
1.  Introduction
The propagation behavior of coronal mass ejections (CMEs) is governed by different forces at different 
heliocentric distances. Close to the Sun the propelling Lorentz force dominates, which is reinforced by mag-
netic reconnection processes (see Chen, 1989, 1996; Kliem & Török, 2006; Vršnak, 2008, 2016). With time, 
as the CME moves farther away from the Sun and the magnetic reconnection weakens, CME propagation 
is predominantly governed by its interaction with the ambient solar wind flow (see e.g., Cargill et al., 1996; 
Sachdeva et al., 2015; Temmer et al., 2011; Vršnak, 2001; Vršnak et al., 2013). The magnetohydrodynamic 
CME drag can be expressed analogously to the aerodynamic drag. It is dependent on the CME geome-
try, that is, cross-section and width, density and speed relative to the ambient solar wind (see e.g., Vršnak 
et al., 2010). The ram-pressure defined by the CME impact speed and density, is found to be well correlated 
to the amplitude of sudden storm commencements caused by the rapid compression of the Earth's magnetic 
field (Gonzalez et al., 1989). Methods for deriving the CME speed and arrival time at Earth from the CME 
initial speed close to the Sun have been largely tested (e.g., Dumbovic et al., 2018; Mays et al., 2015; Riley 
et al., 2018; Sachdeva et al., 2015; Vršnak et al., 2013). However, the derivation of the CME density using 
remote sensing data and its evolution to 1 AU has not been investigated yet.

In-situ measurements of the interplanetary counterpart of CMEs (ICMEs; note that we follow the notation 
by Rouillard (2011) and use the term ICME such to include the shock signature, the sheath and the mag-
netic structure of the CME) at 1 AU reveal that the density of the sheath region is larger compared to the 

Abstract  We determine the three-dimensional geometry and deprojected mass of 29 well-observed 
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geometry parameters, we calculate the volume of the CME for the magnetic ejecta (flux-rope type 
geometry) and sheath structure (shell-like geometry resembling the (I)CME frontal rim). Working under 
the assumption that the CME mass is roughly equally distributed within a specific volume, we expand 
the CME self-similarly and calculate the CME density for distances close to the Sun (15–30 Rs) and at 
1 AU. Specific trends are derived comparing calculated and in-situ measured proton densities at 1 AU, 
though large uncertainties are revealed due to the unknown mass and geometry evolution: (1) a moderate 
correlation for the magnetic structure having a mass that stays rather constant (cc ≈ 0.56 − 0.59), and (2) 
a weak correlation for the sheath density (cc ≈ 0.26) by assuming the sheath region is an extra mass—as 
expected for a mass pile-up process—that is in its amount comparable to the initial CME deprojected 
mass. High correlations are derived between in-situ measured sheath density and the solar wind density 
(cc ≈ −0.73) and solar wind speed (cc ≈ 0.56) as measured 24 h ahead of the arrival of the disturbance. 
This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind 
material. While the CME interplanetary propagation speed is not related to the sheath density, the size of 
the CME may play some role in how much material could be piled up.
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density within the magnetic ejecta region (e.g., see Masías-Meza et al., 2016). This can be well explained 
by the expansion of the low plasma beta magnetic structure that dilutes the plasma material ejected from 
the Sun. As the CME propagates and expands, solar wind material piles-up in front of the driver forming 
the sheath region as was reproduced by Magnetohydrodynamics simulations (e.g., Siscoe & Odstrcil, 2008). 
ICME sheath regions reveal in general different characteristics compared to the magnetic ejecta regions. 
In particular, they show low alpha to proton and Fe/O ratios, characteristic of the ambient solar wind, and 
stronger turbulence (e.g., see Kilpua et al., 2017; Owens, 2018). Evidence that the sheath becomes more 
prominent in interplanetary space is also given by a relative increase of the sheath durations from Mercu-
ry to Earth (Janvier et al., 2019). Recent studies using remote sensing data suggest that in the early CME 
evolution, there is no significant mass pile-up ahead of the CME (Howard & Vourlidas, 2018). Observed 
mass increases up to 20 solar radii (Rs) which is most probably due to outflows from the solar surface (Bein 
et al., 2013; Bemporad & Mancuso, 2010; Temmer et al., 2017; Veronig et al., 2019).

A changing CME mass has consequences for the drag force acting on the CME in interplanetary space (Car-
gill, 2004; Vršnak et al., 2008), and with that modifies the CME propagation time, impact speed, and energy 
input to the magnetosphere (Takahashi & Shibata, 2017). Moreover, a better understanding and quantifica-
tion of CME mass density close to the Sun is important to provide accurate inputs for numerical models in 
order to properly simulate CME propagation and to predict Space Weather. Usually the CME mass density is 
taken as a constant default value based on observational studies of streamer densities. For example, ENLIL 
(Odstrčil & Pizzo, 1999) uses the so-called CME cloud density (dcld) parameter that by default is four times 
larger than typical mean values in the ambient fast wind (see Mays et al., 2015), and for EUHFORIA (Po-
moell & Poedts, 2018), a value of 10−18 kg/m3 is taken corresponding to dcld = 2, that is, half of the density 
used by default in ENLIL (dcld = 4).

With the launch of the Solar Terrestrial Relations Observatory (STEREO; Kaiser et al., 2008) and its SEC-
CHI instrument suite (Howard et al., 2008) in 2006, the interplanetary evolution of the CME structure in 
white-light can be measured seamlessly over the Sun-Earth distance range and is used to derive the CME 
kinematics all the way from Sun to 1 AU. Tracking density and mass from Sun to Earth is a quite complex 
undertaking. In a case study, Savani et al. (2013) showed a qualitative comparison of an estimated mass pro-
file for the sheath structure using white-light heliospheric image data that resembled quite well the in-situ 
density measurements. In the current study, we aim for a better understanding of the density evolution 
of the ICME sheath and magnetic structure. Furthermore, we derive the CME density close to the Sun in 
order to feed CME propagation models. For a set of 29 well-observed multi-viewpoint STEREO CME-ICME 
pairs, we perform a statistical study covering the derivation of the CME kinematics, deprojected mass, and 
three-dimensional geometry parameters from which we calculate the CME volume and density, and com-
pare the results to in-situ measurements at 1 AU.

