Volumetric changes at implant sites: A systematic appraisal of traditional methods and optical scanning-based digital technologies

Lorenzo Tavelli | Shayan Barootchi | Jad Majzoub | Rafael Siqueira | Gustavo Mendonça | Hom-Lay Wang

Abstract

Aim: To evaluate techniques for assessing soft tissue alterations at implant sites and compare the traditionally utilized methods to the newer three-dimensional technologies emerging in the literature.

Materials and Methods: A comprehensive search was performed to identify interventional studies reporting on volumetric changes at implant sites following different treatments.

Results: Seventy-five articles were included the following: 30 used transgingival piercing alone, one utilized calliper, six with ultrasonography, six on cone-beam computed tomography, and 32 utilized optical scanning and digital technologies. Optical scanning-based digital technologies were the only approach that provided ‘volumetric changes,’ reported as volumetric variation in mm³, or the mean distance between the surfaces/mean thickness of the reconstructed volume. High variability in the digital analysis and definition of the region of interest was observed. All the other methods reported volume variation as linear dimensional changes at different apico-coronal levels. No studies compared volumetric changes with different approaches.

Conclusions: Despite the emergence of optical scanning-based digital technologies for evaluating volumetric changes, a high degree of variation exists in the executed workflow, which renders the comparison of study results not feasible. Establishment of universal guidelines could allow for volumetric comparisons among different studies and treatments.

KEYWORDS
dental implant, digital data, soft tissue augmentation, soft tissue grafting, three-dimensional analysis

1 | INTRODUCTION

Volumetric changes at implant sites have progressively become an outcome of interest in different clinical scenarios. A variety of methods have been described for evaluating volumetric changes, including the use of callipers either on dental casts prior to final crown delivery, piercing the peri-implant mucosa with needles, probes or endodontic instruments and the use of cone-beam computed...
tomography (CBCT). Transgingival piercing approaches have been frequently utilized for evaluating gain in gingival thickness following root coverage procedures in natural dentition (Barootchi, Tavelli et al., 2020; Tavelli et al., 2019), while CBCT is routinely performed in implant dentistry for planning implant placement, or bone augmentation (Mandelaris et al., 2017; Tavelli, Ravida, Barootchi, Chambrone, & Giannobile 2020). Nevertheless, there are several restrictions of using CBCT for assessing volumetric changes, such as its limitation in visualizing the soft tissue and exposing the patient to unnecessary radiations (Harris et al., 2012; Loubele et al., 2009; Mandelaris et al., 2017). Therefore, it is not surprising that other non-invasive imaging techniques have been explored in dentistry (Benic et al., 2015). Magnetic resonance imaging (MRI) is a well-established tool in the medical field, and it allows the assessment of soft and hard tissues without using ionizing radiations (Mendes et al., 2020). Although some possible advantages of MRI in the oral cavity have been described, its use in dentistry is still very limited and further studies are needed to assess its applicability, accuracy and cost benefits (Mendes et al., 2020). Non-ionizing, real-time ultrasonography has been widely used in medicine (Bhaskar et al., 2018). Recent technological advances have allowed for the fabrication of miniature-sized probes with high-quality image and this may explain the increase use of ultrasonography in dentistry for a chair-side non-invasive evaluation of anatomical structures, periodontal and peri-implant tissues (Barootchi, Chan, et al. 2020; Chan & Kripfgans, 2020; Tattn et al., 2019). Nevertheless, potential limitation of this technology includes the inability to penetrate the bone and the narrow field of view (Bhaskar et al., 2018).

Optical scanners have been introduced in dentistry for obtaining digital impressions and generating three-dimensional (3D) digital images formatted as Standard Tessellation Language (STL) files (Benic et al., 2015). STL files can be generated using intra-oral chairside scanners (direct technique) or by scanning dental casts with desktop/laboratory scanners (indirect technique) (Benic et al., 2015; Bosniac et al., 2019; Mennito et al., 2019). The direct technique allows to reduce the number of steps necessary to obtain digital files minimizing patient discomfort while, on the other hand, the use of laboratory scanner may result in a higher precision of the digital impressions, but it requires additional steps that may introduce some inaccuracy (Benic et al., 2015; Bosniac et al., 2019; Mennito et al., 2019). Optical scanners were initially developed for digital impressions of teeth, implants and the surrounding soft tissue (Benic et al., 2015). However, advancement of these scanners and metrology software occurred during the last years, allowing its emergence as a method to evaluate volume change in different clinical scenarios (Fickl et al., 2009; Lee et al., 2020; Strebel et al., 2009; Thoma et al., 2010). In particular, volumetric changes can be evaluated by superimposing 3D images generated at different time points in a non-invasive and highly reproducible way (Benic et al., 2015; Lee et al., 2020; Lehmann et al., 2012; Schneider et al., 2014; Windisch et al., 2007) (Figure 1). Therefore, with the increased interest towards soft tissue thickness at teeth and implant sites (Stefanini, Mounssif, et al., 2020; Zucchelli et al., 2019), it is not surprising that optical scanning-based digital technologies have been used for evaluating volumetric changes following implant placement, soft tissue augmentation at implant sites, ridge augmentation, ridge preservation and root coverage procedures (Barootchi et al., 2019; Fickl et al., 2009; Gargallo-Albiol et al., 2019; Hosseini et al., 2020; Tavelli, McGuire, et al., 2020; Thoma et al., 2019; Zucchelli et al., 2020). Nevertheless, the workflow for generating and analysing STL files, as well as the outcome measures for reporting the volumetric changes, has not been systematically assessed thus far. In addition, there are no recommendations or guidelines on how to define the region of interest for evaluating the volumetric changes with the 3D image analysis software, leading to vast differences in the work process and outcome assessment.

Practical implications: The use of optical scanning and digital technologies for analysis of volumetric changes is an emerging and non-invasive tool that can advance the assessment of outcome interventions. Nonetheless, universal guideline precautions can be implemented for standardized assessment methods. These include a priori operator calibration, determination of the regions of interest and reporting the outcomes primarily as mean distance between the surfaces, and linear dimensional changes assessed at different apico-coronal planes.

Clinical relevance

Scientific rationale for the study: Digital technologies have had a revolutionary impact in implant dentistry. Nevertheless, the workflow for generating and analysing STL files, as well as the outcome measures for reporting the volumetric changes, has not been systematically assessed thus far. In addition, there are no recommendations or guidelines on how to define the region of interest for evaluating the volumetric changes with the 3D image analysis software.

Therefore, the aim of the present article was to review the available literature on the methods used for assessing volumetric changes at implant sites, comparing traditional approaches relative to optical scanning-based digital technologies.
2 | MATERIAL AND METHODS

2.1 | Protocol registration and reporting format

The protocol of the present review was registered and allocated the identification number CRD42020176696 in the PROSPERO database, hosted by the National Institute for Health Research, University of York, Center for Reviews and Dissemination (www.crd.york.ac.uk/PROSPERO). This manuscript was prepared following the Cochrane Collaboration guidelines (Higgins et al., 2011).

