins that were measured in each assay (serum 

protein, sputum protein or blood cell marker); proteins were then removed if more than two 

measurements were missing for any one protein. We identified and illustrated individual proteins 

that were differentially expressed in stable and exacerbated states using a volcano plot. First, a 
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non-parametric, two-sided Wilcoxon paired signed rank test was used to determine significance 

in the non-normalized proteomic or cell marker expression during the stable and exacerbation 

states, with significance being defined as p < 0.05. Then, the relative fold change in protein or 

cell marker level was calculated by dividing the average concentration during exacerbation by 

the average concentration during stability. Each protein or cell marker was then plotted in one 

figure, with fold change on the x-axis and the p-value on the y- axis. Minor differences between 

these results and the previously published univariate results (Freeman et al.) can be attributed to 

variation in which subset of patients were included in each analysis91. 

PLSDA, which was performed using the Eigenvector PLS Toolbox in MATLAB, was 

used to identify and visualize signatures of multivariate cytokine and cellular markers that 

differentiated stable and AE-COPD176.  Taking a supervised approach, PLSDA assigns a loading 

to each variable and selects a linear combination of all variables (a latent variable) that best 

separates pre-defined groups. A higher value of a protein loading on a latent variable indicates 

the protein is of more importance in differentiating the groups of interest. Each sample is then 

scored based on its protein expression and are visualized in the scores plot. The loadings can be 

used for hypothesis generation based on how the subsets of the protein signature are associated 

with each of the groups in the scores plot. Each PLSDA model was cross-validated as a measure 

of model accuracy. Cross-validation was performed by iteratively excluding ~10% of the data for 

all models based on serum proteins only, ~17% of the data from the serum and sputum protein 

PLSDA model, and ~20% from the serum and sputum protein and blood cell marker PLSDA, 

which in each case resulted in 3-4 samples being excluded. The excluded data was then used to 

test the trained model. Care was taken when designing the training and test sets to ensure that no 

test set had more than one measurement from a unique patient. All missing data points included 
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in the PLSDA models were filled in by the Eigenvector software’s “best guess.” All models were 

orthogonalized to enable clear visualization of the results, and all data were mean centered and 

variance scaled before being used to create the model. Variable Importance in Projection (VIP) 

scores were used to reduce model dimensionality by determining the importance of each variable 

in differentiating the groups of interest227. Proteins with a VIP score < 1 were removed from the 

model, and a new PLSDA model was then built based on the remaining proteins or cellular 

factors.    

In order to facilitate a more quantitative comparison across PLSDA analyses, we 

calculated the cross-validation accuracy associated with each training and test set that was 

created during cross-validation. We then statistically compared cross-validation accuracies 

across the models based on different folds by using a one-way ANOVA with Tukey’s post hoc 

test. A p value of less than 0.05 was considered significant after application of Tukey’s test. 

We visualized the distinct proteomes associated with stable and AE-COPD events 

through unsupervised average linkage hierarchical clustering; Spearman’s correlation coefficient 

was used as the distance metric. Correlation heat maps were constructed based on the Spearman 

rank correlation calculated between the difference in cell marker and protein concentration from 

the stable to the exacerbated state, where correlation coefficients that had a p value of greater 

than 0.05 were set to be zero for the figure. When creating hierarchical clusters or correlation 

heat maps, all missing data points were imputed using the MATLAB function knnimpute, with 

the pairwise distances between patients calculated based on the Spearman rank correlation. 

All PLSDA models, VIP scores, Wilcoxon signed rank tests, hierarchical clusters, heat 

maps, and Spearman correlation testing were created or calculated using MATLAB (MATLAB, 

Natick, MA); PLSDA models and VIP scores were specifically generated using the PLS toolbox 
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in MATLAB (Eigenvector, Manson, WA). ANOVA and Tukey’s tests were performed using 

Prism version 7.00 (GraphPad Software, San Diego, CA). 

5.4 Results 

5.4.1 Patient enrollment and demographics 

We analyzed data from 13 COPD subjects who completed both the baseline visit and at 

least one AE-COPD visit. They were a predominantly middle-aged (mean age 67.9 years), male 

(9 of 11) group with advanced COPD (mean FEV1 33.4% predicted) comprised of both current 

and former smokers. Specifics of their demographics, clinical characteristics and in which data-

driven models their data were used is shown in Table 5.1. In summation, this study captured 18 

total paired stable and AE-COPD events among the 13 subjects, with some subjects experiencing 

more than one AE-COPD during the course of the study. 

5.4.2 Evaluation of individual immune factors associated with AE-COPD 

We first identified individual cellular immune factors and receptors that differed 

significantly between stable and AE-COPD, similar to our previously published work91. Out of 

35 serum proteins (see Materials and Methods in Section 5.2), five were found to be 

Table 5.1. Summary of demographic, smoking, and spirometry and model inclusion 

information.  
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significantly different (p < 0.05): interleukin 1 receptor 2 (IL-1R2; fold change 1.35), soluble 

intercellular adhesion molecule 1 (sICAM-1; fold change 1.33), soluble vascular cellular 

adhesion molecule 1 (sVCAM-1; fold change 1.27), growth differentiation factor (GDF-15; fold 

change 1.29) and interleukin 10 (IL-10; fold change 1.66) (Figure 5.1A). From 30 proteins 

measured in sputum, only CRP was significantly different between stable and AE-COPD (fold 

change 5.56) (Figure 5.1B). Three of 26 cellular markers measured by flow cytometry were 

differentially expressed: percent of CD4+ cells (%CD4+; fold change 0.61), CD4+ CD62L cells 

(CD4_CD62L, fold change 1.03), and CD4+ IL-18R cells (CD4_IL18; fold change 2.08) 

(Figure 5.1C). The expression of both CD62L and IL-18R indicate activation of CD4+ T cells. 

While the significance levels indicated in the volcano plots are based on average concentration 

data, the grouped scatter plots in Supplemental Figures C.S1, C.S2, and C.S3 track individual 

changes across the two COPD states in specific patients. All immune factors were significantly 

elevated during exacerbation with the exception of %CD4+ cells. Overall, these results reflect 

observations in the original study91, in which only a small number of proteins and individual 

blood cell types and activation markers were significantly different between stable and 

Figure 5.1. Individual proteins and cell populations measured in stable and exacerbated states. 

 
(A) Volcano plot illustrates serum proteins that are both differentially expressed (x axis) and significantly different (y axis) 

between the stable and exacerbated state.  Significance was determined using non-normalized data (Supplemental Figures 

C.S1, C.S2 and C.S3), and points in red indicate significantly different expression between the stable and exacerbated state via 

paired Wilcoxon signed rank test, with significance being defined as p < 0.05. (B) Volcano plot highlighting significantly 

different sputum proteins across the stable and exacerbated state. Significance was determined as described above (p < 0.05). 

(C) Volcano plot illustrating blood cell marker measurements that were significantly different between stable and AE-COPD. 

Significance was determined as described above (p < 0.05). 
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exacerbation. None of the proteins or cell markers in the three volcano plots were found to be 

significant after application of the Bonferroni correction and many of the fold changes measured 

were small (close to 1). 

In our data there were three patients who had more than one exacerbation event.  We 

explored the effects of this by additionally analyzing the data after averaging multiple stable and 

multiple exacerbation measurements within the same patient. Overall, we found that our results 

were similar, both in individual significant proteins identified and in fold change in the 

exacerbated state (Supplemental Figure C.S4). 

Additionally, we also constructed a model of exacerbation based only on protein 

measurements in sputum samples. This VIP-selected PLSDA model performed with 91.67% 

calibration and 78.33% cross-validation accuracy and can be found in Supplemental Figure 

E.9. 

5.4.3 PLSDA identified a signature of serum proteins that differentiated stable and 

exacerbated COPD 

To obtain new insight into key systems-level relationships between networks of immune 

factors in sputum and blood that associated with AE-COPD, we next employed data-driven 

modeling approaches to integrate matched stable and exacerbation data in both blood and 

pulmonary immune environments from the same COPD patients. We first examined serum 

protein measurements alone with PLSDA176. PLSDA is a useful tool due to its ability to 

highlight covariance among variables that best classify groups of interest, which could lead to 

the identification of potential proteomic networks associated with AE-COPD. Calibration 

accuracy and k-fold cross-validation were used to assess model accuracy (see Materials and 

Methods in Section 5.2). To focus on the cytokines that were best at differentiating stable and 
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AE-COPD, we used variable importance in projection (VIP) scores227 as a feature selection 

technique. The value of using PLSDA with VIP feature selection is the identification of small 

protein “signatures” that differentiate groups of interest and are potentially biologically 

meaningful, which helps with generating new mechanistic hypotheses.  

We found that a two-latent variable PLSDA model based on the serum VIP-selected 

protein signature best classified stable and exacerbation points with 81.25% cross-validation 

accuracy and an 84.38% calibration accuracy (Figure 5.2A). Latent variable 1 (LV1) 

differentiated most stable visits (negative scores on LV1) from AE-COPD (positive scores on 

LV1; Figure 5.2B). Six of the seven proteins were loaded positively on LV1, indicating positive 

association with AE-COPD, while only tissue inhibitor of metalloproteinases (TIMP4) was 

loaded negatively on LV1, indicating negative association with AE-COPD. The six positively 

associated proteins were IL-1R2, sVCAM-1, sICAM-1, matrix metalloproteinase 9 (MMP-9), 

interferon gamma-induced protein 10 (IP-10, the chemokine also known as CXCL10), and IL-6. 

  We next compared the classification ability of this signature to the classification ability 

of the top individual factors identified in univariate analysis of these data91. The univariate model 

indicated that IL-10, IL-15, GDF-15, sICAM-1, and sVCAM-1 were individual factors that were 

significantly increased during exacerbation91. For the purpose of comparing multivariate with 

univariate results, we took each of the top significant individual mediators in previous analysis 

(sICAM-1, sVCAM-1, and IL-15) and assessed their individual ability to classify stable and AE-

COPD. We then made a PLSDA model where we combined all five significant proteins 

previously identified through univariate analysis. We compared the performance of these four 

analyses to our VIP-selected PLSDA model described above, using the cross-validation accuracy 

and the calibration accuracy as comparison metrics. The cross-validation accuracy of the VIP-
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selected PLSDA model trended towards being higher than all analyses based on single 

significant proteins, but was only significantly better than the cross-validation based on IL-15 

alone (p < 0.01, one-way ANOVA with Tukey’s HSD) (Figure 5.2C). The VIP-selected PLSDA 

model did have the highest calibration accuracy out of all five accuracies that were compared 

Figure 5.2. VIP scores and PLSDA identified a signature of 7 serum proteins that differentiated a stable from 

exacerbation measurement in 16 paired stable and AE-COPD events experienced by 11 unique patients. 

(A) VIP scores identified a 7-protein serum signature that differentiated stable (purple) and exacerbation (orange) events with 

81.25% cross-validation accuracy and 84.38% calibration accuracy. Latent variable 1 (LV1) accounted for 25.00% of the 

variance in the data, and latent variable 2 accounted for 16.75% of the variance in the data. (B) The loadings plot shows how 

much each protein contributes to the signature, with positive loadings associated with exacerbation events, and negative 

loadings comparatively reduced in exacerbation. (C) Comparison of the differentiation between stable and exacerbated states 

based on individual factors vs. multivariate signatures. The VIP signature identified by the PLSDA models trended towards 

higher cross-validation accuracy than individual factors that were most significantly different. A one-way ANOVA determined 

that this signature was significantly better than IL-15 alone, with ** indicating a p-value less than 0.01 after Tukey’s test for 

multiple comparisons. (D) Comparison of the calibration accuracies for individual factors vs. the VIP signature identified by 

the PLSDA model. 
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(Figure 5.2D). Overall, these figures serve to highlight the use of co-varying features, or 

“signatures,” in differentiating exacerbation events. 

5.4.4 Insight into cross-tissue compartment proteomic interactions associated with AE-

COPD 

To gain deeper insight into relationships between immune factors in lung and serum 

tissue compartments involved in AE-COPD, we used PLSDA to integrate data from serum and 

sputum measurements in stable and exacerbated states. We first evaluated proteins for which 

both paired sputum and serum results were available (n=9 matched stable and AE 

measurements), creating a PLSDA model based on 60 total analytes and employing VIP feature 

selection to eliminate those not contributing to differentiation. A one-latent variable PLSDA 

model separated exacerbation and stable measurements with a cross-validation and calibration 

accuracy of 88.89%, though a two-latent variable PLSDA model scores plot is presented to 

facilitate interpretation of group clustering (Figure 5.3A). LV1 largely differentiated the stable 

Figure 5.3. A one latent variable PLSDA model of VIP-selected proteins from the serum and sputum samples combined 

resulted in clear differentiation between stable and exacerbation measurements across 9 paired stable and AE-COPD 

events experienced by 7 unique patients. 

 
(A) PLSDA and VIP scores identified a signature of 19 proteins that differentiated the stable (purple) from exacerbation 

(orange) states with 88.89% cross-validation and calibration accuracy. Latent variable 1 accounted for 21.73% of the variance 

in the data. The scores plot shown is based on a two latent variable model to enable better visualization of group separation. (B) 

The loadings plot illustrates the protein contributions to the VIP-selected signature, with positive loadings positively associated 

with the exacerbation measurements, and negative loadings comparatively reduced during exacerbation. 

A B 
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state (negative scores on LV1) from AE-COPD (Figure 5.3B). Fourteen of the nineteen proteins 

were loaded positively on LV1, indicating positive association with AE-COPD, whereas five 

proteins were associated with stable COPD. Of the fourteen proteins that were positively 

associated with exacerbation, many of the serum proteins have been established as adhesion 

factors or chemokines (sICAM-1228, sVCAM-1229, IP-10230, MCP-2231), while most of the 

sputum proteins were known inflammatory factors (IL-6232, IL-1β233, TNFR-2234). Similar to the 

serum-only model, this signature suggests migration and activation of innate immune cells in the 

serum during exacerbation, yet the addition of sputum data to the model demonstrates the 

corresponding importance of lung inflammation and chemokine secretion. As classification 

accuracy of the combined serum-sputum model was better than either separately, these results 

highlight the importance of the parallel relationship between chemokine secretion in lung and 

innate immune cell activation in serum. 

5.4.5 Integration of data across experimental assays gives additional insight into the 

cellular and proteomic mechanisms associated with AE-COPD 

We also used our systems approach to integrate data across experimental assays by 

adding flow cytometry measurements, which were performed only on whole blood samples. We 

specifically explored whether PLSDA might help us integrate measurements made in different 

experimental assays. PLSDA and two rounds of VIP selection identified a one-latent variable 

model and a signature of eleven cell markers and proteins that differentiated stable COPD from 

AE-COPD with a cross-validation accuracy and a calibration accuracy of 87.5%. Differentiation 

between states (Figure 5.4A) was driven by the loadings on LV1, which separated most 

individuals by exacerbation status (Figure 5.4B). Nine of the cytokines and cell markers were 

loaded positively on LV1, indicating positive association with exacerbation, and two were loaded 
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negatively on LV1, indicating negative association with exacerbation. Cellular factors associated 

with exacerbation in the integrated PLSDA model included CD86 expression by BDCA-3+ 

dendritic cells (DC) and the percentage of CD15+ granulocytes (reported in the original study to 

be neutrophils)91. In contrast, the percent of CD4+ T-cells was found to be associated with the 

stable measurements in this model.   

We next compared the cross-validation accuracies across all three of the VIP-selected 

models that consisted of varying amounts of tissue compartment and assay data. Although none 

of these three models were significantly different from each other according to Tukey’s post hoc 

test (one-way ANOVA), inclusion of data from more tissues and assays in the model trended 

toward a tighter and higher range of cross-validation accuracies (Supplemental Figure C.S5). 

 To visualize the unbiased classification ability of this signature, we also employed 

hierarchical clustering and created a heat map (Supplemental Figure C.S6). We found this 

clustering algorithm based on distance metrics was not as useful for classification, with three 

Figure 5.4. A one latent variable PLSDA model based on two rounds of VIP selection from serum and sputum proteins 

and blood flow markers shows clear differentiation between stable and exacerbation events across 8 pairs of patient 

samples, which included 7 paired stable and AE-COPD events experienced by 6 unique patients and one stable and one 

exacerbation measurement that were not patient matched. 

 
(A) PLSDA and two rounds of VIP analysis identified a signature of eleven factors that differentiated the stable (purple) from 

the exacerbation (orange) events, with 87.5% calibration and cross-validation accuracy. Latent variable 1 (LV1) accounted for 

41.51% of the variance in the data. The scores plot shown is based on a two latent variable model to enable better visualization 

of group separation. (B) The loadings plot highlights factor contributions to the VIP-selected signature, with positive loadings 

positively associated with AE-COPD, and negative loadings comparatively reduced during an exacerbation event. 

A B 
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stable and four exacerbation samples misclassified out of sixteen total samples (56.25% 

classification accuracy). As our data contained measurements from three individuals with more 

than one exacerbation event, we also examined our scores plot after labeling the points with the 

patient’s exacerbation status and visit number. The resulting scores plot (Supplemental Figure 

C.S7) indicates no clear intra-patient clustering, though this study was not powered for a 

thorough statistical analysis in this direction.  

We further explored potential relationships between cell numbers and protein 

concentrations across the stable and exacerbated states in our identified signatures using 

Spearman rank correlation coefficients and a heat map. Overall we found that MMP-9 in the 

serum was positively correlated with CD4+ cells expressing the IL-18 receptor, and TIMP1 in 

the serum was positively correlated with CD4+ cells expressing the CD122 activation marker. 

The BDCA3+ CD86+ and the %CD15 neutrophils were not correlated with the other proteins in 

the signature, but were correlated with other measured proteins (Supplemental Figure C.S8).  

Overall, this suggests that changes in cell number from the stable to the exacerbated state may be 

related to simultaneous increases in concentration of some inflammatory proteins across the two 

states. 

5.5 Discussion 

Using systems analysis of paired data points from cellular factors measured in blood and 

sputum in exacerbated and stable COPD states, we identified a signature that differentiated AE-

COPD with >87% cross-validation accuracy. This signature trended towards being better than 

any previously identified individual cellular factors for differentiating stable and exacerbated 

COPD states, though more measurements would be needed to determine statistical significance. 

Biologically, the signature indicated that parallel increases in inflammatory cytokines and 
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chemokines in sputum environments, adhesion/chemoattractive cytokines in serum 

environments, and greater numbers of BDCA-3+ DC and an increased percent of CD15+ 

neutrophils in the blood were all associated with AE-COPD. These results highlight the value of 

computational approaches when integrating measurements across tissue compartments and from 

different experimental assays, and motivate use of these approaches to gain new perspective into 

cellular systems involved in this prevalent, lethal, but understudied disorder.   

One important strength of our approach is the ability to define parsimonious cellular 

signatures by selecting the most significant co-varying cellular immune factors. This approach 

may be valuable as a means of defining key cellular systems involved in disease progression, and 

using these to efficiently choose end-points in clinical trials and guide future experimental 

endeavors. This approach is especially useful for integrating cellular measurements made in 

multiple tissue compartments, which is important given the central role of sputum production in 

AE-COPD. Based on these findings, we propose a model of key networks in AE-COPD (Figure 

5.5) involving specific immune cell types, metalloproteinases (MMPs) and tissue inhibitors of 

metalloproteinases (TIMPs), and chemokines. We discuss our findings in that framework. 

In terms of peripheral blood leukocyte participation in AE-COPD, we extend the 

observation from univariate analysis of these data91 that CD4+ T cells decreased in blood during 

exacerbation, which is compatible with trafficking to lung or regional lymph nodes (or both), by 

showing the importance of simultaneous increase in blood of BDCA-3+ DC. We have previously 

demonstrated the physical interaction of this DC subset with CD4+ T cells in lung tissue from 

COPD patients235. BDCA-3+ DC were previously termed mDC2, but are now designated as 

cDC1236; they are the counterpart of murine CD103+ DC, which are essential for cross-

presentation of viral antigens to CD8+ T cells. Our model suggests recruitment to the lungs of 
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cDC1, likely from the bone marrow, as a crucial step driving lung inflammation during AE-

COPD. The other type of leukocyte in our signature, neutrophils, has been shown by other 

studies to be linked to AE-COPD237, one of which related their numbers to exacerbation 

severity210.   

Key soluble factors in our signature agree with and extend previous individual 

associations of inflammatory mediators with AE-COPD. These not only include the anticipated 

agreement with previous univariate analysis of these data91, but also several serum proteins 

involved in adhesion and chemoattraction of inflammatory cells. Chief among these is the 

neutrophil chemoattractant IP-10/CXCL10, also found to be elevated in AE-COPD in two 

studies89,92. Our signature also included IL-6, a pro-inflammatory cytokine232 that has been 

vigorously investigated as a possible biomarker for AE-COPD. Increased IL-6 in serum and 

Figure 5.5. A hypothesis of cross-tissue mechanisms of action in the lungs and blood of patients experiencing an AE-

COPD. 
Adhesion molecules aid in moving immune cells from the blood to the lung, which is further promoted by the presence of the 

chemokine interferon gamma-induced protein 10 (IP-10) and monocyte chemoattractive protein 2 (MCP-2) in the sputum. 

sICAM: soluble intercellular adhesion molecule. sVCAM: vascular cell adhesion molecule. TIMP: tissue inhibitor of 

metalloproteinases. MMP: matrix metalloproteinase. R2: receptor 2. ECM: extracellular matrix. CD: cluster of differentiation. 

BDCA: blood dendritic cell antigen. 
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sputum during AE-COPD was reported by several large studies using longitudinal design92,238; 

this association was questioned in a systematic review which, however, included many studies of 

cross-sectional design239. Our results illustrate the superior power of comparing paired results 

from the same subjects across stable and exacerbated states. We also identified elevations in 

levels of sICAM-1 and sVCAM-1, truncated forms of transmembrane adhesion molecules that 

interact with leukocyte integrins. sVCAM is chemotactic for murine neutrophils in vitro240. 

sICAM-1 is expressed both by leukocytes and by activated endothelial cells, and levels of 

sICAM-1 correlate to endothelial cell ICAM expression in vitro230. Each of these proteins are 

elevated in stable COPD241,242, though to our knowledge, no study (other than our original data) 

has linked it to AE-COPD in longitudinal data. sICAM has been reported to be elevated in 

subjects admitted for AE-COPD compared with healthy control subjects243. Higher plasma 

sICAM-1 levels were also independently associated with emphysema progression in the Multi-

Ethnic Study of Atherosclerosis (MESA) Lung cohort, a general population sample244. 

Our signature identified elevated serum MMP-9 as a crucial feature of AE-COPD, in 

agreement with a previous study245. Also known as gelatinase B, MMP-9 is released by activated 

neutrophils246. It has an unique ability to induce self-perpetuating lung inflammation by 

degrading extracellular matrix, thus liberating the neutrophil chemoattractant tripeptide N-acetyl 

Proline-Glycine-Proline231. Along with IL-6, MMP-9 was one of 34 serum analytes found to be 

highly reproducible over a 6 week period of clinical stability in COPD patients247, further 

supporting our findings. Our MMP-9 finding is interesting in light of the disparity between the 

association with exacerbation of TIMP1, TIMP2, and TIMP3, which stoichiometrically inhibit 

MMP activity248,249, and TIMP4, which associated with the stable state in the VIP signature.  

Unlike the other three TIMP family members, which act as soluble inhibitors, TIMP3 is typically 
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bound to matrix sulfated glycosaminoglycans248, suggesting that its presence in the serum during 

AE-COPD might reflect matrix degradation.  

All of our models identified IL-1R2 as a crucial serum factor increased during AE-

COPD, in agreement with two studies from the group in Maastricht of patients admitted for AE-

COPD250,251. IL-1R2 (Gene ID: 7850) is an early response gene252 whose product is a decoy 

receptor that inhibits activity of its three ligands: IL-1α, IL-1β, and the type I IL-1 receptor. 

Together with associations for TIMP1-3, our results highlight the importance of counter-

regulatory factors during AE-COPD. Although all the subjects in the original dataset were 

successfully treated as outpatients with resolution, not all patients regain lung function following 

AE-COPD; an intriguing possibility is that those who do not recover entirely might exhibit 

relatively deficient up-regulation of IL-1R2 and TIMPs during AE-COPD. 

