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Abstract 60 

Cities are uniquely complex systems regulated by interactions and feedbacks between natural 61 

and social processes. Characteristics of human society – including culture, economics, 62 
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technology, and politics – underlie social patterns and activity, creating a heterogeneous 63 

environment that can influence and be influenced by both ecological and evolutionary 64 

processes. Increasing interest in urban ecology and evolutionary biology has coincided with 65 

growing interest in eco-evolutionary dynamics, which encompasses the interactions and 66 

reciprocal feedbacks between evolution and ecology. Research on both urban evolutionary 67 

biology and eco-evolutionary dynamics frequently focuses on contemporary evolution of species 68 

that have potentially substantial ecological – and even social – significance. Still, little research 69 

fully integrates urban evolutionary biology and eco-evolutionary dynamics, and rarely do 70 

researchers in either of these fields fully consider the role of human social patterns and 71 

processes. Because cities are fundamentally regulated by human activities, are inherently 72 

interconnected, and are frequently undergoing social and economic transformation, they 73 

represent an opportunity for ecologists and evolutionary biologists to study urďaŶ ͞soĐio-eco-74 

eǀolutioŶarǇ dǇŶaŵiĐs.͟ Through this new framework, we encourage researchers of urban 75 

ecology and evolution to fully integrate human social drivers and feedbacks to increase 76 

understanding and conservation of ecosystems, their functions, and their contributions to 77 

people within and outside cities.  78 

 79 

 80 

 81 

Introduction 82 

Humans construct and modify their surroundings to support the demands and desires of 83 

society ;O’BrieŶ & LalaŶd, ϮϬϭϮͿ. This phenomenon is particularly evident in cities, which are 84 

currently home to over half of the human population, a percentage predicted to rise to 66% by 85 

2050 (UN, 2018). Urban expansion is rapid, with the global city footprint projected to double 86 

between 2015 and 2050, largely due to increased urban and suburban sprawl (Barrington-Leigh 87 

& Millard-Ball, 2020; Huang, Li, Liu, & Seto, 2019; Liu et al., 2020). As urban areas expand, they 88 

are becoming more socially heterogeneous, reflecting an influx of diverse people who bring 89 

myriad cultures from around the world (Qadeer, 1997, 2000; Sandercock, 1998). While humans 90 

aŶd soĐial proĐesses are affeĐtiŶg all the plaŶet’s ďioŵes (Ellis, 2015), it is in urban ecosystems 91 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

that human density and built habitats are the most pronounced. Cities have thus become 92 

represeŶtatiǀe of aŶ urďaŶ ͞aŶthroďioŵe͟ – a set of ecosystems created and transformed by the 93 

people and societies that inhabit and depend on them (M Alberti, 2008; Grimm et al., 2008; 94 

Pickett et al., 2001). Cities are unlike any other ecosystems because they are quintessentially 95 

built by and for one species: humans – a highly social, interconnected, and omnipresent 96 

ecosystem engineer (Smith, 2007). As a result, the study of urban ecosystems should involve 97 

novel approaches by urban ecologists and evolutionary biologists to better integrate human 98 

social patterns and processes and build a truly synthetic understanding of the evolutionary 99 

ecology of cities (Figure 1). 100 

Urban ecosystems (Definition: Box 1) are abiotically and biotically distinct from non-urban 101 

areas in that they feature human-built structures, a high proportion of impervious surface, 102 

reduced vegetation cover, elevated pollution levels, and a disproportionately large number of 103 

exotic species (Grimm et al., 2008; Seto, Sánchez-Rodríguez, & Fragkias, 2010). They are further 104 

characterized by altered patterns of connectivity, resource availability, inter- and intraspecific 105 

interactions, temperature, and habitat structure (Groffman et al., 2014; Walsh et al., 2005). 106 

Unsurprisingly, research has shown that these urban drivers have substantial effects on both 107 

ecological and evolutionary processes (M Alberti, 2016; Donihue & Lambert, 2015; Johnson & 108 

Munshi-South, 2017; Szulkin, Munshi-South, & Charmantier, 2020). In many cases, the biological 109 

community composition, population demographics (Parris, 2016), phenotypic traits (Merckx, 110 

Kaiser, & Van Dyck, 2018), and genetic makeup (Munshi-South, Zolnik, & Harris, 2016) of urban 111 

organisms differ substantially from their non-urban counterparts. 112 

The structure and composition of urban ecosystems are predominantly a consequence of 113 

human society (Definition: Box 1), which reflects the complex interplay among culture, economy, 114 

politics, and technology ;Aǀolio, Pataki, Traŵŵell, & EŶdter‐Wada, ϮϬϭϴ; ColliŶs et al., ϮϬϬϬ; 115 

Groǀe, LoĐke, & O’Neil-Dunne, 2014; Marzluff, 2008). As a result, urban ecological and 116 

evolutionary processes are intrinsically influenced by social patterns and processes (Figure 2; 117 

Groǀe et al., ϮϬϭϰ; TroǇ, Groǀe, & O’Neil-Dunne, 2012). Not only are human activities an 118 

underlying driver of ecological and evolutionary processes in cities, these processes feed back to 119 

affect human health and wellbeing through Ŷature’s ĐoŶtriďutioŶs to people (Definition: Box 1; 120 
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Díaz et al., 2018), including both ecosystem (Daily, 1997) aŶd ͞eǀosǇsteŵ͟ (Faith et al., 2010; 121 

Faith, Magallón, Hendry, & Donoghue, 2017; Rudman, Kreitzman, Chan, Schluter, & Rudman, 122 

2017) services and disservices. These processes may further shape and reshape human attitudes 123 

and behaviours towards the environment and biodiversity conservation (Reddy et al., 2017). 124 

As cities have grown, so too has interest in the myriad intersections between human life 125 

and the lives of other species. During the last three decades, the field of urban ecology 126 

(Definition: Box 1) has made large strides in integrating human social dimensions into the study 127 

of urban ecosystems by fostering new collaborations between natural and social scientists. 128 

These collaborations have uniquely explored how urbanization shapes ecological processes, 129 

promoting the understanding of cities as ecosystems where humans play a fundamental role in 130 

regulating environmental patterns and processes (Alberti, 2008; Liu et al., 2007). Studies on 131 

urban evolutionary biology (Definition: Box 1) have also increased in recent years (Johnson & 132 

Munshi-South, 2017; Rivkin et al., 2019; Szulkin et al., 2020). Although some of the earliest work 133 

showing evidence of natural selection focused on urban adaptive evolution (Definition: Box 1; 134 

Kettlewell, 1958), recent advances in molecular techniques and a broader understanding of the 135 

role of gene flow and neutral evolution have contributed to a wealth of research on how non-136 

adaptive evolution (Definition: Box 1)  - including patterns of genetic drift and gene flow - 137 

operates in cities (Miles, Rivkin, Johnson, Munshi‐South, & Verrelli, 2019; Rivkin et al., 2019; 138 

Schmidt, Domaratzki, Kinnunen, Bowman, & Garroway, 2020; Szulkin et al., 2020). Increasing 139 

research on urban evolutionary biology has also coincided with the growing field of eco-140 

evolutionary dynamics (Definition: Box 1), which aims to understand the interactions and 141 

feedbacks between evolutionary and ecological processes (Fussmann, Loreau, & Abrams, 2007; 142 

Hendry, 2017; Schoener, 2011). Researchers of both urban evolutionary biology and eco-143 

evolutionary dynamics tend to focus on contemporary evolution in species that can have 144 

important ecological – or even social – feedbacks (Faith et al., 2010, 2017; Rudman et al., 2017); 145 

few, however, have examined the presence and strength of eco-evolutionary dynamics in urban 146 

ecosystems (M Alberti, 2015).  147 

In recent years, interdisciplinary progress has been made showing how social processes 148 

influence ecological dynamics (Band, Cadenasso, Grimmond, Grove, & Pickett, 2005; Liu et al., 149 
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2007), how evolutionary dynamics feed back on ecology (Fussmann et al., 2007; Hendry, 2017; 150 