2.2 | Objectives

The goal of this review was to address the following focused questions:

1. What are the methods for assessing volumetric changes/mucosa thickness changes that occur following different treatments at implant sites?
2. How are the current digital workflows for assessing volumetric dimensional changes when optical scanners are used? And what are the volumetric changes measured and reported?
3. Were traditional and 3D optical scanning approaches compared when evaluating volumetric changes at implant sites?

2.3 | PICOT question

The following Population, Intervention, Comparison, Outcomes and Time (PICOT) framework (Stillwell et al., 2010) was used to guide the inclusion and exclusion of studies for the above-mentioned focused questions:

Population (P): Patients with dental implants or in need of dental implant therapy
Intervention (I): Implant placement, bone augmentation procedures around implants, peri-implant soft tissue augmentation using autogenous grafts or substitutes (i.e. connective tissue graft or collagen matrix), peri-implant soft tissue conditioning with prosthetic components and other direct implant-related treatments (i.e. surgical treatment of peri-implantitis) in which volumetric outcomes were assessed.
Comparison (C): Any comparison among the included studies in terms of the methods for evaluating peri-implant mucosa variations and the digital workflow and assessment of volumetric changes prior to and after the intervention using 3D optical scanning.
Outcome (O): The current methods for assessing volumetric changes at implant sites, as well as the digital workflows utilized in combination with 3D optical scanning, including intra-oral digital scanners vs. conventional impressions and the use of laboratory optical scanners, the type of impression material, the type of scanner, the 3D software operated and the outcome measures for assessing volumetric changes were evaluated.
Time (T): Minimum follow-up of 3 months after the surgical intervention.

2.4 | Inclusion Criteria

1. Intervential human studies
2. Optical scanners or alternative methods for assessing volumetric changes after therapy (soft/hard tissue augmentation), implant placement, immediate implant placement, bone augmentation at implant sites, peri-implant soft tissue conditioning with prosthetic components and other implant-related treatments (i.e. surgical treatment of peri-implantitis)
3. Minimum follow-up period of 3 months

2.5 | Exclusion criteria

1. Case reports, retrospective or animal studies
2. Finite element analysis reports
3. Studies exploring alveolar ridge preservation (via socket grafting) or augmentation procedures prior to the implant placement as intermediate treatments requiring further therapies
4. Studies reporting peri-implant mucosal dimension at only a single time point

2.6 | Information sources and search strategy

See Appendix S1 for full details.

2.7 | Study selection

See Appendix S1 for full details.

2.8 | Data extraction and analysis

Two examiners (LT and SB) independently retrieved all relevant information from the included articles using a data extraction sheet specifically designed for this review. At any stage, disagreements between the reviewers were resolved through open discussion and consensus. If a disagreement persisted, a third person (JM) settled the discussion. Aside from the outcomes of interest (approaches for assessing peri-implant mucosa variations, digital workflows and outcome measures for assessing volumetric changes), the following study characteristics were retrieved:
1. Study design, geographic location, setting (university vs. private practice) and source of funding
2. Population characteristics, age of participants, number of participants and treated sites (baseline/follow-up) and follow-up period
3. Type of intervention, utilization of soft tissue grafting materials and techniques

For articles utilizing 3D optical scanning and digital technologies for assessment of peri-implant volumetric changes, the ROI, the defect area, the utilization of other approaches for measuring volume variation, calibration and blinding of the 3D analysis operator, and study conclusions were also noted.

For articles utilizing alternative methods for evaluating peri-implant mucosal changes, the instruments used, the reference points, whether the operator that performed the measurements was calibrated and/or blinded, and the comparisons with volumetric outcomes obtained with digital technologies were retrieved.

The gathered data from the included studies were planned for thorough descriptive presentation without pre-forming statistical quantification or comparisons, due to the wide range of variability in reporting.

2.9 | Quality assessment and risk of bias

See Appendix S1 for full details.

3 | RESULTS

3.1 | Search results and study selection

The literature search process is shown in Figure 2. Following removal of duplicates, 3924 records were screened on the basis of titles and abstracts. Full-text assessment was performed for 176 articles. Based on our pre-determined inclusion criteria, 75 articles
were included in the qualitative analysis. The reason for exclusion of the other 101 articles is available in the Appendix (Table S1). The inter-reviewer reliability in the screening and inclusion process, assessed with Cohen’s κ, corresponded to 0.87 and 0.94 for assessment of titles and abstracts and full-text evaluation, respectively.

3.2 Characteristics of the included studies

Thirty articles (Anderson et al., 2014; Andreasi Bassi et al., 2016; Bashutski et al., 2013; Cairo et al., 2017; Clementini et al., 2019; D’Elia et al., 2017; Eisner et al., 2018; Farina & Zaffe, 2015; From et al., 2015; Fu et al., 2014; Guarneri et al., 2019; Hanser & Khoury, 2016; Hutton et al., 2018; Linkevicius et al., 2015; Migliorati et al., 2015; Papapetros et al., 2019; Papi et al., 2019; Poli et al., 2019; Puisys et al., 2015; Schallhorn et al., 2015; Stefanini et al., 2016, Stefanini, Rendon et al., 2020; Thoma et al., 2016; Torkzaban et al., 2015; Ustaoğlu et al., 2020; Verardi et al., 2019; Wiesner et al., 2010; Zafiropoulos et al., 2016; Zucchelli et al., 2013, 2018) only assessed mucosal variations using transgingival piercing approaches, one study used callipers (Rungcharassaeng et al., 2012), six studies used CBCT (Chappuis et al., 2018; De Bruyckere et al., 2018; Frizzera et al., 2019; Kaminaka
Thirty-two of the included studies (Basler et al., 2018; Bittner et al., 2017; Clementini et al., 2020; De Bruyckere et al., 2020; Eeckhout et al., 2020; Fischer et al., 2019; Friberg & Jemt, 2012; Galarraga-Vinueza et al., 2020; Hosseini et al., 2020; Sanz-Martin et al., 2019; Sapata et al., 2018; Schneider et al., 2011; Thoma et al., 2020; Tian et al., 2019; van Nimwegen et al., 2018; Wang et al., 2019; Wei et al., 2019; Wittneben et al., 2016; Zeltner et al., 2017) assessed volumetric changes with optical scanning-based digital technologies. Among them, four studies also assessed mucosal thickness (MT) changes with transgingival piercing methods (Hosseini et al., 2020; Huber et al., 2018; Papi et al., 2020; Thoma et al., 2020).

Detailed study characteristics are described in the Appendix S1 and in the Tables S2-S7.