There are several limitations to this analysis. Although our original study91 recruited a 

larger group of subjects, many sought treatment for AE-COPD locally, rather than returning 

when acutely ill. Additionally, some measurements had to be excluded from this analysis due to 

missing data. Collectively, these factors reduced our sample size, making it all the more 

noteworthy that our approach identified AE-COPD cellular signatures that could be used to gain 

biological insight. However, the small sample size did limit our ability to find signatures that 

could be used in diagnostic contexts. Even though our identified signature trended towards being 

better than individual factors, it was only statistically significant in one case. Furthermore, 

additional unknown test data in different patient cohorts would be needed to truly assess 

signature classification ability for diagnostic purposes. A second limitation is the necessary 

dependence on proteins measured in the original study, which used a “candidate gene” approach 

based in part on prior knowledge, and not an unbiased screen of the entire proteome.  Because 
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our original study involved flow cytometric analysis of peripheral blood leukocytes collected in 

part during AE-COPD, there is, to our knowledge, no current exacerbation cohort available for 

validation testing.  However, to prevent model overfitting as much as possible, we did employ 

internal cross-validation.  

  Results of this work support exciting future research in several directions. First, if 

similar data from other cohorts of paired stable and exacerbation measurements were to become 

available, generated models could be tested and validated. Data-driven approaches such as these 

could be applied as a classification tool to identify differences in exacerbation endotypes or in 

AE-COPD events resulting from different upstream causes (including viruses, bacteria, etc.), 

thus providing insight into systems-level mechanisms of action that could result in personalized 

treatment options. Unbiased data-driven models applied to multiplex COPD data from across 

tissue compartments may also prove useful to characterize COPD endotypes.      
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Chapter 6 Proteomic Signatures and Immune Cell-Cell Communication Patterns in a 

Large Clinical Cohort Associated With COPD Disease State and Severity 

 

Contributions. The SPIROMICS investigators were involved in collecting the blood and 

BAL samples from the SPIROMICS smokers, never smokers, and COPD subjects. Drs. Curtis 

and Freeman collected whole blood from subjects for PBMC isolation, stored these samples until 

stimulation, and, along with lab manager Valerie Stolberg, assisted in the PBMC stimulation 

experiments planning and execution.  

6.1 Introduction 

Following work presented in Chapter 5, we generated additional models of COPD cell-

cell communication networks, disease state, and disease severity that have not been published. 

For this work we had access to data and samples from smokers, never smokers, and COPD 

subjects enrolled in the Subpopulations and Intermediate Outcomes in COPD Study 

(SPIROMICS)253, which was extremely valuable due to the cohort’s large size (2,981 subjects 

recruited to the overall study), the variety of clinical data and matched biological samples 

available from some patients, and the 5 year follow up visit for these patients associated with the 

SPIROMICS II study which are currently underway. The SPIROMICS II visits are of key 

interest to us because they will involve the collection of another set of clinical measurements 

(FEV1, CT scans, etc.) and biological samples (blood, BAL, etc.) from many of the original 

subjects, which would allow for investigations into progression. Although 2,981 subjects 

participated in SPIROMICS overall, a subset of these subjects also qualified for enrollment in 

the Bronchoscopy study and had BAL samples collected on top of blood, sputum, and CT scan 
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measurements (n = 215)254. In the end, around 190 smokers, never smokers, and COPD subjects 

(mostly classified with mild to moderate COPD) were enrolled in the Bronchoscopy substudy. 

These matched blood and BAL samples from subjects allowed us to fulfill Aims 2B and 3B by 

creating data-driven models based on BAL proteins alone and based on blood and BAL proteins 

combined. Once identified, we were able to further investigate the signatures’ potential 

biological meaning in the context of COPD disease state and severity. Additionally, with help 

from Drs. Curtis and Freeman at the Veteran’s Affairs Ann Arbor Healthcare System 

(VAAAHS), we were also able to collect whole blood samples from another group of smokers, 

never smokers, and COPD subjects visiting the VAAAHS and isolate peripheral blood 

mononuclear cells (PBMCs) from these samples. We then compared differences in PBMC 

communication networks of the three groups in response to various immune stimuli by creating 

data-driven models of the secreted proteins during these stimulations, which satisfied Aim 1B. 

As discussed in Chapter 1, the mechanisms that underlie COPD disease state and 

progression are complex and not well understood, and thus new approaches must be taken in 

order to gain insight into this area. Some of the difficulty in studying COPD comes from the 

heterogeneity associated with the disease. Examples of this heterogeneity include the lack of 

concrete biomarkers for COPD or exacerbations94,255,256; the current conversations about defining 

an early COPD state, which focus on how it is still unknown why some people (especially 

smokers) develop COPD when others do not257,258; and the research into different underlying 

endotypes that could result in the same COPD phenotype94,259,260. The conversations about early 

COPD come from the fact that smokers and COPD subjects may be more similar than we 

currently realize, as it has been seen that smokers without airway obstruction are still more likely 

to experience negative respiratory events when compared to never smokers261,262. This could 
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mean that models of COPD disease state that contain smokers, never smokers, and COPD 

subjects may hold more diagnostic or prognostic value than our model of healthy and IPF 

subjects (Chapter 2 and 4). To investigate these topical questions about COPD further, other 

large longitudinal cohorts of smokers, never smokers, and COPD subjects have been created in 

addition to SPIROMICS, such as the Evaluation of COPD Longitudinally to Identify Predictive 

Surrogate End-points (ECLIPSE) study263 and COPDGene264.  

The SPIROMICS cohort enabled us to apply data-driven modeling approaches to 

integrate matched lung and blood protein data collected from enrolled subjects, similar to our 

approach in IPF (Chapters 2-4). With the SPIROMICS samples, as we did in IPF, we wanted to 

create models that took advantage of proteins that were measured in bronchoalveolar lavage 

(BAL) samples to gain insight into lung-specific signatures associated with disease state or 

progression. There has been more work with BAL protein data in COPD disease state and 

progression than in IPF265–273, but few studies have measured more than 10 proteins in each 

sample274–277, and fewer still that have focused on the use of multiple BAL proteins to 

differentiate clinical groups278,279. To our knowledge, although single cytokines across blood and 

BAL samples have been investigated in the context of COPD disease state or severity271,280–284, 

this work is the first time that signatures of blood and BAL proteins have been used to 

differentiate and hypothesize potential mechanisms associated with COPD disease state or 

severity. This presents the opportunity for us to generate unique insight into cross-tissue 

compartment mechanisms in human subjects that may potentially be involved with COPD 

disease state or severity. 

Though it is clear that the immune system is altered in COPD66, previous evaluation of 

individual immune cell types and cytokines has not yet led to definitive biomarkers or broadly 
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effective treatment options80,82,285. In addition to current literature, our work which we will 

discuss in this chapter suggests that circulating blood cytokines alone are not useful for 

differentiating COPD disease state. However, previous work from the HIV field suggests that 

stimulation of immune cells from whole blood samples can be used to both gain insight into 

adverse immune responses associated with immunological diseases, and to design targeted 

follow-up experiments to test newly generated hypotheses205. This was achieved by collecting 

and culturing PBMCs (which include T cells, B cells, NK cells, and monocytes) in the presence 

of various innate and adaptive immune stimuli, such as lipopolysaccharide (LPS) or anti-

CD3/CD28 beads205. In the second part of this chapter, we describe preliminary results in 

applying this approach to identify systems-level differences in immune cell communication 

networks of smokers, never smokers, and COPD subjects. 

6.2 Results 

6.2.1 Models based on signatures of proteins from multiple tissue compartments led to 

better classification of COPD disease state and severity 

We first wanted to determine whether there were differences in individual cytokines 

measured in BAL samples from smokers, never smokers, and COPD subjects. We measured 

individual expression of cytokines in these groups and investigated if there were any significant 

differences in expression of any of these proteins. Using a one-way ANOVA with Tukey’s post 

hoc test, we saw that 11 out of 25 measured proteins were significantly differentially expressed 

across at least two of the clinical groups; a selection of these results can be seen in Figure 6.1.  

Due to the variation within individual expression of measured BAL proteins, we next 

employed data-driven analysis techniques to try to obtain more biologically meaningful 

separation of the clinical groups when focusing on covariation between proteins. VIP-scores 
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selected and PLSDA visualized a 

signature of 18 BAL cytokines that 

differentiated the three groups with 

75.31% calibration and 71.76% cross-

validation accuracy (Figure 6.2A). 

Samples showed trends towards 

separation on latent variable 1 (LV1), 

with COPD subjects having higher 

scores on LV1 (Figure 6.2B). 

We then determined if the 

classification ability of circulating, 

unstimulated blood cytokines was 

better than that of BAL proteins in 

differentiating COPD disease state. 

VIP scores selected a signature of 22 

Luminex-measured cytokines that differentiated the three groups with 65.69% calibration and 

57.88% cross-validation accuracy (Figure D.1A). Little differentiation could be seen across LV1 

or LV2 (Figure D.1B). Due to the poor performance of this model, we then used the feature 

selection technique LASSO to identify a signature of 24 SOMAmer-measured blood proteins 

that differentiated the groups with 74.56% calibration and 67.59% cross-validation accuracy 

(Figure D.2A and D.2B). While this model outperformed the one based only on plasma 

cytokines, the model based on BAL proteins still had the highest calibration and cross-validation 

accuracy. However, when comparing these models, it must be noted that confounding factors 
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Figure 6.1. (A-I) Representative individual cytokine measurements 

from BAL samples from smokers with (red) and without (gray) 

COPD and healthy controls (purple) enrolled in the SPIROMICS 

study. * p < 0.05, ** p < 0.01; one-way ANOVA with Tukey’s post 

hoc test. n = 25 never smokers, 75 smokers, and 82 COPD patients. 
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such as current smoking status were not able to be corrected for when using VIP scores as a 

feature selection technique, but were corrected when using LASSO for feature selection. 

A 

F E 

D C 

B 

Figure 6.2. Feature selected PLSDA model based on blood and BAL protein data combined differentiates COPD disease 

state significantly better than models based only on protein data from a single tissue compartment. 
(A) PLSDA scores plot based on BAL proteins moderately separates smokers (grey), never smokers (purple), and COPD subjects 

(red) with 75.31% calibration (Cal) and 71.76% cross-validation (CV) accuracy. (B) PLSDA loadings plot captured 12.27% of 

the variance on latent variable 1 (LV1). (C) PLSDA scores plot based on blood and BAL proteins highlights differentiation 

between the three clinical groups; the model separated the groups with 86.18% Cal and 76.52% CV accuracy. (D) The loadings 

on LV1 captured 7.26% of the variance in the data. (E, F) The cross-tissue compartment model trended towards higher Cal 

accuracy (E) and had significantly higher CV accuracy (F) than models based on blood or BAL proteins alone. Significance in 

both cases calculated by a one-way ANOVA with Tukey’s post-hoc test; ** indicates p < 0.01 and * indicates p < 0.05. 
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We discovered that a model based on protein data from multiple tissue compartments was 

a better classifier of COPD disease state and could be useful in gaining a deeper understanding of 

holistic relationships associated with COPD. We used LASSO to identify a signature of 37 

proteins (31 from the blood and 6 BAL proteins) that differentiated smokers, never smokers, and 

COPD subjects with 86.18% calibration and 76.52% cross-validation accuracy (Figure 6.2C). 

The three groups were separated by scores on LV1 (Figure 6.2D), where the COPD subjects 

(red) had the most positive scores on LV1, the never smokers (purple) had the most negative 

scores on LV1, and the smokers (grey) fell in between the other two groups.  

We next wanted to determine if the PLSDA model based on the combination of blood 

and BAL proteins was a better classifier of COPD disease state than data-driven models based on 

signatures of blood or BAL proteins alone. To illustrate this, we compared the calibration and 

cross-validation accuracies of our cross-compartment model with other feature-selected PLSDA 

models based on single tissue compartments: our model based only on 24 LASSO-identified, 

SOMAmer-measured blood proteins (Figure D.2A and D.2B), and our model based only on 18 

VIP-selected, Luminex-measured BAL proteins (Figure 6.2A and 6.2B). The model based on 

blood and BAL proteins combined trended towards having higher calibration accuracy than the 

model based on blood or BAL proteins alone (Figure 6.2E, one-way ANOVA with Tukey’s post 

hoc test). Additionally, this combination model was found to be significantly better in terms of 

cross-validation accuracy than the blood model alone or the BAL model alone (Figure 6.2F, p < 

0.05 for both comparisons, one-way ANOVA with Tukey’s post hoc test), which indicates that 

the combination model might be able to handle unseen data better than the models based on 

proteins from one tissue compartment.  
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The database for annotation, visualization and integrated discovery (DAVID) determined 

that the positively loaded proteins on LV1 that were comparatively increased in COPD subjects 

and some smokers were significantly enriched for processes related to cytokine activity and the 

immune and defense response (Figure 6.3, enrichment score (ES) 1.94). Proteins that were 

negatively loaded on LV1 and comparatively increased in never smokers and in most of the 

smokers were enriched for processes involving the positive regulation of general cellular 

processes such as those related to metabolism, cell communication, signal transduction, and 

phosphorylation (Figure D.3A, ES 2.27), as well as regulation of the response to external stimuli 

(Figure D.3B, ES 1.92). 

Interestingly, when we examined the correlations between expression of the proteins in 

the blood and BAL combined signature within the smokers, never smokers, and COPD subjects 

separately, we found that the smokers and the COPD subjects had correlations that were weaker 

(lower Pearson’s correlation coefficient value) than those seen in the never smokers but 

contained more hub proteins. The protein correlation network of the never smokers contained 

one protein that had 5 significant correlations to other proteins in the signature (Figure 6.4A). 

Figure 6.3. DAVID identified a cluster of significant pathways (Bonferroni corrected p < 0.05) involving cytokine activity 

and the inflammatory and defense response that was enriched in proteins that were comparatively increased in the COPD 

subjects in the LASSO-identified cross-tissue compartment signature. This cluster had an enrichment score (ES) of 2.57. 

Proteins found in the BAL in the signature are marked as so; unmarked proteins come from the blood samples. 
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However, the correlation network based on the signature proteins’ expression in smokers had 17 

proteins with 5 or more significant correlations (Figure 6.4B), and the network based on COPD 

subjects contained 5 proteins with 5 or more significant correlations (Figure 6.4C). Additionally, 

when comparing the strength of the connections in the networks, we saw that smokers had a 

larger number of significant correlations (77 correlations) than never smokers (53 correlations) 

and COPD subjects (52 correlations), but that the never smokers had correlations that were 

significantly stronger in terms of the absolute value of the Pearson’s correlation coefficient than 

those present in the smoker and COPD subject networks (p < 0.0001 for both comparisons with 

the never smoker network, one-way ANOVA with Tukey’s post hoc test).  

We next used this approach to determine whether a combined signature of blood and 

BAL proteins was able to differentiate COPD patients with differing levels of disease severity 

according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines to 

gain understanding into potential cross-tissue compartment proteomic relationships associated 

Figure 6.4. Protein correlation networks of the LASSO-identified blood and BAL protein signature present in never 

smokers (A), smokers (B), and COPD subjects (C) illustrate highly significant correlations and few hub proteins in the 

never smoker network.  

A B 

C 

Lines connecting two proteins indicate a significant correlation (p < 0.05) as determined by Pearson’s correlation coefficient. 

Brighter and thicker lines indicate a stronger and more significant correlation, respectively, with color bar on the right 

displaying the value of the correlation coefficient. Red indicates a positive correlation. 
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with disease severity. LASSO identified a signature of 38 SOMAmer-measured blood and 3 

Luminex-measured BAL proteins that differentiated the three GOLD stages with 95.05% 

calibration and 78.76% cross-validation accuracy (Figure 6.5A). LV1 separated three stages of 

disease severity, with GOLD 1 subjects having negative scores on LV1, and GOLD 2 and GOLD 

3 subjects having positive scores on LV1, with GOLD 3 having the most positive scores on LV1 

(Figure 6.5B). 

We next examined whether this signature based on blood and BAL proteins was better at 

differentiating the three GOLD stages than models based on blood or BAL proteins alone. We 

Figure 6.5. LASSO-identified signature of blood and BAL proteins differentiates GOLD status significantly better than 

model based on BAL proteins.  

A 

D C 

B 

(A) A LASSO-identified signature of blood and BAL proteins was able to differentiate COPD subjects with GOLD 1, 

GOLD 2, and GOLD 3 disease severity classification with 95.05% calibration (Cal) and 78.76% cross-validation (CV) 

accuracy. (B) The loadings plot captured 7.29% of the variance in the data on latent variable 1 (LV1). (C, D) The PLSDA 

model based on a signature of blood and BAL proteins significantly outperformed a model based only on BAL proteins in 

terms of Cal (C) and CV (D) accuracy, and trended towards having higher accuracy than a model based on blood proteins 

alone. Significance in both cases calculated by a one-way ANOVA with Tukey’s post hoc test; ** indicates p < 0.01 
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compared the calibration and cross-validation accuracies of the model based on blood and BAL 

proteins combined with a model based on a LASSO-identified signature of 29 SOMAmer-

measured blood proteins (Figure D.4A and D.4B) and a model based on a VIP-selected 

signature of 13 BAL proteins (Figure D.5A and D.5B). Our model based on blood and BAL 

proteins combined had significantly higher calibration (Figure 6.5C) and cross-validation 

(Figure 6.5D) accuracy than the model based BAL proteins (p < 0.01, one-way ANOVA with 

Tukey’s post hoc test for both comparisons), and trended towards having higher accuracies than 

the model based only on blood proteins. 

6.2.2 PBMCs from smoker, never smoker, and COPD patients secrete distinct cytokine 

patterns in response to innate stimuli 

We first looked at the differences in expression of 29 Luminex-measured proteins in 

response to stimulation with lipopolysaccharide (LPS) across PBMC cultures from smokers, 

never smokers, and COPD subjects using a one-way ANOVA with Tukey’s post-hoc test. The 

only difference in 

expression that was found 

to be significant (p < 0.05) 

was between the never 

smoker and COPD subject 

expression of IP-10; all 

other comparisons were 

found to be not significant. 

This result highlights the 

individual differences in 

Figure 6.6. (A-I) Representative individual cytokine measurements from PBMCs of 

smokers with (red) and without (gray) COPD and healthy controls (purple) after in 

vitro stimulation with LPS. * p < 0.05. 

A B C 

D E F 

G H I 
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response to LPS across the three disease states, which makes it difficult to generate testable 

hypotheses. The significant IP-10 result and a selection of some of the other non-significant 

results can be seen in Figure 6.6.  

We then turned to data-driven modeling techniques to try to identify signatures of 

covarying proteins that could differentiate the PBMC responses to various immune stimuli across 

smoker, never smoker, and COPD subjects. In contrast to our univariate results, we saw a 

PLSDA model coupled with VIP feature selection led to a model that differentiated the PBMC 

responses of smokers (n = 7), never smokers (n = 6), and COPD subjects (n = 3) to a LPS 

stimulus with 98.72% calibration and 70.81% cross-validation accuracy (Figure 6.7A). The 

cross-validation accuracy may be slightly lower in this model due to the fact that there were so 

few COPD subjects, making it difficult to predict their secreted response in unseen cases. While 

we also saw similar results in the PLSDA models of the PBMC responses to other innate stimuli 

(the VIP-selected PLSDA model of stimulation with R848 had 88.19% calibration and 71.96% 

cross-validation accuracy and a model based on stimulation with Poly(I:C) had 88.76% 

Figure 6.7. Data-driven modeling techniques are able to achieve better separation of the PBMC response of smokers, 

never smokers, and COPD subjects to innate immune stimuli as opposed to adaptive. 

A B 

(A) The PLSDA scores plot shows the smokers (grey), never smokers (purple), and COPD subjects (red) clustering in 

different areas of the plot. The VIP-signature of the PBMC’s secretome in response to an LPS stimulus performed with 

98.72% calibration (Cal) and 70.81% cross-validation (CV) accuracy in a PLSDA model. (B) The PLSDA scores plot 

generated based on the PBMC’s secreted response to a co-incubation with anti-CD3/CD28 beads does not separate the 

three clinical groups, performing only with 76.92% Cal and 59.33% CV accuracy. 
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calibration and 69.35% cross-validation accuracy), a VIP-selected PLSA model based on the 

adaptive stimulus of anti-CD3/CD28 beads only had 76.92% calibration and 59.33% cross-

validation accuracy (Figure 6.7B).  

6.3 Discussion 

In this work, we used secreted proteins from in vitro cultures and proteomics data from a 

clinical trial to identify differentiating signatures and gain insight into potential mechanisms 

associated with COPD disease state and progression. Our preliminary analysis of immune cell 

communication networks in COPD suggests that the innate immune response of COPD PBMCs 

may be more different than that of smokers and never smokers, while the adaptive immune 

response of all three groups may be more similar. BAL cytokines were better at differentiating 

COPD disease state than models based only on plasma cytokine or blood protein data. However, 

we saw stronger differentiation of COPD disease state and GOLD status when signatures 

included data from multiple tissue compartments. Proteins that were comparatively increased in 

COPD subjects in the model of COPD disease state were enriched for cytokine activity and the 

immune and defense response. Additionally, in models of both COPD disease state and GOLD 

status, we reported that models based on data from multiple tissue compartments either trended 

towards or were significantly better in terms of calibration and/or cross-validation accuracy than 

models based on single tissue compartments. Overall, these results highlight the usefulness of 

data-driven models to take in a wide variety of clinically-relevant data and identify patterns that 

lead to increased insight into important factors involved in COPD disease state and progression. 

We discovered that a model based on BAL cytokines was clearly better at differentiating 

COPD disease state than a model based on blood cytokines, and was also slightly more accurate 

than a model based on the blood SOMAmer measurements. This last point speaks to how much 
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COPD affects cytokine expression in the lung compared to protein expression in the blood, 

especially considering that only 25 cytokines were measured in the BAL, whereas 1305 blood 

proteins were measured by SOMAmers. The BAL model outperforming models based on blood 

proteins echoes results reported by Halper-Stromberg et al. in their analysis of the SPIROMICS 

cohort as well. They saw that there were a higher number of proteins measured in BAL samples 

than in plasma samples that were associated with variables such as FEV1/FVC, emphysema, 

FEV1 % predicted, and COPD exacerbations274. Additionally, we created a model based on 

sputum proteins that was able to differentiate stable and AE-COPD better than a model based on 

blood proteins (Chapter 5) in terms of calibration accuracy, but the two models had similar 

cross-validation accuracies. These results suggest that BAL cytokines may serve as better 

differentiators of COPD disease state than unstimulated proteins from the blood, especially when 

the number of measured blood proteins is low. 

We identified that data-driven modeling techniques were able to identify differences in 

the responses of PBMCs from smokers, never smokers, and COPD subjects to innate immune 

stimuli, but not as much to adaptive immune stimuli. These models of cell signaling networks in 

PBMCs post-innate immune stimulation exhibited high calibration accuracy but only moderate 

cross-validation accuracy, which is most likely due to the low number of COPD subjects that 

were included in the analysis (n=3). These were promising results especially in comparison to 

the low calibration and cross-validation accuracy seen in the models of blood proteins in the 

SPIROMICS participants. It is especially promising that PBMC collection is a low-risk 

procedure for patients, but that we saw strong differentiation given our sample size. Although 

these preliminary results are suggestive of greater differences in the immune response of myeloid 

cells across smokers, never smokers, and COPD patients compared to the immune response of T 
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cells, we could not dive deeper into the biological implications of any of our PBMC cell-cell 

signaling signatures due to the low sample size. However, other researchers have been able to 

investigate PBMC-based differences associated with COPD. Kawayama et al. stimulated PBMCs 

from smokers, never smokers, and COPD subjects with LPS and TNF-α, but did not report any 

significant differences in measured cytokines (MMP-9, TNF-α, IL-8, and IL-6) post 

stimulation286. They did notice that COPD PBMCs had the highest change in protein production 

post-stimulation, and suggested that PBMCs in COPD subjects are primed and ready to 

immediately respond to any immune stimuli286. Another study investigated differences in PBMC 

gene expression across smokers and COPD subjects and found that IL-16 mRNA levels were 

negatively correlated with upper lobe emphysema287. Taken together, this is suggestive of the 

usefulness of PBMC collection and study: either stimulation experiments or multi-omics 

analyses of these cells could help us identify, potentially understand, and, in the future, target 

cell signaling pathways that may be dysregulated in COPD. 