The paper is structured as follows. In Section 2, the data set and the methodology are presented. Section 3 
gives the analysis and results. In Sections 4 and 5, the results are discussed and summarized. In the Appen-
dix, we provide for all studied events physical parameters that can be used as input for CME propagation 
models.

2.  Data and Methods
The study is based on a sample of 29 well-observed CME-ICME pairs that occurred in the period December 
2008–August 2014 (extracted parameters for each event are given in the Appendix in Table A1). The events 
were selected so as to have reliable stereoscopic observations plus a spacecraft encounter from which we 
derive clear in-situ plasma and magnetic field measurements. In that respect, we restricted our selection to 
CMEs that were observed by both STEREO satellites (Ahead and Behind) and revealed in-situ signatures 
at L1 by Wind. To correctly link the CME-ICME pairs we first estimated the CME arrival time at 1 AU us-
ing the drag-based model by Vršnak et al. (2013) (available as ESA tool under: http://swe.ssa.esa.int/web/
guest/graz-dbm-federated) with the CME initial speed, distance, and angular extent in the ecliptic plane as 
obtained from the graduated cylindrical shell (GCS) reconstruction (see also Dumbović et al., 2019). Ap-
plying a time window of ±18 h, centered at the calculated arrival time, we searched in the in-situ data for 
the corresponding ICME characteristics. All the results are cross-checked with ready lists from Richardson 
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and Cane (2010, to which we refer further on as R&C list), Wood et al. (2017), and HELCATS (Heliospheric 
Cataloging, Analysis and Techniques Service) WP4 catalog (LINKCAT).

For the linked CME-ICME events verified in this way, we obtain from stereoscopic observations their 
three-dimensional parameters close to the Sun such as propagation direction, speed, geometry, and fur-
thermore the deprojected mass (see Colaninno & Vourlidas, 2009) and in situ characteristics for near-Earth 
space. The geometry and volume of a CME together with its deprojected mass is further used to estimate the 
particle density of an ICME at 1 AU applying to the CME volume a self-similar expansion with different ex-
pansion rates. For comparing calculated and measured in-situ densities as well as other parameters, we use 
the bootstrap method. We apply 104 repetitions, that is, the bootstrapping procedure re-samples the original 
data 10,000 times from which 10,000 statistical samples are created in order to derive the Spearman median 
correlation coefficient and an 80% empirical confidence interval (Efron, 1979; Efron & Tibshirani, 1993).

2.1.  Parameter Definition Close to the Sun

The CME three-dimensional geometry at a distance range of about 15 Rs is reconstructed with the GCS 
model (see Thernisien et al., 2009; Thernisien, 2011) using combined white-light coronagraph data from 
2 or 3 different viewpoints of SECCHI/COR2 aboard STEREO-A and -B and LASCO/C2/C3 aboard the 
Solar and Heliospheric Observatory (SOHO; Domingo et al., 1995). The GCS model represents an idealized 
geometry of a CME flux rope as a hollow croissant-shaped mesh that is manually fitted to white-light data 
with the presumed magnetic structure of the CME. The left panels in Figure 1 show a GCS reconstructed 
flux rope for the CME event on 4 August 2011 covering the height range 8–16 Rs at three time steps. As this 
reconstruction is subjective, we aim to avoid bias and use for the study GCS reconstructions performed 
independently by three different groups: (a) N. Sachdeva thesis (Sachdeva, 2019), 12 events using three s/c 
viewpoints; (b) UNIGRAZ, 10 events using three s/c viewpoints; (c) HELCATS WP3 COR2 Catalogue KIN-
CAT (which builds on the work undertaken during the EU FP7 AFFECTS project), seven events using two 
s/c viewpoints from STEREO-A and -B.
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Figure 1.  Left: Example of the three-dimensional geometry for the CME from 4 August 2011 reconstructed using the GCS model by Thernisien (2011) for 
three vantage points (COR2 from STEREO-A and -B, and LASCO/C3). Right: Sketch of the GCS model giving the parameters required for calculating the CME 
volume (α is the angular half-width, C1 is the apex center, R is the cross-section radius at the apex). GCS “full volume”, as given in the text, refers to the frontal 
shell plus legs.
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The CME volume (V) is calculated as function of height/distance using 
the GCS parameters α (angular half-width) and κ (aspect ratio) as de-
scribed in Holzknecht et al. (2018). The right panel of Figure 1 sketches 
the derivation of those parameters with α, � � ( ) /OC R1  (where O is the 
center of the Sun, C1 is the apex center, and R is the cross-section radius 
at apex), and h is the height of the leading edge given as 1( )h OC R   
according to Thernisien (2011). The entire GCS volume consists of the 
frontal shell and two legs. Over the LASCO field of view up to h = 30 Rs, 
a self-similar expansion is assumed. From this, we define the full volume 
of the expanding GCS flux rope, Vfr, close to the Sun.

The CME deprojected mass in the corona, mdp, is derived at ∼15 Rs by us-
ing combined white-light coronagraph data from SECCHI/COR2 aboard 
STEREO-A and -B. The method assumes that the difference in the white-
light excess brightness, as measured by the two STEREO spacecraft, is 
due to the plane of sky projection of an optically thin source. The bright-
ness excess is converted into electron excess, hence, mass, assuming a 
composition of 90% hydrogen and 10% helium. The masses calculated 
from the two vantage points are then corrected for the CME propaga-
tion direction. This is done by varying consistently the masses derived 
from each vantage point until they yield the same result. The technique 
and application is described in Colaninno and Vourlidas (2009) and Bein 

et al. (2013). The region of interest from which the mass is derived, was defined either manually by drawing 
the flux rope boundary or, as given for the HELCATS catalog, by using the GCS model boundaries (Pluta 
et al., 2019; Savani et al., 2013). A cross-check between both approaches revealed no systematic differences 
in the derived mass.