3.3 Digital workflow

Twenty-one studies (Basler et al., 2018; Benic et al., 2017; Bittner et al., 2020; Canullo et al., 2018; Clementini et al., 2020; De Bruyckere et al., 2020; Eeckhout et al., 2020; Fischer et al., 2019; Friberg & Jemt, 2012; Hosseini et al., 2020; Huber et al., 2018; Sanz-Martin et al., 2016; Sanz-Martin et al., 2019; Sapata et al., 2018; Schneider et al., 2011; Thoma et al., 2020; van Nimwegen et al., 2018; Wang et al., 2019; Zeltner et al., 2017) reported generating 3D digital models from constructed dental casts obtained with different impression materials (including silicone, alginate, polyether, and polyvinyl siloxane) with the use of desktop 3D optical scanners (indirect technique). The other eleven studies (Bertl et al., 2017; Borges et al., 2020; Cabanes-Gumbau et al., 2019; Galarraga-Vinueza et al., 2020; Jiang et al., 2020; Papi et al., 2020; Parvini et al., 2020; Rojo et al., 2018, 2020; Tian et al., 2019; Wei et al., 2019) had obtained the 3D digital models with the use of intra-oral scanners (direct technique). Among them, six studies reported that a short-span area was scanned (Galarraga-Vinueza et al., 2020; Parvini et al., 2020; Rojo et al., 2018, 2020; Tian et al., 2019; Wei et al., 2019), while other articles did not provide information regarding the size of the scanned area. The method of digital model superimposition was automated (using an algorithm of the software) in fourteen studies (De Bruyckere et al., 2020; Eeckhout et al., 2020; Fischer et al., 2019; Hosseini et al., 2020; Huber et al., 2018; Sanz-Martin et al., 2016; Sanz-Martin et al., 2019; Schneider et al., 2011; Thoma et al., 2020; Tian et al., 2019; van Nimwegen et al., 2018; Wang et al., 2019; Wei et al., 2019; Zeltner et al., 2017), and ‘hybrid’/semi-automated (by selecting reproducible points prior to the algorithm or by using a semiautomatic algorithm first followed by manual alignment) in eleven studies (Basler et al., 2018; Bertl et al., 2017; Borges et al., 2020; Clementini et al., 2020; Galarraga-Vinueza et al., 2020; Jiang et al., 2020; Papi et al., 2020; Parvini et al., 2020; Rojo et al., 2018, 2020; Sapata et al., 2018), with the remaining articles that did not specify this aspect. Three studies reported the amount of range of errors/tolerance between the two STL files during the superimposition (Bertl et al., 2017; Tian et al., 2019; Wei et al., 2019).

Table 1 includes the study design, intervention, types of impression materials, casts, digital scanners, and the utilized software for generating and analysing the 3D digital models. Twelve studies reported that the examiner was calibrated in terms of reproducibility of the volumetric analysis 3D measurements (Borges et al., 2020; Clementini et al., 2020; Fischer et al., 2019; Galarraga-Vinueza et al., 2020; Hosseini et al., 2018; Papi et al., 2020; Parvini et al., 2020; Sanz-Martin et al., 2016; Sapata et al., 2018; van Nimwegen et al., 2018; Wang et al., 2019). In particular, in one study the calibration included performing all the measurements twice with an interval of 1 week (Sapata et al., 2018), while in another study the examiner had to repeat the measurements three times every other week on five randomly chosen participants (Wang et al., 2019). The coefficient of reproducibility was reported in six studies, ranging from 0.8 to 0.93 (Borges et al., 2020; Papi et al., 2020; Parvini et al., 2020; Sapata et al., 2018; van Nimwegen et al., 2018; Wang et al., 2019; Table 1). Additionally, in ten studies, the operator who had performed the volumetric analysis had been blinded to the interventions (Borges et al., 2020; Clementini et al., 2020; Fischer et al., 2019; Rojo et al., 2018, 2020; Sanz-Martin et al., 2016; Sapata et al., 2018; Thoma et al., 2020; Wang et al., 2019; Zeltner et al., 2017). All the included studies reported the software used for the volumetric analysis, with SMOP software (Swissmeda AG) being the most utilized (14 articles) (Basler et al., 2018; Benic et al., 2017; Clementini et al., 2020; De Bruyckere et al., 2020; Eeckhout et al., 2020; Fischer et al., 2019; Friberg & Jemt, 2012; Hosseini et al., 2020; Sanz-Martin et al., 2016; Sanz-Martin et al., 2019; Sapata et al., 2018; Schneider et al., 2011; Thoma et al., 2020; van Nimwegen et al., 2018; Wang et al., 2019). Comparison of the volumetric outcomes using different software was not explored among the included studies. A high level of variability in the determination of the ROI was observed (Table S2 in the Appendix).

3.4 Volumetric and linear outcome measures

Studies that employed optical scanning and digital technologies evaluated volumetric and/or linear changes (Table 1), and studies using ultrasonography, CBCT, transgingival piercing or callipers only reported information on linear soft tissue thickness (Appendix, Tables S4-S8).
3.4.1 | Outcomes of volumetric changes

Volumetric changes evaluated with digital analysis were reported as volume in mm3 (Vol), mean distance between the surface/mean thickness of the reconstructed volume (ΔD), and as linear dimensional (LD) changes. One article reported the volumetric outcomes only as differences in the area (in mm2) (Bertl et al., 2017), while the peri-implant soft tissue contour/surface area and its contraction rates were considered as one of the main volumetric outcomes in two studies from the same group (Galarra-Vinueza et al., 2020; Parvini et al., 2020) (Table S2 in the Appendix, as well as previously quoted Figure 1). Vol changes in mm3 were reported in 10 studies (Borges et al., 2020; Cabanes-Gumbau et al., 2019; Clementini et al., 2020; De Bruyckere et al., 2020; Friberg & Jent, 2012; Papi et al., 2020; Sanz-Martin et al., 2019; van Nimwegen et al., 2018; Wang et al., 2019; Wittneben et al., 2016). LD changes were assessed in 15 studies (Basler et al., 2018; Benic et al., 2017; Bittner et al., 2020; Clementini et al., 2020; Galarra-Vinueza et al., 2020; Hosseini et al., 2020; Jiang et al., 2020; Papi et al., 2020; Rojo et al., 2018, 2020; Sanz Martin et al., 2016; Sanz-Martin et al., 2019; Sapata et al., 2018; Wang et al., 2019; Wei et al., 2019), while the ΔD was analysed in 22 articles (Basler et al., 2018; Borges et al., 2020; Cabanes-Gumbau et al., 2019; Canullo et al., 2018; Clementini et al., 2020; De Bruycckere et al., 2020; Eeckhout et al., 2020; Fischer et al., 2019; Friberg & Jent, 2012; Galarra-Vinueza et al., 2020; Hinze et al., 2018; Huber et al., 2018; Parvini et al., 2020; Sanz Martin et al., 2016; Sanz-Martin et al., 2019; Sapata et al., 2018; Schneider et al., 2011; Thoma et al., 2020; Tian et al., 2019; van Nimwegen et al., 2018; Wei et al., 2019; Zeltner et al., 2017).