Lastly, we have shown that combining data across multiple tissue compartments can lead 

to better differentiation when investigating both COPD disease state and progression as defined 

by GOLD guidelines. Both of our models either trended towards being or were significantly 

better in terms of calibration and cross-validation accuracy than models based on proteins from 

one tissue compartment. According to the prior knowledge database DAVID, the proteins 

comparatively increased in the COPD patients in the multiple tissue compartment signature of 

disease state were enriched for cytokine activity and the immune and defense response. Hogg et 

al. has reported that in a cohort of GOLD 0 – 4 subjects, the number of inflammatory immune 

cells (polymorphonuclear leukocytes, macrophages, CD4+ and CD8+ T cells, and B cells) in 

lung tissue samples were found at higher numbers in patients with higher GOLD classification68. 
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The more inflammatory cells in the lung could possibly be an indicator for increased cytokine 

activity and immune response. These results highlight the importance of cytokine activity 

associated with COPD over smokers and never smokers that is independent of current smoking 

status. Based on protein correlation coefficient networks of the cross-tissue compartment 

signature in the smokers, never smokers, and COPD patients, we have hypothesized that the 

protein network in never smokers is more difficult to perturb. This is due to the never smoker 

network having a smaller number of hub proteins compared to the smoker and COPD network, 

and to it having highly significant correlations present within the network. Although there were 

no processes that were significantly enriched in the signature of COPD GOLD status according 

to DAVID, the signature did contain two complement proteins (complement 7 and 9) that were 

comparatively increased in GOLD 2 and 3. Complement proteins have been identified as being 

differentially expressed across COPD GOLD stages before: Baralla et al. reported that 

complement 4B was significantly decreased in GOLD 2 compared to GOLD 1 when comparing 

expression using two-dimensional gel electrophoresis288. Although these results suggest that 

complement system activity may be associated in some way with COPD GOLD status, our 

model of GOLD status was only based on GOLD 1-3, with only eight GOLD 3 patients being 

included. Thus these results need to be reconfirmed after the addition of more GOLD 3 patients 

to the model. 

This analysis did not come without limitations that we have done our best to work 

around. The biggest limitation associated with all models was the lack of a validation cohort. 

However, we did perform cross-validation on all of our models and feature selection techniques 

whenever possible to prevent model overfitting the best that we could. So far, we have only 

explored BAL normalization to total protein albumin levels, but there are other options that we 
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could explore as was discussed in Chapter 4. Additionally, in the PBMC communication 

network models and the models of AE-COPD based on sputum proteins, the sample size that we 

had access to was very small due to the former being a preliminary study and the latter 

experiencing difficulty in getting subjects to return to the VAAAHS or UMHS during an 

exacerbation. We recognize that the data we worked with was of a small size and have tried to 

focus our results and discussion of these results more on general trends within the models as 

opposed to generating specific hypotheses for mechanistic ways the signature features could be 

involved in differences between clinical groups. In the case of the PBMC network models, we 

are planning on following up on these results in a larger scale cohort of SPIROMICS II subjects 

with new funding that was recently obtained. Based on the success we have had with the PBMC 

models of cell-cell signaling so far and the ease of collection of these samples, it may be of 

interest to translate this system to study other diseases where chronic and dysregulated immune 

pathways may be at play. 

6.4 Methods 

6.4.1 Collection of biological samples from the SPIROMICS cohort 

The Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS, 

ClinialTrials.gov Identifier: NCR01969344) is a multi-center, longitudinal study that was 

designed with overall goal of better understanding the disease in order to help inform the 

development of future treatment options. The study ended up enrolling subjects, a mix of 

smokers, never smokers, and mild/moderate and severe COPD subjects between the ages of 40-

80 who met the lung function criteria for each recruited group without a diagnosis of non-COPD 

obstructive lung disease or unstable cardiovascular disease. Couper et al. described the complete 

details on the inclusion and exclusion criteria for the SPIROMICS study253. Enrolled subjects 
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visited a participating center four times over three years for the collection of biological samples 

(blood, urine), lung function measurements, and questionnaires, and also received quarterly 

follow-up calls for the recording of exacerbation events and other health status updates. Portions 

of blood samples from one of these visits were sent to SomaLogic for the measurement of 1,305 

proteins using their modified aptamer (SOMAmer) technology. Plasma from blood samples that 

were collected closest to the bronchoscopy visits were sent to the SPIROMICS Genomics and 

Informatics Coordinating Center (GIC) for storage at -80°C. 

A subset of SPIROMICS participants (n = 215)254 were also enrolled in the 

Bronchoscopy substudy. Inclusion criteria is described in detail by Freeman et al., and involved 

lung function spirometry results and smoking history289. Out of the COPD subjects recruited to 

the Bronchoscopy substudy, a much larger number had mild to moderate COPD as opposed to 

severe disease in an attempt to lessen the chance of an adverse event due to the bronchoscopy 

procedure. Enrollment in this study required two extra visits: one where induced sputum was 

collected, and a second visit where peripheral blood and BAL samples were collected. BAL was 

performed with sterile saline in the right middle lobe or lingula regions of the lung with 2 

installations of 40 mL followed by 1 installation of 50 mL. Installations were pooled and spun 

down. Cell-free supernatants were aliquoted and stored until sent to the Arnold lab. 

6.4.2 Measurement of proteins in BAL and plasma samples from the SPIROMICS cohort 

Once collected, cell-free BAL samples were sent to the SPIROMICS Genetics and 

Informatics Coordinating Center (GIC) for storage at -80°C. The SPIROMICS GIC then sent 

matched plasma and BAL samples to the Arnold lab at the University of Michigan for protein 

measurements. Luminex FLEXMAP 3D technology was used to measure the concentration of 48 

cytokines and chemokines in the BAL samples, and 47 cytokines and chemokines in the plasma 
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samples. For protein measurements made by Luminex, we used a protocol that used ¼ of the 

recommended number of beads and sample volume to minimize the volumes necessasry for the 

assay, which was inspired by Arnold et al.205 For the BAL samples, we ran them at twice the 

recommended volume due to low cytokine concentrations in these samples. Samples were run in 

duplicate, and the concentration of wells that were below the lower limit of detection were set to 

be equal to that of half of the lowest limit of detection of all cytokines.  

6.4.3 Computational models of SPIROMICS patients 

The first step in our computational analysis of the plasma and BAL proteins measured by 

us and the blood proteins measured by the SPIROMICS investigators was to identify proteins 

whose measurements were not different than the lower limit of detection, as well as samples that 

acted as negative drivers in each data-driven model. For the proteins, we removed proteins from 

analysis if more than 25% of the measurements were found to be below the lower limit of 

detection. None of the SOMAmer©-measured proteins fell into this category, but 23 proteins 

measured in the BAL samples by Luminex and 9 proteins measured in the plasma samples by 

Luminex were removed before continuing on with our computational analysis. Overall, this 

meant that 1,305 SOMAmer-measured proteins, 25 BAL proteins, and 39 plasma proteins were 

initially included in models. We defined samples as being negative drivers of the model if they 

disproportionally drove our data-driven models such that the algorithm derived model 

parameters solely to account for that one sample. We quantitatively characterized these samples 

as those with a Hotelling’s Reduced T2 statistic value > 5 within a principal components analysis 

model (PCA) based on all measured proteins as calculated by the Eigenvector PLS Toolbox 

(Eigenvector, Mason, WA) software within MATLAB (MATLAB, Natick, MA). All protein 

data was mean centered and variance scaled before being used to build the PCA model. The 
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sample with the highest Hotelling’s Reduced T2 statistic value that was > 5 was then removed, 

and a new PCA model was built based on the remaining samples. This process was repeated 

iteratively until all samples met that criteria. This resulted in the following models of COPD 

disease state: (1) A model based on SOMAmer-measured blood proteins alone that contained 47 

never smokers, 102 smokers, and 121 COPD subjects; (2) A model based on BAL proteins alone 

that contained 25 never smokers, 75 smokers, and 82 COPD subjects; (3) A model based on 

Luminex-measured plasma protein alone that contained 25 never smokers, 74 smokers, and 84 

COPD subjects; and (4) A model based on the combination of SOMAmer-measured blood and 

Luminex-measured BAL proteins together that contained 23 never smokers, 71 smokers, and 78 

COPD subjects. When exploring differences in proteomic expression across GOLD status within 

the COPD subjects, this resulted in a model based on blood proteins which contained 45 GOLD 

1, 56 GOLD 2, and 20 GOLD 3 subjects; a model based on BAL proteins alone which contained 

32 GOLD 1, 44 GOLD 2, and 8 GOLD 3 subjects; and blood and BAL proteins combined which 

contained 30 GOLD 1, 40 GOLD 2 and 8 GOLD 3 subjects.  

Once the negative drivers were removed, we moved onto identifying and visualizing 

proteomic signatures that could differentiate COPD disease state and GOLD status using feature 

selection techniques and partial least squares discriminant analysis (PLSDA). Again, all data 

were normalized via mean centering and variance scaling before any models were built or any 

feature selection was performed. Two different feature selection techniques were used: the least 

absolute shrinkage and selection operator (LASSO) was used for models that contained the blood 

protein measurements by SOMAmers© due to the large number of proteins that were measured, 

and VIP scores were used for models based on BAL or plasma proteins alone. For the LASSO 

models, k-fold cross-validation (k=10) was performed to generate the model with the lowest 
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possible mean-squared error for prediction by iteratively excluding 10% of the samples during 

model training and then using this excluded data to test the model later. The batch number 

associated with the SomaLogic assay and current smoking status at enrollment of the 

SPIROMICS clinical trial were also included in each LASSO model with no penalty to correct 

for these differences across all clinical groups. The VIP score feature selection technique was not 

able to correct for confounding demographic or patient history factors. Proteins with VIP scores 

≥ 1 were included in the final PLSDA model. All PLSDA models were additionally cross-

validated using k-fold cross-validation (k=10). All final PLSDA models were also 

orthogonalized in order to improve interpretability. 

Once the models were created, we then compared PLSDA model performance parameters 

to statistically say if one model was indeed better than others. To compare the calibration 

accuracy of multiple PLSDA models with each other, we took our final, cross-validated model 

and calculated the calibration accuracy for each defined class (e.g. smoker, never smoker, and 

COPD subject) by averaging the true positive rate and the true negative rate. We then took the 

calibration accuracies associated with each of these three classes from one model and statistically 

compared them to the accuracies present within the two other PLSDA models using a one-way 

ANOVA with Tukey’s post hoc test, where p < 0.05 was deemed significant. 

To compare the cross-validation accuracy of multiple PLSDA models with each other, 

we split the data into ten groups. We iteratively excluded one group and trained a PLSDA model 

on the remaining 9 groups, for a total of 10 PLSDA models. We tested the model using samples 

from the remaining group, and quantitatively defined the accuracy of the model again by judging 

how accurate the model was at classifying this unseen data. Specifically, we averaged the true 

positive rate and the true negative rate for each of the test set samples for each of the clinical 
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groups (e.g. smoker, never smoker, and COPD subject). We averaged the accuracies of the three 

clinical groups within each of the ten PLSDA models to define the cross-validation accuracy 

associated with that particular test set. We then compared all ten calculated cross-validation 

accuracies from each of the PLSDA models, so all samples would serve within the test set once. 

We performed a similar calculation of cross-validation accuracies of PLSDA models based on 

other types of data, and finally used a one-way ANOVA with Tukey’s post hoc test to compare 

calculated cross-validation accuracies across multiple models. P-values < 0.05 were deemed 

significant.  

The database for annotation, visualization and integrated discovery (DAVID165) was used 

to help identify biological pathways that were significantly enriched among subsets of proteins in 

the LASSO-identified signature. Proteins in the signature were split into two groups based on the 

sign of their loading on LV1, and then run separately in DAVID. The resulting clustering and 

enrichment diagrams from DAVID were created by searching through Gene Ontology (GO) 

biological processes (BP FAT), GO molecular function (MF FAT), and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG). For all analyses, only the clusters and pathways that were 

significant after the application of the Bonferroni correction were reported. 

Protein correlation networks were created for smokers, never smokers, and COPD 

subjects separately. Pairwise Pearson’s correlation coefficient was used to calculate the edges 

connecting the expression of two proteins in the LASSO-identified signature. The brightness and 

thickness of each edge indicate the value of the coefficient and the statistical significance of that 

correlation, respectively. Only significant (p < 0.05) correlations were plotted. Node size is 

proportional to its degree of connectedness. 
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6.4.4 Stimulation of peripheral blood mononuclear cells and measurement of secreted 

proteins 

Practicing clinicians in Dr. Jeff Curtis’s lab at the VA Ann Arbor Healthcare System 

(VAAAHS) collected 24 mL of whole blood from healthy subjects, smokers without airway 

obstruction, and smokers with airway obstruction (COPD subjects). Informed consent was 

obtained from each subject, and the blood collection protocol was approved by the VAAAHS 

IRB. PBMC isolation and stimulation was performed according to methods outlined by Arnold et 

al.205 PBMCs were isolated from whole blood samples within one hour of collection via density 

centrifugation in Ficoll solution. Once isolated, cells were first counted before being stored at -

80°C until stimulation. 

On the day of stimulation experiments, PBMCs were thawed and resuspended in R10 

media at a concentration of 20 million cells/mL. Cells were plated at a final concentration of 2 

million cells/well in a 96-well U-bottom plate, in the presence of either a negative control (R10 

media) or one immune stimulus. Investigated stimuli included R848 (stimulates TLR7 and 

TLR8; replicates a viral infection), LPS (stimulates TLR2 and TLR4; replicates a bacterial 

infection), CD3/CD28 dynabeads (stimulates the adaptive immune response), and Poly(I:C) 

(stimulates TLR3; replicates a viral infection). Cells were incubated for either 72 hours with the 

immune stimulus. Afterwards, adherent and nonadherent cells were collected and separated from 

the culture supernatant. Supernatant and cells were stored separately at -80°C until further 

analysis. 

The concentrations of 29 cytokines and chemokines in the collected supernatants were 

measured using Luminex FLEXMAP 3D technology. For protein measurements in Luminex, we 

used a protocol that used ¼ of the recommended number of beads and sample volume to 
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minimize the required volume for the assay, which was inspired by a protocol detailed in Arnold 

et al.205 Samples were run in duplicate, and the concentration of wells that were below the lower 

limit of detection were set to be equal to half of the lowest limit of detection of all cytokines. 

Wells that were above the highest limit of detection were set to be the highest detectable 

concentration for that particular cytokine.  

6.4.5 Computational models of cytokine secretions of stimulated PBMCs 

Univariate analysis was performed by using a one-way ANOVA with Tukey’s post hoc 

test to statistically compare the expression levels of the cytokines in the PBMC cultures from 

healthy subjects, smokers, and COPD subjects. Significance was defined as p < 0.05. Partial least 

squares discriminant analysis (PLSDA) was used to visualize signatures of covarying secreted 

cytokines that differentiated the healthy, smoker, and COPD PBMC response to various immune 

stimuli. Variable importance in projection (VIP) scores were used to identify protein signatures 

that were most important in differentiating the groups of interest. The final PLSDA models 

shown for these results are based only on proteins with VIP scores that were ≥ 1. All PLSDA 

models were cross-validated to prevent major model overfitting. K-fold cross-validation was 

performed by iteratively excluding ~8% of the samples from each model; this excluded data was 

then used to train the model. All PLSDA models based on VIP-selected features were 

orthogonalized to improve interpretability, and all data were mean centered and variance scaled 

before being used in PLSDA models.  

The one-way ANOVA with Tukey’s post hoc test was performed using GraphPad Prism 

(GraphPad Software, San Diego, CA). All PLSDA models and VIP score calculations were 

performed by the PLS toolbox in MATLAB (Eigenvector, Manson, WA).   



 135 

Chapter 7 Overall Discussion 

 

In this thesis, we have applied data-driven, systems biology-focused computational 

models to identify and explore signatures of covarying cells and proteins from multiple tissue 

compartments that successfully differentiated IPF and COPD disease state and progression. The 

specific conclusions and discussion of results will be presented according to the three aims of 

this work: using data-driven modeling tools to identify blood protein signatures, lung protein 

signatures, and multi-compartment and multi-assay signatures that could differentiate IPF and 

COPD disease state and disease progression.Blood protein models of IPF and COPD disease 

state and progression introduce potential differentiating signatures in peripheral blood 

In work to support this aim, we were able to illustrate how data-driven approaches were 

effective for identifying blood protein signatures to differentiate individuals based on IPF disease 

state and progression status, as well as COPD exacerbation state. 

One key result of this Aim illustrated that protein signatures were more useful than 

individual cytokines in differentiating clinical groups of interest. For example, we identified a 

signature of 61 blood proteins that outperformed previously published single markers of IPF 

progression. This signature also performed better than a previously published index of 6 

proteins136. Likewise, in COPD a signature of 7 serum proteins was able to moderately 

differentiate stable and AE-COPD. This signature trended towards significantly outperforming 

the cross-validation of models based on single proteins that were differentially expressed across 

the two disease states, as well as a model based on all five proteins that were differentially 

expressed across the two groups. While these protein signatures hold promise for the 
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development of prognostic assays, additional investigation and analysis will be required in the 

future to 1) reduce the number of proteins in the signature; 2) validate in new, larger cohorts; and 

3) develop appropriate technology, as discussed below.   

Results of this Aim also illustrated that in general, circulating cytokines were not useful 

for classification of groups (e.g. smokers and COPD subjects, IPF progressors and non-

progressors), but that stronger differentiation could be achieved when either looking at a larger 

panel of proteins (e.g. SOMAscan assay) or when looking at distinctly different disease states. 

For example, in analysis of SPRIOMICS samples, when attempting to differentiate smokers, 

never smokers, and COPD subjects, plasma cytokines only performed with 65.69% calibration 

and 57.88% cross-validation accuracy, compared to the larger panel of SOMAmer-measured 

blood proteins, which performed with 74.56% calibration and 67.59% cross-validation accuracy. 

This indicated that it can be difficult for our modeling techniques to differentiate the systemic, 

unstimulated differences between a healthy group (never smokers) and two groups with 

worsening physiology who are much more similar to each other (smokers and COPD subjects), 

especially when only measuring a small number of proteins. Another example of the strength of 

a large panel of proteins can be seen in our models of the COMET IPF subjects: we saw strong 

separation both when the clinical groups being modeled were very distinct, like our model of 8 

SOMAmer-measured proteins that differentiated healthy and IPF subjects, as well as when the 

clinical groups were similar, like our model of the 61 blood protein signature that differentiated 

IPF progressors and non-progressors. 

Though results here suggest it may be difficult to differentiate clinical groups based on 

circulating cytokines, we have shown that stimulated systems of immune blood cell 

communication networks may hold more promise for a blood diagnostic. Our preliminary 
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analysis of peripheral blood mononuclear cells (PBMCs) from small numbers (all n < 8) of 

smokers, never smokers, and COPD subjects illustrated that cytokine signatures secreted in 

response to innate immune stimuli (LPS, R848, Poly(I:C)) may be effective for differentiating 

these groups. Biologically, these results emphasize how much COPD and its associated airway 

obstruction affects the immune system, even at sites peripheral to the tissue compartment of 

injury. Due to low sample number (n = 3 COPD subjects), we were not able to explore these 

communication networks in depth, although the results suggested that differences associated with 

myeloid cell stimulation were greater across smokers, never smokers, and COPD subjects than 

those seen after T cell stimulation. However, we were encouraged to see that we were able to 

achieve high calibration accuracy and were able to visually separate all three patient groups 

while working with limited data. Additionally, studying these cell-cell communication networks 

can give more information about adverse immune responses present in COPD subjects that could 

inspire new ideas for experimental follow-up with potential therapeutic goals in mind. Overall, 

PBMC simulation experiments suggest a new paradigm for studying network level events that 

are able to differentiate clinical groups with progressive, immunological diseases. 

Lastly, we also saw that data-driven modeling techniques were able to capture temporal 

changes in proteomic expression that were associated with disease progression. We identified a 

signature that was significantly different across three time points of IPF progressors using an 

unsupervised PCA model, but a similar signature was not identified in non-progressors. This 

result highlights the importance of measuring a wide variety of circulating, unstimulated proteins 

in order to obtain signatures that identify significant differences across clinical groups. Overall, 

these models showed that there are temporal changes in the peripheral blood proteome of IPF 

progressors that is not seen in non-progressors, and that our modeling techniques are able to 
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capture these changes. In the future, it will be important to obtain access to separate validation 

cohorts to truly validate our signatures and PLSDA models, as discussed below.  

Another challenge in using the IPF progression signature identified here as a prognostic 

signature is the large size of the signature (61 blood proteins). Proposing to create a prognostic 

test from this many factors would be difficult, as the test might take a longer time to process and 

may cost more, making it somewhat unattractive as a product. A general limitation of this work 

with the COMET cohort can be attributed to this study’s demographics. All 60 IPF subjects that 

were recruited to COMET lived through the end of the 80-week study, which means that our 

reported trends and signatures are associated with mild to moderate IPF, but may not describe 

end-stage disease. 

7.2 Lung protein models of IPF and COPD disease state and progression aid in hypothesis 

generation 

Overall, results from this aim suggest that PLSDA models based on signatures of BAL 

lung cytokines are useful for gaining mechanistic insight and are better for classification than 

circulating, unstimulated blood cytokines or individual proteins. When we measured the same set 

of cytokines in matched plasma and BAL samples collected from subjects enrolled in the 

SPIROMICS study, a signature of BAL cytokines was better at differentiating COPD disease 

state (75.31% calibration and 71.76% cross-validation accuracy) than a signature of plasma 

cytokines (65.69% calibration and 57.88% cross-validation accuracy). We speculate this results 

from increased cytokine and chemokine activity in the COPD lung that is not apparent in blood 

measurements. In support of this hypothesis, another group has also reported that more BAL 

proteins that were associated with COPD-related variables than plasma proteins measured in the 

same subjects274, although these protein measurements were made using untargeted liquid 
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chromatography-mass spectrometry (LC-MS) technology, and not Luminex technology like we 

employed. To our knowledge, results from Aim 2 also represent the first time signatures of BAL 

cytokines were useful for differentiating IPF disease state. The identified signature was a better 

classifier than IFNa2 and IL-7, and classified with the same accuracy as analyses based on IL-15 

and a combination model of all three proteins together. Overall, this suggests that signatures of 

cytokines may be better than individual cytokines in differentiating clinical groups, due to high 

inherent variability in the expression of single cytokines. 

In this aim, we were able to gain mechanistic insight and generate hypotheses into lung-

specific proteomic relationships associated with IPF and COPD disease state and progression. 

Generating biological insight into these lung-associated network relationships may be more 

useful than classification, as the invasive nature of BAL sample collection prevents widespread 

use for diagnostic or prognostic purposes. In IPF, a protein correlation coefficient network based 

on progressors’ expression data indicated the proteins that had the most significant correlations 

to other proteins were chemokines (MCP-1, IL-8, GM-CSF), which suggested that cell 

trafficking into the lung may be associated with IPF progression. Additional examination of the 

other two hub proteins (EGF and G-CSF) also suggested that together these factors may be 

involved in immune cell recruitment to the lung and the associated tissue reorganization and 

fibrosis. In COPD exacerbation, we found that sputum IL-1β, IL-6, and C-reactive protein (CRP) 

were comparatively increased during exacerbation, suggesting pro-inflammatory functions. 

Based on these specific factors, we speculate that this exacerbation-associated inflammation may 

arise from macrophages290. The identified exacerbation signature also suggested a comparative 

increase IL-10, which could indicate attempted suppression of the inflammation present.  
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Lastly, we have also gained mechanistic insight by comparing the models of IPF and 

COPD progression with each other. When we compared the models of disease progression based 

on inflammatory cytokine and chemokine measurements from the lung environment, we saw that 

the PLSDA model of AE-COPD had more than 10% greater cross-validation and calibration 

accuracy than the model of IPF progression. Based on these results, we hypothesize that 

inflammatory cytokines may play a greater role in COPD progression than in IPF, which also 

aligns with current IPF pathogenesis hypotheses291 and clinical trial results47.   

As in Aim 1, we also did not have access to a true validation cohort for these samples. 

Another limitation on nearly all the models of BAL proteins is that most were only moderately 

accurate at differentiating disease state or disease progression, with the exception of the healthy 

and IPF model based on BAL proteins. This could indicate a number of things: that BAL 

cytokines alone are not a strong classifier of lung disease state or progression and more proteins 

with a wider array of functions may need to be measured in each sample, that a different sample 

normalization technique should be used, or that more data need to be included to increase model 

accuracy. In the work presented here, all BAL protein data used as inputs into models and feature 

selection algorithms were first normalized to the total protein albumin concentration in the 

samples as calculated by a bicinchoninic acid (BCA) assay. We did see that models built on the 

BCA-normalized BAL data outperformed models based on raw data output from the Luminex 

assay (non-normalized models not shown). There is no field standard for BAL sample 

normalization, but we have not yet had the chance to explore other normalization techniques. 