2.2.  Parameter Definition for Near-Earth Space

In-situ plasma and interplanetary magnetic field measurements (5-min averaged) are taken from the Wind 
spacecraft and its Solar Wind Experiment (Ogilvie et al., 1995) and Magnetic Field Experiment (Lepping 
et al., 1995). We extract from the R&C list the times of the shock arrival and start/end times of the magnetic 
ejecta (ME) structure (based primarily on plasma and magnetic field observations; for more details, see 
Richardson & Cane, 2010) from which we define the sheath and ME region. In this study we primarily use 
the arithmetic mean and standard deviation of in-situ measured plasma density and speed, over the dura-
tion of each structure (see Appendix A for additional parameters that were extracted).

As the CME expands in interplanetary space, it propagates over the spacecraft with the sheath region being 
detected first, followed by the ME. Figure 2 gives the radial size of the sheath and ME structure for each of 
the events. They are calculated by multiplying the duration of the sheath (shock arrival time until start time 
of ME) and duration of the ME (start time of ME until end time of ME), respectively, by the average speed 
of each structure (we note that this method assumes constant expansion over the averaging time interval). 
The sheath is of shorter duration/size compared to the ME, hence relates also to a smaller volume. For 
calculating densities of the ME and sheath structure we use therefore different volumes. Figure 3 sketches 
the CME volume derivation using the in-situ measurements of an ICME at 1 AU. The arrival time of the 
ICME shock is used as reference point and sets h to 215 Rs (average 1 AU distance). The derived distances 
are used for calculating the full CME volume (frontal shell plus legs; cf., right panel of Figure 1) for the 
sheath and ME structure. We define (1) V215 as the volume up to the in-situ measured shock by expanding 
the GCS flux rope to h = 215 Rs, (2) Vsh as the sheath volume by expanding the GCS flux rope to h = 215 
Rs + sheath distance, and (3) VME as the ME volume by expanding the GCS flux rope to h = 215 Rs + sheath 
distance + ME distance.

For calculating the densities from the volume and mass, we assume that (1) the observed initial deprojected 
mass from white-light data represents mostly plasma within the ME volume, mME ≈ mdp; (2) the mass is uni-
formly distributed within the volume structures; (3) the ME structure may have some mass exchange with 
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Figure 2.  Radial size of interplanetary coronal mass ejections (ICME) 
structures (sheath and magnetic ejecta [ME]) at 1 AU for each event that is 
used for the volume calculation. As reference point the shock arrival time 
is used which is set to h = 215 Rs. Sheath is given in orange, ME in blue.
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the interplanetary medium, that is, the ME experiences either mass loss due to erosion or mass growth due 
to reconnection with the interplanetary magnetic field (see e.g., Dasso et al., 2007; Manchester et al., 2014; 
Ruffenach et al., 2015); (4) the sheath region acquires additional mass, due to mass accumulation at the 
CME front while propagating in interplanetary space. DeForest et al. (2013) found from an observational 
case study a CME mass increase by 60%, that would be consistent with swept up solar wind material in the 
sheath region. According to these assumptions we vary the mass of the ME structure and the sheath region. 
The mass of the ME structure, mME, is varied by ±25% of the initial deprojected mass mdp. The sheath region 
mass, msh, is calculated for 0.5, 1, and 1.5 times mdp. The entire CME mass at 1 AU yields mtotal = mME + msh. 
For the volume, we consider self-similar expansion with different expansion trends by varying the expan-
sion factor x when calculating the flux rope radius with 0 0( ) ( / )xR h R h h , where R0 and h0 refer to the start-
ing value at h = 15 Rs. Different expansion rates are tested by varying x in the range of 0.8–1.1 (in steps of 
0.1) according to results from observational studies (e.g., Bothmer & Schwenn, 1998; Démoulin et al., 2008; 
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Figure 3.  Sketch of volume calculation in relation to the in-situ measured ICME structures (sheath, ME). Different radial sizes of the GCS geometries are used 
for the volume calculation. Black: V215 derived from a radial size of 215 Rs; orange: Vsh derived from the radial size 215 Rs + sheath; blue: VME is derived from the 
radial size 215 Rs + sheath + ME.
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Gulisano et al., 2012; Leitner et al., 2007; Vršnak et al., 2019). For comparison with in-situ data, we derive 
the proton number density, np, given in cm−3 by assuming abundances of 90% hydrogen and 10% helium.

3.  Results
3.1.  CME Density Profile for 15–30 Rs

Close to the Sun, for the distance range up to 30 Rs from observational studies no mass pile-up is report-
ed (Howard & Vourlidas, 2018). Assuming that the estimated deprojected mass represents mostly plasma 
within the ME volume, Figure 4 shows for the entire sample of 29 events the average CME density profile, ρ 
(h), and standard deviation over the distance range h = 15 − 30 Rs derived by ρ (h) = mdp/Vfr (h) and assum-
ing self-similar expansion (x = 1) and a uniform plasma distribution within the CME structure. The plot 
presents the CME proton number density, np, in particles per cm3 (left y-axis) and the corresponding mass 
density in kg m−3 (right y-axis). On average, over the distance range 15–30 Rs the CME particle density lies 
in the range of ∼ (2.2 − 17.6) × 103 cm−3 (mass densities with ∼ (3.6 − 29) × 10−18 kg m−3). For comparison, 
we give the solar wind density profile applying the relation by Leblanc et al. (1998). From this we derive a 
ratio between CME and solar wind density that decreases from ∼11 at h = 15 Rs to ∼6 at h = 30 Rs.

3.2.  Comparing Calculated and In-Situ Measured Densities Using the Full Volume

Figure 5 gives the comparison between calculated (x-axis) and measured (y-axis) proton plasma densities 
at 1 AU, separately for the sheath and ME structure. For the volume derivation of the sheath (Vsh) and ME 
(VME) we vary the expansion factor in the range x = 0.8–1.1. The results are derived in a first approximation 
by simply applying a mass of msh = mME = mdp. For low expansion factors, x = 0.8–0.9, the calculated plasma 
densities are obtained to be of the same order of magnitude as the in-situ measured ones. These findings 
first of all support that the CME geometry/volume derivation and mass calculation based on remote sens-
ing image data are physically meaningful. The sheath region does not consist of coronal CME plasma, but 
likely piled-up preceding solar wind plasma. Therefore, the sheath region has to be considered as an extra 
mass separate to the coronal CME mass (cf. Kilpua et al., 2017). For larger volumes using x = 1.0–1.1, the 
calculated densities tend to get underestimated.