Pelletier, Garant, & Hendry, 2009) and how evolutionary dynamics contribute to society (Faith et 151 

al., 2010; Palumbi, 2001). However, a general framework for addressing the relationships among 152 

all three dimensions – social, ecological, and evolutionary – is still lacking. In particular, little 153 

research fully integrates urban evolutionary biology with eco-evolutionary dynamics (but see 154 

(Brans, Jansen, et al., 2017) and rarely do either of these fields fully consider the role of human 155 

social processes on the eco-evolutionary dynamics in cities (but see Schell et al., n Revision). We 156 

argue that cities present an opportunity to integrate the fields of social science, ecology, and 157 

evolutionary biology for the following reasons: 1) urban ecosystems are biotically and abiotically 158 

distinct, potentially resulting in unique effects on ecological and evolutionary dynamics 159 

compared to non-urban systems; 2) social patterns and processes are concentrated in cities, 160 

where they modify the ecological stage on which evolution takes place, thereby affecting urban 161 

eco-evolutionary dynamics; 3) ecological and evolutionary processes in cities are likely to feed 162 

back on humans and society; 4) these feedbacks might be magnified or dampened depending on 163 

the social and urban contexts in which they occur. 164 

The goal of this perspective piece is to provide a ͞socio-eco-evolutionary dynamics͟ 165 

(Definition: Box 1) framework for evolutionary ecologists studying urban ecosystems. We 166 

highlight the importance of integrating social patterns, processes, and responses in research on 167 

urban ecology, evolutionary biology, and eco-evolutionary dynamics. Further, we use examples 168 

from specific study systems and describe how existing frameworks from research in these fields 169 

may be extended to include social dimensions. We close by laying the groundwork for future 170 

research on urban socio-eco-evolutionary dynamics with a set of empirical and theoretical 171 

guidelines and questions. 172 

 173 

Linking urban social processes with ecology and evolution 174 

Characteristics of human society  – demography, culture, governance, economics, and 175 

social organization (Odum, 1943; Tipps, 1973) – not only govern interactions among humans, but 176 

also influence human interactions with nature. Humans have always engaged in socio-ecological 177 

and socio-evolutionary relationships, whether through hunting and gathering, domestication and 178 
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agriculture, or the use of natural resources to build civilizations and cities (Boivin et al., 2016; 179 

Sullivan, Bird, & Perry, 2017). Through these relationships, humans have not only fragmented 180 

aŶd ĐoŶŶeĐted speĐies’ populatioŶs, ďut also constructed and modified their ecological niches. A 181 

wealth of research from a diversity of disciplines (e.g., political ecology, cultural anthropology, 182 

sociology) has revealed the ubiquity of complex interactions between human society and nature 183 

through millennia and across geographic regions ;BoiǀiŶ et al., ϮϬϭϲ; Ellis, ϮϬϭϱ; O’BrieŶ & 184 

Laland, 2012). This research has laid the groundwork for studying the interactions among social, 185 

ecological, and evolutionary dynamics in cities.   186 

 187 

Social drivers o  ur an ecology 188 

In recent years, urban ecology has emerged as a unified discipline, focusing on the many 189 

ways in which urbanization alters abiotic and biotic conditions that influence species 190 

interactions, patterns, and processes and how those processes feed back to people via changes 191 

in ecosystem services  (Collins et al., 2000; Grimm, Grove, Pickett, & Redman, 2000). Intraspecific 192 

(communication, mating behaviour, within-species competition) and interspecific (mutualism, 193 

predation, herbivory, and among-species competition) interactions - including with humans - can 194 

differ significantly between urban and surrounding nonurban habitats (Miles, Breitbart, Wagner, 195 

& Johnson, 2019; Pereira-Peixoto, Pufal, Staab, Feitosa Martins, & Klein, 2016; Rodewald, 196 

Shustack, & Jones, 2011). Urban ecology has increasingly integrated human social patterns and 197 

processes in the study of urban ecosystems (M Alberti, 2008; Grimm et al., 2000; Marzluff, 2008; 198 

Tanner et al., 2014), recognizing that cities comprise a mosaic of natural and built habitats with 199 

varying disturbance across space and time (Pickett, Cadenasso, Childers, McDonnell, & Zhou, 200 

2016; Savage, Hackett, Guénard, Youngsteadt, & Dunn, 2015). 201 

Redefining cities as intrinsically coupled human and natural systems (also known as 202 

CHANS: Box 2) acknowledges not only that social decisions shape urban ecosystems, but also 203 

that ecological changes motivate important human decisions (Liu et al., 2007). Decisions and 204 

policies made at various social scales - individuals, neighbourhoods, businesses, or municipal and 205 

national governments - can both directly regulate and be regulated by urban decision-making 206 

and its ecological effects (Pickett et al., 2016). For example, planted trees and gardens regulate 207 
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air filtration and micro-climates, sump ponds act as stormwater reservoirs, and restored soil and 208 

macrophyte communities treat sewage and chemical waste via nutrient uptake and bio- and 209 

phytoremediation (Jabeen, Ahmad, & Iqbal, 2009; Zipperer, Morse, & Gaither, 2011). Parks 210 

provide recreational and cultural amenities that not only benefit people and reshape ecological 211 

processes, but are fundamentally driven by human choices (Ackley, 2014; Bolund & Hunhammar, 212 

1999; Leong, Bertone, Bayless, Dunn, & Trautwein, 2016). The CHANS (Box 2) literature has 213 

provided a useful framework for studying urban ecology, but it has yet to incorporate 214 

evolutionary biology and eco-evolutionary dynamics. 215 

 216 

Social drivers o  ur an evolution 217 

A large body of research has revealed that the historical rise of aggregated human 218 

communities and subsequent origin of the first cities reflect deep interactions between social 219 

and evolutionary processes. The advent of the agrarian societies predating modern cities is 220 

reflected in the genomes of humans and domesticated species ;O’BrieŶ & LalaŶd, ϮϬϭϮͿ. For the 221 

past fifteen thousand years, cultural and agricultural practices have led to strong selection on 222 

numerous species (Driscoll, Macdonald, & O’BrieŶ, ϮϬϬϵ; LarsoŶ & Fuller, ϮϬϭϰͿ as well as 223 

coevolutionary relationships with humans (Jackson, 1996; Leach, 2003). For example, 224 

coevolution between humans and crop plants (Perry et al., 2007; Ye, Gao, Wang, Bar-Yosef, & 225 

Keinan, 2017) and between humans and livestock (Tishkoff et al., 2007) is associated with the 226 

advent of agriculture and the abandonment of nomadic hunter-gatherer lifestyles. For example, 227 

genes for lactase that enables dairy consumption (Tishkoff et al., 2007), and amylase that aids 228 

starch consumption (Perry et al., 2007), show geographically-spatial and cultural patterns of 229 

balancing selection for diverse diets. 230 

Historical and contemporary evolutionary patterns in species most closely associated 231 

with humans can reflect social, cultural, and even economic trends and trajectories. Indeed, 232 

biologists have learned a great deal about evolutionary processes through researching social-233 

evolutionary processes such as domestication. Darwin (1859) built his argument of evolution by 234 

natural selection through analogy with artificial selection in the domesticated rock pigeon 235 