However, we have already taken steps towards investigating some of these points. In the future, 

we plan on comparing BCA normalization of BAL samples collected in the SPIROMICS study 

with that of urea normalization292, where the actual volume of the epithelial lining fluid (ELF) 
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collected during the BAL procedure is estimated by assuming equal urea concentration in the 

ELF portion of the BAL and in the plasma of matched samples from the subjects. The limitation 

with the urea normalization method is that both BAL and plasma samples need to be collected 

during the bronchoscopy procedure, which requires foresight when designing the study and 

writing the methods. To investigate if BAL proteins are useful when combined with other data 

types, we have integrated data from multiple tissue compartments and assays into the same 

models; results from these models will be discussed in the following section. 

7.3 Integrated blood and lung protein and cellular models of IPF and COPD disease state 

and progression lead to better classification and increased insight to mechanism 

Results from Aim 3 across both IPF and COPD disease state and disease progression 

suggest that models based on protein data from multiple tissue compartments trend toward being 

or are significantly better at classification than models based on data from single tissue 

compartments. We identified a signature of 51 blood and 3 BAL proteins that differentiated IPF 

progressors and non-progressors with high accuracy. In addition to significantly outperforming 

nearly all models based on single or combination of proteins identified in univariate analyses, 

this model also had significantly better calibration and cross-validation accuracy than a model 

based on a signature of BAL cytokines. Likewise, we saw that signatures of blood and BAL 

proteins that differentiated COPD disease state had significantly better cross-validation accuracy 

than models based on blood or BAL proteins alone, and that a cross-tissue compartment model 

differentiating COPD GOLD status (a measure of disease severity) was significantly better in 

terms of calibration and cross-validation accuracy than models based on BAL proteins alone. 

These results suggest that the systemic and the pulmonary environments are both important to 
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consider when trying to obtain the best differentiation between clinical groups, especially 

between those with subtle differences. 

On top of performing with high accuracy, our models based on integrated signatures of 

blood and lung proteins and cellular markers have the potential to give new biological insight. 

Our approach is unique because by investigating and emphasizing the covariation between 

expressed proteins in clinical groups using computational data-driven modeling techniques, we 

can potentially begin to piece together larger networks of interactions that are present throughout 

the human body during disease. In our cross-tissue compartment model of IPF progression, we 

used a prior knowledge database (DAVID) and discovered that proteins that were comparatively 

increased in non-progressors were enriched for the regulation of the immune and defense system 

response. Additionally, we speculated that IPF non-progressors have greater control over their 

proteomic processes, and that this results in a network with few drivers that is difficult to perturb 

based on the low number of hub proteins in the non-progressor protein correlation network. We 

have hypothesized that the IPF progressors are a heterogeneous group, as seen by the correlation 

network with many hub proteins and less significant correlations, and that potential subgroups or 

endotypes of progressors may be identified by differences in proteomic expression. 

We generated hypotheses for mechanisms associated with COPD disease state and 

progression with our cross-tissue compartment models as well. For our model of COPD disease 

state, we again used DAVID and discovered that the proteins that were comparatively increased 

in COPD subjects were enriched for cytokine activity and the immune and defense response, 

which could be related to the high levels of inflammation reported in COPD subjects in other 

studies212,293,294. Additionally, we created correlation networks based on the signature protein 

expression in smokers, never smokers, and COPD subjects separately. Similar to IPF progression 
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results, we saw that the never smokers had stronger correlations compared to smokers and COPD 

subjects, and that the never smokers had fewer hub proteins than the other groups. This led to the 

hypothesis that never smokers have proteomic signaling networks that are more stable and 

difficult to perturb. A VIP-selected signature of serum and sputum proteins and blood cell 

markers was able to differentiate stable and AE-COPD, and also led to potential mechanistic 

insight into exacerbations. Based on the proteins and cells that were comparatively increased 

during exacerbation, we hypothesized that parallel increases in serum adhesion cytokines 

(sICAM-1 and sVCAM-1) and sputum inflammatory chemokines (MCP-2 and IP-10) are both 

critical to help inflammatory immune cells (such as CD15+ neutrophils) traffic into the lung 

during exacerbation. The percentage of CD4+ T cells was found to be comparatively increased in 

the stable state in this signature, and based on this and results from a previous study of this 

data91, we also hypothesize that CD4+ T cells are some of the first cells to traffic to the lung 

during exacerbation. However, this result is then curious when compared to our preliminary 

analysis of cytokine secretions from stimulated PBMCs from smokers, never smokers, and 

COPD subjects in which we did not report strong differentiation after stimulating the T cells in 

vitro. This could speak to a potential change in T cell function associated with exacerbation, or 

this could be related to only looking at COPD as opposed to the two non-diseased groups. 

Overall, we speculate that this influx of immune cells to the lung during exacerbation helps 

create the inflammatory environment that is characteristic of AE-COPD events295,296.  

By comparing results from models based on IPF and COPD, we have reported some 

differences which should help us in planning experiments when moving forward with this work. 

Due to the larger number of SOMAmer-measured proteins, we expected blood proteins would 

dominate each cross-tissue compartment signature, even though IPF and COPD are lung-focused 
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diseases. However, we noticed that when we compared the number of BAL proteins chosen in 

IPF and COPD models that there was a higher percentage of BAL proteins chosen in the models 

of COPD disease state (16.22% of the cross-tissue compartment signature was made up of BAL 

proteins) and GOLD status (7.31%) than in the model of IPF progression (5.56%). These results 

indicate that BAL cytokines may be more important in differentiating COPD disease state than 

IPF progression. We thus hypothesize that lung cytokines play a larger role in COPD than in IPF, 

a conclusion which is similar to that seen in Aim 2, and that in the future we should look into 

measuring more non-cytokine proteins in IPF BAL samples to see if this helps improve 

differentiation and mechanistic insight.  

Unexpectedly, we did see some similar biological results in results across the COPD and 

IPF analyses. We reported similar trends in our protein correlation networks of IPF progression 

and COPD disease state, where the “sicker” groups (e.g. IPF progressors or the SPIROMICS 

smokers and COPD subjects) exhibited a large number of weakly significant correlations, 

whereas the “healthier” group (either IPF non-progressors or non-smoking controls for COPD) 

had protein networks that were characterized by correlations that were more significant. 

Additionally, in our models where BAL proteins were combined with SOMAmer-measured 

blood proteins, the LASSO feature selection technique almost always chose at least one 

complement protein as being one of the most important differentiating factors across IPF or 

COPD disease state or progression. This is curious because only 23 complement proteins were 

measured out of 1129 proteins total in the blood in the IPF samples, and 26 complement proteins 

out of 1305 were measured in the blood in the COPD samples. Specifically, inactivated 

complement component 3b was chosen in the blood protein signature that differentiated IPF 

disease state and was also involved in differentiating both IPF progressors and non-progressors 
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in the trajectory PCA models. The complement 5b and 6 complex was chosen as part of the 

cross-tissue compartment signature that differentiated IPF progressors and non-progressors. In 

our models of COPD, complement 2 was comparatively increased in the never smokers in the 

cross-tissue compartment model of disease state, and complements 7 and 9 were associated with 

higher GOLD stage in the model of COPD progression. Various complement proteins 

(complement 4b111,297, complement C1R111) have previously been reported as differentially 

expressed in healthy and IPF, although these studies show that higher expression of these 

proteins is not always consistently associated with one group. Higher complement 3 expression 

has been linked to the MUC5B promoter variant rs3570590 in humans with IPF182. Complement 

3 (C3) and 4 (C4) have been reported to be decreased in the blood of COPD subjects compared 

to controls298,299. Sun et al. confirmed that lower C3 levels were associated with COPD and 

emphysema through models of protein quantitative trait loci (pQTL) and expression QTL 

(eQTL) SNPs in the SPIROMICS and COPDGene cohort, and suggested that the relationship 

between C3 protein levels and disease state may be mediated by genetic variants300. Overall, our 

data-driven modeling techniques have helped us generate biological hypotheses common to both 

IPF and COPD that deserve to be explored in the future. 

Limitations associated with this analysis are similar to Aims 1 and 2 and involve the lack 

of a true validation cohort to test our models. Additionally, validation cohorts become difficult 

obtain when multiple omics analyses are performed on multiple samples from the same subjects. 

For example, to our knowledge, there is currently no cohort available that we could use to 

validate our model of AE-COPD events due to the need to have measured serum and sputum 

proteins (preferably by Luminex) and blood cell markers by flow cytometry. Additionally, many 

models presented in this section rely on proteomic data from BAL measurements, which requires 
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an invasive procedure to obtain, though BAL is still a relatively low risk procedure188. Patient 

safety must and will always be considered before enrolling subjects in studies or collecting any 

BAL samples, but we have shown in this analysis that BAL samples do provide value. Our 

models that combined protein data from multiple tissue compartments performed with the 

highest accuracy, and integrated signatures have the potential to give new biological insight. By 

investigating the covariation between expressed proteins in clinical groups using computational 

data-driven modeling techniques, we can potentially begin to piece together larger interactions of 

networks between multiple organ systems that are present in the human body during disease, 

which could lead to a deeper understanding of disease state and disease progression. 

7.4 Future work 

As discussed above, one of the most important steps in the future of this work involves 

model validation in a separate cohort, especially if this approach is to be used to develop 

prognostic signatures. We did perform cross-validation during feature selection and model 

building whenever it was possible, but this does not replace a true validation cohort. This may be 

difficult due to the nature of the SomaLogic data: to our knowledge, currently the SomaLogic 

platform is not available for academic use, and we and other researchers have reported that 

SOMAmer-based measurements sometimes136,301,302, but not always130,197,301,302, correlate with 

antibody-based measurement techniques. Looking at cohorts that are currently available that 

could potentially be used to validate these models, Todd et al. recently published a study where 

they used multiple models to differentiate the SOMAmer-measured blood proteome of healthy 

and IPF subjects 111. Data from this study could potentially be used for validation of our model of 

healthy and IPF, as long as it is confirmed that the IPF diagnosis process was the same in each 

study. Recently, COPDGene264 investigators were able to send blood samples for measurement 
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with the SOMAscan assay301, making it a promising cohort for validation of our models of 

COPD disease state. However, models that differentiate disease state are not the most clinically 

relevant, as these groups are normally easy to tell apart without performing tests. To create a 

clinically relevant diagnostic signature, we would need access to SOMAmer-measured proteins 

from subjects with other lung diseases that are commonly misdiagnosed as IPF, such as other 

idiopathic interstitial pneumonias such as nonspecific interstitial pneumonia (NSIP)291, or the 

immune disorder chronic hypersensitivity pneumonitis (HP)303. In IPF, it would be useful to 

obtain protein data from cohorts of HP or NSIP subjects for comparison.  

To validate the IPF progression signature, we would need other IPF cohorts with 

SomaLogic data where progression could be tracked similarly as in the COMET study. The IPF-

PRO study304, which also had blood SOMAmer protein measurements collected111, may be able 

to serve as a validation cohort; otherwise the PROFILE cohort study170, which had blood Myriad 

RBM protein measurements collected109, may also be able to serve as a validation cohort. For 

our models of cell-cell communication in COPD disease state, our lab will be able to perform the 

PBMC studies on a larger scale due to new collaborations with the SPIROMICS II visits, though 

validation of the original signatures presented here will probably not occur because they were 

created based on so few samples. 

Once our signatures were validated in a separate cohort, there would be additional 

challenges associated with developing the assays that would be used in making diagnostic or 

prognostic decisions. This would include determining how sensitive the models are to the 

method of protein measurement (e.g. Aptamer vs. antibody), and if other systems besides the 

SomaLogic platform and Luminex technology could be used and still result in the same level of 

differentiation. This also involves identifying a technology that could be used to measure protein 
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signatures vs. absolute cut-offs of individual cytokines. Additionally, we would need to 

determine how the test results would be used in decision-making: either directly by the clinician 

as an index with a cut-off for group classification136, or by an outside company that would 

convey classification results to the clinicians. Steps following these decisions would then involve 

much more validation and eventually working with governmental agencies for approval. 

In terms of moving forward in gaining insight into mechanism, one potential option is to 

move into animal models of disease. For IPF disease state research, the most common model of 

pulmonary fibrosis used is the bleomycin (BLM) murine model305, and some researchers have 

developed a multi-BLM dose murine model that better models progression of pulmonary 

fibrosis306. Though these animal models do not capture all aspects of human IPF, they have been 

used extensively in the past to gain basic insight into IPF disease state and progression. The most 

common animal model used to study COPD involves exposing animals (dogs, guinea pigs, rats, 

mice, etc.) to high levels of cigarette smoke over a period of at least 3 to 6 months307, but like the 

animal models used to study IPF, this model does not recapitulate all aspects of COPD. 

Researchers commonly administer bacterial (such as nontypeable Hemophilus influenzae308 or 

LPS309) or viral infections310 to model AE-COPD events in these animals. When moving into 

animal models of disease state and progression, first we would need to identify murine homologs 

of the human proteins in our signature and confirm the differentiating ability of these proteins in 

our groups of animals. Once we either reconfirmed the human signature in the animal models or 

identified animal-specific differentiating signatures, we could perform new experiments testing 

the importance of some of the higher loaded proteins in the PLSDA loadings plot or the hub 

proteins in the correlation networks by blocking signaling pathways downstream of that 

cytokine. We could then explore if these changes that were made caused the animals to cluster in 
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a different area of the PLSDA scores plot or not. We could also use animal models to investigate 

cellular signatures that are associated with clinical groups due to the ease of sample collection. 

Moving into animal models of pulmonary fibrosis and COPD to investigate omics differences 

between corresponding clinical groups would allow for a more specific level of mechanistic 

exploration than what is possible in humans, although this comes at the price of then having to 

validate results in humans again later on. 

There is still much to be done with samples that have currently been collected. To our 

knowledge, BAL samples collected during the COMET and SPIROMICS studies still exist. It 

could be useful to measure additional proteins in BAL samples using Luminex technology, as the 

SomaLogic platform is currently not available for academic use. For example, existing pre-

mixed Luminex kits focused on the Th17 response could be intriguing to explore based on 

COPD endotype research that has been published84,88. Pre-mixed Luminex assays could also be 

useful for measurements of complement proteins including complement 3b/iC3b and 

complement 4, which would be of interest based on the large number of blood complement 

proteins that were chosen in our models. We were only able to measure 29 cytokines in the 

COMET samples, so gaining information about the concentration of a wider variety of signaling 

molecules could help increase the classification ability of our identified signatures. Measuring 

proteins with growth factor or tissue reorganization functions could be valuable in further 

evaluation of IPF, as evolving evidence from failed anti-inflammatory drug trials suggests that 

other factors may play a more central a role in disease natural history than cytokines 

alone47,311,312. However, multiple freeze-thaw cycles could make future measurements from these 

samples problematic, and must be taken into account before moving forward. 
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Additional analysis of data that has already been collected could also be of high value. 

One potential direction could be in identifying novel subgroups (“endotypes”) within a disease 

state, and relying more on unsupervised analytical approaches that are focused on the diseased or 

progressing subpopulation alone. For example, it could be useful to create additional 

unsupervised models of IPF progressors to explore how these patients cluster without the non-

progressors being present. I would want to explore if we continue to see the same three groups of 

progressors that we saw in the hierarchical cluster when using other unsupervised clustering 

algorithms, as well as applying supervised approaches to explore the biological mechanisms 

associated with each of the proteins increased in these groups using prior knowledge databases. 

Currently, COPD clinicians and researchers are focusing on two areas where I believe that 

unsupervised approaches could be of help: 1. The identification of potential COPD endotypes, 

and 2. Exploration and definition of potential differences in clustering of smokers without airway 

obstruction and COPD subjects. Based on interest in the early COPD disease state262, it would be 

interesting to explore how smokers and COPD subjects cluster together in an unbiased way, and 

if any of these identified clusters are associated with clinical variables, such as number of pack 

years smoked, history of asthma or respiratory symptoms, or spirometry measurement ranges. 

There are also new approaches, both computationally and in experimental design/sample 

collection, that could be taken in this area of pulmonary signature identification and should be 

explored. It was promising for us to have been able to build these cross-tissue compartment 

models of disease state and disease progression: we were able to computationally explore and 

define human proteomic and cellular relationships that are otherwise difficult to construct and 

study. While in this thesis we mostly focused on proteomic relationships that differentiated 

clinical groups, we have recently gained access to more omics data that were collected during the 
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SPIROMICS study that would be fascinating to integrate with our proteomics data to study more 

multi-omics mechanisms associated with disease state and progression. Specifically, there is 

transcriptomic data collected from epithelial cell brushings in the SPIROMICS participants, and 

in the future there will also be flow cytometry and microbiome measurements of the BAL 

samples as well. Incorporating all of these different types of data into a single model could give 

us a deeper understanding of COPD disease state and would be of great interest. We could 

approach all of these data types using the methods detailed in this thesis, or we could also 

explore other multi-omics integration and analysis tools. One methodology of interest includes 

multi-omics factor analysis (MOFA), which can be described as a versatile and generalized PCA 

analysis built to handle multi-omics data313, and is better able to include a larger number of 

patient omic samples into models than PCA. When we performed PCA or PLSDA on our multi-

omics or cross-tissue compartment data in this work, we were only able to include subjects who 

had successful measurements of all omics samples included in the model, which accounted for 

changes in the sample size used in our models of AE-COPD (Chapter 3 and 5). A MOFA model 

would have been able to include any subject that had at least one of the omics sample 

measurements. Another new approach that we could explore involves the type of samples we 

collect from subjects. We emphasized throughout this work the importance of collecting samples 

and proteomic data from the tissue compartment of interest, but we also recognize that these 

procedures are invasive to some extent, and are not always in the subject’s best interest. 

However, some researchers have reported differences in the concentrations of cytokines 

measured in the exhaled breath condensate (EBC) that related to disease state in IPF314 and 

COPD315,316. We would be curious to see what sort of proteomic measurements we could make 

from EBC samples using Luminex technology, and if these measurements translate into strong 
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differentiating signatures. If we discover that cytokines are not easily detectable in EBC, 

switching our protein measurement approaches to those based on mass spectrometry or focusing 

on volatile organic compounds instead of cytokines317 may lead to the generation of omics data 

that we could still model using our data-driven techniques. If so, that could mean that a much 

less invasive procedure could be performed that still allows for surveying of the lung 

environment. However, previous studies that focused on fatty acid318 and 16S rRNA 

measurements319 of EBC samples have shown how difficult it is to ensure that omics 

measurements of EBC samples are actually associated with a true biological signal, and thus it 

might be a safer move to first analyze previously collected EBC protein data before collecting 

new samples. 

7.5 Conclusion 

In conclusion, we have shown that we are able to identify proteomic and cellular 

signatures that can differentiate disease state and progression of IPF and COPD, and that these 

signatures are biologically relevant starting points for generating new hypotheses for 

mechanisms of action associated with disease and inspiring new directions for follow-up 

experiments. Our data-driven methods of signature identification may prove to be useful tools in 

identifying differentiating diagnostic and prognostic signatures that could hold clinical value if 

they are validated in separate cohorts. Ultimately, we hope that these signatures can be validated 

in human or murine models of IPF and COPD, enabling us to employ mechanistic models of the 

most important pathways and binding events to quantitatively investigate system perturbations 

and mechanistic hypotheses in silico in order to increase our understanding of IPF and COPD. 
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Table A.S1. Study population demographics 

 IPF Normal controls P value* 

Mean age in yrs.  

(SD) 

64.56 (7.74) 69.97 (8.78) 0.0037 

Male No.  (%) 41 (68.33) 20 (66.67) 0.8733 

Smoking status    

Never 19 (31.66) N/A _ 

Ex 40 (66.66) N/A _ 

Current 1 (1.66) N/A _ 

*Students t-test and Pearson χ2 squared test respectively. SD: standard deviation 
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Table A.S2. List of relevant co-morbidities and their frequencies with the COMET IPF 

patient cohort. 

Co-morbidity Freq (N=60) (%) 

CAD 

Yes 

No 

 

7 (11.67) 

53 (88.33) 

MI 

Yes 

No 

 

2 (3.33) 

58 (96.67) 

Lung Cancer 

Yes 

No 

 

1 (1.67) 

59 (98.33) 

Other Cancer 

Yes 

No 

 

5 (8.33) 

55 (91.67) 

GERD 

Yes 

No 

Unknown 

 

34 (56.67) 

25 (41.67) 

1 (1.67) 

OSA 

Yes 

No 

 

12 (20.00) 

48 (80.00) 

Pulm HTN 

Yes 

No 

Unknown 

 

4 (6.67) 

55 (91.67) 

1 (1.67) 

Emphysema/Bronchitis 

Yes 

No 

Unknown 

 

1 (1.67) 

58 (96.67) 

1 (1.67) 

 

CAD-coronary artery disease: MI – myocardial infarction: GERD – gastroesophageal reflux 

disease: OSA – obstructive sleep apnea: Pulm HTN – pulmonary hypertension.  



 157 

 

Table A.S3. List of upregulated proteins in the IPF peripheral proteome compared to control 

Protein UniProt ID Gene ID 

Afamin P43652 AFM 

Aflatoxin B1 aldehyde reductase member 2 O43488 AKR7A2 

AH receptor-interacting protein O00170 AIP 

Alpha-soluble NSF attachment protein P54920 NAPA 

Aminoacylase-1 Q03154 ACY1 

Apolipoprotein A-I P02647 APOA1 

Beta-Ala-His dipeptidase Q96KN2 CNDP1 

Bone morphogenetic protein 1 P13497 BMP1 

C5a anaphylatoxin P01031 C5 

Cathepsin B P07858 CTSB 

cGMP-specific 3',5'-cyclic phosphodiesterase O76074 PDE5A 

Chloride intracellular channel protein 1 O00299 CLIC1 

Coagulation Factor V P12259 F5 

Complement C1r subcomponent P00736 C1R 

Complement C4 P0C0L4 C4A  

Cyclin-dependent kinase 8:Cyclin-C complex P49336, P24863 CDK8 CCNC 

Dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 11A Q9HCR9 PDE11A 

Dual specificity mitogen-activated protein kinase kinase 4 P45985 MAP2K4 

Endothelin-converting enzyme 1 P42892 ECE1 

Fibronectin P02751 FN1 

Glyceraldehyde-3-phosphate dehydrogenase P04406 GAPDH 

Glycogen synthase kinase-3 alpha/beta P49840, P49841 GSK3A GSK3B 

Growth hormone receptor P10912 GHR 

Growth/differentiation factor 11 O95390 GDF11 

GTP-binding nuclear protein Ran P62826 RAN 
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Intercellular adhesion molecule 5 Q9UMF0 ICAM5 

MAP kinase-activated protein kinase 2 P49137 MAPKAPK2 

Matrilysin P09237 MMP7 

Methionine aminopeptidase 2 P50579 METAP2 

Nascent polypeptide-associated complex subunit alpha Q13765 NACA 

Peptidyl-prolyl cis-trans isomerase D Q08752 PPID 

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform: 

Phosphatidylinositol 3-kinase regulatory subunit alpha complex 

 

P42336, P27986 PIK3CA PIK3R1 

Plasma serine protease inhibitor P05154 SERPINA5 

Proprotein convertase subtilisin/kexin type 7 Q16549 PCSK7 

Protein kinase C alpha type P17252 PRKCA 

Protein kinase C beta type (splice variant beta-II) P05771 PRKCB 

Proto-oncogene tyrosine-protein kinase Src P12931 SRC 

P-Selectin P16109 SELP 

Pyruvate kinase PKM P14618 PKM2 

Ras-related C3 botulinum toxin substrate 1 P63000 RAC1 

Ribosome maturation protein SBDS Q9Y3A5 SBDS 

Small glutamine-rich tetratricopeptide repeat-containing protein alpha O43765 SGTA 

Sorting nexin-4 O95219 SNX4 

Sphingosine kinase 1 Q9NYA1 SPHK1 

Tumor necrosis factor ligand superfamily member 13B Q9Y275 TNFSF13B 

Tyrosine-protein kinase BTK Q06187 BTK 

Tyrosine-protein kinase CSK P41240 CSK 

Tyrosine-protein kinase Tec P42680 TEC 

Uniprot Accession ID listed. Detailed descriptions of proteins available at http://www.uniprot.org/  

N=48 proteins 

*Measured in combination 

 

 

http://www.uniprot.org/
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Table A.S4. List of downregulated proteins in the IPF peripheral proteome compared to control. 