Thirteen studies analysed the ΔD as the main outcome (instead of Vol changes) for considering the difference among the sites that may vary in area (Basler et al., 2018; Eeckhout et al., 2020; Fischer et al., 2019; Hinze et al., 2018; Huber et al., 2018; Parvini et al., 2020; Sanz Martin et al., 2016; Sanz-Martin et al., 2019; Sapata et al., 2018; Schneider et al., 2011; Thoma et al., 2020; Tian et al., 2019; Wei et al., 2019; Zeltner et al., 2017). The ΔD was either automatically calculated by the software or obtained with the following formula: $\Delta D = \Delta Volume/\Delta Area$. The volumetric outcomes of the included studies are depicted in the Table S2 of the Appendix.

The included articles reported the 3D digital analysis and volumetric outcomes following implant placement with or without bone augmentation, immediate implant placement, soft tissue augmentation, prosthetic peri-implant soft tissue conditioning and surgical treatment of peri-implantitis (Table S3 of the Appendix).

3.4.2 | Mucosal thickness changes

Throughout studies, dimensions of the MT have been assessed with transgingival piercing methods, callipers, CBCT and ultrasonography (Tables S4–S7 in the Appendix). The difference in MT between two time points reflects the change in MT. As the software for volumetric analysis requires the superimposition of two STL files, the 3D digital approach can evaluate MT changes (reported as LD changes) but not the MT at a specific time point. LD/MT changes with 3D digital technologies were evaluated at the midfacial aspect of the implant site, with perpendicular lines most commonly drawn 1, 3 and 5 mm apical to the soft tissue margin (Table S3 of the Appendix).

Large heterogeneity was observed among the articles using transgingival probing techniques, CBCT and ultrasonography in terms of reference points for measuring MT changes (Table S8). Among the 75 included articles, only four assessed volumetric/MT changes using 3D digital technologies or another approaches (Hosseini et al., 2020; Huber et al., 2018; Papi et al., 2020; Thoma et al., 2020). In the studies of Huber et al. and Thoma et al., involving the same patient population, 3D digital technology was utilized only for assessing volumetric changes, reported as ΔD, while linear variations in MT were evaluated using endodontic files that penetrated the mucosa 1 mm apical to the soft tissue margin (Huber et al., 2018; Thoma et al., 2020), and a comparison between the two different methods was not explored. Hosseini et al. performed transgingival piercing with an endodontic instrument for assessing MT changes at 1- and 3-mm reference points apical to the implant crown, while they used 3D digital approach for assessing the dimensional changes in the facial alveolar contours, for the soft tissue component and also the alveolar process (Hosseini et al., 2020). While MT was not significantly different between the test and control groups at any time, the 3D analysis showed that implant sites that received connective tissue graft had significantly more facial dimensional gain than the control group after 5 years.

Given the different outcomes of interest (MT vs. volumetric changes of the alveolar process), a comparison between the two different methods was not investigated by the authors (Hosseini et al., 2020). Similarly, Papi et al. measured changes in MT with an endodontic file, while optical scanning-based technologies were used for evaluating Vol and LD changes, reflecting the changes in the buccal contour including both the soft tissue and the alveolar ridge. However, a correlation between MT and LD was not performed (Papi et al., 2020).

The risk of bias is discussed in detail in the Appendix S1.

4 | DISCUSSION

The present systematic review evaluated the methods for assessing volumetric and MT changes at implant sites. Among them, optical scanning-based digital technologies were the only approach that provided ‘volumetric changes,’ reported as volumetric variation in mm3, or the mean distance between the surfaces/mean thickness of the reconstructed volume (ΔD). Despite a relatively high number of articles using optical scanning-based technologies was found, there is a large heterogeneity in the digital workflow for creating and assessing volumetric variation with this approach. Most of the included articles reported using an indirect technique for generating 3D digital models that involved...
TABLE 1 Characteristics of the included studies assessing volumetric outcomes with optical scanning-based digital technologies

<table>
<thead>
<tr>
<th>Publication</th>
<th>Study design</th>
<th>Country, Setting, Funding</th>
<th>Treatment</th>
<th>Follow-up time (months)</th>
<th>Participant (n), age (years), sites (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basler et al. (2018)</td>
<td>RCT</td>
<td>Switzerland, University, sponsored</td>
<td>Implant placement and simultaneous GBR (resorbable membrane)</td>
<td>12, 36</td>
<td>23, 56.6, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Implant placement and simultaneous GBR (non-resorbable membrane)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benic et al. (2017)</td>
<td>Prospective non-randomized comparative study</td>
<td>Switzerland, University, self-supported</td>
<td>GBR</td>
<td>36</td>
<td>10, 49.5, 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No augmentation</td>
<td></td>
<td>18, 52.2, 18</td>
</tr>
<tr>
<td>Berti et al. (2017)</td>
<td>RCT</td>
<td>Denmark, University, self-supported</td>
<td>Peri-implant papilla augmentation with HY injection</td>
<td>6 (3 for the 3D analysis)</td>
<td>11, 26.7, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant papilla augmentation with saline solution (control group)</td>
<td></td>
<td>10, 33.1, 10</td>
</tr>
<tr>
<td>Bittner et al. (2020)</td>
<td>RCT</td>
<td>USA, University, sponsored</td>
<td>IIP +IP with conventional titanium implant</td>
<td>6</td>
<td>40, 46.9, 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IIP +IP with a pink-neck implant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borges et al. (2020)</td>
<td>Prospective case series</td>
<td>Portugal, University, self-supported</td>
<td>IIP</td>
<td>1, 4, 12</td>
<td>26, 53.04, 26</td>
</tr>
<tr>
<td>Cabanes-Gumbau et al. (2019)</td>
<td>Prospective case series</td>
<td>Spain, University, sponsored</td>
<td>Implant placement and soft tissue conditioning with the abutment and the provisional crown</td>
<td>10</td>
<td>14, 60.4, 32</td>
</tr>
<tr>
<td>Canullo et al. (2018)</td>
<td>Prospective case series</td>
<td>Italy, Private practice, self-supported</td>
<td>Peri-implant soft tissue conditioning with abutments and crowns</td>
<td>60</td>
<td>22, 68.3, 22</td>
</tr>
<tr>
<td>Clementini et al. (2020)</td>
<td>RCT</td>
<td>Italy, University, sponsored</td>
<td>IIP with XCM vs. ARP or spontaneous healing (with delayed implant placement)</td>
<td>4</td>
<td>10, 52.5, 10 (in the immediate implant placement with XCM group)</td>
</tr>
<tr>
<td>De Bruyckere et al. (2020)</td>
<td>RCT</td>
<td>Belgium, University and private practice, materials donated</td>
<td>Implant placement with GBR</td>
<td>12</td>
<td>21, 51, 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Implant placement with CTG</td>
<td></td>
<td>21, 48, 21</td>
</tr>
<tr>
<td>Eeckhout et al. (2020)</td>
<td>Prospective case series</td>
<td>Belgium University, materials donated</td>
<td>Implant placement with PADM</td>
<td>3, 12, 36</td>
<td>51, 51.4, 15</td>
</tr>
<tr>
<td>Fischer et al. (2019)</td>
<td>Prospective case series</td>
<td>Germany and Italy, Private practice, self-supported</td>
<td>Peri-implant soft tissue augmentation with PADM</td>
<td>24</td>
<td>20, 50.2, 24</td>
</tr>
<tr>
<td>Friberg and Jemt (2012)</td>
<td>Prospective case series</td>
<td>Sweden, University, sponsored</td>
<td>Peri-implant soft tissue augmentation with a synthetic scaffold</td>
<td>6</td>
<td>10, 27, 12</td>
</tr>
<tr>
<td>Galarraga-Vinueza et al. (2020)</td>
<td>Prospective case series</td>
<td>Germany, University, sponsored</td>
<td>Peri-implantitis treatment with implantoplasty (supracrestally) and GBR (intrabony component)</td>
<td>1, 6</td>
<td>20, 65, 28</td>
</tr>
</tbody>
</table>