( o  livia) and other animals. Today, evidence suggests that some of the pigmentation 236 
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patterns originally favored by fancy pigeon breeders confer an adaptive advantage for urban 237 

pigeons (Vickrey et al., 2018), demonstrating the influence of past social preferences on the 238 

evolutionary history of a species. Domesticated dogs ( anis miliarus), which have undergone 239 

thousands of years of artificial selection, still commonly interbreed with wild coyote ( anis 240 

latrans; (Mahan, Gipson, & Case, 1978) and wolf (Pilot et al., 2018) populations. Studies have 241 

shown that dogs are often less likely to be neutered and more likely to be abandoned in lower-242 

income urban areas following widespread economic downturns (Morris & Steffler, 2011). Thus, 243 

the observed introgression of domestic dog alleles into nearby coyote or wolf populations could 244 

potentially be the result of socioeconomic patterns, though this has yet to be directly tested. 245 

Some of the classic examples of adaptation by natural selection invoke urban social 246 

processes. Pollution and habitat degradation often accompany major technological innovations 247 

that are later followed by policies mitigating their damage. For example, during the industrial 248 

revolution in the United Kingdom, increasing urban activity deposited a layer of dark soot on the 249 

bark of surrounding trees that selected for rarer melanic variants of the commonly light-coloured 250 

peppered moth ( iston etularia), which became more cryptic and less subject to predation 251 

(Cook & Saccheri, 2013; Hof et al., 2016; Kettlewell, 1958). The Clean Air Act, enacted in the UK 252 

in 1956, decreased pollutants, leading to an evolutionary reversal whereby light coloured moths 253 

again increased in frequency (Cook & Saccheri, 2013). In this iconic natural selection case study, 254 

the evolutionary trajectory of urban-adjacent peppered moth populations ostensibly reflected 255 

human societal patterns of socio-economic and technological innovations, their impacts, and 256 

environmental policy.  257 

Today, many evolutionary biologists explore how species respond to novel selection 258 

pressures in urban environments (M Alberti, 2015; Donihue & Lambert, 2015; Johnson & 259 

Munshi-South, 2017; Szulkin et al., 2020). These selection pressures can vary over fine spatial 260 

and temporal scales (Donihue & Lambert, 2015), providing a more realistic context for studying 261 

in-situ evolution. For example, populations of killifish ( ndulus teroclitus) from four cities 262 

have convergently evolved novel adaptations which confer resistance to toxins in response to 263 

pollution in urban estuaries (Reid et al., 2016; Whitehead, Clark, Reid, Hahn, & Nacci, 2017). In 264 

another example, white clover ( lium ens) has shown repeated phenotypic convergence in 265 
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the loss of cyanogenesis in response to urbanization (Case Study: Box 3a; Johnson et al., 2018; 266 

Santangelo, Johnson, & Ness, 2018; Thompson, Renaudin, & Johnson, 2016); There is also 267 

increasing evidence for adaptations to stressors such as urban heat islands (Brans & De Meester, 268 

2018; Diamond, Chick, Perez, Strickler, & Martin, 2018), which are characteristics that are also 269 

reflective of income inequality among urban neighbourhoods (Chakraborty, Hsu, Manya, & 270 

Sheriff, 2019). Researchers have also shown that species might be insulated from selection 271 

pressures in urban environments that exclude their predators (Rebolo-Ifrán, Tella, & Carrete, 272 

2017), though little work has evaluated the evolutionary consequences of such relaxed 273 

pressures. 274 

Most urban evolutionary biology research to-date has focused on instances of non-275 

adaptive evolution showing, for instance, altered patterns of gene flow and genetic drift in cities 276 

(Bullock et al., 2018; Miles, Breitbart, et al., 2019; Schmidt et al., 2020). These genetic patterns 277 

can reflect human decisions to construct barriers and corridors that impact the dispersal and 278 

thus gene flow of both native and human-affiliated species such as pests, disease vectors, and 279 

invasive species (Harris et al., 2016). In particular, overlaying genetic patterns on city maps has 280 

led to a more comprehensive understanding of dispersal and relatedness among populations of 281 

nuisance species (Combs, Puckett, Richardson, Mims, & Munshi-South, 2018), and thus an ability 282 

to predict future spread of pest species and resistance alleles through neighbourhoods (Rost et 283 

al., 2009). There is evidence from genetic analyses of neutral genetic variation that native 284 

species are negatively affected by urban fragmentation (Delaney, Riley, & Fisher, 2010; Van 285 

Rossum, 2008), whereas exotic species can benefit from the deliberate transportation and 286 

establishment by humans who favor them for both private and public gardens and parks (Colla & 287 

MacIvor, 2017; Trusty, Goertzen, Zipperer, & Lockaby, 2007; Zengeya et al., 2017). Because 288 

human decisions and activities structure nearly every aspect of urban ecosystems, studying and 289 

quantifying their consequences and feedbacks will be essential for a holistic understanding of 290 

evolution in cities. 291 

 292 

Eco-evolutionary dynamics in cities 293 
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The field of eco-evolutionary dynamics emerged from growing evidence of reciprocal 294 

feedbacks between ecological and evolutionary processes that are possible when both occur at 295 

similar temporal and spatial scales (Hairston, Ellner, Geber, Yoshida, & Fox, 2005; Hendry & 296 

Kinnison, 1999; Reznick & Ghalambor, 2001; Thompson, 1998). One of the central tenants of 297 

eco-evolutionary dynamics is that evolutionary trait change within species (intraspecific 298 

variation) not only influences population dynamics (e.g., migration, reproduction), but also 299 

interactions between organisms and their surroundings, thereby affecting ecological patterns 300 

and processes like community composition and primary productivity (Des Roches et al., 2018; 301 

Fussmann et al., 2007; Hendry, 2017). These altered ecological conditions can then feed back to 302 

cause further evolutionary change. These feedbacks are at the centre of experiments and 303 

mathematical models of eco-evolutionary dynamics, which have demonstrated their importance 304 

and prevalence in controlled laboratory settings as well as natural and altered habitats (Abrams 305 

& Matsuda, 1997; Bassar et al., 2010; Harmon et al., 2009; Loeuille & Leibold, 2008; Palkovacs & 306 

Post, 2009; Yoshida, Jones, Ellner, Fussmann, & Hairston, 2003). Many of these studies have 307 

underscored the importance of rapid evolution and genetic variation in conservation and 308 

management strategies for species impacted by anthropogenic threats (Allgeier et al., 2020; 309 

Merilä & Hendry, 2013; Nadeau & Urban, 2019; Urban et al., 2016; Wood, Palkovacs, & Kinnison, 310 

2018). Still, relatively little research has explicitly examined the existence and role of eco-311 

evolutionary feedbacks in cities (but see Brans et al., 2017). Indeed, conservation in cities will 312 

benefit greatly from a better understanding of urban evolution and how it impacts management 313 

success  . 314 

Urban eco-evolutionary feedbacks are particularly relevant because they have the 315 

potential to affect a great number of people through eĐosǇsteŵ aŶd ͞eǀosǇsteŵ͟ serǀiĐes ;or 316 

͞Ŷatures ĐoŶtriďutioŶs to people͟Ϳ and disservices (Bolund & Hunhammar, 1999; Jenerette, 317 

Harlan, Stefanov, & Martin, 2011; Pascual et al., 2014). These feedbacks, which can extend 318 

beyond the boundaries of cities themselves (Jiang, Deng, & Seto, 2013; Kaufmann et al., 2007; 319 

Seto et al., 2010), affect species persistence, abundance, and population demographics, thereby 320 

influencing diverse ecological functions and both beneficial and detrimental ecosystem services 321 

(Faith et al., 2010). Further, eco-evolutionary feedbacks toward humans can be unevenly 322 
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distributed within and among cities, leading to unequal distribution of services and disservices 323 

across human society (Bolund & Hunhammar, 1999; Jenerette et al., 2011; Pascual et al., 2014). 324 

For example, affluent neighbourhoods can have larger, more diverse (Jenerette et al., 2011; 325 