In a next step, we vary the mass of the different structures for taking into account evolutionary process-
es, just like erosion or mass accumulation in interplanetary space. Figure 6 shows the derived differences 
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Figure 4.  CME density over the distance range 15–30 Rs. We assume that the coronal mass ejections (CME) flux 
rope (full volume) expands in a self-similar manner (x = 1.0) and derive for all 29 events the mean distance-density 
profile (red line) together with its standard deviations (black lines), as calculated from α, κ and mME = mdp values for 
the individual events. As comparison, we give the density profile from the empirical solar wind model by Leblanc 
et al. (1998) with the density at 1 AU normalized to np = 7 cm−3 (dashed line).
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between the calculated and observed plasma densities using different expansion factors and input mass, 
represented as box and whiskers plot containing the minimum, lower quartile, median, upper quartile, and 
maximum for each value array. Table 1 (two left columns) gives the median values and standard deviation 
for the derived differences between the calculated and measured plasma density values. In general, the cal-
culated plasma densities tend to be underestimated when compared with in-situ measurements. This effect 
increases for larger volume expansions (x > 0.9). For the sheath region, using 50% of the initial deprojected 
mass the results are not satisfying. However, when increasing the mass to 1.5 × mdp and using x = 0.8, the 
results improve showing differences between calculated and measured densities that are distributed around 
zero. For the ME region, mass inputs of 0.75−1.25  ×  mdp result in a fair match with the observations with 
best results for a constant mass or increased mass and low volume expansion (x = 0.8–0.9). Table 2 (two left 
columns) summarizes the resulting Spearman median correlation coefficients and 80% confidence intervals 
from the bootstrapping method separately for sheath and ME structure applying different expansion factors. 
We note that different mass inputs do not affect the rank-order correlation coefficient. We find that the 
correlations between measured and calculated particle densities for each structure at 1 AU differ strongly. 
While the ME region shows a weak correlation (cc ≈ 0.47 − 0.49) though with large spread, for the sheath 
region almost no correlation is found (cc ≈ 0.11 − 0.19).

3.3.  Comparing Calculated and In Situ Measured Densities Using a Reduced Volume

The ME seems rather well reproduced with the simple GCS flux rope geometry. We also find that lower ex-
pansion factors tend to give better results in terms of more symmetrically distributed values around the line 
of equality between calculated and measured densities. So far, in our simple approach, we have assumed 
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Figure 5.  Log-log plot of the calculated versus measured particle density using the full volume for each structure and different expansion factors (see legend). 
Magnetic ejecta (ME) is marked by red circles, sheath by black crosses. Gray dashed line gives the x = y equality. The used input mass is msh = mME = mdp.
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that the plasma of the sheath region is distributed within a flux-rope type geometry, same as the ME but of 
smaller volume. However, the sheath region presumably has not a flux-rope type but more likely a shell-like 
geometry. For improving the statistics we test various geometries for the volume derivations (e.g., subtract-
ing differently expanding volumes from each other) and find best results for a “reduced volume” which 
is sketched in Figure 7. First, the sheath volume is based solely on the frontal shell geometry of the GCS 
reconstructed flux rope (see also Figure 1), while for the ME the basis is still the entire GCS flux rope. Then 
from both structures corresponding volumes for h = 215 Rs are subtracted (cf., Figure 7), meaning that we 
calculate the reduced volumes by VME,red = VME − V215 and Vsh,red = VME,frontal − V215,frontal.
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Figure 6.  Boxplot showing the differences between calculated and observed proton plasma density (left panel sheath; right panel ME region) using different 
expansion factors. Different multiples of the derived deprojected mass (see plot legends) are used to calculate from the full volume the proton plasma density 
separately for the sheath and ME region. The whiskers give the minimum and maximum values, and the box itself is confined by the lower and upper quartile, 
with the vertical line within marking the median.
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In general, by applying the reduced volumes, some events yield calcu-
lated densities that largely exceed the measurements (maximum is ∼38 
particles cm−3). These are three events where we used x  =  0.8 (in-situ 
shock arrival times: 11-April-10 13:04UT, 04-Feb-11 01:55UT, 17-Jun-11 
02:41UT) and two events with x = 0.9 (in-situ shock arrival times: 04-Feb-
11 01:55UT and 17-Jun-11 02:41UT). Figure 8 shows the differences be-
tween calculated and observed plasma densities, represented as box and 
whiskers plots (containing the minimum, lower quartile, median, upper 
quartile, and maximum for each value array). Table 1 (two right columns) 
gives the median and standard deviation for the derived differences be-
tween calculated and measured plasma density values. In comparison to 
the results for the full volume (Figure 6), the derived median values for 
sheath and ME are closer to zero, however, the spread in the values in-
creases. For the ME structure the lower and upper quartile get narrower, 
while for the sheath region they increase. Best results for the sheath re-
gion are obtained for an extra mass which is comparable to the initial de-
projected mass and for a CME geometry of weak expansion (x = 0.8). For 
the ME region, equally good results are obtained for either a decreased 
or constant mass and low expansion (0.75 − 1.0 × mdp; x = 0.9) or in-
creased mass (1.25 × mdp) and a volume that is expanding with x = 1.0. 
The two right columns in Table 2 give for the reduced volume the Spear-
man median correlation coefficients between calculated and measured 
densities and 80% confidence intervals from the bootstrapping method 
separately for sheath and ME structure for the different expansion fac-
tors. For the sheath region, by applying a reduced volume, we obtain a 
slightly improved correlation with cc ≈ 0.26 and for the ME structure we 
get cc ≈ 0.56–0.59.