Notes:
- GBR: guided bone regeneration
- PADM: peri-implant augmentation material
- XCM: xenograft collagen matrix
<table>
<thead>
<tr>
<th>Type of impression</th>
<th>Type of digital scanner and software used</th>
<th>3D volumetric measurements</th>
<th>Transgingival piercing assessment</th>
<th>Calibration and blinding of the examiner(s) of the 3D analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon impressions, then dental stone casts scanned</td>
<td>Laboratory scanner (Imetric 3D SA), SMOP (Swissmeda)</td>
<td>ΔD, LD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Silicon impressions, then dental stone casts scanned</td>
<td>Laboratory scanner (Imetric 3D Gmbh), SMOP (Swissmeda)</td>
<td>LD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral scanner (Trios, 3-shape), Convince Standard (3-shape) and Photoshop CS 5 (Adobe Systems)</td>
<td>Differences in the area</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Alginate impression and then the casts were scanned</td>
<td>Intra-oral scanner (Romexis, Planmeca), Compare (Planmeca)</td>
<td>LD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral scanner (CEREC OMNICAM, Sirona), Geomagic Control (3D Systems)</td>
<td>Vol, ΔD</td>
<td>No</td>
<td>Calibrated (k = 0.91) and blinded</td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral scanner (CEREC OMNICAM, Sirona), OraCheck application (CEREC OMNICAM, Sirona)</td>
<td>Vol, ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Impressions (material NR) and then the casts were scanned</td>
<td>Laboratory scanner (Sinergia), ExoCad (Exocad gmbH)</td>
<td>ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Polyether impressions and then the casts were scanned</td>
<td>Optical scanner (CEREC Omnicam, Dentsply Sirona), SMOP (Swissmeda)</td>
<td>Vol, ΔD, LD</td>
<td>No</td>
<td>Calibrated and blinded</td>
</tr>
<tr>
<td>Alginate impressions. Casts scanned with an optical scanner</td>
<td>Laboratory scanner (LS 3 scanner, Kavo), SMOP (Swissmeda)</td>
<td>Vol, ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Alginate impressions. Casts scanned with an optical scanner</td>
<td>Laboratory scanner (LS 3 scanner, Kavo), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Silicone impressions. Dental stone casts scanned with an optical 3D scanner</td>
<td>Optical scanner (CEREC scan utility, inEos, Sirona Dental System), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>No</td>
<td>Calibrated and blinded</td>
</tr>
<tr>
<td>Impressions (material NR), Study casts scanned with an optical 3D scanner</td>
<td>Optical 3D scanner (Atos, GOM International AG), NR</td>
<td>Vol, ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (3 shape TRIOS MOVE, GmbH), GOM inspect 2018, Zeiss Company) and Meshlab (ISTI)</td>
<td>SCTA contraction rate, ΔD, LD</td>
<td>No</td>
<td>Calibrated</td>
</tr>
</tbody>
</table>