Oertli & Parris, 2019), and better interconnected green and blue spaces that support more 326 

abundant, genetically variable, and therefore more stable populations of beneficial species such 327 

as pollinators (Gill et al., 2016). However, these neighbourhoods can also have a higher 328 

proportion of non-native species in gardens and monoculture lawns that are manicured and 329 

eradicated of native weeds (Lerman & Warren, 2011; Tallamy, 2020). Green roofs, which are 330 

becoming a common feature of newer buildings, can be genetically depauperate and thus 331 

harmful to local conspecifics and pollinators unless careful consideration is given to the initial 332 

seed stock (Ksiazek-Mikenas, Fant, & Skogen, 2019). Although non-native species might initially 333 

boost diversity and ecosystem function (Wilson & Jamieson, 2019), they can become invasive 334 

through evolutionary processes such as hybridization (Culley & Hardiman, 2009; Rius & Darling, 335 

2014) and introduce novel diseases and pests (Chifflet, Guzmán, Rey, Confalonieri, & Calcaterra, 336 

2018; Eritja et al., 2005; Juliano & Philip Lounibos, 2005; Salyer, Bennett, & Buczkowski, 2014) 337 

that negatively affect native species (Godefroid, 2001; Shochat, Warren, Faeth, McIntyre, & 338 

Hope, 2006; Wania, Kühn, & Klotz, 2006).  339 

Some of the most important eco-evolutionary feedbacks on people living in cities occur 340 

through the spread of orgaŶisŵs aŶd geŶes that proǀide ͞disserǀiĐes͟ such as negative effects 341 

on human health and wellbeing (Evans & Wellems, 2002). Again, the burdens of these 342 

detrimental feedbacks are unevenly distributed across the urban landscape. For example, 343 

rodenticide resistance in brown rats disproportionately affects the lower socio-economic 344 

communities that are more burdened by these pests (Case Study Box 3a; Desvars-Larrive et al., 345 

2017). In some cases, humans have coevolved with urban pests such as mosquitos (Kamdem, 346 

Fouet, Gamez, & White, 2017; Sabeti et al., 2002) and their malaria-causing pathogens (Case 347 

Study Box 3b; Evans & Wellems, 2002). Feedbacks from rapidly evolving pest and pathogen 348 

species may be particularly extreme in cities and neighbourhoods where human hosts are living 349 

in concentrated areas, such as in lower-income public housing and apartment complexes (Booth 350 

et al., 2012; Byers, Lee, Patrick, & Himsworth, 2019; Combs et al., 2018; Koch et al., 2016; Saenz, 351 
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Booth, Schal, & Vargo, 2012). For example, rampant urban bed bug infestations, again usually in 352 

lower income neighbourhoods, are an outcome of higher human density, frequent tenant and 353 

resident turnover, increased reliance on public transportation, and the common exchange of 354 

second-hand and used goods (Booth et al., 2012). Not only does increased turnover and human-355 

human contact lead to more frequent colonization of these pests, but it also introduces adaptive 356 

alleles conferring resistance to common pesticides, thereby further facilitating their spread and 357 

persistence (Saenz et al., 2012). Similar transmission of resistance alleles has been documented 358 

in other pest and pathogen species such as head lice (Koch et al., 2016), German cockroaches 359 

(Wada-Katsumata, Silverman, & Schal, 2013) and malaria (Kamdem et al., 2017). Higher 360 

connectivity in urban centres can in some cases promote genetic diversity and persistence in 361 

pest and pathogen populations by facilitating gene flow, such as with black widow spiders (Miles, 362 

Dyer, & Verrelli, 2018). Explicitly assessing the responses of organisms to features of urban 363 

ecosystems such as green space, pollution, waste, and food availability, will improve our 364 

understanding of the interface among social, ecological, and evolutionary dynamics in cities. 365 

Relatively little research has compared the strength of eco-evolutionary feedbacks 366 

between urban and non-urban ecosystems (Miles, Breitbart, et al., 2019). In some cases, 367 

feedbacks might be magnified in urban areas: for example, white clover – a common herbaceous 368 

plant in urban and parks lawns – has adaptations that likely contribute to its continued 369 

persistence in lawns and parks (Case Study Box 3c; Johnson et al., 2018; Thompson et al., 2016), 370 

leading to positive feedbacks for beneficial species, such as pollinators and nitrogen-fixing 371 

bacteria (Baude et al., 2016; Larson, Kesheimer, & Potter, 2014). Alternatively, feedbacks from 372 

evolutionary processes may be overshadowed or weakened due to external forces: for example, 373 

nia – a genus of ubiquitous freshwater zooplankton – are known to exert strong top-down 374 

control on algae and can adapt to increased temperatures in urban ponds (Case Study Box 3d; 375 

Brans, Jansen, et al., 2017). However, disturbances, such as extreme heat waves or extensive 376 

eutrophication following the build-up of nutrient runoff can compromise ia’s ĐapaĐitǇ to 377 

adapt and maintain its algae-controlling ecological function. The loss of this function from the 378 

system can initiate drastic shifts in the pond ecosystem, including the spread of toxic algal 379 

blooms (Ger et al., 2016) that not only limit the diversity and abundance of insects, amphibians, 380 
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and submerged vegetation, but also present a public health concern to humans and their pets 381 

(Kosten et al., 2012; Thomaz & Cunha, 2010). Feedbacks from species like white clover and 382 

nia may be more nuanced, though still broadly important for ecosystem function and 383 

services in cites. 384 

 385 

Towards an urban socio-eco-evolutionary framework 386 

Despite an inherent spatial and temporal heterogeneity of cities, research on urban 387 

ecology and evolutionary biology often defaults to simplistic unidimensional, linear, or 388 

dichotomous urban variables (e.g., urban versus nonurban, proportion of built-up area and other 389 

land cover classes, human population density) that consider urbanization as a continuous 390 

gradient (McPhearson et al., 2016; Moll et al., 2019). Although these aggregate proxies are 391 

capable of capturing some urban variation, they often fail to encapsulate the complexity of 392 

urban systems that are driven by social and ecological interactions (Alberti et al., In Press; Schell 393 

et al., n Revision). Acknowledging and incorporating spatial and temporal heterogeneity in these 394 

interactions will be important for studying urban eco-evolutionary dynamics. For example, 395 

access to food, public transit routes, waste management, and green space usually vary 396 

nonlinearly with urban zoning. Further, historical redlining practices that reflect underlying racist 397 

policies have led to an uneven distribution of infrastructure and social services that structure the 398 

urban ecosystem in many US cities (Grove et al., 2014; Locke et al., 2020; Roman et al., 399 

2018).Below, we argue that study of socio-eco-evolutionary dynamics in cities requires an 400 

approach that addresses and acknowledges these complex, multivariate, and heterogeneous 401 

stressors. First, we describe how existing phenotypic and genomic approaches for studying eco-402 

evolutionary dynamics might be extended to include the social patterns and processes intrinsic 403 

to urban ecosystems. Second, we suggest how the coupled human and natural systems 404 

framework – a central tenant of urban ecology – might incorporate evolutionary biology, and by 405 

extension, eco-evolutionary dynamics, to help understand socio-ecological processes and 406 

feedbacks. Finally, we overview the opportunities for studying socio-eco-evolutionary dynamics, 407 

stressing a thorough and systematic identification of the demographic, cultural, political, 408 

economic, and technological drivers that shape and are shaped by urban ecology and evolution. 409 
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 410 

Extending eco-evolutionary dynamics to include human society 411 

The concept of the evolving metacommunity (Definition: Box 1) is one example of a 412 

current framework in evolutionary ecology that can be used to study socio-eco-evolutionary 413 

dynamics in urban ecosystems. This framework considers organisms  within networks of 414 

interconnected populations and communities (Urban & Skelly, 2006). Biological responses to 415 

environmental changes are therefore governed by a dynamic interplay between local and 416 

regional processes, including species sorting, adaptation, dispersal and gene flow (Urban & 417 