Protein UniProt ID Gene ID 

Allograft inflammatory factor 1 P55008 AIF1 

Alcohol dehydrogenase [NADP(+)] P14550 AKR1A1 

Alkaline phosphatase, tissue-nonspecific isozyme P05186 ALPL 

Annexin A1 P04083 ANXA1 

Annexin A2 P07355 ANXA2 

Complement C3 P01024 C3 

Complement C3b, inactivated P01024 C3 

Complement C4b P0C0L5 C4B 

Carbonic anhydrase 3 P07451 CA3 

Calcium/calmodulin-dependent protein kinase type II subunit beta Q13554 CAMK2B 

Calcium/calmodulin-dependent protein kinase type II subunit delta Q13557 CAMK2D 

Macrophage-capping protein P40121 CAPG 

Caspase-10 Q92851 CASP10 

Calpastatin P20810 CAST 

C-C motif chemokine 14 Q16627 CCL14 

C-C motif chemokine 23 P55773 CCL23 

Cyclin-dependent kinase inhibitor 1B P46527 CDKN1B 

Cryptic protein P0CG37 CFC1 

Cofilin-1 P23528 CFL1 

Chymase P23946 CMA1 

C-reactive protein P02741 CRP 

Macrophage colony-stimulating factor 1 P09603 CSF1 

Granulocyte-macrophage colony-stimulating factor P04141 CSF2 

Cystatin-C P01034 CST3 

Cathepsin S P25774 CTSS 

C-X-C motif chemokine 11 O14625 CXCL11 

Interleukin-8 P10145 CXCL8 
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Protein UniProt ID Gene ID 

Discoidin domain-containing receptor 2 Q16832 DDR2 

Eukaryotic translation initiation factor 4 gamma 2 P78344 EIF4G2 

Eukaryotic translation initiation factor 5 P55010 EIF5 

Eukaryotic translation initiation factor 5A-1 P63241 EIF5A 

Ephrin type-A receptor 2 P29317 EPHA2 

Tissue Factor P13726 F3 

Ficolin-1 O00602 FCN1 

Tyrosine-protein kinase Fyn P06241 FYN 

Growth/differentiation factor 5 P43026 GDF5 

Aspartate aminotransferase, cytoplasmic P17174 GOT1 

Glucose-6-phosphate isomerase P06744 GPI 

Glutathione S-transferase P P09211 GSTP1 

Histone H2A.z P0C0S5 H2AFZ 

Hepatitis A virus cellular receptor 2 Q8TDQ0 HAVCR2 

Hepatoma-derived growth factor-related protein 2 Q7Z4V5 HDGFRP2 

Histone H1.2 P16403 HIST1H1C 

High mobility group protein B1 P09429 HMGB1 

Heme oxygenase 2 P30519 HMOX2 

Heterogeneous nuclear ribonucleoproteins A2/B1 P22626 HNRNPA2B1 

Heterogeneous nuclear ribonucleoprotein A/B Q99729 HNRNPAB 

Estradiol 17-beta-dehydrogenase 1 P14061 HSD17B1 

Heat shock 70 kDa protein 1A/1B P08107 HSPA1A 

Serine protease HTRA2, mitochondrial O43464 HTRA2 

ICOS ligand O75144 ICOSLG 

Insulin-like growth factor-binding protein 1 P08833 IGFBP1 

Insulin-like growth factor-binding protein 2 P18065 IGFBP2 

Interleukin-16 Q14005 IL16 

Interleukin-2 P60568 IL2 
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Protein UniProt ID Gene ID 

Interleukin-3 P08700 IL3 

Integrin alpha-I: beta-1 complex P56199, P05556 ITGA1 ITGB1 

Killer cell immunoglobulin-like receptor 2DL4 Q99706 KIR2DL4 

Importin subunit alpha-1 P52292 KPNA2 

Lipopolysaccharide-binding protein P18428 LBP 

Neutrophil gelatinase-associated lipocalin P80188 LCN2 

Lactotransferrin P02788 LTF 

Dual specificity mitogen-activated protein kinase kinase 1 Q02750 MAP2K1 

Dual specificity mitogen-activated protein kinase kinase 2 P36507 MAP2K2 

Mitogen-activated protein kinase 13 O15264 MAPK13 

Myoglobin P02144 MB 

Matrix metalloproteinase-9 P14780 MMP9 

Myeloperoxidase P05164 MPO 

Moesin P26038 MSN 

Nicotinamide phosphoribosyltransferase P43490 NAMPT 

NudC domain-containing protein 3 Q8IVD9 NUDCD3 

Oxidized low-density lipoprotein receptor 1 P78380 OLR1 

Protein DJ-1 Q99497 PARK7 

Phosphatidylethanolamine-binding protein 1 P30086 PEBP1 

Prefoldin subunit 5 Q99471 PFDN5 

Phosphoglycerate mutase 1 P18669 PGAM1 

Peptidoglycan recognition protein 1 O75594 PGLYRP1 

Elafin P19957 PI3 

Phospholipase A2, membrane associated P14555 PLA2G2A 

Urokinase plasminogen activator surface receptor Q03405 PLAUR 

NADPH--cytochrome P450 reductase P16435 POR 

Myeloblastin P24158 PRTN3 

Proteasome subunit alpha type-2 P25787 PSMA2 
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Protein UniProt ID Gene ID 

Prostaglandin G/H synthase 2 P35354 PTGS2 

Tyrosine-protein phosphatase non-receptor type 1 P18031 PTPN1 

Tyrosine-protein phosphatase non-receptor type 11 Q06124 PTPN11 

Tyrosine-protein phosphatase non-receptor type 6 P29350 PTPN6 

RNA-binding protein 39 Q14498 RBM39 

Resistin Q9HD89 RETN 

Ubiquitin P62979 RPS27A 

Ubiquitin+1, truncated mutation for UbB P62979 RPS27A 

40S ribosomal protein S7 P62081 RPS7 

Protein S100-A9 P06702 S100A9 

Serum amyloid A-1 protein P0DJI8 SAA1 

Scavenger receptor class F member 1 Q14162 SCARF1 

alpha-1-antichymotrypsin complex P01011 SERPINA3 

Plasma protease C1 inhibitor P05155 SERPING1 

Pulmonary surfactant-associated protein D P35247 SFTPD 

SHC-transforming protein 1 P29353 SHC1 

Sialic acid-binding Ig-like lectin 14 Q08ET2 SIGLEC14 

Small nuclear ribonucleoprotein F P62306 SNRPF 

FACT complex subunit SSRP1 Q08945 SSRP1 

Heterogeneous nuclear ribonucleoprotein Q O60506 SYNCRIP 

Trefoil factor 3 Q07654 TFF3 

Metalloproteinase inhibitor 1 P01033 TIMP1 

Tumor necrosis factor receptor superfamily member 1B P20333 TNFRSF1B 

Tumor necrosis factor ligand superfamily member 14 O43557 TNFSF14 
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DNA topoisomerase 1 P11387 TOP1 

Triosephosphate isomerase P60174 TPI1 

SUMO-conjugating enzyme UBC9 P63279 UBE2I 

Ubiquitin-conjugating enzyme E2 N P61088 UBE2N 

Ubiquitin-fold modifier 1 P61960 UFM1 

Vacuolar protein sorting-associated protein VTA1 homolog Q9NP79 VTA1 

X-ray repair cross-complementing protein 6 P12956 XRCC6 

Tyrosine-protein kinase Yes P07947 YES1 

* P08107 updated as secondary accession to P0DMV8/P0DMV9 (HSPA1A/HSPA1B). 

N= 116 
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Table A.S5. List of all significant proteins in analysis of IPF proteome versus healthy. Color code information at bottom. 

Uniprot ID 
Color 
Code Gene ID Fold expression 

Predicted Linear 
Model Ratios 
(IPF/Healthy) 

P-values significant 
after Bonferroni 
correction FDR 

Age-adjusted P-values 
significant after 
Bonferroni Correction Age-adjusted FDR 

P17252  PRKCA 2.844150745 2.7443155 1.36E-14 0.000194363 4.3293E-14 0.001000972 

P02647  APOA1 1.542341061 1.544871222 1.451E-06 0.001467444 4.2806E-09 0.001282799 

O95390  GDF11 1.628565596 1.608156622 7.663E-12 0.000359572 1.1845E-07 0.000855199 

P09237  MMP7 2.654602809 2.747872619 2.054E-18 0.000126336 2.5766E-10 0.001720117 

P01031  C5 1.654531862 1.675076486 5.828E-07 0.001282799 7.3906E-06 0.001681244 

P63000  RAC1 1.610302077 1.574044262 1.098E-06 0.001389699 6.2295E-06 0.00191448 

Q9Y275  TNFSF13B 2.129450761 2.191299147 3.817E-19 9.71817E-05 4.4978E-11 0.000272109 

P07858  CTSB 1.665079978 1.742647874 3.293E-13 0.000242954 3.113E-11 0.000437318 

P50579  METAP2 2.400193949 2.369123805 4.876E-10 0.000515063 2.655E-08 0.002147716 

P00736  C1R 4.387258094 4.463494883 7.042E-22 5.8309E-05 6.7295E-17 0.001574344 

P13497  BMP1 2.462088383 2.418442708 4.891E-16 0.000165209 4.7633E-14 0.002196307 

P49336, P24863  CDK8 CCNC 1.642587894 1.64618749 5.658E-19 0.000116618 8.7935E-11 0.00292517 

P41240  CSK 1.955228256 1.939577175 5.987E-10 0.000524781 2.9947E-06 0.001137026 

P05154  SERPINA5 2.493816792 2.438316738 4.487E-18 0.000136054 2.0621E-20 0.001525753 

P49840, P49841  GSK3A GSK3B 3.734712707 3.634606001 3.89E-27 9.71817E-06 6.23E-18 0.001389699 

P42680  TEC 2.558122735 2.478830736 2.333E-16 0.000145773 2.3177E-08 0.001156463 

P49137  MAPKAPK2 1.868501241 1.883819574 4.897E-08 0.00090379 1.7658E-06 0.002400389 

O00170  AIP 1.715314482 1.675073096 9.679E-15 0.000174927 6.676E-09 0.000719145 

P04406  GAPDH 1.669919932 1.639169965 5.773E-06 0.001856171 5.3425E-07 0.000942663 

Q13765  NACA 2.276481926 2.165538354 3.917E-21 7.77454E-05 6.6077E-12 0.00047619 

O43765  SGTA 1.859855557 1.803317323 1.199E-08 0.000767736 2.8969E-07 0.002001944 

O95219  SNX4 2.060637667 1.939104225 7.436E-09 0.000709427 1.9616E-08 0.002137998 

P02751  FN1 2.058884999 2.1387836 5.309E-12 0.000340136 2.7176E-08 0.001059281 

O43488  AKR7A2 2.382612119 2.339107573 2.438E-11 0.000388727 1.7054E-07 0.00159378 

P14618  PKM2 2.372734125 2.397160175 2.892E-13 0.000233236 5.4956E-09 0.002254616 

P62826  RAN 10.78442484 8.501570061 9.529E-21 8.74636E-05 3.8826E-11 0.001467444 

P54920  NAPA 2.259133786 2.144386113 1.622E-13 0.000204082 1.6544E-09 0.002983479 

Q9NYA1  SPHK1 4.924705886 4.492447031 2.931E-21 6.80272E-05 1.0608E-13 0.000359572 
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Q16549  PCSK7 2.06801082 1.986426465 5.236E-22 4.85909E-05 6.9419E-12 0.000291545 

P12259  F5 1.568462646 1.611038214 1.518E-11 0.000369291 1.0352E-06 0.000349854 

O00299  CLIC1 3.059946004 2.993311375 6.309E-12 0.000349854 6.6552E-09 2.91545E-05 

Q9UMF0  ICAM5 1.759344079 1.804719167 2.014E-11 0.000379009 1.3082E-07 0.000281827 

Q08752  PPID 3.742581674 3.511759899 1.307E-12 0.000281827 3.2523E-06 0.0003207 

P45985  MAP2K4 1.747910459 1.715622054 4.992E-09 0.000680272 9.5677E-08 0.000330418 

P12931  SRC 3.854282773 3.709558785 1.198E-22 3.88727E-05 1.027E-18 0.000252672 

O76074  PDE5A 4.43765169 3.978480542 9.751E-26 1.94363E-05 8.5254E-15 0.000447036 

P10912  GHR 1.777326642 1.767808273 1.284E-10 0.000447036 2.1388E-10 0.000728863 

Q03154  ACY1 4.904977655 4.13058665 6.462E-13 0.000272109 4.2266E-06 0.000155491 

P42336, P27986  PIK3CA PIK3R1 1.595594423 1.612386386 5.423E-19 0.0001069 6.2975E-11 0.001972789 

Q06187  BTK 10.44813268 9.363373991 2.252E-24 2.91545E-05 8.0073E-14 0.001068999 

Q96KN2  CNDP1 2.772175242 2.868771762 5.328E-13 0.000262391 5.454E-10 0.001127308 

Q9Y3A5  SBDS 2.559809181 2.525581685 1.145E-14 0.000184645 8.1077E-10 0.000612245 

P16109  SELP 1.755253189 1.688921305 5.013E-11 0.000398445 4.4751E-09 0.001292517 

P08649  C4A C4B 2.163849532 2.152620093 2.106E-13 0.000223518 1.7857E-12 0.000894072 

P43652  AFM 1.516790465 1.509684337 4.459E-09 0.000660836 1.8907E-10 0.001613217 

Q9HCR9  PDE11A 2.693926113 2.629765299 4.46E-10 0.000505345 4.4336E-07 0.000262391 

P05771  PRKCB 2.549572043 2.527742077 2.072E-13 0.0002138 1.944E-07 0.000621963 

P42892  ECE1 1.496922719 1.545032257 2.628E-08 0.000864917 1.3217E-07 0.002439261 

Q9UHD0  IL19 1.536009374 1.522027626 6.889E-08 0.000942663 2.5591E-05 0.001146744 

P23280  CA6 2.120863591 2.199196968 8.504E-07 0.001350826 9.6872E-05 0.000242954 

Q8N1Q1  CA13 2.14243776 2.090315543 3.449E-08 0.000874636 0.00011986 0.001428571 

P07996  THBS1 1.722022566 1.66082076 2.042E-06 0.001564626 0.00124037 0.002954325 

Q9NQU5  PAK6 1.78765298 1.782944743 9.87E-07 0.001379981 3.1333E-05 0.001049563 

Q8N5S9  CAMKK1 1.689904266 1.68676957 9.496E-07 0.001370262 0.00133575 0.001477162 

Q99714  HSD17B10 2.648891087 2.544580128 1.222E-07 0.001039845 0.00027562 0.001234208 

Q08209, P63098  PPP3CA PPP3R1 1.996632503 2.050362653 2.685E-07 0.001175899 3.7241E-05 3.88727E-05 

P03956  MMP1 1.880033667 1.868914014 6.063E-08 0.000932945 9.6125E-05 0.001448008 

P15514  AREG 1.597172106 1.537410827 1.067E-07 0.000991254 6.0986E-05 0.000699708 
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P36888  FLT3 1.633132296 1.62729439 1.988E-07 0.00111759 0.00026356 0.000602527 

P12277, P06732  CKB CKM 3.424539483 2.772971246 9.364E-09 0.000748299 0.00031418 0.001341108 

O75636  FCN3 1.486624762 1.505689722 4.105E-06 0.001739553 0.00219711 0.00877551 

O43557  TNFSF14 0.437387768 0.433556681 2.631E-09 0.000612245 3.9442E-15 0.001098154 

P62306  SNRPF 0.589209938 0.585044542 3.073E-09 0.000631681 2.0066E-16 0.001671526 

P18065  IGFBP2 0.561250316 0.560919529 1.127E-06 0.001399417 8.7262E-10 0.000641399 

P14780  MMP9 0.580646533 0.581799239 8.175E-06 0.001963071 6.1719E-07 0.000340136 

P05164  MPO 0.66653812 0.664052177 3.288E-07 0.001195335 3.5821E-06 0.000116618 

P55010  EIF5 0.264516494 0.257394258 1.575E-10 0.000466472 2.9209E-26 0.00068999 

P30519  HMOX2 0.302673799 0.309421198 1.115E-08 0.000758017 2.4311E-15 0.00079689 

Q03405  PLAUR 0.714503307 0.711668768 3.972E-06 0.001729835 6.9874E-07 0.000553936 

P01024  C3 0.531153018 0.521491138 3.962E-12 0.0003207 6.326E-28 0.000631681 

P16435  POR 0.193507136 0.203838807 1.288E-07 0.001049563 1.2994E-16 0.001554908 

P43026  GDF5 0.527925041 0.526377553 1.399E-07 0.001098154 5.7904E-16 0.000369291 

P01024  C3 0.594138865 0.588274349 2.357E-08 0.000855199 7.0592E-16 0.000631681 

Q14005  IL16 0.23033519 0.237400985 4.271E-09 0.000651118 2.2301E-17 0.000660836 

P12956  XRCC6 0.179825644 0.192845513 9.608E-08 0.000971817 4.8595E-14 0.001758989 

P55008  AIF1 0.344025162 0.34967201 5.447E-08 0.000913508 7.8303E-12 6.80272E-05 

P52292  KPNA2 0.576832085 0.585079807 5.707E-09 0.00068999 1.2065E-17 0.001166181 

Q02750  MAP2K1 0.359077237 0.362158859 4.702E-07 0.001234208 8.6888E-13 8.74636E-05 

P11387  TOP1 0.161052587 0.172640307 7.554E-06 0.001943635 2.8135E-13 0.000544218 

P63279  UBE2I 0.402202186 0.406545614 1.118E-07 0.001000972 9.1848E-12 0.000913508 

P07947  YES1 0.530683894 0.535492527 5.545E-08 0.000923226 1.0937E-15 0.000515063 

P16403  HIST1H1C 0.18202697 0.179435862 2.033E-12 0.000301263 1.1917E-21 0.000991254 

P18031  PTPN1 0.513454609 0.518122474 4.335E-06 0.001749271 2.7091E-11 0.000145773 

P20810  CAST 0.625591416 0.647812276 1.392E-10 0.000456754 1.1152E-10 0.000466472 

P02144  MB 0.444987418 0.457379403 1.781E-06 0.001516035 1.3409E-12 0.000680272 

P60568  IL2 0.602649926 0.607874718 8.102E-07 0.001341108 8.832E-12 7.77454E-05 

P25774  CTSS 0.691366271 0.70449585 1.438E-06 0.001457726 2.5524E-06 1.94363E-05 

P0CG37  CFC1 0.480568112 0.480547449 1.329E-07 0.001078717 6.6844E-15 9.71817E-05 
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O43464  HTRA2 0.727295489 0.719331748 7.34E-07 0.001321672 2.8688E-09 0.000485909 

O75594  PGLYRP1 0.385704603 0.406150492 1.661E-06 0.001506317 1.0747E-11 0.000126336 

Q13554  CAMK2B 0.448493259 0.46201085 3.863E-06 0.001720117 8.3106E-06 0.000651118 

Q06124  PTPN11 0.325170474 0.320946853 7.107E-11 0.000417881 7.5569E-24 0.00133139 

Q13557  CAMK2D 0.448876214 0.457971263 1.144E-06 0.001409135 3.2017E-08 0.000923226 

P10145  CXCL8 0.034225488 0.036256866 3.956E-08 0.000894072 7.9872E-23 0.000194363 

P56199, P05556  ITGA1 ITGB1 0.298316266 0.315384647 5.57E-07 0.001263362 1.0694E-12 5.8309E-05 

P24158  PRTN3 0.241989732 0.250856356 2.183E-06 0.001584062 1.1768E-09 0.00058309 

Q16832  DDR2 0.59816339 0.593148426 1.398E-06 0.001448008 8.3643E-13 0.001088435 

O00602  FCN1 0.487691807 0.491252641 4.684E-06 0.001788144 2.947E-09 0.000388727 

P36507  MAP2K2 0.399325508 0.409209093 3.71E-09 0.000641399 1.0395E-20 0.000301263 

P46527  CDKN1B 0.390461304 0.389275226 1.256E-09 0.000592809 8.6472E-14 0.001205053 

P09603  CSF1 0.349185705 0.345595517 5.652E-06 0.001846453 2.4947E-11 0.001253644 

P35354  PTGS2 0.300945517 0.304112877 8.668E-10 0.000563654 3.2731E-23 4.85909E-05 

P06241  FYN 0.15968612 0.158580485 9.413E-11 0.0004276 3.0673E-28 0.001039845 

P62081  RPS7 0.185649796 0.187803316 6.968E-10 0.000553936 4.3763E-22 0.0005345 

P18669  PGAM1 0.380200082 0.367406052 2.737E-10 0.000485909 2.1317E-13 9.71817E-06 

P08107  HSPA1A 0.329230499 0.325625349 3.616E-13 0.000252672 5.5044E-21 0.000184645 

P01011  SERPINA3 0.457669471 0.44651438 5.712E-07 0.001273081 9.634E-12 0.000670554 

P14550  AKR1A1 0.591448395 0.596031761 3.696E-06 0.001690962 1.6211E-07 0.000505345 

P23528  CFL1 0.669498441 0.658275648 7.5E-06 0.001933916 1.3489E-09 0.000204082 

O60506  SYNCRIP 0.291191938 0.297780019 9.354E-08 0.000962099 4.8968E-20 0.0001069 

Q99471  PFDN5 0.254728054 0.25020284 6.318E-09 0.000699708 1.7807E-24 0.000563654 

P06744  GPI 0.529843615 0.523601892 1.48E-08 0.00079689 2.6058E-12 0.001933916 

P30086  PEBP1 0.628052496 0.616272435 4.374E-06 0.001758989 1.2629E-08 0.000738581 

Q14498  RBM39 0.17003682 0.17844853 1.313E-07 0.001059281 1.2501E-14 0.000592809 

P29350  PTPN6 0.339639104 0.338090817 9.057E-10 0.000573372 2.0333E-16 0.000408163 

P02741  CRP 0.625041071 0.602656298 1.204E-06 0.001418853 5.8331E-08 0.000233236 

Q9UIK4  DAPK2 0.400809219 0.401459963 2.019E-08 0.000826045 1.0825E-07 0.000952381 

P35247  SFTPD 0.226428987 0.220331959 4.803E-12 0.000330418 1.8116E-25 0.000767736 
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Q99729  HNRNPAB 0.345921247 0.35846041 1.945E-06 0.001554908 4.6961E-09 0.001953353 

P62979  RPS27A 0.470375766 0.461535957 5.172E-07 0.001243926 9.9226E-13 0.0002138 

Q7Z4V5  HDGFRP2 0.060924947 0.055653979 6.293E-11 0.000408163 4.0153E-34 0.001243926 

P14061  HSD17B1 0.176376578 0.186493411 1.353E-07 0.001088435 4.8554E-20 0.002410107 

P08700  IL3 0.62221433 0.627986419 3.837E-06 0.001710398 1.9802E-11 0.000223518 

P09211  GSTP1 0.544764141 0.534249412 3.899E-07 0.001205053 3.0047E-13 0.000165209 

P17174  GOT1 0.524455222 0.517574344 1.944E-09 0.000602527 5.2867E-19 0.000310982 

P07355  ANXA2 0.298075338 0.296106201 3.332E-10 0.000495627 4.6371E-22 0.001788144 

P40121  CAPG 0.231802025 0.233433389 1.208E-09 0.00058309 1.4771E-12 0.00244898 

O15264  MAPK13 0.299068474 0.301080845 1.696E-08 0.000806608 5.1201E-11 0.001875607 

P26038  MSN 0.351191486 0.349889679 2.743E-09 0.000621963 3.0007E-12 0.002478134 

P43490  NAMPT 0.240390948 0.256498616 3.815E-08 0.000884354 2.7028E-14 0.001584062 

Q99497  PARK7 0.310701688 0.322106754 1.307E-08 0.000777454 1.2199E-18 0.00324587 

O75144  ICOSLG 0.219547354 0.223111787 1.566E-07 0.001107872 2.0022E-09 0.00180758 

Q99706  KIR2DL4 0.478349129 0.479635576 1.145E-07 0.001030126 7.8372E-11 0.002099125 

Q14162  SCARF1 0.516331552 0.508016155 1.754E-08 0.000816327 6.8641E-19 0.003313897 

P06702  S100A9 0.591697735 0.586341331 1.214E-06 0.001428571 1.0594E-07 0.001195335 

P0C0L5  C4A C4B 0.358507662 0.369051932 1.363E-12 0.000291545 3.8228E-20 0.000524781 

P09429  HMGB1 0.379602216 0.375656719 2.211E-08 0.000835763 4.4323E-16 0.000495627 

P29353  SHC1 0.39845923 0.390325715 6.392E-10 0.000544218 3.9594E-20 0.00170068 

P04083  ANXA1 0.491332759 0.484731275 2.239E-08 0.000845481 7.6468E-10 0.000174927 

Q08945  SSRP1 0.064935707 0.074339255 1.314E-07 0.001068999 7.0746E-21 0.00234208 

Q92851  CASP10 0.733486915 0.746854294 4.988E-06 0.00180758 1.6671E-06 0.001457726 

P22626  HNRNPA2B1 0.304653849 0.304147983 1.089E-10 0.000437318 3.7583E-14 0.001321672 

Q05397  PTK2 0.361679962 0.378753188 8.674E-09 0.000738581 2.6631E-05 0.000379009 

P01033  TIMP1 0.679269263 0.66674616 0.000391 0.002905734 6.6026E-08 0.008357629 

P01034  CST3 0.63498025 0.648738355 0.0021138 0.003488824 3.7008E-06 0.00808552 

P02788  LTF 0.646580172 0.660962703 0.0002031 0.002633625 3.8306E-06 0.004723032 

P05186  ALPL 0.730903722 0.736706819 7.331E-05 0.002303207 1.5228E-06 0.007609329 

P55773  CCL23 0.582518753 0.619691865 0.0005164 0.003061224 3.935E-07 0.003226433 
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P07451  CA3 0.595832363 0.560995319 0.0029284 0.003654033 2.8427E-06 0.001350826 