(Continues)
<table>
<thead>
<tr>
<th>Publication</th>
<th>Study design</th>
<th>Country, Setting, Funding</th>
<th>Treatment</th>
<th>Follow-up time (months)</th>
<th>Participant (n), age (years), sites (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinze et al. (2018)</td>
<td>Prospective case series</td>
<td>Germany, Private practice, sponsored</td>
<td>IIP + IP with socket shield technique</td>
<td>3</td>
<td>15, 49.25, 17</td>
</tr>
<tr>
<td>Hosseini et al. (2020)</td>
<td>Prospective non-randomized comparative study</td>
<td>Denmark, University, self-supported</td>
<td>Implant placement with CTG at second stage</td>
<td>12, 36, 60</td>
<td>10, 20, 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Implant placement without soft tissue augmentation</td>
<td>15, 23, 23</td>
<td></td>
</tr>
<tr>
<td>Huber et al. (2018)</td>
<td>RCT</td>
<td>Switzerland, University, Sponsored</td>
<td>Peri-implant soft tissue augmentation with CTG</td>
<td>12</td>
<td>10, 43.4, 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant soft tissue augmentation with XCM</td>
<td>12</td>
<td>10, 44.1, 10</td>
</tr>
<tr>
<td>Jiang et al. (2020)</td>
<td>RCT</td>
<td>China, University, self-supported</td>
<td>IIP + IP with CTG</td>
<td>6</td>
<td>20, 34.3, 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IIP + IP without soft tissue augmentation</td>
<td></td>
<td>20, 37.7, 20</td>
</tr>
<tr>
<td>Papi et al. (2020)</td>
<td>Prospective case series</td>
<td>Italy, University, materials donated</td>
<td>Peri-implant soft tissue augmentation with PADM</td>
<td>12</td>
<td>12, 51.6, 12</td>
</tr>
<tr>
<td>Parvini et al. (2020)</td>
<td>Prospective case series</td>
<td>Germany, University, sponsored</td>
<td>Peri-implant soft tissue augmentation with FGG</td>
<td>3</td>
<td>12, 60, 19</td>
</tr>
<tr>
<td>Rojo et al. (2018)</td>
<td>RCT</td>
<td>Spain, University, self-supported</td>
<td>Peri-implant soft tissue augmentation with CTG</td>
<td>3</td>
<td>16, 50.47, 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant soft tissue augmentation with tCTG</td>
<td></td>
<td>16, 54.44, 18</td>
</tr>
<tr>
<td>Rojo et al. (2020)</td>
<td>RCT</td>
<td>Spain, University, self-supported</td>
<td>Peri-implant soft tissue augmentation with CTG</td>
<td>4, 12</td>
<td>13, 50.47, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant soft tissue augmentation with tCTG</td>
<td>4, 12</td>
<td>14, 54.44, 16</td>
</tr>
<tr>
<td>Sanz Martin et al. (2016)</td>
<td>RCT</td>
<td>Switzerland, University, self-supported</td>
<td>One-piece dental implants</td>
<td>12</td>
<td>15, NR, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two-piece implants</td>
<td></td>
<td>18, NR, 18</td>
</tr>
<tr>
<td>Sanz-Martin et al. (2019)</td>
<td>Prospective case series</td>
<td>Spain, University, Sponsored</td>
<td>IIP + XCM + IP</td>
<td>12</td>
<td>12, 53, 12</td>
</tr>
<tr>
<td>Sapata et al. (2018)</td>
<td>RCT</td>
<td>Switzerland, University, self-supported</td>
<td>One-piece dental implants</td>
<td>60</td>
<td>14, NR, NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Two-piece implants</td>
<td></td>
<td>12, NR, NR</td>
</tr>
<tr>
<td>Schneider et al. (2011)</td>
<td>Prospective case series</td>
<td>Switzerland, University, NR</td>
<td>Implant placement with hard and soft tissue augmentation</td>
<td>6, 7, 19</td>
<td>16, 47.5, 16,</td>
</tr>
<tr>
<td>Thoma et al. (2020)</td>
<td>RCT</td>
<td>Switzerland, University, Sponsored</td>
<td>Peri-implant soft tissue augmentation with CTG</td>
<td>36</td>
<td>9, 43.4, 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant soft tissue augmentation with XCM</td>
<td>36</td>
<td>8, 44.1, 8</td>
</tr>
<tr>
<td>Type of impression</td>
<td>Type of digital scanner and software used</td>
<td>3D volumetric measurements</td>
<td>Transgingival piercing assessment</td>
<td>Calibration and blinding of the examiner(s) of the 3D analysis</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Impressions (material NR) and then the casts were scanned</td>
<td>Optical 3D scanner (Scanner S600 ARTI), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>No</td>
<td>Calibrated</td>
<td></td>
</tr>
<tr>
<td>Alginate impressions. Casts scanned in an optical model scanner</td>
<td>Optical model scanner (Q 800, 3Shape), OrthoAnalyzer (3Shape)</td>
<td>LD</td>
<td>Yes</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Alginate with an A-silicone impression material. Casts scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Imetric 3D), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>Yes</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (3 shape TRIOS MOVE, GmbH), Geomagic Qualify 12 (3D Systems)</td>
<td>LD</td>
<td>No</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (Carestream CS3600, Carestream Dental), GOM inspect 2018, Zeiss Company)</td>
<td>Vol, LD</td>
<td>Yes</td>
<td>Calibrated (k > 0.85)</td>
<td></td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (3 shape TRIOS MOVE, GmbH), GOM inspect 2018, Zeiss Company)</td>
<td>Surface area, shrinkage rate, ΔD</td>
<td>No</td>
<td>Calibrated (k between 0.81 and 1)</td>
<td></td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (Lava Chairside Oral Scanner C.O.S., 3 M ESPE), Geomagic Control (3D Systems)</td>
<td>LD</td>
<td>No</td>
<td>Blinded</td>
<td></td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral optical scanner (Lava Chairside Oral Scanner C.O.S., 3 M ESPE), Geomagic Control (3D Systems)</td>
<td>LD</td>
<td>No</td>
<td>Blinded</td>
<td></td>
</tr>
<tr>
<td>Alginate impressions, stone casts fabricated and scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Imetric 3D), SMOP (Swissmeda)</td>
<td>ΔD, LD</td>
<td>No</td>
<td>Calibrated and blinded</td>
<td></td>
</tr>
<tr>
<td>Silicone impressions. Dental stone casts scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Zfx Evolution Scanner, Zimmer Dental), SMOP (Swissmeda)</td>
<td>Vol, ΔD, LD</td>
<td>No</td>
<td>Calibrated</td>
<td></td>
</tr>
<tr>
<td>Alginate impressions. Stone casts scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Imetric 3D), SMOP (Swissmeda)</td>
<td>ΔD, LD</td>
<td>No</td>
<td>Calibrated (k = 0.93) and blinded</td>
<td></td>
</tr>
<tr>
<td>Alginate impressions. Stone casts scanned with a desktop 3D scanner</td>
<td>3D camera (Cerec 3D, Sirona Dental Systems GmbH), Cerec 3 (Sirona Dental Systems GmbH) and Match3D (University of Munich)</td>
<td>ΔD</td>
<td>No</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Alginate with an A-silicone impression material. Casts scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Imetric 3D, Courgenay, Switzerland), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>Yes</td>
<td>Blinded</td>
<td></td>
</tr>
<tr>
<td>Publication</td>
<td>Study design</td>
<td>Country, Setting, Funding</td>
<td>Treatment</td>
<td>Follow-up time (months)</td>
<td>Participant (n), age (years), sites (n)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tian et al. (2019)</td>
<td>Prospective case series</td>
<td>China, University, self-supported</td>
<td>IIP +IP</td>
<td>12</td>
<td>27, 34.6, 27</td>
</tr>
<tr>
<td>van Nimwegen et al. (2018)</td>
<td>RCT</td>
<td>The Netherlands, University, Sponsored</td>
<td>IIP +IP + CTG</td>
<td>12</td>
<td>25, 45.4, 25</td>
</tr>
<tr>
<td>Wang et al. (2019)</td>
<td>RCT</td>
<td>USA, University, Sponsored</td>
<td>IIP +IP</td>
<td>12</td>
<td>18, NR, 18, 20</td>
</tr>
<tr>
<td>Wei et al., 2019</td>
<td>Prospective case series</td>
<td>China, University, self-supported</td>
<td>IIP +IP</td>
<td>12</td>
<td>29, 34.3, 29</td>
</tr>
<tr>
<td>Wittneben et al. (2016)</td>
<td>Prospective case series</td>
<td>Switzerland, University, self-supported</td>
<td>Peri-implant soft tissue conditioning with provisional restorations</td>
<td>NR</td>
<td>20, 42.9, 20</td>
</tr>
<tr>
<td>Zeltner et al. (2017)</td>
<td>RCT</td>
<td>Switzerland, University, self-supported</td>
<td>Peri-implant soft tissue augmentation with CTG</td>
<td>3</td>
<td>10, 42.7, 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peri-implant soft tissue augmentation with XCM</td>
<td>10</td>
<td>43.8, 10</td>
</tr>
</tbody>
</table>

Abbreviations: 3D, Three-dimensional; ARP, alveolar ridge preservation; CTG, connective tissue graft; FGG, free gingival graft; GBR, guided bone regeneration; HY, hyaluronan; IIP, immediate implant placement; IP, immediate provisionalization; LD, linear dimensional changes; NR, not reported; PADM, porcine-derived acellular dermal matrix; PS, platform switching; RCT, randomized clinical trial; SCTA, peri-implant soft tissue contour area; tCTG, connective tissue graft from the maxillary tuberosity; Vol, volumetric change in mm³; XCM, xenogeneic collagen matrix; ΔD, mean distance between the surfaces/mean thickness of the reconstructed volume.

taking a conventional impression followed by scanning the casts with laboratory scanners. Other studies relied on intra-oral digital impressions, which has the potential to provide higher patient acceptance and comfort, as well as decreased clinical time and increased operator satisfaction compared to conventional impressions (Burhardt et al., 2016; Burzynski et al., 2018; Gallardo et al., 2018; Mennito et al., 2019; Yuzbasioglu et al., 2014).