Skelly, 2006). Extending the evolving metacommunity theory to incorporate the effects of 418 

humans and social dimensions will be an important consideration in studying eco-evolutionary 419 

dynamics in urban ecosystems. In these ecosystems, individuals, populations, and communities 420 

are nested in a mosaic of habitats that are interconnected and fragmented by human activity 421 

and infrastructure. While roads, waterways, and built structures isolate and restrict distribution 422 

in some species, they connect and disperse others that are more closely associated with humans 423 

(Miles, Rivkin, et al., 2019).  424 

Humans might also be uniquely incorporated into evolving metacommunity models as 425 

species themselves. As with other interacting species, human populations are characterized by 426 

varying abundance and distribution that reflects their interactions with local environments. As 427 

important ecosystem engineers (Smith, 2007), humans can impose selection on other species. 428 

Other species and their adaptations might also feed back to affect human densities, habitat 429 

choices, settlement and movement patterns. At broader spatial scales, urban influences on 430 

surrounding environments extend well beyond the geographic boundary of a city, making the 431 

hierarchical structure of the evolving metacommunity theory also helpful for studying urban eco-432 

evolutionary dynamics. Including social components like transportation infrastructure, 433 

neighbourhood cohesion, and socioeconomic geography, may allow for more accurate 434 

predictions. For example, a consideration of international travel networks, national quarantine 435 

and customs policies, and trade embargos can help predict the evolution and spread of 436 

pathogenic, invasive, and pest species (Helmus, Mahler, & Losos, 2014; Jones et al., 2008; Miles, 437 

Rivkin, et al., 2019). While challenging, a thorough incorporation of human social patterns and 438 
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processes into ecological and evolutionary dynamics will lead to novel insights for understanding 439 

urban ecosystems. 440 

 441 

Extending urban coupled human and natural systems to include evolution 442 

An additional approach to studying socio-eco-evolutionary dynamics in cities is by 443 

eǆteŶdiŶg urďaŶ eĐologǇ’s CHANS models (Box 2; Liu et al., 2007) to include evolutionary 444 

processes and feedbacks. These models have shown that human socioeconomic and 445 

demographic patterns and processes are reflected in infrastructure and other abiotic and biotic 446 

features of the urban ecosystem (Schaider, Swetschinski, Campbell, & Rudel, 2019; Tessum et al., 447 

2019). Urban evolution research has simultaneously revealed that these same physical and 448 

biological characteristics can influence both the adaptive (Brans & De Meester, 2018; Whitehead 449 

et al., 2017) and non-adaptive (Combs et al., 2018; Munshi-South, 2012) evolution of urban 450 

species. Indeed, recent work has shown that urban predictor variables that characterize 451 

socioeconomic heterogeneity, such as urban heat islands (Brans & De Meester, 2018), and 452 

environmental pollutants (Isaksson, 2015; Reid et al., 2016; Wirgin et al., 2011), can drive 453 

physiological and life-history adaptations in organisms. Recent work in Baltimore, USA, has 454 

shown that tiger mosquitoes (Aedes albopictus) in low-income neighbourhoods tend to have 455 

larger wing and body sizes - traits linked to increased fecundity, survival, and ultimately spread of 456 

disease (Katz, Leisnham, & LaDeau, 2019). The distribution of these human influences is a direct 457 

result of socially-driven urban form underpinned by exacerbating legacies of income inequality 458 

and segregation over decades and centuries (Grove et al., 2018; Roman et al., 2018). Integration 459 

of social processes and their relevant eco-evolutionary feedbacks may therefore serve dual 460 

functions; first, by increasing our understanding of the value of ecological and evolutionary 461 

processes in cities, and second, by providing the applied tools to mitigate urban disturbances on 462 

ecosystems. 463 

 464 

Opportunities for studying socio-eco-evolutionary dynamics 465 

To fully understand urban eco-evolutionary dynamics, we need to explicitly identify the 466 

mechanisms by which human society influences ecology, evolution, and their feedbacks. Urban 467 
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ecosystems are constantly changing as a result of social decisions and processes such as public 468 

policies and private landownership. Humans also interact dynamically within their communities 469 

through multiple networks like economic markets and public institutions. For example, urban 470 

residents depend on large-scale built infrastructures (e.g., as electric power, water supply, food 471 

distribution, and transportation networks) that sustain resource flows within and across cities 472 

(Childers et al., 2015). These interactions contribute to unique physical (e.g., sprawl), social (e.g., 473 

cultural and economic segregation), and economic (e.g., land values and use) properties of cities 474 

that can affect ecological and evolutionary processes on broad scales. 475 

Urban ecosystems are subject to multiple drivers of human-driven environmental change 476 

such that they often experience extreme climatic conditions across multiple axes. How different 477 

environmental conditions interact with one another and affect urban organisms is highly variable 478 

and poorly understood. Consequently, the responses of organisms to urbanization often cannot 479 

be predicted based on studies of any environmental condition in isolation. For example, 480 

researchers showed that bird life-history traits were better predicted by a simple model that 481 

tested the effect of urban vs non-urban habitats compared to models that included four 482 

separate environmental variables that were each correlated with urbanization (temperature, 483 

humidity, artificial light, and noise). The better fit of the simple model suggests that additional 484 

unmeasured variables account for the differences in life-history along urban rural gradients, and 485 

thus many ecology, social and evolutionary factors likely need to be included to accurately 486 

predict traits changes associated with urbanization (Sprau, Mouchet, & Dingemanse, 2017).  487 

 Landscape transformation, infrastructure development, and complex social and political 488 

networks vary considerably across regions, causing heterogeneity within and among cities that 489 

can influence ecological and evolutionary processes (Alberti et al., In Press). For example, 490 

variation in land use patterns reflect a Đoŵpleǆ iŶterplaǇ aŵoŶg hoŵeoǁŶers’ ĐhoiĐes, real 491 

estate markets, local businesses, and policy makers (M Alberti, 2008). These interactions can 492 

affect the arrangement and proportion of built and natural land cover, thereby influencing 493 

organisms and their habitats. Quantifying socio-economic variables can help with the 494 

construction and parameterization of urban eco-evolutionary dynamics models (McPhearson et 495 

al., 2016). These variables include the distribution of transportation networks (i.e., accessible 496 
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from municipal resources), built infrastructure (i.e., from urban planning), and land use (i.e., 497 

from GIS and satellite imagery), as well as attributes of human demographics and society (i.e., 498 

from census and other survey data). Participatory science (also called citizen or community 499 

science) efforts in particular present an important opportunity both for collecting large-scale 500 

eco-evolutionary (Cooper, Dickinson, Phillips, & Bonney, 2007) and socioecological data (Crain, 501 

Cooper, & Dickinson, 2014) and for promoting science to the general public using surveys, 502 

audiovisual data-ĐolleĐtioŶ apps ;e.g., “pider“potter, BlooŵiŶ’Algae, iNaturalist, eBird, i“potͿ, 503 

and other technological platforms (Krasny, Russ, Tidball, & Elmqvist, 2014).  504 