In order, to obtain more conclusive results about the interplay between ambient solar wind, CME charac-
teristics and mass/density evolution, we further investigate the relation between observational parameters 
derived from remote sensing and in-situ data. Figure 9 shows the relation between measured density in 
the sheath and ME region versus solar wind plasma characteristics measured 24 h before the arrival of 
the disturbance (pre-event density and pre-event speed). In addition, we color-code each parameter pair 
with the CME transit time (time difference between CME LASCO/C2 first appearance and ICME shock 
arrival at 1 AU, given in hours). In contrast to the ME region, the sheath structure shows a much stronger 

dependence on the conditions ahead of the disturbance. The highest an-
ti-correlation is found between sheath density and pre-event speed with 
cc = −0.73, and the largest positive correlation between sheath-density 
and pre-event density with cc = 0.56 (ME density and pre-event speed: 
cc = −0.30; ME density and pre-event density: cc = 0.09). Table 3 summa-
rizes the Spearman median correlation coefficients and 80% confidence 
intervals from the bootstrapping method between the ICME sheath and 
ME density against solar wind plasma parameters (density and speed) 
and the total magnetic field, measured between 24 and 48 h before the ar-
rival of the disturbance. The dependencies clearly decrease when relating 
the parameters to the conditions 48 h ahead of the disturbance. We find 
no dependencies on the CME transit time, hence, interplanetary CME 
speed, and no correlation to the pre-event magnetic field.

We further inspect how the size of the CME is related to the amount of 
piled-up solar wind material and other CME characteristics that are im-
portant for investigating the drag force in interplanetary space. Table 4 
gives the statistical results from the bootstrapping analysis between the 
CME geometry parameters α (angular half-width) and κ (aspect ratio) as 
derived from GCS (as defined in Section  2.1) versus CME deprojected 
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Full volume Reduced volume

x mx Sheath ME Sheath ME

0.8 a −6.2 ± 9.3 −1.9 ± 5.2 −5.3 ± 15.6 +1.1 ± 11.1

0.8 b −3.1 ± 10.9 −1.0 ± 5.8 −1.2 ± 26.8 +2.0 ± 14.8

0.8 c + 0.3 ± 13.2 −0.3 ± 6.6 + 5.0 ± 38.7 +4.4 ± 18.6

0.9 a −8.4 ± 9.0 −2.9 ± 4.8 −8.3 ± 11.3 −1.1 ± 6.9

0.9 b −5.0 ± 9.8 −2.0 ± 4.9 −5.1 ± 16.4 −0.3 ± 8.9

0.9 c −2.9 ± 11.0 −1.5 ± 5.2 −2.9 ± 22.4 +1.0 ± 11.1

1.0 a −10.1 ± 8.8 −3.6 ± 4.7 −10.6 ± 9.6 −2.9 ± 5.0

1.0 b −6.9 ± 9.2 −3.1 ± 4.7 −8.1 ± 11.7 −1.8 ± 5.8

1.0 c −5.3 ± 9.8 −2.9 ± 4.7 −5.9 ± 14.3 −0.9 ± 6.8

1.1 a −11.0 ± 8.8 −4.2 ± 4.8 −11.4 ± 9.0 −3.7 ± 4.5

1.1 b −9.4 ± 8.9 −4.0 ± 4.7 −10.5 ± 9.8 −3.3 ± 4.6

1.1 c −7.4 ± 9.2 −3.6 ± 4.6 −9.2 ± 10.8 −3.1 ± 4.9

Notes. Different expansion rates x and volumes (full or reduced) were 
used for the sheath and magnetic ejecta (ME) region. The mass indices, 
mx, refer to (1) msh = 0.5 × mdp and mME = 0.75 × mdp; (2) msh = 1.0 × mdp 
and mME = 1.0 × mdp; (3) msh = 1.5 × mdp and mME = 1.25 × mdp.

Table 1 
Median Values and Standard Deviation for the Derived Differences 
Between Measured and Calculated Density Values (see Figures 6 and 8)

Full volume Reduced volume

x Sheath ME Sheath ME

0.8 0.19 0.47 0.25 0.56

(CI 80%) (0.42; −0.07) (0.64; 0.26) (0.47; 0.01) (0.71; 0.36)

0.9 0.14 0.47 0.25 0.57

(CI 80%) (0.38; −0.11) (0.63; 0.26) (0.48; 0.01) (0.71; 0.38)

1.0 0.14 0.48 0.26 0.58

(CI 80%) (0.37; −0.11) (0.65; 0.28) (0.48; 0.01) (0.72; 0.39)

1.1 0.11 0.49 0.26 0.59

(CI 80%) (0.35; −0.13) (0.65; 0.28) (0.48; 0.01) (0.73; 0.41)

Note. Different expansion rates x, and volumes (full or reduced) were used 
for the sheath and magnetic ejecta (ME) region. For more details see text.

Table 2 
Spearman Median Correlation Coefficients (cc) and 80% Confidence 
Interval (CI 80%) Resulting From the Bootstrapping Analysis (See Figures 6 
and 8)
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mass, transit time, and in-situ measured particle densities for the sheath and ME region. We find a mod-
erate anti-correlation between geometry and transit time (cc = −0.60 for α and cc = −0.62 for κ), while for 
the deprojected mass a moderate correlation with α (cc = 0.67) and a weak correlation with κ is obtained 
(cc = 0.39). Comparing the geometry parameters with in-situ measurements we get a weak to moderate 
correlation between α and κ, and the sheath density (cc = 0.19 and 0.30) and a very weak one for the ME 
density (cc = −0.13 and 0.16). Opposite to the ME, the sheath formation seems to be related to the CME size.

4.  Discussion
The CME mass/density is a parameter that directly connects to the CME propagation behavior in interplan-
etary space. CMEs of high density will be less affected by the drag from the ambient solar medium com-
pared to less dense ones. With that, the mass evolution of a CME in interplanetary space influences strongly 
the propagation duration and speed. Using for a sample of 29 CME-ICME pairs observational data from 
combined remote sensing and in-situ measurements together with geometry modeling efforts, we assess the 
CME mass/density evolution from Sun to Earth.

The geometry and volume of a CME together with its mass is derived from stereoscopic remote sensing data 
covering a field of view up to ∼15 Rs. This is further used to estimate the particle density of an ICME at 1 
AU applying a self-similar CME volume expansion with different expansion rates (x = 0.8–1.1). We treat 
the sheath region as extra mass (as first approach we simply use the same amount as the initial mass) and 
keep the ME initial mass and sheath mass constant as the CME expands. With that we find for x = 0.8–0.9 
a rather good agreement between the ICME calculated and in-situ measured ME density. This supports that 
the available techniques are reasonable and adequate for deriving mass and volume by using remote sensing 
image data.