While some authors have suggested that the indirect technique with the digitalization of the casts using desktop scanners should be considered the recommended workflow process (Sanz-Martín et al., 2016; Wesemann et al., 2017), a recent study concluded that direct digital impression systems can be as accurate as 3D models obtained with conventional impressions, which are poured and scanned with a laboratory scanner, if not superior (Mennito et al., 2019). This finding was also confirmed by other authors (Guth et al., 2013; Keul & Guth, 2020; Muallah et al., 2017), suggesting that intra-oral scanners have had a significant improvement in the last years to a point where direct digitalization may soon replace the use of indirect techniques. A recent trial demonstrated that for single-implant sites, the quadrant-like intra-oral scanning was more time efficient and more often preferred by the operators compared to the conventional full-arch impression technique (Joda et al., 2017). Intra-oral scanners permit a 3D pre-visualization of the area of interest and the opportunity to quickly rescan a missed area, in contrast to conventional impressions where the operator has to repeat the entire procedure if it is incorrect (Di Fiore et al., 2018; Lee & Gallucci, 2013). Indeed, the incidence that a cast may need to be excluded from the analysis due to model artefacts that do not allow STL matching is not a rare event when using the indirect technique (Sanz-Martín et al., 2016). On the other hand, it has to be mentioned that the accuracy of an intra-oral scanner is largely affected by operator experience, the type of intra-oral scan system and the size of the scanned area (Resende et al., 2020). Therefore, operator calibration is highly recommended. However, in the present review, only few studies mentioned that the examiners for the 3D measurements had been calibrated or blinded to the interventions.

The software of digital scanner as well when generating the casts is also an important variable to consider. Desktop scanners can have different modules/programme (i.e. scan fixed restorations or scan orthodontic models), and this can also result in different mesh (exported triangles in STL models) qualities that could affect the final results (Ender et al., 2019; Richert et al., 2017; Skramstad, 2019). Interestingly, recent updates in scanner technology with the introduction of artificial intelligence (AI) allows the software to designate different mesh densities to areas that the software considers more or less important (Ender et al., 2019; Richert et al., 2017; Skramstad, 2019).
<table>
<thead>
<tr>
<th>Type of impression</th>
<th>Type of digital scanner and software used</th>
<th>3D volumetric measurements</th>
<th>Transgingival piercing assessment</th>
<th>Calibration and blinding of the examiner(s) of the 3D analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral scanner (3Shape Trios, 3Shape, Denmark), Geomagic Control (3D systems)</td>
<td>ΔD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Alginate impressions. Dental stone casts scanned with a laboratory optical scanner</td>
<td>Laboratory optical scanner (iScan D301i, Imetric, Courgenay), SMOP (Swissmeda)</td>
<td>Vol, ΔD</td>
<td>No</td>
<td>Calibrated (k = 0.821)</td>
</tr>
<tr>
<td>Digital models obtained by scanning the stone models (impression material NR) using a laboratory optical scanner</td>
<td>Laboratory optical scanner (Activity 101 Dental 3D Scanner, Smart Optics), Geomagic Control (3D systems)</td>
<td>Vol, LD</td>
<td>No</td>
<td>Calibrated (k > 0.8) and blinded</td>
</tr>
<tr>
<td>Intra-oral digital impression</td>
<td>Intra-oral scanner (3Shape Trios, 3Shape), Geomagic control (3D systems)</td>
<td>ΔD, LD</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Polyether impressions. Casts were scanned with optical scans</td>
<td>iTero System (Align Technology), Final Surface version 4.010 (GFal)</td>
<td>Vol</td>
<td>No</td>
<td>NR</td>
</tr>
<tr>
<td>Alginate with an A-silicone impression material. Casts scanned with a desktop 3D scanner</td>
<td>Desktop 3D scanner (Imetric 3D), SMOP (Swissmeda)</td>
<td>ΔD</td>
<td>No</td>
<td>Blinded</td>
</tr>
</tbody>
</table>

In addition, the scanning area can also play a role on the accuracy of the digital files. A recent clinical study showed that short-span intra-oral scanning led to less deviations than long-span distance scans, even using four current intra-oral scanners which were equipped with the latest software version (Schmidt et al., 2020). Six (Galarraga-Vinueza et al., 2020; Parvini et al., 2020; Rojo et al., 2018, 2020; Tian et al., 2019; Wei et al., 2019) out of the seven studies, which performed intra-oral scanning, reported that a short-span area was scanned to generate 3D digital models. This reduced scanned area may have ensured higher accuracy of generated digital models (Resende et al., 2020; Schmidt et al., 2020).

The studies included in the present review reported Vol changes, ΔD or LD changes as main volumetric outcomes. It has been advocated that ΔD should be considered the outcome of choice when comparing the volumetric results among different sites and different treatment modalities (Baumer et al., 2015; Fickl et al., 2009; Sanz-Martín et al., 2016; Schneider et al., 2011; Thoma et al., 2010; Tian et al., 2019). Nevertheless, the variability observed in the included studies in terms of digital workflow, type of software, method of superimposition and ROI determination rend volumetric comparisons among different articles not feasible. It is also worth of mentioning that many of the included studies did not describe the method of model superimposition in detail and did not report the range of errors/tolerance between the two STL files. In the authors’ opinion, the superimposition methods should consider anatomical fiduciary regions of interest and/or landmarks that are considered stable and valid to perform the superposition. Lo Russo et al. (2020) have also described that trimming digital casts to eliminate peripheral areas not present in both files and non-matching areas caused by practical aspects related to obtaining digital impressions (mobile tissue stretching) are important steps that can improve alignment and, consequently, measurement accuracy.

Aside from operator calibration for scan acquisition, it is also important to perform calibration for obtaining the digital measurements. A learning curve is needed for mastering software functions, and once the complete domain is obtained, higher accuracy of the technique can be expected. This aspect is a limitation encountered in published articles at the moment, where only 12 out of 32 studies reported that the examiner was calibrated in terms of reproducibility of the 3D digital measurements (with only 6 of them reporting the coefficient of reproducibility).

Interestingly, none of the included studies compared the volumetric outcomes obtained using optical scanning-based approaches with the other techniques. This is due to the fact that optical scanning-based technologies evaluated the volumetric changes in the buccal/ridge contour rather than MT variation. This
was the reason for which the four included studies assessing volumetric changes with both optical scanning-based techniques and transgingival piercing did not explore a correlation between the two methods (Hosseini et al., 2020; Huber et al., 2018; Papi et al., 2020; Thoma et al., 2020).