The relative predictability of urban sprawl also provides an important avenue for 505 

initiating longitudinal studies that collect baseline data and track the development and 506 

restoration of landscapes through time (Etterson et al., 2016). In particular, researchers can 507 

measure social, ecological, and evolutionary parameters at pre-, intermediate- and post-508 

urbanization time points and at different levels of biological organization, contrasting urbanized, 509 

urbanizing, and non-urbanizing sites, within and across cities. These research strategies can 510 

enable reconstruction of population genetic and phenotypic diversity and change, as well as 511 

community composition and species diversity over time. Socio-demographic and socio-economic 512 

changes can be monitored in parallel to determine potential drivers of eco-evolutionary change 513 

in cities. 514 

Identifying the underlying sources of phenotypic variation is crucial for assessing the 515 

relationships and feedbacks among social, ecological, and evolutionary processes in urban 516 

ecosystems. Most traits are the product of both genetic and environmental factors. As a result, 517 

purely phenotypic studies can confound the inference of eco-evolutionary dynamics if they do 518 

not account for the joint effects of plasticity and genetics on phenotypic variation and fitness 519 

(Brans, Jansen, et al., 2017; Govaert, Pantel, & De Meester, 2016). The inference of urban 520 

evolution in instances of polygenic inheritance, in particular, necessitates standardized common 521 

garden or reciprocal transplant experiments to evaluate both the heritability as well as the 522 

fitness consequences of supposed urban traits (Thompson et al., 2016). For example, 523 

researchers used reciprocal transplants with common ragweed to identify local adaptation and 524 

divergent selection between populations in urban and non-urban habitats (Gorton, Moeller, & 525 
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Tiffin, 2018). Studies like these can be replicated across multiple urban gradients and sampling 526 

plots within and among different cities and neighbourhoods to test the ubiquity and 527 

convergence of evolutionary trajectories. Variance partitioning metrics (Govaert, 2018; Govaert 528 

et al., 2016; Lajoie & Vellend, 2015) can further help disentangle the relative contributions of 529 

plasticity and genetics underlying intraspecific trait variation, community ecology, and ecosystem 530 

processes (Brans, Govaert, et al., 2017; Stoks, Govaert, Pauwels, Jansen, & Meester, 2016). Such 531 

analyses will be essential for understanding socio-eco-evolutionary dynamics. 532 

 533 

Looking forward: future studies in socio-eco-evolutionary dynamics 534 

Urban ecosystems are fundamentally regulated, transformed, and interconnected by 535 

human activity. Thus, integrating human social patterns and processes in urban evolution studies 536 

not only presents an opportunity for novel research, but is also imperative for accurately 537 

understanding contemporary ecological and evolutionary dynamics in cities. As we move 538 

forward, we argue that more fully integrating evolutionary ecology research with the social 539 

sciences to address socio-eco-evolutionary questions is critical because: 540 

1. Accurate predictions about urban coupled human and natural systems (CHANS) will 541 

require understanding the role of evolution in socio-ecological systems over various 542 

timescales. 543 

2. A complete understanding of urban eco-evolutionary dynamics will require an explicit 544 

consideration of social patterns and processes. 545 

3. The world is increasingly urbanized and the effects of cities extend beyond their borders. 546 

Hence, understanding ecological responses to global change will depend on our ability to 547 

address #1 & 2 548 

 549 

Conclusion 550 

Studies of cities as coupled human and natural systems (CHANS) and of eco-evolutionary 551 

dynamics have already provided insights into how urban ecosystems are likely to change over 552 

time. We now have the opportunity to leverage these existing bodies of work to create an 553 

integrative framework that more fully resembles the simultaneous social, ecological, and 554 
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evolutionary dynamics in urban ecosystems. We encourage a new collaboration among social 555 

scientists, ecologists, and evolutionary biologists to develop more sophisticated questions, 556 

increasingly accurate models of urban systems, and garner a greater understanding of dynamics 557 

both within and beyond city boundaries. Understanding urban evolutionary biology will have 558 

vast implications for socio-ecological policies such as those relating to biodiversity management 559 

and ecological restoration as well as human health, wellbeing, and equity. Additionally, we 560 

suggest specific, important, and timely questions that can be addressed with an integrated socio-561 

eco-evolutionary framework (Questions: Box 4).  562 

Cities provide exciting systems to expand our knowledge of eco-evolutionary dynamics 563 

and their social causes and consequences. Studying the social dimensions of eco-evolutionary 564 

dynamics in cities will improve our understanding of the complexity of urban biological 565 

communities, which will be increasingly crucial for conserving and maximizing ecosystem 566 

functions and contributions to people within and outside cities. Urban socio-eco-evolutionary 567 

dynamics research provides a unique opportunity to study evolving metacommunities, the 568 

interplay between local and regional responses, and the presence and strength of eco-569 

evolutionary feedbacks across multiple taxonomic groups. Just as urban ecology grew to 570 

consider the social complexity of cities and eco-evolutionary dynamics integrated the rapid pace 571 

of evolution, socio-eco-evolutionary research must recognize the dynamism resulting from the 572 

interplay of social, ecological, and evolutionary dimensions within urban systems. 573 
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Figures 585 

 586 

Figure 1: Urban ecosystems provide an opportunity to study 587 

contemporary evolution and ecological change inherent in eco-588 

evolutionary dynamics (yellow arrows). Because they are 589 

fundamentally anthropogenic, eco-evolutionary dynamics in urban 590 

ecosystems are strongly linked to human society. Characteristics of 591 

human society likely drive (blue arrows) and are impacted by (white 592 

arrows) ecological and evolutionary change. 593 

 594 

 595 

Figure 2: Detailed dynamics among social, ecological, and evolutionary patterns and processes in urban 596 

systems. Social patterns and processes (a) encompass a diversity of political, economic and technological 597 

drivers that are interrelated with transportation and infrastructure, culture and education, human 598 
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population demographics, and land/resource use and management. Social drivers affect (b) ecology 599 

through habitat modification; (c) ecology (biotic interactions) and evolution (gene flow and genetic drift) 600 

through altering connectivity among habitats; and (d) ecology and evolution through selection for 601 

preferred genotypes and phenotypes. Ecological (e) and evolutionary (f) dynamics are linked through 602 

feedbacks between ecosystems, communities, populations, genotypes and phenotypes. Ecological and 603 

evolutionary feedbacks toward society take the form of nature’s ĐoŶtriďutioŶs to people ;gͿ iŶĐludiŶg 604 

ecosystem services and disservices. 605 

Boxes 606 

 607 

Box 1: Definitions 

Urban 

Ecosystem 

An ecosystem whose biological and physical characteristics are primarily 

engineered, modified, and constructed by humans. In urban ecosystems, human 

society influences the relationships among organisms and between organisms and 

the physical environment. Urban ecosystems are characteristic examples of CHANS 

(Box 2). 

Human Society A group of human beings inhabiting and interacting within a common region, 

sharing and participating in the same culture (Tischler, 2006) or self-sufficient 

system that usually persists longer than the life-span of its individual members 

(Aberle, Cohen, Davis, Levy, & Sutton, 1950). 

Urban Ecology The interdisciplinary study of organismal and ecosystem patterns and processes 

within and among cities and their relationships with human activities. Urban 

ecology has increasingly incorporated the study of ecological interactions with 

human society in cities through frameworks such as CHANS (Box 2). 

Urban 

Evolutionary 

Biology 

The study of how urban form and processes shape adaptive (via natural selection) 

and non-adaptive (via mutation, gene flow, and genetic drift) evolutionary dynamics 

that occur within or because of cities. 

Eco-evolutionary 

dynamics 

The interactions and feedbacks between ecological and evolutionary processes; 

both the ecological variation that affects evolution and the feedbacks of 
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evolutionary change on ecological processes. Ecological and evolutionary feedbacks 

typically center on contemporary adaptive evolution of ecologically-relevant traits 

that alter how organisms interact and function in their ecosystems, for example, 

influencing their productivity, excretion, or resource consumption (Hendry, 2017). 

Socio-eco- 

evolutionary 

dynamics 

A framework for the integration of social, ecological, and evolutionary patterns and 

processes that explicitly features the interactions and feedbacks among human 

society, ecology, and both adaptive and non-adaptive evolution. This framework 

incorporates human social characteristics, such as economics, culture, and policy, 

into the study of eco-evolutionary dynamics in urban ecosystems (Figure 1,2). 