We show a novel approach for computing the CME density by applying GCS reconstruction for CMEs. By 
calculating the CME volume and expansion in interplanetary space, together with the deprojected mass, the 
density is derived for various distances from the Sun. As the obtained parameters are based on simplistic 
geometric modeling of a flux-rope-type CME, it is not surprising that the differences between calculated 
and observed densities are large. Nevertheless, the statistical results yield trends that allow to draw some 
conclusions. We derive a moderate relationship between calculated and in-situ measured densities with 
cc = 0.47–0.49 using a full volume and cc = 0.56–0.59 for a reduced volume. This finding may indicate that 
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Figure 7.  Sketch of reduced volume derivation for the sheath region (left) and the ME region (right) that is derived by 
subtracting the CME volume up to 215Rs.
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the ME structure might be reproduced by a flux rope-like geometry. Statistically, the smallest differences 
between calculated and observed ME densities are derived for a low expansion factor and rather constant 
mass. This hints toward that the majority of the mass expelled from the Sun lies within the CME flux 
rope structure and during CME propagation the mass within that flux rope might be rather constant with 
variations of about ±25%. The sheath region clearly behaves differently and the geometry most likely de-
viates from a flux rope shape. We derive only weak correlations between calculated and in-situ measured 
sheath densities when using different types of volume estimates and the highest correlation is cc ≈ 0.26 for 
a reduced rim-like volume structure which is similarly shaped as the CME front. The median differences 
between calculated and observed sheath densities are larger compared to the magnetic ejecta results and 
increase when reducing the mass input. This gives indication that the sheath needs to be treated as consid-
erable extra mass.
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Figure 8.  Same as Figure 6 but using the reduced volume for the calculation of sheath and ME plasma density.
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We find a moderate anti-correlation between the GCS source region longitude and transit time, that is, 
the more west the source region the shorter the propagation duration (fast CMEs are deflected eastward, 
slow ones westward; since we observe a plasma pileup, our study covers mainly fast CMEs; see also Sudar 
et al., 2016; Wang et al., 2004). A weak positive correlation (cc ≈ 0.30) with the measured density is obtained, 
hence, the more eastward a CME is launched the higher the in-situ measured density. This might hint to-
ward different levels of compression in dependence of the source region location. However, we note that the 
CME propagation direction might change in interplanetary space (deflection).

Significant relations are found between in situ measured sheath density and pre-event solar wind conditions 
(speed and density). Moreover, the geometry of a CME tends to be better related to the measured sheath 
density than to the ME density. This gives further evidence that the sheath region is largely composed of 
ambient solar wind material as the CME propagates through interplanetary space. The sheath density is 
found to be higher when the CME propagates in slow solar wind (cf. top and bottom panel to the left in Fig-
ure 9). This could also be interpreted in terms of compression which is larger for CMEs propagating in slow 
solar wind (Owens, 2018). Slow solar wind is denser compared to fast streams, hence, CMEs propagating 
in slow solar wind are of higher sheath densities as there is more material ahead of the CME to be piled up.

Our findings are supported by previous studies such as DeForest et al. (2013) who reports a CME mass in-
crease in interplanetary space of the order of 60% and Janvier et al. (2019) who finds for aligned events cov-
ering Mercury and Earth measurements, a relative increase of the duration of the sheath compared to the 
ME structure. Typically, the variation of CME mass as consequence of the interaction with the background 
solar wind is described by the concept of virtual mass (Cargill, 2004; Cargill et al., 1996). More explicitly, the 
“snow plow” model considers solar wind mass pile-up at the CME front in analogy to a plow (Tappin, 2006).
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Figure 9.  Top: In situ measured solar wind density 24 h before shock arrival versus average density of the sheath (left) and magnetic ejecta (right). Bottom: In 
situ measured solar wind speed 24 h before shock arrival versus in situ measured average density of the sheath (left) and magnetic ejecta (right). Color coded 
bubbles mark the propagation duration (transit time) of the CME in hours (see legend).



Journal of Geophysical Research: Space Physics

The average CME density ratio with the background solar wind is ∼11 at 15 Rs and ∼6 at 30 Rs (see also 
Ontiveros & Vourlidas, 2009). For 21.5 Rs (inner boundary for heliospheric models), we obtain a ratio of 
∼ 7 ± 4. Keeping in mind that the background solar wind density is based on slow solar wind, our results 
suggest dcld values higher than the default values currently used for CME propagation models. It is known 
that variations of the density parameter strongly influence the CME propagation time and impact speed 
(Mays et al., 2015; Werner et al., 2019). Values derived from observations should be used as cross-check and 
to restrict the choice of free parameters in the propagation models. In the Appendix A, model input CME 
parameters for the sample of 29 events are given for the distance range 21.5 Rs.

5.  Conclusions
The current study is based on observational data from remote sensing and in-situ instruments combined 
with GCS fitting. The simple geometry assumptions used and the unknown mass and geometry evolution 
in interplanetary space, makes it unfeasible to exactly pin down the complex relations between CME expan-
sion, mass evolution and interaction with the solar wind. However, from the statistical analysis we derive 
specific trends from which we conclude as follows.

CME magnetic structure:

•	 �our results are in agreement with a scenario in which the major part of CME mass close to the Sun, as 
measured from remote sensing white-light data, lies within a closed magnetic structure (presumably the 
flux rope)

•	 �during propagation some mass exchange with the ambient solar wind could be possible
•	 �measured in-situ densities within the magnetic ejecta could be ex-

plained by a CME volume expanding self-similarly with x ≈ 0.9 − 1.0

CME sheath region:

•	 �the sheath region forms and consists of piled-up interplanetary solar 
wind material

•	 �the amount of piled-up mass depends on (1) the prevailing density 
and solar wind flow speed in interplanetary space ahead of the CME, 
and (2) the CME size (wider CMEs act as piston leading to a strong-
er mass pile-up compared to narrow CMEs acting like a bow shock 
where plasma can more easily flow around)

With the newly launched satellites Parker Solar Probe (PSP; Fox 
et al., 2016) and Solar Orbiter (Müller et al., 2020), we will have more 
information on the CME density for various distances. PSP orbits in the 
near future will access the LASCO/C3 coronagraphic field of view (<30 
Rs) and approach the Sun as close as 10 Rs. With that we will have the 
opportunity to actually measure CME density characteristics over the 
distance range 15–30 Rs and to compare with the derived results from 
this study.
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In-situ pre24-de pre48-de pre24-v pre48-v pre24-B pre48-B

sheath-de 0.56 0.50 −0.73 −0.66 0.10 −0.06

(CI 80%) (0.70; 0.37) (0.67; 0.30) (−0.63; −0.80) (−0.52; −0.77) (0.33; −0.16) (0.18; −0.30)