Nowadays, transgingival probing is one of the most common methods for assessing soft tissue thickness, as typically measured 1–3 mm apical to the soft tissue margin (Barootchi, Tavelli, Gianfilippo, et al., 2020; Barootchi, Tavelli, Zucchelli, et al., 2020; Tavelli, Barootchi, et al., 2020). However, this measurement does not represent the overall volumetric changes, but the variation in MT at a specific reference point (plane), which may not be representative of the overall volume gain/loss after a treatment. The obtained \(\Delta D \) from the digital analysis can however show all the changes in a bucco-lingual direction perpendicular to the labial surface at any chosen reference point, as the mean distance between the two analysed surfaces (Baumer et al., 2017; Bienz et al., 2017; Fickl et al., 2009; Sanz-Martin et al., 2016; Schneider et al., 2011; Tian et al., 2019). This measurement should be considered for assessment of the entire volumetric change at a particular site, as digital image superimposition due to its accuracy, encompassing scope, and non-invasiveness may become the gold standard technique for evaluating volumetric variation in the future (Fons-Badal et al., 2019; Rebele et al., 2014).

As for traditional approaches (transgingival piercing methods), the need for a standardized stent, the possibility in bending of the needle/endodontic instrument, patient discomfort and reduced accuracy are among other limitations (Fons-Badal et al., 2019). However, as none of the included studies compared the obtained 3D digital analysis to alternative methods, the results from volumetric analysis should also be interpreted with caution.

Despite this being the first attempt in the literature to qualitative evaluate the digital workflow of the clinical studies assessing volumetric changes among different treatment protocol and techniques, a certain heterogeneity was observed in terms of impression technique, data acquisition, software used and volumetric outcome measures. The lack of a standardized method for identifying ROIs makes quantitative comparisons between studies not feasible. Other limitations of the included studies include a lack of, or limited information on method of model superimposition, range of tolerance between the two STL files and operator calibration (Appendix S1). As such, the findings from this review can serve as a recommendation for future investigations to be more comprehensive on the above parameters, including patient-reported outcomes.

5 | RECOMMENDATION FOR FUTURE STUDIES

Superimposing digital models at different time points allows for evaluating soft tissue volume change over time in a non-invasive and accurate method. Nevertheless, the present review highlights that there are not guidelines or recommendations for clinical studies. In order to minimize heterogeneity within the methodologies of future articles, we recommend the use of intra-oral scanning for generating digital models or the use of indirect techniques with highly accurate conventional impressions and using a laboratory optical scanner. When using intra-oral scanners, reducing the size of the scanned area can ensure higher accuracy of digital surface models and 3D analysis. Methods used for model alignment should be described and precautions have to be taken to guarantee maximum reproducibility. The operator who performs the scanning and the 3D analysis should have an adequate training, follow manufacturers scanning strategy recommendations, be calibrated and blind to the treatments in case of comparative studies. The intraclass correlation coefficient calculated for consecutive measurements should also be reported. In particular, it has been suggested to perform all the measurements two times with an interval of 1 week for assessing the reproducibility of the 3D analysis (Sapata et al., 2018). Based on the included studies, for evaluating tissue contour changes in a single-implant site, we recommend defining the ROI as follow: (i) mesial and distal papillae not included (Benic et al., 2015), (ii) rectangular shape with the gingival/soft tissue margin as coronal border and extending 6 mm apically, (iii) two lines perpendicular to the occlusal plane and to the cemento-enamel junction of the adjacent teeth and passing through the mid-point of the mesial and distal papilla as mesial and distal borders. The volumetric outcomes of interest that should be reported in the manuscript are as follows: (i) LD change (from 1 to 5 mm from the soft tissue margin), (ii) mean area of the defect (in mm\(^2\)), (iii) \(\Delta D \) (in mm) and (iv) Vol change (in mm\(^3\)). Volumetric comparisons should be mainly based on \(\Delta D \) (Baumer et al., 2015; Fickl et al., 2009; Sanz-Martin et al., 2016; Schneider et al., 2011; Thoma et al., 2010; Tian et al., 2019) and follow the proposed guidelines. This has the potential to render optical scanning-based digital analysis more reproducible and comparable among different studies and treatment modalities. Comparison between different techniques in assessing volumetric and linear changes is also encouraged.

6 | CONCLUSIONS

Based on the currently available evidence, and the limitations within this research, the following conclusions can be drawn:

1. Volumetric and/OR MT changes around dental implants have been assessed with transgingival piercing techniques, callipers, CBCT, ultrasonography and optical scanning-based approaches.
2. Volumetric outcomes are reported only with optical-scanning digital technologies and are displayed using Vol changes, \(\Delta D \) or LD changes. Transgingival piercing, callipers, ultrasonography and CBCT report merely the linear changes in MT.
3. Both indirect and direct techniques are currently used for generating 3D digital models following optical scanning. Different software are available for the superimposition of the digital files and 3D analysis, with most of the studies using an automated or semi-automated method of superimposition.
4. Volumetric outcomes from 3D digital analyses should be interpreted with caution given the lack of interventional studies comparing this method with other approaches for assessing peri-implant volume changes at the present moment.

5. The high level of heterogeneity among the studies evaluating 3D volume changes at implant sites in terms of digital impression techniques, types of software, methods of superimposition and ROI determination makes volumetric comparison among different studies not feasible at the present moment. Guidelines for generating and analysing 3D models in a standardized way are therefore needed for obtaining reproducible and comparable volumetric outcomes among different studies and treatment modalities.

ACKNOWLEDGEMENT
The study was self-supported.

CONFLICT OF INTEREST
The authors do not have any financial interests, either directly or indirectly, in the products or information enclosed in the paper.

AUTHOR CONTRIBUTIONS
Lorenzo Tavelli contributed to conception, design, data acquisition, and interpretation; drafted and critically revised the manuscript; Shayan Barootchi contributed to conception, design, data acquisition and interpretation; drafted; and critically revised the manuscript; Jad Majzoub contributed to data acquisition, and interpretation and critically revised the manuscript; Rafael Siqueira contributed to conception, design, data interpretation, drafted and critically revised the manuscript; Gustavo Mendonça contributed to conception and design, and critically revised the manuscript; Hom-Lay Wang contributed to conception and design, and critically revised the manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID
Lorenzo Tavelli https://orcid.org/0000-0003-4864-3964
Shayan Barootchi https://orcid.org/0000-0002-5347-6577
Gustavo Mendonça https://orcid.org/0000-0003-2290-4046
Hom-Lay Wang https://orcid.org/0000-0003-4238-1799

REFERENCES

Friberg, B., & Jent, T. (2012). Soft tissue augmentation in connection to dental implant treatment using a synthetic, porous...

Wiesner, G., Esposito, M., Worthington, H., & Schlee, M. (2010). Connective tissue grafts for thickening peri-implant tissues at...

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.