P63241  EIF5A 0.639598496 0.626260436 4.906E-05 0.002264334 1.829E-08 0.004752187 

P61088  UBE2N 0.679152378 0.668632317 9.424E-05 0.002380952 3.7967E-06 0.002779397 

P0C0S5  H2AFZ 0.085008123 0.094716988 1.043E-05 0.002001944 2.6092E-14 0.004344023 

Q9NP79  VTA1 0.68463685 0.665210265 1.045E-05 0.002011662 5.6174E-11 0.005344995 

P25787  PSMA2 0.390509178 0.357843285 0.0047528 0.003906706 1.1165E-07 0.005004859 

P05155  SERPING1 0.407843012 0.377329305 0.002597 0.003586006 1.7868E-08 0.001078717 

P04141  CSF2 0.716695601 0.70886671 0.0024597 0.003566569 1.5111E-06 0.005218659 

P08833  IGFBP1 0.393702902 0.408439401 0.000134 0.002478134 1.192E-06 0.009339164 

P80188  LCN2 0.192644603 0.212966828 0.0001084 0.002419825 2.3708E-10 0.004003887 

P62979  RPS27A 0.748787706 0.725982264 0.0001239 0.002458698 1.3893E-10 0.0002138 

Q16627  CCL14 0.730237589 0.725946814 0.0004162 0.002944606 7.5672E-06 0.006297376 

O14625  CXCL11 0.480301473 0.471102974 0.0003025 0.00281827 1.7786E-07 0.004266278 

Q9HD89  RETN 0.53666193 0.538277838 0.0002682 0.002750243 1.1095E-07 0.007832847 

P18428  LBP 0.601598528 0.621936449 0.0001787 0.00260447 4.7373E-08 0.010447036 

P20333  TNFRSF1B 0.528556645 0.530989059 0.0001396 0.00249757 2.0522E-09 0.004596696 

P23946  CMA1 0.422400525 0.449911378 0.000103 0.002410107 6.0735E-08 0.008551992 

P78380  OLR1 0.376747719 0.387146365 1.569E-05 0.002060253 4.2928E-09 0.001729835 

P61960  UFM1 0.61686735 0.606344498 1.583E-05 0.002069971 1.0983E-09 0.00281827 

P78344  EIF4G2 0.517757776 0.509215443 5.586E-05 0.002274052 1.092E-08 0.004013605 

Q8IVD9  NUDCD3 0.555472185 0.548221386 1.009E-05 0.001992225 1.1417E-10 0.003119534 

P60174  TPI1 0.693640403 0.683253702 8.747E-05 0.002361516 3.7814E-06 0.006287658 

P0DJI8  SAA1 0.173531112 0.180295633 0.0004928 0.00303207 3.3565E-08 0.00090379 

Q07654  TFF3 0.478602321 0.492382656 0.0051497 0.003974733 8.1428E-06 0.005228377 

P13726  F3 0.592836215 0.609717233 0.0001829 0.002614189 2.7012E-07 0.002827988 

P19957  PI3 0.359454756 0.367402763 8.107E-05 0.002332362 1.1063E-10 0.00526725 

P14555  PLA2G2A 0.164508441 0.178116603 0.0004127 0.002934888 2.7444E-09 0.002322643 

P29317  EPHA2 0.543657766 0.539472754 0.0029097 0.003644315 2.3118E-06 0.007152575 

Q08ET2  SIGLEC14 0.653055432 0.645056946 0.0003386 0.002857143 8.2826E-06 0.004897959 

Q8TDQ0  HAVCR2 0.738663283 0.733196887 0.0002157 0.002691934 8.6442E-06 0.008678328 
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P13686  ACP5 1.504767826 1.489334666 4.532E-09 0.000670554 9.3819E-07 0.000777454 

P20273  CD22 1.184673275 1.176234949 8.388E-09 0.000728863 3.2038E-06 0.003605442 

P51665  PSMD7 1.227734879 1.221843412 6.226E-10 0.0005345 7.0956E-06 0.002050534 

Q07817  BCL2L1 1.490277914 1.479585533 2.427E-12 0.000310982 5.7369E-08 0.000884354 

P06396  GSN 1.285528406 1.306069247 3.753E-06 0.00170068 7.1603E-07 0.001418853 

P04196  HRG 1.418870563 1.442868446 2.642E-07 0.001166181 1.6043E-07 0.001360544 

Q9HCK4  ROBO2 1.407713095 1.395479599 1.126E-07 0.00101069 1.6629E-08 0.001516035 

P12268  IMPDH2 1.338326362 1.339255747 2.562E-10 0.00047619 5.2757E-06 0.00313897 

P22223  CDH3 1.385373136 1.399310188 1.063E-07 0.000981535 2.2775E-07 0.003634597 

P07225  PROS1 1.272634163 1.275797707 2.912E-07 0.001185617 4.6845E-09 0.002176871 

O43291  SPINT2 1.485466338 1.458185513 1.299E-06 0.00143829 1.8954E-06 0.001982507 

Q9BY41  HDAC8 1.424686176 1.425858407 2.406E-16 0.000155491 1.5161E-09 0.006598639 

P08697  SERPINF2 1.31047173 1.30667218 1.367E-08 0.000787172 3.6237E-11 0.002934888 

P02748  C9 0.781050273 0.782880587 1.145E-07 0.001020408 1.3663E-07 0.002332362 

P29622  SERPINA4 1.269072953 1.257079381 8.1E-06 0.001953353 3.5722E-06 0.001496599 

Q96IY4  CPB2 0.819875158 0.824769315 4.543E-06 0.001778426 4.0513E-07 0.003449951 

P31785  IL2RG 1.545659909 1.496723647 6.757E-07 0.001311953 0.00018474 0.0004276 

P26951  IL3RA 1.508301381 1.468159905 2.326E-06 0.00159378 0.00142495 0.00143829 

O76036  NCR1 0.741569652 0.755075196 5.621E-06 0.001836735 2.8209E-05 0.00212828 

P02649  APOE 1.325399966 1.282131162 2.048E-07 0.001137026 0.000283 0.001622935 

P10721  KIT 1.489125587 1.416727689 7.463E-09 0.000719145 9.22E-06 0.001652089 

P09758  TACSTD2 1.420541839 1.416748142 7.103E-08 0.000952381 0.00034927 0.001506317 

P00533  EGFR 1.30263973 1.283543266 6.012E-06 0.001895044 1.9617E-05 0.001399417 

Q9BYF1  ACE2 1.343109036 1.351129252 7.681E-07 0.00133139 0.00036686 0.006180758 

P02649  APOE 1.244447984 1.206073828 7.474E-06 0.001924198 0.0024964 0.001622935 

P02649  APOE 1.286022867 1.239419842 2.083E-06 0.001574344 0.00025421 0.001622935 

P17931  LGALS3 0.752839331 0.772008464 2.628E-07 0.001156463 1.0971E-05 0.000398445 

P35475  IDUA 1.411818675 1.445766652 5.303E-07 0.001253644 7.8693E-05 0.000748299 

P01374, Q06643  LTA LTB 1.393305269 1.389026313 1.467E-06 0.001477162 9.2873E-05 0.004664723 

P29965  CD40LG 1.474153245 1.453863625 1.945E-06 0.00154519 0.00291881 0.003790087 
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Uniprot ID 
Color 
Code Gene ID Fold expression 

Predicted Linear 
Model Ratios 
(IPF/Healthy) 

P-values significant 
after Bonferroni 
correction FDR 

Age-adjusted P-values 
significant after 
Bonferroni Correction Age-adjusted FDR 

Q9Y4X3  CCL27 1.173722536 1.162169851 3.663E-06 0.001681244 6.6273E-05 0.00122449 

P07585  DCN 1.20880279 1.189205245 5.211E-06 0.001817298 0.00010196 0.001885326 

Q9NP95  FGF20 1.438391531 1.407985353 5.916E-06 0.001875607 0.00576751 0.002390671 

P08684  CYP3A4 1.445797436 1.410315476 3.527E-06 0.001661808 5.9022E-05 0.00111759 

P29279  CTGF 1.32159639 1.299436776 5.526E-06 0.001827017 0.00012742 0.002585034 

P56470  LGALS4 1.363080837 1.386548727 2.305E-07 0.001146744 0.0004329 0.001642371 

Q15582  TGFBI 1.377537653 1.384270242 1.785E-06 0.001525753 0.00011283 0.001273081 

Q8IWV2  CNTN4 1.266326604 1.257256862 4.96E-06 0.001797862 1.4765E-05 0.001107872 

O94779  CNTN5 1.258655438 1.254045937 1.594E-06 0.001496599 8.4023E-05 0.002837707 

P06493, P14635  CDC2 CCNB1 1.198173718 1.181337678 3.301E-06 0.001613217 0.00089827 0.005578231 

Q92876  KLK6 0.864513016 0.866147653 2.492E-06 0.001603499 0.00035015 0.006375121 

O00626  CCL22 1.424081215 1.429480123 3.309E-06 0.001622935 0.00020088 0.004635569 

P01282  VIP 1.424445332 1.413234053 5.966E-06 0.001885326 0.00344855 0.002089407 

Q6UXD5  SEZ6L2 1.407069992 1.369992374 8.816E-06 0.001972789 0.0005441 0.009193392 

P68036  UBE2L3 1.467831972 1.427595832 3.606E-06 0.001671526 0.00063943 0.009115646 

Q96GD0  PDXP 1.490673622 1.447598284 7.077E-06 0.00191448 0.00047606 0.000835763 

P08620  FGF4 1.23892107 1.229893786 6.193E-07 0.001302235 0.00118849 0.001661808 

Q99075  HBEGF 1.293217012 1.291360122 4.647E-07 0.00122449 0.00106179 0.000758017 

P20783  NTF3 1.414871631 1.405958216 5.997E-07 0.001292517 0.00121293 0.000456754 

P32004  L1CAM 1.422955729 1.402037028 4.477E-07 0.001214772 1.0997E-05 0.002361516 

O43323  DHH 1.427120242 1.403360929 1.827E-06 0.001535471 0.00075255 0.000864917 

O43320  FGF16 1.401626175 1.370275971 1.549E-06 0.00148688 0.00060477 0.002419825 

O75356  ENTPD5 1.27036547 1.282597991 3.47E-06 0.001652089 1.6184E-05 0.001020408 

Q4KMG0  CDON 1.438856529 1.395132851 6.493E-06 0.001904762 1.3063E-05 0.000573372 

P10909  CLU 1.268085243 1.273973382 4.497E-06 0.001768707 9.0924E-05 0.000826045 

Q9NZU1  FLRT1 1.438468618 1.404044634 9.319E-07 0.001360544 0.00032809 0.002069971 

P21217  FUT3 1.457634251 1.441771268 2.029E-07 0.001127308 0.00057164 0.000874636 

Q12884  FAP 1.355855033 1.36028669 3.434E-06 0.001642371 0.00025698 0.000136054 

Q02241  KIF23 1.439636723 1.387282427 3.31E-06 0.001632653 0.00061253 0.000417881 

P45984  MAPK9 1.366287937 1.385188001 5.896E-06 0.001865889 0.00016857 0.001302235 
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Uniprot ID 
Color 
Code Gene ID Fold expression 

Predicted Linear 
Model Ratios 
(IPF/Healthy) 

P-values significant 
after Bonferroni 
correction FDR 

Age-adjusted P-values 
significant after 
Bonferroni Correction Age-adjusted FDR 

P48061  CXCL12 0.779402388 0.782938513 9.425E-06 0.001982507 6.6164E-06 0.00447036 

P29401  TKT 0.76346032 0.750233644 0.0004592 0.003002915 7.2265E-06 0.009737609 

 

Color Code 

  Upregulated in IPF AND Age-adjusted AND non-age-adjusted significant 

  Upregulated in IPF AND non-age significant 

 Age-adjusted AND/OR non-age-adjusted significant but not biologically relevant 

  Downregulated in IPF AND Age-adjusted AND non-age-adjusted significant 

  Downregulated in IPF AND Age-adjusted significant 

  Downregulated in IPF AND non-age-adjusted significant 
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Table A.S6. ClueGO analysis of biological roles of upregulated protesin in IPF plasma. 

GOTerm Ontology Source 

Term 
PValu

e 

Term PValue 
Corrected with 

Bonferroni 

Group PValue 
Corrected with 

Bonferroni 

% 
Associated 

Genes 

Nr. 
Gene

s Associated Genes Found 

regulation of cardiac muscle 
hypertrophy 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 

71.0E-
9 2.9E-6 210.0E-9 12.82 5.00 [ECE1, GSK3A, GSK3B, PDE5A, PRKCA] 

ErbB signaling pathway KEGG_10.02.2016 4.0E-9 160.0E-9 17.0E-15 8.05 7.00 
[GSK3B, MAP2K4, PIK3CA, PIK3R1, PRKCA, 

PRKCB, SRC] 
Sphingolipid signaling 

pathway KEGG_10.02.2016 
950.0E

-9 39.0E-6 17.0E-15 5.00 6.00 
[PIK3CA, PIK3R1, PRKCA, PRKCB, RAC1, 

SPHK1] 

VEGF signaling pathway KEGG_10.02.2016 
5.1E-

12 210.0E-12 17.0E-15 13.11 8.00 
[MAPKAPK2, PIK3CA, PIK3R1, PRKCA, PRKCB, 

RAC1, SPHK1, SRC] 
B cell receptor signaling 

pathway KEGG_10.02.2016 
49.0E-

9 2.0E-6 17.0E-15 8.22 6.00 [BTK, GSK3B, PIK3CA, PIK3R1, PRKCB, RAC1] 
Fc epsilon RI signaling 

pathway KEGG_10.02.2016 
32.0E-

9 1.3E-6 17.0E-15 8.82 6.00 
[BTK, MAP2K4, PIK3CA, PIK3R1, PRKCA, 

RAC1] 
Fc gamma R-mediated 

phagocytosis KEGG_10.02.2016 
210.0E

-9 8.6E-6 17.0E-15 6.45 6.00 
[PIK3CA, PIK3R1, PRKCA, PRKCB, RAC1, 

SPHK1] 
Thyroid hormone signaling 

pathway KEGG_10.02.2016 
860.0E

-9 35.0E-6 17.0E-15 5.08 6.00 [GSK3B, PIK3CA, PIK3R1, PRKCA, PRKCB, SRC] 
AGE-RAGE signaling pathway 

in diabetic complications KEGG_10.02.2016 
340.0E

-9 14.0E-6 17.0E-15 5.94 6.00 [FN1, PIK3CA, PIK3R1, PRKCA, PRKCB, RAC1] 
Bacterial invasion of 

epithelial cells KEGG_10.02.2016 2.4E-6 99.0E-6 17.0E-15 6.41 5.00 [FN1, PIK3CA, PIK3R1, RAC1, SRC] 

T cell costimulation 
GO_ImmuneSystemProcess-

GOA_09.02.2016_16h18 
210.0E

-9 8.6E-6 17.0E-15 6.45 6.00 [CSK, PIK3CA, PIK3R1, RAC1, SRC, TNFSF13B] 

platelet activation 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 
430.0E

-15 17.0E-12 17.0E-15 4.69 
13.0

0 
[APOA1, CLIC1, CSK, F5, FN1, PIK3CA, PIK3R1, 

PRKCA, PRKCB, RAC1, SELP, SRC, TEC] 
regulation of cellular 

response to insulin stimulus 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 
700.0E

-9 28.0E-6 17.0E-15 8.20 5.00 [GSK3A, PIK3R1, PRKCA, PRKCB, SRC] 
Complement and coagulation 

cascades KEGG_10.02.2016 1.3E-6 53.0E-6 3.9E-6 7.25 5.00 [C1R, C4B, C5, F5, SERPINA5] 
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Table A.S7. ClueGo analysis of the biological roles of downregulated proteins in IPF plasma. 

GOTerm Ontology Source 
Term 

PValue 

Term PValue 
Corrected with 

Bonferroni 

Group PValue 
Corrected with 

Bonferroni 

% 
Associated 

Genes 
Nr. 

Genes Associated Genes Found 

acute inflammatory 
response 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 67.0E-9 11.0E-6 740.0E-9 6.10 10.00 

[C3, CRP, F3, GSTP1, LBP, PTGS2, SAA1, 
SERPINA3, SERPING1, TIMP1] 

Fc receptor signaling 
pathway 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 650.0E-12 110.0E-9 3.4E-15 4.09 17.00 

[CAMK2B, CAMK2D, CDKN1B, CFL1, CSF2, 
FYN, IL2, IL3, MAP2K1, MAP2K2, PEBP1, 
PSMA2, PTPN11, RPS27A, SHC1, UBE2N, 

YES1] 

response to peptide 
hormone 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 10.0E-15 1.8E-12 3.4E-15 4.07 26.00 

[ANXA1, CAMK2B, CAMK2D, CDKN1B, CSF2, 
FYN, GOT1, GSTP1, IGFBP1, IGFBP2, IL2, IL3, 

MAP2K1, MAP2K2, NAMPT, PEBP1, POR, 
PSMA2, PTPN1, PTPN11, PTPN6, RETN, 

RPS27A, SHC1, TFF3, TIMP1] 
cellular response to 

fibroblast growth factor 
stimulus 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 4.1E-9 720.0E-9 3.4E-15 4.26 15.00 

[CAMK2B, CAMK2D, CDKN1B, CSF2, CXCL8, 
FYN, IL2, IL3, MAP2K1, MAP2K2, PEBP1, 

PSMA2, PTPN11, RPS27A, SHC1] 

response to insulin 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 11.0E-12 1.9E-9 3.4E-15 4.18 20.00 

[CAMK2B, CAMK2D, CSF2, FYN, GOT1, 
GSTP1, IGFBP1, IGFBP2, IL2, IL3, MAP2K1, 
MAP2K2, NAMPT, PEBP1, PSMA2, PTPN1, 

PTPN11, RETN, RPS27A, SHC1] 

Fc-epsilon receptor signaling 
pathway 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 3.8E-9 660.0E-9 3.4E-15 4.29 15.00 

[CAMK2B, CAMK2D, CDKN1B, CSF2, FYN, 
IL2, IL3, MAP2K1, MAP2K2, PEBP1, PSMA2, 

PTPN11, RPS27A, SHC1, UBE2N] 

cellular response to insulin 
stimulus 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 97.0E-12 17.0E-9 3.4E-15 4.27 18.00 

[CAMK2B, CAMK2D, CSF2, FYN, GOT1, 
GSTP1, IGFBP1, IL2, IL3, MAP2K1, MAP2K2, 
NAMPT, PEBP1, PSMA2, PTPN1, PTPN11, 

RPS27A, SHC1] 

insulin receptor signaling 
pathway 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 380.0E-12 66.0E-9 3.4E-15 4.61 16.00 

[CAMK2B, CAMK2D, CSF2, FYN, IGFBP1, IL2, 
IL3, MAP2K1, MAP2K2, NAMPT, PEBP1, 
PSMA2, PTPN1, PTPN11, RPS27A, SHC1] 

epidermal growth factor 
receptor signaling pathway 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 150.0E-12 27.0E-9 3.4E-15 4.49 17.00 

[CAMK2B, CAMK2D, CDKN1B, CSF2, FYN, 
IL2, IL3, ITGA1, MAP2K1, MAP2K2, MMP9, 
PEBP1, PLAUR, PSMA2, PTPN11, RPS27A, 

SHC1] 

phagocytosis 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 160.0E-9 28.0E-6 1.8E-6 4.26 12.00 
[AIF1, ANXA1, C3, CFL1, CRP, FCN1, FYN, 

HMGB1, LBP, PRTN3, SFTPD, YES1] 

peptidase regulator activity 
GO_MolecularFunction-
GOA_09.02.2016_16h18 150.0E-9 26.0E-6 14.0E-12 4.85 11.00 

[C3, C4B_2, CAST, CDKN1B, CST3, PEBP1, 
PI3, SERPINA3, SERPING1, TIMP1, TNFSF14] 

endopeptidase inhibitor 
activity 

GO_MolecularFunction-
GOA_09.02.2016_16h18 160.0E-9 28.0E-6 14.0E-12 5.56 10.00 

[C3, C4B_2, CAST, CST3, PEBP1, PI3, 
SERPINA3, SERPING1, TIMP1, TNFSF14] 

regulation of endopeptidase 
activity 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 490.0E-15 86.0E-12 14.0E-12 4.96 20.00 

[C3, C4B_2, CAST, CDKN1B, CST3, F3, GPI, 
HMGB1, HTRA2, MMP9, PARK7, PEBP1, PI3, 
PLAUR, POR, S100A9, SERPINA3, SERPING1, 

TIMP1, TNFSF14] 
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GOTerm Ontology Source 
Term 

PValue 

Term PValue 
Corrected with 

Bonferroni 

Group PValue 
Corrected with 

Bonferroni 
% Associated 

Genes 

Nr. 
Gene

s Associated Genes Found 

negative regulation of 
endopeptidase activity 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 69.0E-12 12.0E-9 14.0E-12 5.73 15.00 

[C3, C4B_2, CAST, CST3, GPI, MMP9, PARK7, 
PEBP1, PI3, PLAUR, POR, SERPINA3, 

SERPING1, TIMP1, TNFSF14] 
regulation of cysteine-type 

endopeptidase activity 
involved in apoptotic 

process 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 110.0E-9 20.0E-6 14.0E-12 4.98 11.00 
[CDKN1B, F3, GPI, HMGB1, HTRA2, MMP9, 

PARK7, PLAUR, POR, S100A9, TNFSF14] 

positive regulation of 
leukocyte activation 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 21.0E-9 3.8E-6 25.0E-9 4.12 14.00 

[AIF1, ANXA1, FYN, HAVCR2, HMGB1, 
IGFBP2, IL2, LBP, PTPN11, PTPN6, S100A9, 

TIMP1, TNFSF14, YES1] 

leukocyte proliferation 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 4.0E-9 710.0E-9 25.0E-9 4.70 14.00 

[AIF1, ANXA1, CSF1, FYN, GSTP1, HMGB1, 
IGFBP2, IL2, IL3, PTPN6, S100A9, SFTPD, 

TIMP1, TNFSF14] 

mononuclear cell 
proliferation 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 180.0E-9 32.0E-6 25.0E-9 4.21 12.00 

[AIF1, ANXA1, CSF1, FYN, HMGB1, IGFBP2, 
IL2, PTPN6, S100A9, SFTPD, TIMP1, 

TNFSF14] 

T cell proliferation 
GO_ImmuneSystemProcess

-GOA_09.02.2016_16h18 280.0E-9 49.0E-6 25.0E-9 5.24 10.00 
[AIF1, ANXA1, FYN, HMGB1, IGFBP2, IL2, 

PTPN6, SFTPD, TIMP1, TNFSF14] 

regulation of T cell 
activation 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 83.0E-9 14.0E-6 25.0E-9 4.06 13.00 

[AIF1, ANXA1, FYN, HAVCR2, HMGB1, 
IGFBP2, IL2, PTPN11, PTPN6, SFTPD, TIMP1, 

TNFSF14, YES1] 
positive regulation of T cell 

activation 
GO_ImmuneSystemProcess

-GOA_09.02.2016_16h18 150.0E-9 26.0E-6 25.0E-9 4.85 11.00 
[AIF1, ANXA1, FYN, HMGB1, IGFBP2, IL2, 
PTPN11, PTPN6, TIMP1, TNFSF14, YES1] 

regulation of leukocyte 
proliferation 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 11.0E-9 1.9E-6 25.0E-9 5.43 12.00 