ME-de 0.08 0.09 −0.30 −0.19 −0.18 −0.20

(CI 80%) (0.30; −0.16) (0.30; −0.13) (−0.09; −0.48) (0.02; −0.40) (0.06; −0.42) (0.036; −0.43)

Table 3 
Spearman Median Correlation Coefficient Derived From the Bootstrapping Analysis for the Pre-event Density Measured 
Between 24 and 48 h (pre24 and pre48), Respectively, Before Shock Arrival Versus Sheath and ME Density (de), Speed (v) 
and Total Magnetic Field (B) Taken From In-Situ Measurements

GCS 
parameter Transit time mdp Sheath de ME de

α −0.60 0.67 0.19 0.16

(CI 80%) (−0.42; −0.74) (0.77; 0.53) (−0.06; 0.43) (−0.10; 0.40)

κ −0.62 0.39 0.30 −0.13

(CI 80%) (−0.42; −0.76) (0.58; 0.16) (0.08; 0.51) (−0.38; 0.10)

lon −0.41 0.22 0.30 0.08

(CI 80%) (−0.59; −0.17) (−0.03; 0.45) (0.05; 0.51) (−0.18; 0.32)

lat −0.08 0.08 0.11 −0.01

(CI 80%) (−0.35; −0.22) (−0.18; 0.32) (−0.14; 0.36) (−0.26; 0.24)

Table 4 
Spearman Median Correlation Coefficient Derived From the Bootstrapping 
Analysis Between GCS Geometry Parameters α (Angular Half-Width), κ 
(Aspect Ratio) as Defined in Section 2.1, the GCS Source Region Longitude 
(lon) and Latitude (lat) and CME Parameters From Remote Sensing 
and In-Situ Data Against Measured Sheath Density (Sheath de) and ME 
Density (ME de)
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Appendix A:  CME-ICME Pairs—Event Parameters
Table A1 gives for the 29 CME-ICME pairs under study relevant parameters that may be used as input for 
modeling. For identification of the CME-ICME pairs we give the CDAW catalog time based on LASCO 
observations (Yashiro et al., 2004) and the ICME disturbance arrival time according to the R&C list (Rich-
ardson & Cane, 2010). We list from GCS reconstructions (based on remote sensing data from two or three 
different vantage points) the following parameters: longitude, latitude in Stonyhurst coordinates, the tilt as 
the angle of the flux rope axis with respect to the equatorial plane, and the geometry parameters α and κ 
from which the volume is calculated (Holzknecht et al., 2018). The deprojected mass is derived at a distance 
of about 15 Rs using combined STEREO-A and -B COR2 data. For the distance of 21.5 Rs (0.1 AU) we give 
the CME speed and time (kinematics are derived from GCS reconstructions covering several time steps, and 
making a linear extrapolation from the last two data points to estimate the values for 21.5 Rs). The density 
is derived from the deprojected mass divided by the CME volume applying h = 21.5 Rs. From in-situ meas-
urements we give the average speed over the sheath region (to estimate the impact speed at 1 AU distance) 
and the average ME speed, as well as the average sheath and ME particle density. We also list the calculated 
density based on the reduced CME volume for sheath and ME region applying x = 0.9. To feed ensemble 
CME propagation models, we give general estimates of uncertainties empirically derived from the analysis 
performed during this study: ±30 min in timing, ±50–200 km/s for speed, 10% for α and κ, 30% for the de-
projected mass and density, ±10° for longitude and latitude, and ± 20° in tilt.
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no.(q)
Remote sensing of the 
Sun and GCS results 21.5Rs (0.1 AU)