Adaptive 

evolution 

The process by which natural selection acts on heritable phenotypic trait variation 

in a population leading to the increased survival and reproduction (fitness) of 

individuals with certain trait values. 

Non-adaptive 

evolution 

Evolutionary change that is not driven by natural selection, including chance 

mutation, neutral genetic drift (random changes in the frequency of alleles in a 

population that is more pronounced in small, isolated populations) and gene flow 

(the transfer of genetic information among populations due to migration of 

individuals, gametes, and other propagules. 

Nature’s 

contributions to 

people (NCP) 

The essential and often non-replaceable material and assistance (i.e., food, energy, 

other resources), non-material (i.e., cultural, educational, inspirational) and 

regulating services (i.e. habitat, climate, and resource maintenance, hazard 

protection) provided by nature that benefit human existence and wellbeing. The 

concept of NCP encompasses and extends the former ecosystem services (Díaz et 

al., 2018). Though the new NCP framework does not specifically allude to 

detrimental feedbacks on humans, authors have also acknowledged ecosystem 

disservices, particularly in urban ecosystems (Shackleton et al., 2016). Authors have 

also recognized evosystem services – benefits to humans resulting from 

evolutionary change (Faith et al., 2010, 2017; Rudman et al., 2017). The concept of 

NCP is central to socio-eco-evolutionary dynamics, as it describes the feedbacks 

from ecology and evolution toward human society (Figure 2). 
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Evolving 

metacommunity 

framework 

A framework describing the spatial context of eco-evolutionary dynamics that 

considers sets of local communities linked by the dispersal of multiple species (a 

metacommunity) and the change in species interactions with the environment and 

each other via evolution. This framework integrates community ecology and 

evolution in local patches with regional dispersal and gene flow among regional 

patches to understand eco-evolutionary interactions at multiple scales (Urban et al., 

2008). 

 608 

 609 

Box 2: Coupled Human and Natural Systems (CHANS) 

Coupled human and natural systems (CHANS) are increasingly pervasive as human activities now 

influence most natural processes. Researchers recognize CHANS by explicitly acknowledging linked 

reciprocal interactions between human and natural systems - often characterized by flows of material, 

energy, and information (Liu et al., 2007; McDonnell & Pickett, 1993). A critical, yet under-recognized 

component of CHANS is their unexpected feedbacks. These include nonlinear responses and threshold 

conditions in which system components transition into alternative states, as well as time lags between 

a stressor and its effects and/or recognition of these effects and the subsequent decisions. Also 

characteristic of CHANS are emergent properties in which simultaneous changes across multiple 

variables produce new environmental contexts that cannot be adequately characterized by any single 

variable or be identified in the human or natural systems alone (Alberti et al., In Press). Given their 

complex and heterogeneous nature, cities typify CHANS. Urban ecologists have increasingly relied on 

CHANS conceptual frameworks to understand human-nature connections and dynamics embedded 

within cities. Doing so has allowed urban ecologists to move from simply studying ecology that occurs 

within cities to understanding the ecology of cities (Grimm et al., 2008, 2000; Pickett et al., 2001). Cities 

are exemplary CHANS because they are characterized by substantial complexity in ecological, 

hydrological, and geophysical structure and function across scales as well as complex social hierarchies 

– from individuals to households, neighbourhoods, municipalities, regions, and nations – with 

feedbacks occurring within and among various ecological and social scales (Grimm et al., 2008, 2000; 

Pickett et al., 2001). Because of this complexity, cities and their components cannot simply be 

understood by measuring human population sizes or densities but require a more comprehensive 
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assessment of biophysical and social conditions. 

 610 

 611 

Box 3: Urban Socio-Eco-Evo Dynamics Case Studies 

a): Social determinants of rat ecology, evolution, disease transmission, and pest management  

BroǁŶ, or ͞NorǁaǇ͟  rats (Rattus norvegicus) have coinhabited with humans for centuries by exploiting 

food and built structures ;BǇers et al., ϮϬϭϵ; GardŶer‐“aŶtaŶa et al., ϮϬϬϵͿ. Brown rats show adaptive  

resistance to rodenticide commonly used in urban habitats (Desvars-Larrive et al., 2017) and significant 

genetic differentiation at the city block scale where high traffic roadways limit gene flow across 

neighbourhoods (Combs, Byers, Himsworth, & Munshi-“outh, ϮϬϭϵ; Coŵďs et al., ϮϬϭϴ; GardŶer‐“aŶtaŶa 

et al., 2009; Kajdacsi et al., 2013). Garbage management may also influence the population genetic 

structure of rats such that individuals in resource-rich microhabitats are less likely to disperse and thus 

aggregate with more closely related kin within small areas ;GardŶer‐“aŶtaŶa et al., ϮϬϬϵͿ. Unsecured 

food waste, dilapidated structures, and overgrown vegetation all promote increases in rat infestation in 

urban areas (Murray et al., 2018; M. G. Walsh, 2014) to societal and economic neglect, low-income 

communities can have the highest aggregation of attractants for brown rats (Byers et al., 2019; Kajdacsi 

et al., 2013; Murray et al., 2018; Peterson et al., 2020). These dynamics intrinsically link wealth inequality 

and rat urban ecology. Brown rats are notorious reservoirs of multiple zoonotic pathogens that have 

myriad negative health implications for humans ;GardŶer‐“aŶtaŶa et al., ϮϬϬϵ, p.; Kajdacsi et al., 2013; 
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Richardson et al., 2017). BroǁŶ rats’ role as 

carriers of pathogens underscores the urgent 

public health priority for socio-eco-evo 

investigations that inform sustained and efficient 

pest management practices (Byers et al., 2019; 

Combs et al., 2019). Recent findings show how rats 

capitalize on urban centers and can thus inform 

pest management strategies (Combs et al., 2019). 

Disenfranchised communities with reduced quality 

infrastructure should feasibly receive the most 

targeted and sustained pest control efforts 

(Peterson et al., 2020). However, many of these 

communities are socially and economically neglected, receiving insufficient waste management and 

public services that would alleviate the conditions that attract brown rats. In combination, these studies 

demonstrate how social determinants shape ecological conditions that promote rat colonization and 

adaptation, resulting in  negative feedbacks to society in one of the few, fully articulated examples of 

socio-eco-evolutionary dynamics in cities. 
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b) Social landscape drivers and pesticides impact 

mosquito evolution and disease in cities 

Mosquitoes (including Aedes aeqypti and Culpex 

pipiens) are ubiquitous across the globe, and are 

prominent vectors for human disease (e.g., Zika 

virus, Malaria, Dengue fever, West Nile virus; 

(Kalluri, Gilruth, Rogers, & Szczur, 2007; Rochlin, 

Turbow, Gomez, Ninivaggi, & Campbell, 2011). Pest 

management in cities is especially urgent because 

mosquitoes show accelerated larval growth and 

increased survivorship in urban environments, due 

to greater densities of suitable breeding locations 

(small volumes of standing water), urban heat 

islands, and reductions in predators due to insecticides and unsuitable habitat (Li, Dicke, Harvey, & Gols, 

2014; Wilke et al., 2019). Insecticide application has also promoted resistance, aggravating pest 

management. Hence, mosquitoes generally tend to experience fitness benefits in cities, increasing the 

risk of pathogen transmission among humans (Kamdem et al., 2017; Medeiros-Sousa, Fernandes, Ceretti-