[AIF1, ANXA1, CSF1, GSTP1, HMGB1, 
IGFBP2, IL2, IL3, PTPN6, S100A9, SFTPD, 

TIMP1] 
positive regulation of 

leukocyte proliferation 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 250.0E-9 44.0E-6 25.0E-9 6.25 9.00 
[AIF1, ANXA1, CSF1, HMGB1, IGFBP2, IL2, 

IL3, S100A9, TIMP1] 
cellular response to 
interferon-gamma 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 280.0E-9 50.0E-6 150.0E-12 6.16 9.00 

[AIF1, CAMK2B, CAMK2D, CCL14, CCL23, 
PTPN1, PTPN11, PTPN6, SYNCRIP] 

ERK1 and ERK2 cascade 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 91.0E-12 15.0E-9 150.0E-12 5.62 15.00 

[C3, CAMK2D, CCL14, CCL23, EPHA2, 
GSTP1, HMGB1, MAP2K1, MAP2K2, 

PLA2G2A, PTPN1, PTPN11, PTPN6, S100A9, 
TIMP1] 

regulation of ERK1 and ERK2 
cascade 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 4.3E-9 750.0E-9 150.0E-12 5.22 13.00 

[C3, CAMK2D, CCL14, CCL23, EPHA2, 
GSTP1, HMGB1, PLA2G2A, PTPN1, PTPN11, 

PTPN6, S100A9, TIMP1] 

granulocyte chemotaxis 
GO_ImmuneSystemProcess

-GOA_09.02.2016_16h18 2.0E-9 350.0E-9 22.0E-9 8.77 10.00 
[ANXA1, CCL14, CCL23, CSF1, CXCL8, 
DAPK2, ITGA1, LBP, S100A9, SAA1] 

neutrophil chemotaxis 
GO_ImmuneSystemProcess

-GOA_09.02.2016_16h18 120.0E-9 21.0E-6 22.0E-9 8.42 8.00 
[CCL14, CCL23, CXCL8, DAPK2, ITGA1, LBP, 

S100A9, SAA1] 
positive regulation of 
leukocyte chemotaxis 

GO_ImmuneSystemProcess
-GOA_09.02.2016_16h18 55.0E-9 9.7E-6 74.0E-24 9.30 8.00 

[AIF1, CSF1, CXCL11, CXCL8, DAPK2, 
HMGB1, LBP, TNFSF14] 
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GOTerm Ontology Source 
Term 

PValue 

Term PValue 
Corrected with 

Bonferroni 

Group PValue 
Corrected with 

Bonferroni 
% Associated 

Genes 

Nr. 
Gene

s Associated Genes Found 

inflammatory response 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 26.0E-18 4.6E-15 74.0E-24 4.20 30.00 

[AIF1, ANXA1, C3, C4B_2, CCL14, CCL23, 
CMA1, CRP, CSF1, CTSS, CXCL11, CXCL8, F3, 
GSTP1, HAVCR2, HMGB1, IL2, LBP, MAPK13, 

OLR1, PARK7, PGLYRP1, PLA2G2A, PTGS2, 
S100A9, SAA1, SERPINA3, SERPING1, 

TIMP1, TNFRSF1B] 

positive regulation of 
response to external 

stimulus 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 20.0E-18 3.6E-15 74.0E-24 7.03 22.00 

[AIF1, C3, CCL14, CCL23, CSF1, CTSS, 
CXCL11, CXCL8, DAPK2, F3, HAVCR2, 

HMGB1, IL16, IL2, LBP, MAPK13, PARK7, 
PLA2G2A, PTGS2, S100A9, SCARF1, 

TNFSF14] 

positive regulation of 
defense response 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 4.9E-12 860.0E-12 74.0E-24 4.38 20.00 

[C3, CCL14, CCL23, CTSS, FCN1, FYN, 
HAVCR2, HMGB1, IL2, LBP, LTF, MAP2K1, 

MAPK13, PGLYRP1, PLA2G2A, PSMA2, 
PTGS2, RPS27A, S100A9, UBE2N] 

positive regulation of 
chemotaxis 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 9.7E-9 1.7E-6 74.0E-24 7.46 10.00 

[AIF1, CSF1, CXCL11, CXCL8, DAPK2, F3, 
HMGB1, IL16, LBP, TNFSF14] 

regulation of response to 
wounding 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 23.0E-18 4.1E-15 74.0E-24 5.59 25.00 

[ANXA1, ANXA2, C3, CCL14, CCL23, CMA1, 
CTSS, F3, GSTP1, HMGB1, IL2, LBP, 

MAP2K1, MAP2K2, MAPK13, PARK7, 
PGLYRP1, PLA2G2A, PLAUR, PTGS2, S100A9, 

SAA1, SCARF1, SERPING1, TNFRSF1B] 

positive regulation of 
response to wounding 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 3.0E-12 520.0E-12 74.0E-24 8.09 14.00 

[ANXA1, C3, CCL14, CCL23, CTSS, F3, 
HMGB1, IL2, LBP, MAPK13, PLA2G2A, 

PTGS2, S100A9, SCARF1] 

regulation of inflammatory 
response 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 800.0E-15 140.0E-12 74.0E-24 5.70 18.00 

[ANXA1, C3, CCL14, CCL23, CMA1, CTSS, 
GSTP1, IL2, LBP, MAPK13, PARK7, PGLYRP1, 
PLA2G2A, PTGS2, S100A9, SAA1, SERPING1, 

TNFRSF1B] 
positive regulation of 

inflammatory response 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 3.9E-9 680.0E-9 74.0E-24 8.20 10.00 
[C3, CCL14, CCL23, CTSS, IL2, LBP, MAPK13, 

PLA2G2A, PTGS2, S100A9] 

TNF signaling pathway KEGG_10.02.2016 380.0E-9 66.0E-6 4.2E-6 7.27 8.00 
[CASP10, CSF1, CSF2, MAP2K1, MAPK13, 

MMP9, PTGS2, TNFRSF1B] 

Proteoglycans in cancer KEGG_10.02.2016 48.0E-9 8.5E-6 530.0E-9 5.42 11.00 

[CAMK2B, CAMK2D, ITGB1, MAP2K1, 
MAP2K2, MAPK13, MMP9, MSN, PLAUR, 

PTPN11, PTPN6] 
positive regulation of 

tyrosine phosphorylation of 
Stat5 protein 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 110.0E-9 20.0E-6 140.0E-15 25.00 5.00 [CSF2, FYN, IL2, IL3, TIMP1] 

cytokine activity 
GO_MolecularFunction-
GOA_09.02.2016_16h18 1.1E-12 190.0E-12 140.0E-15 6.81 16.00 

[CCL14, CCL23, CSF1, CSF2, CXCL11, CXCL8, 
GDF5, GPI, HMGB1, IL16, IL2, IL3, NAMPT, 

S100A9, TIMP1, TNFSF14] 
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cytokine receptor binding 
GO_MolecularFunction-
GOA_09.02.2016_16h18 31.0E-9 5.4E-6 140.0E-15 4.42 13.00 

[CCL14, CCL23, CSF1, CSF2, CXCL11, CXCL8, 
GDF5, IL2, IL3, S100A9, SHC1, TIMP1, 

TNFSF14] 

GOTerm Ontology Source 
Term 

PValue 

Term PValue 
Corrected with 

Bonferroni 

Group PValue 
Corrected with 

Bonferroni 
% Associated 

Genes 

Nr. 
Gene

s Associated Genes Found 

peptidyl-tyrosine 
phosphorylation 

GO_BiologicalProcess-
GOA_09.02.2016_16h18 5.5E-9 970.0E-9 140.0E-15 4.17 15.00 

[CSF2, DDR2, EPHA2, FYN, IL2, IL3, ITGB1, 
MAP2K1, MAP2K2, PTPN1, PTPN6, S100A9, 

SHC1, TIMP1, YES1] 
regulation of peptidyl-

tyrosine phosphorylation 
GO_BiologicalProcess-

GOA_09.02.2016_16h18 210.0E-9 37.0E-6 140.0E-15 4.68 11.00 
[CSF2, FYN, IL2, IL3, ITGB1, PTPN1, PTPN6, 

S100A9, SHC1, TIMP1, YES1] 
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Figure A.S1. Schematic representation of approach adopted in this study. 
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Figure A.S2. Principal Component Analysis (PCA) showed that the largest, unbiased difference in the IPF-Healthy 

dataset is between the IPF and healthy groups, with comorbidities in the IPF patients having little effect. 
(a) A PCA model based on all 1129 measured blood proteins captured 27.26% of the total variance in the data, with PC1 

explaining 14.16% of the variance and PC2, 13.10%. In this model, the healthy patients score in the negative region of PC1, 

and the IPF patients score mostly in the positive area of PC1. IPF patients with GERD do not cluster together within the IPF 

group; these patients are mixed evenly with the IPF patients who do not have GERD. (b) Similarly, when looking at IPF 

patients with obstructive sleep apnea (OSA), it can be seen that these patients are spread throughout the IPF grouping in the 

PCA and do not form their own cluster. The main difference in this PCA model is still between the healthy and IPF patients. 
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Figure A.S3. Kappa statistics from the upregulated proteome. 
Level of agreement between gene terms is measured by Kappa statistics (default <4). Red scale depicts level of agreement 

from very high (1) to very low (-1). 
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Level of agreement between gene terms is measured by Kappa statistics (default < 4). Blue scale depicts level of agreement from very high (1) to very low (-1) 

Figure A.S4. Kappa statistics from the downregulated proteome. 
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Figure A.S5. DAVID analysis by GO Biological process of the 8 protein identified LASSO signature. 
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APPENDIX B. Supplement to: Identification of a Unique Temporal Signature in 

Blood and BAL Associated With IPF Progression 
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2 Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, 
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Supplemental methods: Sample acquisitions and measurements 

Peripheral blood samples were collected from 60 COMET patients at three time points 

(week 0/baseline, week 48 and week 80) in EDTA-containing vacutainers and were shipped 

overnight from individual sites to the University of Michigan. Blood samples were centrifuged 

and plasma was stored at -80°C until transported to SomaLogic (Boulder, CO). Slow off-rate 

modified aptamers (SOMAmer©) technology was used to measure 1129 proteins present in blood 

samples at each collection time point.   

Bronchoscopy was performed at enrollment in patients who were clinically stable and 

without evidence of active infection. BAL samples were collected and pooled from 4 

installations of 50 mL sterile isotonic saline aliquots. Cell-free fluid was stored at -80°C. 

Luminex FlexMAP 3D (Luminex Corporation, Austin, TX) technology was used to measure 29 

cytokines/chemokines in the BAL samples. Samples below the lower limit of detection were set 

to be ½ the lowest minimum detectable concentration across the standard curves of all analytes. 

Before inclusion in any analyses, all BAL protein concentrations were normalized to total protein 

concentration as quantified by a Pierce BCA Protein Assay Kit (Pierce Protein Biology, 

Rockford, IL). 
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Table B.S1. Demographic and lung function test descriptions from progressors and non-

progressors whose baseline blood protein measurements were used in creating models 

based on blood proteins alone. 

  Non-progressor (N=25) Progressor (N=34) P-value 

Age  63.72 64.86 0.5855 

Sex (Male) 76% 61.76% 0.2551 

Number Never Smokers 7 12 0.5614 

Number Former Smokers 17 22 0.796 

Number Current Smokers 1 0 0.2469 

FVC % Predicted 68.19 70.78 0.5511 

DLCO % Predicted 44.75 47.61 0.441 

 

Table B.S2. Demographic and lung function test descriptions from progressors and non-

progressors whose baseline BAL protein measurements were used in creating models based 

on BAL proteins alone. 

  Non-progressor (N=20) Progressor (N=31) P-value 

Age  62.43 65.43 0.1924 

Sex (Male) 16 (80%) 20 (64.5%) 0.2446 

Number Never Smokers 6 (30%) 11 (35.48%) 0.6922 

Number Former Smokers 13 (65%) 20 (65.42%) 0.9725 

Number Current Smokers 1 (5%) 0 0.2165 

FVC % Predicted 66.88% 71.84% 0.3248 

DLCO % Predicted 45.78% 47.42% 0.6803 

 

Table B.S3. Pearson’s correlation between proteins measured by SOMAmer aptamers and 

by ELISA in a subset of the COMET samples. 

  

Pearson's correlation 

coefficient  P-value 

CCL22 0.672 0.006 

CCL18 0.706 0.003 

CCL2 0.566 0.028 

IL-10 -0.208 0.456 

CXCL12 -0.081 0.775 
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a b 

Figure B.S1. The PLSDA model based on LASSO-identified signature of blood proteins is accurately able to differentiate 

IPF progressors and non-progressors. 

 

(a) LASSO identified a signature of 61 blood proteins that differentiated progressors and non-progressors with 100% 

calibration and 96.53% cross-validation accuracy. (b) The associated loadings on latent variable 1 (LV1) captured 6.28% of the 

total variance in the data. Proteins that are loaded negatively on LV1 are comparatively upregulated in IPF progressors, and 

positively loaded proteins have a comparative reduction in IPF progressors. 
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(a) The cross-validated PLSDA model reported a sensitivity of 97.06% and a specificity of 99.56% for the progressors. 

(b) The cross-validated PLSDA model reported a sensitivity of 96% and specificity of 97.38% for the non-progressors. C: 

Calibrated; CV = Cross-validated; AUC = area under curve. 

 

Figure B.S2. The receiver operator characteristic (ROC) curves associated with the PLSDA model based on the 

LASSO-identified signature of 61 blood proteins.  
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a b 

Figure B.S3. PLSDA model based on VIP-selected signature of BAL proteins is moderately able to differentiate IPF 

progressors and non-progressors, with 78.55% calibration and 67.82% cross-validation accuracy. 

 
(a) The PLSDA scores plot of the 12 feature BAL protein signature highlights moderate separation between baseline 

progressors and non-progressors, with progressors generally having negative scores on LV1 and non-progressors having 

positive scores. (b) The associated loadings on LV1 captured 16.49% of the total variance in the data. Proteins that are 

loaded negatively on LV1 are comparatively upregulated in IPF progressors, and positively loaded proteins have a 

comparative reduction in IPF progressors. 



 189 

 

 

 

 

 

 

 

 

 

Figure B.S4. The receiver operator characteristic (ROC) curves associated with the PLSDA model based on the VIP-

selected signature of BAL proteins. 

 
(a) The cross-validated PLSDA model reported a sensitivity of 83.87% and a specificity of 54.94% for the progressors. (b) 

The cross-validated PLSDA model reported a sensitivity of 49.94% and specificity of 83.87% for the non-progressors. C: 

Calibrated; CV = Cross-validated; AUC = area under curve. 
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Figure B.S5 
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Figure B.S5 continued
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Figure B.S5 continued
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Figure B.S5. Direct comparison of expression of the blood and BAL proteins in the LASSO-identified signature in both 

progressors and non-progressors. 

  
Significance according to a two-sample t-test is marked on each graph, with ** indicating p < 0.01 and * indicating p < 0.05. 
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Figure B.S6. The receiver operator characteristic (ROC) curves associated with the PLSDA model based on the 

LASSO-identified signature of blood BAL proteins. 

 
(a) The cross-validated PLSDA model reported a sensitivity of 100% and a specificity of 100% for the progressors. (b) 

The cross-validated PLSDA model reported a sensitivity of 100% and specificity of 100% for the non-progressors. C: 

Calibrated; CV = Cross-validated; AUC = area under curve. 
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Figure B.S7. The receiver operator characteristic (ROC) curves associated with the PLSDA model based on the 28 

proteins that were identified as being significantly differentially expressed across progressors and non-progressors in 

the volcano plot. 

 
(a) The cross-validated PLSDA model reported a sensitivity of 88.29% and a specificity of 87.56% for the progressors. (b) 

The cross-validated PLSDA model reported a sensitivity of 90% and specificity of 90% for the non-progressors. C: 

Calibrated; CV = Cross-validated; AUC = area under curve. 
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a b 

Figure B.S8. Comparison of calibration and cross-validation accuracy in the PLSDA models based on blood proteins 

alone, BAL proteins alone, and blood and BAL proteins combined shows that the blood only and the combination model 

are both significantly better than the model based on BAL proteins alone. 

 

(a)  Comparison of the calibration accuracies in the three PLSDA models. ** indicate p < 0.01 after administration of 

Cochran’s Q test with McNemar’s post hoc test. (b) Comparison of the cross-validation accuracies of the same three PLSDA 

models shown in panel a. *** indicates p = 0.0001, and **** indicates p < 0.0001 after administration of a one-way ANOVA 

with Tukey’s multiple comparison test. 
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a b 

Figure B.S9. Statistical comparison of calibration and cross-validation accuracies of PLSDA models with similar number 

of features included in each signature showed only trends towards being significantly different from each other. 

 
(a) Statistical analysis of the calibration accuracies via Cochran’s Q test showed that the shortened signature based on blood 

and BAL proteins combined approached being significantly better than the BAL VIP and the shortened blood signature (p = 

0.052, McNemar’s post hoc test). (b) When comparing cross-validation accuracies of the three models, none were significantly 

different from each other. 
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 Figure B.S10. Additional DAVID enrichment analyses of the proteins in the LASSO-signature that were found to be comparatively upregulated in the non-progressors. 

 
(a) This cluster was mostly enriched for processes involving cell signaling and regulation of basic cell processes, with an enrichment score of 2.57. (b) This cluster was also 

enriched for processes involving the function and regulation of the immune, defense and inflammatory responses, with an enrichment score of 2.50. Black squares indicate protein 

involvement in a particular pathway, while white squares indicate non-involvement. 
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Figure B.S11. DAVID enrichment analysis of the proteins that were comparatively upregulated in the progressors in the 

LASSO-identified signature based on blood and BAL proteins measured in COMET IPF patients. 

 
The enrichment score of this cluster is 2.05. Black squares indicate protein involvement in a particular pathway, while white 

squares indicate non-involvement. 
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Figure B.S12. Hierarchical cluster based on the combination signature did not cluster according to the following 

clinical and pulmonary variables: A. smoking status, B. how progression occurred in that specific patient, C. presence 

of honeycombing in the CT scan, D. presence of ground glass in the CT scan, E. DLCO increase or decrease over the 

80-week time period of the COMET study, F. MUC5b genotyping results, G. TOLLIP genotyping results, and H. 

MUC5b and TOLLIP genotyping results together. 
Color bars are shown to the left of each figure, with red indicating higher protein expression level from the mean, white 

unchanged, and blue a lower expression. AE-IPF: acute exacerbations of IPF, DLCO: diffusing capacity of the lungs for 

carbon monoxide, FVC: forced vital capacity. 
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Figure B.S13. The LASSO-identified trajectory PCA signature chosen to separate the non-progressors across the 

three time points captured 24.26% of the natural variance in the data across the first two principal components. 
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* indicates significance (p < 0.05) after application of a paired Wilcoxon signed rank test. Patient number is indicated in the legend, with number references for multiple 

exacerbation visits. Unconnected dots represent measurements that were only made in one state (and were excluded from statistical analysis but included in the fold change 

calculation).  Proteins that were not present in any individuals in any state overlap and appear as a single line.  These measurements were not included in the PLSDA 

analysis. 

 

Figure C.S1. Changes in serum protein expression level in all patients used in the volcano plot analysis across the stable and exacerbated state. 
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* indicates significance (p < 0.05) after application of a paired Wilcoxon signed rank test. Patient number is indicated in the legend, with number references for multiple 

exacerbation visits. Unconnected dots represent measurements that were only made in one state (and were excluded from statistical analysis but included in the fold change 

calculation).  Proteins that were not present in any individuals in any state overlap and appear as a single line.  These measurements were not included in the PLSDA analysis. 

the PLSDA analysis. 

Figure C.S2. Changes in sputum protein expression level in all patients used in the volcano plot analysis across the stable and exacerbation state. 
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* indicates significance (p < 0.05) after application of a paired Wilcoxon signed rank test. Patient number is indicated in the legend, with number references for multiple 

exacerbation visits. Unconnected dots represent measurements that were only made in one state (and were excluded from statistical analysis but included in the fold change 

calculation). Proteins that were not present in any individuals in any state overlap and appear as a single line.  These measurements were not included in the PLSDA analysis. 

Figure C.S3. Changes in blood cell marker protein expression level in all patients used in the volcano plot analysis across the stable and exacerbation state. 
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No model had significantly higher cross-validation accuracy according to Tukey’s multiple comparison test (one-way 

ANOVA). 

The volcano plots illustrate serum proteins that are both differentially expressed (x axis) and significantly different (y axis) 

between the stable and exacerbated state.  Points in red indicate significantly different expression between the stable and 

exacerbated state via paired Wilcoxon signed rank test, with significance being defined as p < 0.05.   

Figure C.S4. Volcano plot based on all stable and exacerbation serum protein measurements (A) compared to volcano 

plot created after first averaging the serum protein concentrations from all of the stable points and all of the exacerbation 

measurements collected across multiple visits from patient A, from patient C, and from patient E separately (B) before 

calculating fold change and performing the Wilcoxon signed rank test. 
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Figure C.S5. Comparison of the cross-validation accuracies associated with each training and test set created during 

cross-validation of the PLSDA models based on VIP-identified serum proteins, serum and sputum proteins, and serum 

and sputum proteins and flow markers. 
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Protein abundance is shown on a colorimetric scale, with red indicating overabundant, white unchanged, and blue under 

abundant protein level compared to the mean. Color bar scale is to the left of the figure. 

Figure C.S6. Hierarchical clustering of the patient samples included in the PLSDA model is ultimately unable to 

accurately classify stable from exacerbation, with seven patients out of 16 included being misclassified. 
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This PLSDA scores plot is the same as the one as shown in Figure 4A, except the samples are now colored by which patient 

they came from. Each point is additionally labeled to convey information about the state of the patient for that sample (i.e. 

stable or exacerbated), as well as with information about which visit the point is referring to, in the cases where multiple 

exacerbations were captured for one patient. 

Figure C.S7. An investigation of the effect of including multiple paired stable and exacerbation measurements from the 

same patient in a PLSDA model based on serum and sputum proteins and blood flow marker data showed that there is 

no clustering by patient, only by stable and exacerbated states. 
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Correlation coefficients were calculated using Spearman’s rank correlation. Color bar scale is shown to the right of the figure. 

Figure C.S8. A correlation coefficient heat map based on the change in concentration between the stable and exacerbated 

state of all measured blood cell markers and serum and sputum proteins highlights how cellular concentrations could 

potentially affect protein concentration during exacerbation. 
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APPENDIX D. Appendix to SPIROMICS Results 

 

 

 

 

  

A B 

(A) There is no differentiation between smokers (grey), never smokers (purple), and COPD subjects (red) in the PLSDA scores 

plot. This model had a 65.69% calibration and 57.88% cross-validation accuracy. (B) Latent variable 1 (LV1) captured 28.97% 

of the variance in the data. 

Figure D.1. Signature of VIP-selected, Luminex-measured plasma cytokines is unable to differentiate COPD disease state 

in a PLSDA model. 

(A) PLSDA scores plot based on SOMAmer-measured blood proteins moderately separates the three groups with 74.56% 

calibration and 67.59% cross-validation accuracy. (B) PLSDA loadings plot captured 12.62% of the variance on LV1. Proteins 

that are positively loaded on LV1 are comparatively increased in most of the COPD subjects and around half of the smokers. 

Figure D.2. Signature of SOMAmer-measured blood proteins is able to differentiate COPD disease state moderately 

well, but has slightly lower accuracy than model based on BAL proteins. 

A B 
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1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 regulation of protein metabolic process 0.003462898

1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 regulation of cellular protein metabolic process 0.015297948

1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 positive regulation of cellular protein metabolic process 0.001275865

1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 positive regulation of protein metabolic process 0.002224591

1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 positive regulation of multicellular organismal process 0.014824832

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 positive regulation of protein phosphorylation 0.004124438

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 positive regulation of phosphate metabolic process 0.013929143

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 positive regulation of phosphorylation 0.005816171

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 positive regulation of phosphorus metabolic process 0.013929143

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 positive regulation of protein modification process 0.02600925

1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 positive regulation of response to stimulus 0.000330764

1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 positive regulation of cell communication 0.02898437

1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 positive regulation of signaling 0.030197501

1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 positive regulation of signal transduction 0.014573905

1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 positive regulation of cell differentiation 0.034061891

0 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 positive regulation of intracellular signal transduction 0.005071393

0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 positive regulation of peptidyl-tyrosine phosphorylation 0.04397408

A 

B 

Figure D.3. DAVID identified a cluster of significant pathways (Bonferroni corrected p < 0.05) involving (A) metabolic 

process regulation (enrichment score 2.27) and (B) regulation of stimulus response (ES 1.92) that were enriched in the 

proteins that were comparatively increased in the never smokers and smokers in the cross-tissue compartment LASSO-

identified signature. 
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Figure D.4. LASSO-identified signature of 29 SOMAmer-measured blood proteins differentiates COPD severity 

moderately well. 