In situ measurements at 215Rs 
(1 AU) Calculated

LASCO Lon Lat Tilt α κ mdp By Time v ρ Disturbance shv MEv shpn MEpn shpn MEpn

1 (3) 2008/12/12 
0525

4 5 51 0.23 0.27 4.50E15 HC 2008/12/12
 1500

470 1.36E-17 2008/12/16
 0800

350 340 15.7 3.9 22.8 11.3

2 (3) 2009/12/16 
0430

−2 7 −6 0.39 0.31 2.20E15 HC 2009/12/16 
1230

370 4.81E-18 2009/12/19 
1000

430 380 3.0 3.7 5.8 3.8

3 (2) 2010/04/03 
1033

3 −29 2 0.42 0.29 6.04E15 UG 2010/04/03 
1350

900 1.42E-17 2010/04/05 
0826

720 650 9.4 4.2 9.0 5.9

4 (2) 2010/04/08
 0454

−2 −9 −29 0.57 0.19 7.52E15 NS 2010/04/08 
0900

500 3.08E-17 2010/04/11
 1304

430 410 9.7 10.1 39.9 28.3

5 (2) 2010/05/24 
1406

13 8 −10 0.24 0.48 3.20E15 HC 2010/05/24 
0240

390 4.36E-18 2010/05/28
 0258

370 360 19.2 7.2 4.3 2.8

6 (1) 2010/06/16
 0635

−17 3 −33 0.17 0.26 2.35E15 NS 2010/06/16
 2330

430 7.97E-18 2010/06/20
 2000

390 360 5.9 5.9 9.3 3.8

7 (3) 2010/10/26
 0200

18 −25 −55 0.52 0.26 7.14E15 NS 2010/10/26
 1730

450 1.86E-17 2010/10/30 
1015

380 340 13.4 7.8 10.4 7.2

8 (3) 2011/01/30
 2008

−40 −12 −20 0.20 0.26 5.60E15 HC 2011/01/30
 2150

310 1.84E-17 2011/02/04 
0155

370 410 10.6 18.0 56.3 25.8

9 (2) 2011/02/15 
0236

0 −11 53 0.37 0.46 6.83E15 UG 2011/02/15
 0630

700 8.95E-18 2011/02/18 
0130

540 470 11.6 1.4 3.4 2.4

10 (1) 2011/03/03 
0548

8 −23 8 0.38 0.35 3.13E15 NS 2011/03/03
 1300

510 5.83E-18 2011/03/06 
0331

530 440 4.2 5.1 3.0 2.0

11 (3) 2011/06/02 
0745

42 12 55 0.42 0.40 3.80E15 HC 2011/06/02 
1100

830 5.78E-18 2011/06/04 
2045

480 510 34.3 14.9 7.2 5.1

12 (1) 2011/06/14 
0610

−44 −1 41 1.00 0.28 1.03E16 NS 2011/06/14
 1300

770 2.14E-17 2011/06/17 
0241

530 490 5.6 7.0 57.3 51.5

13 (1) 2011/08/04 
0412

31 20 62 0.87 0.49 6.84E15 UG 2011/08/04 
0550

1300 6.93E-18 2011/08/05 
1751

540 540 7.5 1.2 2.1 1.9

Table A1 
Parameters Derived for Each of the CME Events Under Study (No.) Including a Flag (q) Marking the GCS Fit as Very Easy (1), Easy (2), and Hard (3) to Perform
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no.(q)
Remote sensing of the 
Sun and GCS results 21.5Rs (0.1 AU)

In situ measurements at 215Rs 
(1 AU) Calculated

LASCO Lon Lat Tilt α κ mdp By Time v ρ Disturbance shv MEv shpn MEpn shpn MEpn

14 (1) 2011/09/13 
2210

19 21 −6 0.22 0.47 4.20E15 HC 2011/09/14 
0620

600 5.98E-18 2011/09/17 
0343

500 450 13.3 4.3 7.1 4.4

15 (1) 2011/10/22 
0005

87 45 16 0.79 0.59 1.23E16 NS 2011/10/22 
1330

610 1.01E-17 2011/10/24 
1831

480 470 25.6 11.0 12.2 11.0

16 (2) 2011/10/27 
1200

−37 29 17 0.29 0.36 3.01E15 NS 2011/10/27 
1550

700 5.76E-18 2011/11/01 
0907

400 370 7.5 3.7 4.8 2.9

17 (1) 2011/11/26 
0700

56 14 −41 0.77 0.63 1.00E16 HC 2011/11/26 
1000

1350 7.67E-18 2011/11/28 
2150

500 450 9.2 13.4 22.3 20.1

18 (1) 2012/01/19 
1512

−20 44 90 1.00 0.47 9.17E15 NS 2012/01/19 
1730

1000 9.60E-18 2012/01/22 
0611

410 450 26.6 6.7 10.9 10.0

19 (2) 2012/03/13 
1736

62 21 −40 1.28 0.74 1.00E16 NS 2012/03/13 
1940

850 6.02E-18 2012/03/15 
1306

710 710 9.1 4.7 4.3 4.3

20 (2) 2012/06/14 
1412

1 −24 67 0.65 0.52 8.46E15 UG 2012/06/14 
1700

1000 8.39E-18 2012/06/16 
2019

490 450 37.7 22.6 15.7 13.2

21 (2) 2012/07/12 
1648

7 −18 70 0.39 0.59 1.84E16 UG 2012/07/12 
1900

1150 1.75E-17 2012/07/14 
1809

610 490 15.8 2.3 5.2 4.1

22 (2) 2012/09/28 
0000

11 10 75 0.60 0.40 9.61E15 UG 2012/09/28 
0300

1000 1.34E-17 2012/09/30 
2305

370 370 20.3 10.8 19.8 15.5

23 (1) 2012/10/05 
0724

21 −18 41 0.57 0.40 6.40E15 UG 2012/10/05 
0900

600 9.05E-18 2012/10/08 
0516

370 400 15.7 5.2 8.3 6.4

24 (2) 2012/11/09 
1512

−11 −18 6 0.60 0.48 5.19E15 NS 2012/11/09 
1900

600 5.77E-18 2012/11/12 
2204

410 380 22.3 6.5 6.5 5.2

25 (1) 2012/11/23 
1336

−22 −21 −66 0.18 0.56 3.45E15 NS 2012/11/23 
1810

680 4.06E-18 2012/11/26 
0512

520 450 7.3 2.6 2.1 1.4

26 (1) 2013/04/11 
0724

−16 −3 41 0.52 0.40 1.51E16 UG 2013/04/11 
1130

700 2.18E-17 2013/04/13 
2254

490 410 13.4 4.1 11.2 8.3

27 (2) 2013/07/09 
1512

0 2 1 0.50 0.38 2.93E15 UG 2013/07/09 
2150

550 4.57E-18 2013/07/12 
1714

480 410 5.7 3.7 2.1 1.5

28 (1) 2013/09/29 
2145

24 23 90 0.82 0.43 1.37E16 NS 2013/09/30 
0100

1000 1.65E-17 2013/10/02 
0154

590 470 12.2 1.8 6.9 5.9

29 (2) 2014/08/15 
1812

15 13 −65 0.38 0.30 1.60E15 UG 2014/08/16 
0140

450 3.68E-18 2014/08/19 
0657

370 360 18.2 8.1 2.9 1.8

Notes. We give the CDAW catalog observation time, GCS reconstruction parameters lon(gitude) [°], lat(itude) [°], tilt [°], α (rad), and κ (rad), the deprojected 
mass mdp [g], and information by whom the information was provided (HC, HELCATS; NS, Nishtha Sachdeva; UG, UNIGRAZ). For the distance of 21.5 Rs, 
we give the extrapolated CME speed and time, and the calculated mass density (kg/m3). From in-situ measurements, we list the ICME disturbance arrival time 
according to the R&C list (Richardson & Cane, 2010), the average sheath and ME speed (km/s), the average proton number density for sheath and ME. The last 
two columns give the calculated proton number density based on the reduced CME volume applying x = 0.9.

Data Availability Statement
Data from the SOHO and STEREO mission are downloaded from the Virtual Solar Observatory Repository 
(Hill et al., 2009). In situ plasma and interplanetary magnetic field measurements (5-min averaged) are 
taken via OMNI web from the Wind spacecraft and its Solar Wind Experiment (Ogilvie et al., 1995) and 
Magnetic Field Experiment (Lepping et al., 1995).
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