Junior, Wilke, & Marrelli, 2017). Variation in urban infrastructure, driven by socioeconomics and urban 

planning, can be linked directly to the ecology and evolution of mosquito species. Low-income cities and 

neighbourhoods have greater relative proportions of  impervious surface cover, leading to more surfaces 

holding standing water (Ayala & Estrugo, 2014; Rochlin et al., 2011). Accordingly, impoverished 

neighbourhoods have larger mosquitoes in better condition, with increased survivorship and 

reproduction (Katz et al., 2019). Recent empirical work further shows that urban residents in low-income 

neighbourhoods have greater risk of mosquito-borne diseases, specifically West Nile virus in Washington, 

D.C. and Baltimore, Maryland (LaDeau, Leisnham, Biehler, & Bodner, 2013) and malaria in cities across 

sub-Saharan Africa (De Silva & Marshall, 2012). Social drivers and may additionally affect the rate of 

coevolutionary change between mosquito-borne diseases (e.g., Plasmodium) and human resistance to 

those diseases (Ayala & Estrugo, 2014). For example, sickle-cell anemia, a disease characterized by 

malformed red blood cells, is typically lethal in people who inherit two copies of an allele with a mutation 

inhibiting hemoglobin production (Allison, 1954). However, heterozygotes (with just one sickle-cell allele) 

have increased resistance to malaria, leading to the higher prevalence of the allele in urban, suburban, 

and rural areas where malaria is common (Evans & Wellems, 2002). As countries in malaria-affected 
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areas continue to urbanize, the close coevolutionary association among humans, mosquitos, and 

Plasmodium species may become an increasingly urban issue. 
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c) Clover evolution, repeated loss of cyanogenesis, and urban lawns 

The ecology and evolution of white clover 

(Trifolium repens), a perennial, herbaceous plant 

common in lawns and other human-modified 

habitats, has been well studied in an urban 

context. Clover exhibits a Mendelian 

polymorphism for hydrogen cyanide production 

(cyanogenesis), which both defends against 

herbivores and reduces freezing tolerance. White 

clover repeatedly evolve decreased cyanogenesis 

in cities, due to putative selection from colder 

nighttime winter temperatures (Johnson et al., 

2018; Santangelo et al., 2018; Thompson et al., 

2016). White Đloǀer’s adaptatioŶs ŵight iŶ part lead to their high populatioŶ deŶsities iŶ Đities, ǁhere 

they feed back on the urban ecosystem and soĐietǇ. IŶ partiĐular, Đloǀer’s ŵutualistiĐ rhizoďial ďaĐteria 

influence increase soil nitrogen (Hennig & Ghazoul, 2011) and its flowers provide a nectar resource for 

pollinators (Hicks et al., 2016; Larson et al., 2014; Theodorou et al., 2017). Still, despite its presence in 

many lawn seed mixes (Bormann, Balmori, & Geballe, 2011), white clover is often considered a weed and 

removed by homeowners, negatively affecting pollinator communities (Baude et al., 2016; Larson et al., 
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2014), the ecosystem-leǀel effeĐts of Đloǀer’s preseŶĐe iŶ seed ŵiǆes is largelǇ uŶkŶoǁŶ. BeĐause of its 

strong association with humans, its importance for nutrient cycling and pollinators,  and its evolution in 

cities, the urban white clover system presents an opportunity to study socio-eco-evolutionary dynamics. 

In particular, research could explore how land use and conversion, homeowner cultural habits, and 

household income predict clover presence in lawns and thus spatial heterogeneity in pollinator resource 

availability. If clover is removed, policies could encourage the planting of native species to support its 

ecosystem functions. 
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d) Daphnia evolution, eutrophication, urban heat islands, and trophic cascades  

Daphnia are common zooplankton species in urban, rural, and natural freshwater ponds and lakes across 

the globe. They vary in several intraspecific life history, behavioural, and physiological traits that can elicit 

strong ecosystem-level effects. D. magna show reduced body size, higher heat tolerance, faster pace-of-

life, and altered stress physiology in urban populations compared to rural populations, which are most 

likely adaptations to warmer temperatures (Brans & De Meester, 2018; Brans, Jansen, et al., 2017). 
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Smaller average body size in urban zooplankton 

communities including Daphnia can have cascading 

effects on the pond ecosystem (Gianuca, Pantel, & 

De Meester, 2016). While increased Daphnia 

thermal tolerance allows them to persist and 

suppress algae populations, smaller body size 

diminishes their capacity to do so (Gianuca et al., 

2016). Reduced top-down effects from primary 

consumers can result in disappearance of emergent 

and submerged vegetation, eutrophication, and 

decline in amphibians, invertebrates, and overall 

pond biodiversity (Blaustein et al., 2011; Huisman 

et al., 2018; Landsberg, 2002; Paerl & Otten, 2013). Algal blooms will likely increase with climate change 

and urbanization (Paerl & Huisman, 2009; Teurlincx et al., 2019; Waajen, Faassen, & Lürling, 2014) 

causing toxic conditions that are harmful for humans and pets (Huisman et al., 2018; Reid et al., 2019). 

Persistence of D. magna in urban and natural ponds is thus crucial for human health and wellbeing. Yet 

certain actions taken by humans can directly lead to their demise (Paerl & Huisman, 2009; Teurlincx et 

al., 2019; Waajen et al., 2014). For example, fertilizer runoff and removal of submerged vegetation can 

result in anoxic conditions, fatal to D. magna and other zooplankton (Peretyatko, Teissier, De Backer, & 

Triest, 2009). Further, stocking of zooplanktivorous fish can reduce Daphnia abundance and thus their 

ability to control algae populations (Peretyatko et al., 2009). Shifts toward eutrophic pond ecosystems 

can negatively impact human psychological well-being, hydrological balance, climate mitigation, nutrient 

retention, and bio- and phytoremediation of toxicants from the environment (Reid et al., 2019). Thus, 

human management, monitoring, and mitigation of local environmental conditions like warming and 

nutrient runoff are crucial for the maintenance of urban pond ecosystems (Paerl & Otten, 2013; 

Peretyatko et al., 2009). 
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Box 4: Outstanding questions that could be addressed using a socio-eco-evolutionary framework 

Integrating insights from  social sciences,  ecology, and evolutionary biology can help us address critical 

questions about urban systems. This understanding will likely feed back to improve our knowledge and 

predictions about how ecosystems respond to global change. Here, we propose ten  key questions to 

inform an integrated socio-eco-evolutionary framework. 

 

1. How can incorporating methods from the social sciences improve our understanding of eco-

evolutionary dynamics? 

 

2. How do socio-eco-evolutionary dynamics scale with the spatial redistribution and generation 

lengths of humans and associated organisms across space and time? 

 

3. What is the relevance and magnitude of evolutionary feedbacks to ecological and social patterns 

and processes in different urban contexts? 

 

4. Can we predict the ways that interspecific interactions will influence eco-evolutionary dynamics in 

cities and the ways in which social drivers will modify these dynamics and patterns? 

 

5. How important are local dynamics and species identity to eco-evolutionary dynamics in cities? 

What are the components of a cohesive theory that is relevant to all or most urban systems, and 

when do local ecology, culture and politics idiosyncratically shape outcomes? 

 

6. How can eco-evolutionary dynamics feed back to influence social processes in cities? In what ways 
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can social systems change in response to evolutionary changes that are induced by urbanization? 

 

7. How can this multidimensional framework help us better understand the resilience of urban 

ecosystems to pulse disturbances, such as extreme weather events, and ramping disturbances, 

such as climate change? 

 

8. What elements of human social constructs (e.g. socioeconomic, cultural, religious, philosophical, 

political, aesthetic, etc.) are likely to impact socio-eco-evolutionary dynamics?  

 

9. Under what circumstances are eco-evolutionary processes stronger or weaker in urban compared 

to non-urban areas? 

 

10. How do socio-eco-evolutionary changes in cities affect the influences of cities on surrounding 

landscapes? 
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