A B 

(A) A signature of 29 SOMAmer-measured blood proteins differentiated three GOLD stages of COPD severity with 84.74% 

calibration and 77.77% cross-validation accuracy. (B) LV1 captured 7.938% of the variance in the data. COPD subjects with a 

higher GOLD classification had more positive scores on LV1. 

Figure D.5. Feature selected signature of 13 Luminex-measured BAL cytokines is not a strong differentiator of COPD 

disease severity. 

A B 

(A) A VIP-selected signature of 13 BAL cytokines differentiated three GOLD stages of COPD severity with 69.53% 

calibration and 62.09% cross-validation accuracy. (B) LV1 captured 25.3% and LV2 captured 11.61% of the variance in 

the data. GOLD 3 subjects tended to have positive scores on LV1 and LV2. LV2 also separated GOLD 1 and GOLD 2 

subjects. 
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APPENDIX E. Brief Results of Other Non-Published Experiments 

 

Introduction 

 This appendix briefly reviews modeling approaches and situations that were explored 

during the course of this thesis, but were ultimately not followed up on, be it for having low 

model accuracy or for not contributing much biological insight to the field.  

 

Biological differences in IPF patients requiring a diagnostic biopsy 

 In the COMET IPF cohort, 35 of the 60 recruited IPF patients received a biopsy to 

confirm diagnosis of IPF due to lack of clear usual interstitial pneumonia (UIP) patterns visible 

on chest computed tomography (CT) scans. We wanted to explore if there were distinct 

proteomic signatures in individuals who had to undergo a biopsy vs. those who were diagnosed 

with non-invasive mechanisms. Identification of a proteomic signature common to both IPF 

groups could suggest a basis for a new, less invasive diagnostic method, and potentially 

eliminate the need for diagnostic lung biopsies. We first set out to determine whether 

unsupervised approaches could identify differences between the two IPF groups and healthy 

patients. When we performed hierarchical clustering to investigate the differences between the 

healthy patients and the IPF patients who did or did not get biopsies (Figure E.1A), most of the 

healthy patients were grouped together, whereas there were no obvious differences in proteomes 

of the biopsy and no biopsy proteomes. We then used principal component analysis (PCA) 

(another unsupervised approach) to look at inherent differences between these three groups of 
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patients (Figure E.1B). Again, healthy patients clustered differently than all IPF patients, with 

no biopsy and biopsy groups occupying the same area in the multivariate space, suggesting little 

inherent differences between blood proteomes in these two groups of patients. Both PCA and 

hierarchical clustering suggested that the blood proteome of healthy patients was quite different 

from that of patients diagnosed with IPF, and additionally that the blood proteomes of IPF 

patients were similar, regardless of diagnostic method. This has implications in how IPF is 

diagnosed: if a person is exhibiting symptoms of IPF according to CT scans, then a diagnosis of 

IPF by biopsy might not be necessary. We next turned to the supervised LASSO technique to 

identify a signature that differentiated the patients who did and did not receive a biopsy; when 

visualized using PLSDA, this signature had a calibration and cross-validation accuracy of 

77.43%. This may suggest there could be differences in the plasma proteome between IPF 

patients who do need a biopsy for diagnosis vs. those who don’t, but this result would need to be 

A. Unsupervised hierarchical clustering of the three groups of patients based on 1129 proteins measured in the SOMAlogics 

assay did not show major differences between IPF patients who had received a biopsy vs. those who had not, but did separate 

healthy patients out from the IPF patients well. This indicates that the IPF patients had similar blood proteomes overall. 

Abundance of each protein is shown in color, with red indicating overabundant proteins, white unchanged, and blue 

underabundant proteins when compared to the mean expression (color bar to left of scale). B. PCA, another unsupervised 

method used to visualize inherent differences between data points, was also used to explore the differences in the blood 

proteome of healthy and IPF patients who did or did not receive a diagnostic biopsy. Again the healthy patients are seen to be 

visually distinct from the IPF patients, and there seemed to be little difference between the IPF patients who had received a 

biopsy and those who had not. 

Figure E.1. Unsupervised methods of classification highlighted differences between healthy and IPF patients, but did 

not capture proteomic differences between IPF patients who had received a biopsy to confirm diagnosis versus those 

who did not. 

A 

 
B 
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investigated and validated in another cohort before a more definitive conclusion could be 

reached.  

 

IPF endotype investigation 

 Due to the heterogeneity present in the disease course of IPF, it is possible that patients 

may present similar losses in lung function that are actually caused by different 

pathophysiological mechanisms320. If disease subgroups or endotypes could be identified that are 

associated with specific biomarkers, this could help in the discovery of new diagnostic or 

treatment options for IPF and could lead to more personalized treatment options for patients. We 

attempted to identify potential endotypes within the 60 IPF patients recruited in the COMET 

cohort using unsupervised hierarchical clustering. Based on the dendrogram separating the IPF 

patients and the visual expression patterns of all 1129 proteins measured in the SOMAscan 

assay, we identified three clusters of IPF patients (Figure E.2). Although we explored proteomic 

Abundance of each protein is shown in color, with red indicating overabundant proteins, white unchanged, and blue 

underabundant proteins when compared to the mean expression (color bar to left of scale). 

 

Figure E.2. Hierarchical clustering of all 60 COMET IPF patients based on expression of all 1129 proteins measured in 

the SOMAlogics assay identified three groups of IPF patients with distinct proteomic expression, as outlined in the black 

boxes. 
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differences in these three groups using LASSO and PLSDA and clinical differences (such as 

differences in radiology, PFTs, and comorbidities), we did not discover novel differences, and 

did not follow up on these identified groups. 

 

Validation of proteomic signature that differentiated healthy and COMET IPF patients 

 One difficulty with working with human data is that cohorts that employ the same assays 

across a similar patient population can be difficult to fund or obtain, which makes it difficult to 

validate a proteomic signature for a diagnostic or prognostic purpose. However, our contacts at 

MedImmune were able to share SOMAmer data from healthy, IPF and COPD patients not 

enrolled in the COMET study shared with us for validating our signatures that differentiated 

Latent variable 1 (LV1) accounted for 71.48% of the variance in the data, and latent variable 2 (LV2) accounted for 6.15% of 

the variance in the data. 

 

Figure E.3. Validation of the 8 protein signature that differentiated COMET control/healthy (dark blue) and IPF 

(lighter blue) patients174 was not successful in another cohort (COPD Study cohort) of control (green) and IPF (yellow) 

patients shared with us by MedImmune, although this could have been due to unknown demographic and diagnostic 

guidelines.  
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healthy and COMET IPF patients. However, when we tested our model using this unseen healthy 

and IPF data (called “COPD study” in Figure 5.3), we did not see clustering patterns that we 

expected: the new healthy and IPF patients were located in between the COMET IPF and healthy 

patients, with the new control patients scoring slightly more positive on LV1 and thus clustering 

nearer to the COMET IPF patients (Figure E.3). We did not receive any demographic data 

associated with these new patients, which made us unable to account for clinical or demographic 

parameters that may differ across the two cohorts. In addition, we did not know the exact 

guidelines that were used when diagnosing the IPF patients, which could have led to greater 

differences in the proteome of the IPF patients from the two cohorts. We did investigate how the 

model classified the COPD patients, and saw that they tended to cluster on the scores plot 

relatively closely to the COMET control patients (data not shown), but we did not explore this 

relationship any further. 

 

Separation of IPF patients based on radiological variables 

 A subset of the COMET IPF patients received high resolution computed tomography 

(HRCT) scans as part of the IPF diagnosis process. Using the measured ALV score relating to 

the ground glass opacity seen in the HRCT scan and the INT score, which quantifies the fibrosis 

level in the HRCT scan321, we used partial least squares regression (PLSR) to identify a signature 

of baseline blood proteins measured by the SOMAscan assay that could differentiate across the 

continuous range of these two scores (model based on ALV scores seen in Figure E.4; INT 

model not shown). We identified signatures using LASSO that accurately differentiated patients 

based on ALV and INT scores with high accuracy (94.2% R2 and 83.3% Q2 values on the ALV 

model). However, when we further investigated these signatures, we found that these identified 
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proteins were novel in their association with IPF. Based on this lack of supporting evidence in 

the literature, we decided not to follow up on these models.  

 

Temporal models of IPF progression 

We created a variety of models while investigating temporal differences in the blood 

proteome of IPF progressors and non-progressors. While we ended up publishing the trajectory 

PCA models of the progressors and non-progressors, we also explored PLSDA models of the 

blood proteome at week 48 and week 80 separately (data not shown), though we did not develop 

these models further because they were not as clinically useful as the signature based on week 0 

protein expression. We also explored a PLSDA model where we used LASSO to identify a 

signature of blood proteins from both the week 0 and the week 48 time points that separated the 

two groups with 88.48% calibration and cross-validation accuracy. The scores plot for this model 

can be seen in Figure E.5A, with latent variable one capturing 27.86% of the variance between 

progressors and non-progressors, which is nearly the same amount of variance captured by the 

A 

 

B 

 

A. LASSO identified a signature that differentiated patients across a range of continuous ALV scores, with a calibration R2 of 

94.2% and a cross-validation R2 of 83.3%. B. The loadings plot indicates protein contributions of the LASSO-identified 

signature, with positive loadings positively associated with patients with higher ALV scores, and negative loadings 

comparatively reduced in patients with higher ALV scores. 

 

Figure E.4. LASSO/PLSR identified a signature of proteins that best differentiated patients by HRCT ALV score. 
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model based solely on week 48 proteins. It was interesting to note that out of the 13 proteins 

LASSO identified in this signature, eight of them are from week 48, and this includes the top two 

positively and negatively loaded proteins. This suggested to us that the proteins at later time 

points are more important in classifying the two groups. Proteins that were found to be 

comparatively upregulated in the progressors were mostly from the week 48 time point (6 out of 

7). Some of the top loaded proteins in the progressors include apolipoprotein B, E-cadherin and 

TFPI (Figure E.5B), which was intriguing to us because these proteins were also chosen in the 

baseline (week 0) only (Chapter 3) and the week 48 only models as well. While we were able to 

hypothesize potential mechanisms involving these proteins that may be associated with 

progression, we did not follow up on these results because using data from the week 48 time 

point was not as clinically useful because progression should be attempted to be slowed or halted 

as soon as it could be detected. 

A 

 
B 

 

Figure E.5. A PLSDA model based on blood proteins from baseline (Tmpt 1) and 48 weeks (Tmpt 2) separates 

progressors and non-progressors well and contains mostly proteins from week 48 in the LASSO-identified signature. 
A. The LASSO-identified signature differentiated IPF progressors from non-progressors with 88.48% calibration and cross-

validation accuracy in a PLSDA model. Latent variable 1 captured 27.86% of the variance in the data. B. The protein 

loadings associated with this model; proteins loaded negatively are comparatively upregulated in progressors, while proteins 

loaded positively are comparatively downregulated in progressors. 
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Proteomic signatures associated with method of IPF progression 

In the COMET study, patients who were classified as progressors experienced at least 

one of four events throughout the course of the 80-week study: (1) An acute exacerbation of IPF 

(AE-IPF), (2) A lung transplant, (3) A drop of 10% or more in FVC, or 4. A drop if 15% or more 

in DLCO measurements. Some patients even experienced a drop in both FVC and DLCO values 

that would classify them as progressors, but no patients that went through a lung transplant had 

blood samples measured by SomaLogic. We were interested in exploring if the way in which 

patients experienced IPF progression was related to their peripheral blood protein expression. 

We used LASSO and PLSDA to identify and visualize a signature of 20 blood proteins that 

differentiated patients who experienced an AE-IPF, a drop in just DLCO or FVC only, or a drop 

in both DLCO and FVC in the 80 weeks of the COMET study. The PLSDA model performed 

with high calibration and moderate cross-validation accuracy (95.26% calibration and 82.91% 

cross-validation accuracy), especially considering that the AE-IPF patients and the both FVC and 

DLCO patients had low numbers (n = 1 and n = 4, respectively) (Figure E.6A, Figure E.6B). In 

addition, when we looked at the individual expression of the proteins in the signature using 

hierarchical clustering, we did not see strong evidence for unsupervised clustering that 

corresponded well with our clinical groups (Figure E.6C), so we did not pursue these models 

further. 

 

Validation of the blood protein IPF progression signature with later time points of blood 

protein data from the COMET cohort 

After we identified a signature of blood proteins from week 0 (Tmpt1) of the COMET 

study that differentiated IPF progressors and non-progressors (Chapter 3), we wanted to validate 
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this signature using the protein expression data from these patients at the two other time points in 

A B 

C 

Figure E.6. A PLSDA model based on a LASSO-identified blood protein signature from baseline separates progressors 

according to how they progressed in the COMET study moderately well. 
A. The LASSO-identified signature differentiated IPF progressors by how they progressed (AE-IPF, drop in only DLCO or 

only FVC, or drops in both DLCO and FVC throughout the 80 weeks of the COMET study) 11.52% calibration and cross-

validation accuracy in a PLSDA model. Latent variable 1 captured 16.45% of the variance in the data, and latent variable 2 

captured 7.89% of the variance. B. The protein loadings associated with this model; proteins loaded in each quadrant are 

comparatively increased in the group that is scored in the same quadrant. C. Hierarchical clustering of the proteins in the 

LASSO signature did not result in groups that corresponded strongly with the clinical progression groups. 
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the study, week 48 (Tmpt2) and week 80 (Tmpt3). We saw on the scores plots after applying the 

model to the data from week 48 and week 80 that overall, this signature based on week 0 protein 

expression was still able to separate the same patients at later points throughout the COMET 

study. Using positive and negative scores on LV1 as the dividing mark between IPF progressors 

and non-progressors, we saw that there were only two progressors and two non-progressors 

misclassified based on the week 48 expression of these proteins (Figure E.7A), while at the 

later, week 80-time point, there were three progressors and three non-progressors misclassified 

(Figure E.7B). While this was promising to us and suggested that the signature we identified 

may be still useful in differentiating IPF progressors and non-progressors even throughout the 

course of disease progression, we acknowledge that in this case we were validating our original 

signature using data from the same patients at later time points. This is not the same as using a 

completely separate and unrelated validation cohort, which could result in biases towards a 

positive validation of our signature. Thus we decided not to continue further with these results. 

 

A B 

Figure E.7. Validation of our week 0 blood protein signature that differentiated COMET IPF progressors and non-

progressors using protein expression data from the COMET patients at A. week 48, and B. week 80. 
Nonprog: non-progressor. Prog: progressor. Tmpt 1 = week 0. Tmpt 2 = week 48. Tmpt 3 = week 80. 
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Signature of blood and BAL proteins and blood cell markers that differentiated IPF 

progressors and non-progressors 

 A subset of blood samples collected at baseline/week 0 of the COMET study were used 

to measure common cell marker phenotypes in the IPF progressors and non-progressors using 

flow cytometry. We then investigated a signature of blood and BAL proteins and blood cell 

markers that could differentiate IPF progression. However, when we applied LASSO to this 

combined dataset, the best signature that we found that differentiated the subset of COMET-IPF 

progressors and non-progressors with all three measurements (n = 11 progressors and 8 non-

progressors) was only based on blood and BAL proteins (data not shown). Because there were no 

cell markers selected by LASSO, we could not move forward with any cellular-based 

hypotheses, and due to the low sample size of patients who also had flow cytometry data, we did 

not pursue this model further. 

 

Data-driven models from mouse models of pulmonary fibrosis 

 We had also been interested in applying our systems-focused analysis to mouse models 

of pulmonary fibrosis so we could infer the most important proteomic relationships associated 

with bleomycin-caused pulmonary fibrosis. Working with animal models would allow us to 

formulate hypotheses based on the identified proteomic relationships and test our hypotheses in 

the same system to validate our models. Working with our collaborator Dr. Beth Moore, we 

collected blood plasma, BAL, and lung homogenate samples from C57Bl/6 mice who were 21 

days post injection with either the fibrosis-causing agent bleomycin (n=11), or with saline (n=5), 

and measured the concentrations of 32 cytokines in these samples using the Luminex platform. A 

hydroxyproline assay was used to quantify collagen levels in the lung homogenate.  The 



 227 

pulmonary fibrotic mice had significantly more collagen formation than the control mice 

(P<0.0001). A PLSDA model of BAL samples (100% calibration and CV accuracy) was better 

able to differentiate saline- and bleomycin-treated mice than a PLSDA model of plasma samples 

(85.45% calibration and 75.45% CV accuracy, data not shown), and a model combining 

measurements from both samples also classified the groups with very high accuracy. This 

signature of combined plasma and BAL cytokines differentiated saline- and bleomycin-treated 

mice with 100% cross-validation and calibration accuracy (Figure E.8A). In this signature 

(Figure E.8B), there were increases in BAL chemokines (G-CSF, MCP-1, MIG and IP-10) 

relative to plasma chemokines in bleomycin-treated mice, suggesting that a specific gradient of 

chemokines (elevation in lung compared to plasma) was associated with lung fibrosis. 

Interestingly, both of these inflammatory cytokines signal through heterodimer receptors 

containing the same subunit (gp130). IL-6 had been known to be associated with bleomycin-

induced pulmonary fibrosis322, although to our knowledge, LIF being associated with fibrosis 

A B 

Figure E.8. PLSDA and VIP scores identified protein signatures and hubs that classified control and pulmonary fibrotic 

mice. 
A. A PLSDA model based on the VIP-selected signature differentiated control (purple) and pulmonary fibrotic (cyan) mice with 

100% cross-validation and calibration accuracy. B. The loadings plot indicates the weights and contributions of the VIP-

signature, with positively loaded proteins being comparatively upregulated in pulmonary fibrotic mice, and negatively loaded 

proteins being comparatively reduced in pulmonary fibrotic mice. 
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was a novel finding. Additionally, other researchers have reported that blocking gp130 signaling 

with the drug tunicamycin323 caused an increase in fibrosis and lung collagen deposition in 

bleomycin-exposed mice, although this study was focused on the endoplasmic reticulum (ER) 

stress caused by tunicamycin324. Due to the gp130 signaling pathway being involved in many 

other basic cellular functions325 besides what was discussed in ER stress study and the overall 

lack of novel results from our data-driven model, we decided to shift our focus on to other 

projects that investigated pulmonary fibrosis in the lungs of human patients. 

 

Protein measurements in sputum samples were able to differentiate stable and AE-COPD 

Sample collection was achieved thanks to a published prospective observational trial 

(ClinicalTrials.gov NCT00281216) has previously been described by Freeman et al.91, and in 

Chapter 5. In brief, patients were recruited at the VAAAHS and the UMHS. All parts of the 

study were approved by the IRB at each location; written consent was obtained from each 

subject; and all parts of the study adhered to the Declaration of Helsinki. Patients were followed 

for up to three years and were seen at least four times a year for spirometry, clinical evaluations, 

questionnaires, and collection of peripheral blood and spontaneously expectorated sputum. 

Exacerbations in these subjects were defined if the subject reported an increase in cough, 

sputum, or shortness of breath, and if a study physician ordered antibiotics or oral steroids after 

ruling out pneumonia. Only if a diagnosis of AE-COPD was made were sputum and peripheral 

blood samples collected at these unexpected visits. After all data and sample collection occurred, 

then each subject began their treatment for their AE-COPD. 

Spontaneously expectorated sputum was immediately processed in a 9:1 mixture of 

distilled water to Sputolysin® (EMD Millipore, Billercia, MA), and the resulting supernatant was 
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stored at -80°C until protein measurements were made. The Luminex 200 system® (Luminex 

Corporation, Austin, TX) was used to measure the concentration of 32 cytokines, with ELISA 

being employed to measure GDF-15, IL-18, IL-23p19, and IFN-β.  

Data processing involved removing samples from analysis that were missing more than 

25% of the sputum protein measurements, as well as then removing proteins from inclusion in 

future models if more than two samples had measurements that were missing for that protein. We 

then used PLSDA to identify signatures of sputum cytokines that differentiated stable and AE-

COPD. All data were mean-centered and variance scaled before being modeled using PLSDA. 

From this PLSDA model, we used VIP scores to select the cytokines that were most influential 

(defined as cytokines with VIP scores ≥ 1) in differentiating the clinical groups of interest, and 

then created a new PLSDA model based only on the VIP-selected features. Each PLSDA model 

was cross-validated to avoid model overfitting and to quantitatively define model accuracy. K-

fold cross-validation was performed by splitting the data into seven groups and iteratively 

training the model on six of the groups while using the seventh group to test the model. All 

A B 

(A) PLSDA and VIP scores identified a signature of 12 sputum proteins that differentiated the stable (purple) from 

exacerbation (orange) states with 91.67% calibration and 78.33% cross-validation accuracy. (B) The loadings plot illustrates 

the protein contributions to the VIP-selected signature, with negative loadings positively associated with AE-COPD, and 

positive loadings comparatively reduced. 

 

Figure E.9. A PLSDA model based on VIP-selected proteins from the sputum resulted in differentiation between stable 

and exacerbation measurements. 
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missing data points in the data were filled in by the Eigenvector software’s “best guess.” All 

final PLSDA models were orthogonalized to improve interpretability. All PLSDA models and 

VIP scores were created or calculated using the PLS toolbox (Eigenvector, Manson, WA) in 

MATLAB (MATLAB, Natick, MA). 

A VIP-selected PLSDA model based on sputum proteins was able to differentiate stable 

and acute exacerbations of COPD (AE-COPD) with 91.67% calibration and 78.33% cross-

validation accuracy (Figure E.9A). LV1 separated stable (purple; positive scores on LV1) and 

AE-COPD (orange; negative scores on LV1) (Figure E.9B). Many proteins that were 

comparatively increased during exacerbation had inflammatory functions (IL-8, IL-6, IL-1β). 

While this model performed with high calibration accuracy, we decided not to explore it further 

due to the lower cross-validation accuracy of this model compared to models of AE-COPD based 

on serum cytokines alone and serum and sputum cytokines in combination with blood flow 

markers which were discussed in Chapter 5. 

 

Classification of smokers, never smokers, and COPD subjects according to clinical 

measurements 

While we have reported success by using blood and lung proteins to differentiate COPD 

GOLD status in the SPIROMICS cohort, we were curious to explore if blood and lung proteins 

were also able to differentiate the SPIROMICS cohort COPD patients by numeric clinical 

measurements of interest, such as the number of reported exacerbations, FEV1 values measured 

before the patients underwent the bronchoscopy, and pack years of smoking. Overall, when just  

looking at the Luminex plasma and Luminex BAL proteins measured separately, we did not see 

strong separation across latent variable 1 for any of the mentioned clinical measurements in any 
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of the partial least squares regression (PLSR) models we created. Figure E.10A shows one of 

the best performing models for the Luminex BAL data (R2 calibration measurement of 0.2478 

and Q2 cross-validation measurement of 0.1619), which involved differentiating COPD patients 

based on FEV1 measurements, and Figure E.10B shows one of the best blood Luminex models 

(R2 calibration measurement of 0.4246 and Q2 cross-validation measurement of 0.1766), which 

attempted to differentiate COPD patients based on number of pack years smoked. We 

hypothesized that these models performed so poorly for two reasons: (1) The overall small 

number of proteins measured by the Luminex compared to other proteomic technologies, such as 

SOMAmer aptamers; and (2) The fact that the SPIROMICS COPD bronchoscopy substudy 

purposefully tried to recruit patients with less severe COPD (e.g. GOLD stage 1 and 2) due 

A B 

Figure E.10. Unable to resolve COPD patients based on quantitative clinical measurements using blood or BAL proteins 

alone. 
A. PLSR model based on BAL proteins measured by Luminex technology did not separate COPD patients well by FEV1 

measurements, with an R2 calibration measurement of 0.25 and a Q2 cross-validation measurement of 0.16, where values 

closer to 1 indicate a better separation. B. PLSR model based on plasma proteins measured by Luminex technology did not 

separate COPD patients well by the number of pack years smoked, with an R2 calibration measurement of 0.42 and a Q2 

cross-validation measurement of 0.18, where measurements closer to 1 indicate a more accurate separation. 
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prioritizing patient health when exposing them to a relatively invasive procedure. Due to the 

makeup of the patients included in the study, we did not have a large enough sample of patients 

with high FEV1 or large number of pack years smoked to accurately differentiate them from the 

larger number of patients with moderate disease. In addition, when we included smokers and 

never smokers with the COPD patients, we saw even worse separation by these quantitative 

clinical measurements. Thus, we decided not to move forward separating patients by these values 

and instead focus on categorical separation by disease state or GOLD status. 
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