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Abstract: Multichannel autofocus (MCA) is a subspace-based autofocus method for solving the defocusing problem in
synthetic aperture radar. In addition to the one-dimensional (1D) defocusing assumption, MCA assumes that the
perfectly focused image has a low-return region, which is naturally guaranteed by the spatially limited nature of the
radar antenna footprint. In theory, MCA yields better or even perfect solutions compared to other autofocus methods.
However, the authors have discovered that MCA is far more sensitive to violation of the 1D defocusing assumption
compared to other methods; in fact, MCA is unsuitable for even fairly small data-collection angles. Fortunately, this
problem can be solved if they reverse the order of two steps in the image formation process and apply MCA in a
domain where the defocusing effect is one dimensional. The distorted version of the image, obtained by inverse
Fourier transforming the polar-grid data without further interpolation, contains regions satisfying a low-return
assumption, but the region of low return must be carefully specified for best performance. They present simulation
results of the proposed method, reversed-step MCA, for various ranges of look angles and discuss the selection of low-
return constraints.
1 Introduction

Synthetic aperture radar (SAR) is a microwave imaging system that
achieves a narrow effective beam, and thus high cross-range
resolution, by synthetically increasing the size of the aperture. In
the tomographic formulation of spotlight-mode SAR, the
demodulated data corresponding to a vantage angle θ are
essentially a slice of the two-dimensional (2D) Fourier transform
of the reflectivity at angle θ [1]. Thus, SAR data lies on a polar
grid in the Fourier domain, and a natural means of image
formation is to apply 2D inverse Fourier transformation after
interpolating the data onto a Cartesian grid.

Perfect demodulation requires accurate knowledge of the distance
between the centre of the image patch and the radar platform for each
vantage angle. Although modern GPS-equipped SAR systems can
estimate the distance with fair accuracy, for high frequency SARs,
it is difficult to measure the distance within a small fraction of the
wavelength from a moving platform, as needed. As a result, the
demodulated data typically are contaminated with unknown phase
shifts. When imaging from space, unknown phase shifts also can
be imparted by spatially-varying and time-varying properties of
the ionosphere. In the presence of the phase errors, the resulting
image is improperly focused [2].

In recent decades, a number of solutions to the defocusing
problem, referred to as autofocus methods, have been proposed
and studied [3–8]. Most autofocus algorithms are well-motivated,
but heuristic. A more recently proposed autofocus method,
named multichannel autofocus (MCA) is a subspace-based
approach that directly solves for the correction filter [8]. MCA
assumes that a small portion of the perfectly focused image is
zero-valued, or at least nearly zero-valued, which is nearly
satisfied in practice due to the spatial limit of the antenna beam.
Under the image support constraint, in principle, MCA can
provide a better or even perfect restoration of the focused image,
compared to other methods. Furthermore, unlike most autofocus
methods, the performance of MCA does not depend heavily on
the nature of the phase error.
MCA and other efficient autofocus algorithms estimate the phase
errors based on the assumption that the effect of defocusing on the
image is 1D. This assumption is nearly satisfied when the range of
data collection angles is small, so that the polar raster for the
acquired Fourier data does not deviate much from a Cartesian grid.
However, as the range of angles becomes wider, the blurring
kernel no longer can be approximated as a 1D function in the
cross-range direction, and so the algorithms fail to focus the image
properly. Although many SAR applications use a narrow range of
data collection angles (a few degrees), there are applications, such
as bistatic SAR imaging, that require a wider range of data
collection angles (up to tens of degrees).

We showed in [9] that MCA is particularly sensitive to the 1D
defocusing assumption and proposed to improve the MCA
approach by interchanging the interpolation step and the
autofocus step; we applied MCA to the corrupted inverse-polar
data, which is obtained by inverse Fourier transforming the
polar-grid data without interpolation. By interchanging the steps,
the defocusing effect is 1D, and thus we can obtain better
estimates of the phase errors using the subspace-based technique.
However, we must account for how the low-return region
changes in the inverse-polar data. By using modified low-return
constraints, this method, which we refer to as reversed-step
MCA (RMCA), gives near-perfect restoration in many cases.
This paper gives a complete and updated account of the
preliminary work reported in [9].

The organisation of this paper is as follows. Section 2 presents the
SAR autofocus problem and establishes the notation used in this
paper. The reversed-step reconstruction and the modified
low-return constraints are studied in Section 3. For analytical
purposes, we consider a continuous version of the inverse-polar
domain and study point target responses. The analysis provides a
guideline for determining the low-return constraint for the RMCA
reconstruction. In Section 4, simulation results are presented for
different ranges of look angles and different choices of low-return
constraints. Some practical issues also are discussed. We conclude
in Section 5.
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2 Problem statement and MCA

2.1 SAR defocusing problem

In our development, we consider spotlight-mode SAR because this
high-resolution form of SAR ordinarily uses short wavelengths,
where the need for autofocus is most pressing.

The geometry of an airborne SAR imaging scenario is shown in
Fig. 1. The radar platform illuminates the terrain patch and collects
the backscattered pulses, which are acquired for look angles θl:
θmin ≤ θl≤ θmax, l = 0, 1, …, M− 1, where Θ = θmax− θmin is the
range of look angles. The patch to be imaged is depicted as the
shaded circular region of diameter L, and the radar is at a distance
Rθ from the centre of the scene when the look angle is θ. The
direction of the flight path is referred to as the cross-range or
azimuth direction and the direction perpendicular to the flight path
is referred to as the range direction. Here, the goal is to reconstruct
the complex-valued reflectivity q(x, y) of the ground patch.

Returns from each look angle are demodulated using knowledge
of the round-trip delay 2Rθ/c. Under the assumption that the radar
is operating in the far field, i.e. when Rθ≫ L, the demodulated
return from look angle θ is a slice of the 2D Fourier transform Q
( fX, fY) of q(x, y), taken at an angle θ [1]. In practice, due to the
limited and tapered support of the radar antenna beam, the
demodulated returns correspond to the weighted reflectivity

g(x, y) = q(x, y)w(x, y), (1)

where w(x, y) is the antenna beam pattern, whose support is nearly
limited to a particular region in space. Then discrete samples of
the demodulated data from angle θl are described by

Gp[l, k] = G( fR[k] cos ul , fR[k] sin ul), k = 0, . . . , N − 1, (2)

where G( fX, fY) is the 2D Fourier transform of g(x, y), and { fR[k]} are
the radial samples of the demodulated data. The region of support of
the acquired Fourier data is an annulus, offset from the origin, with
the radial extent determined by the waveform carrier frequency and
bandwidth, and angular extent that is the same as the range of data
collection angles [1].

Since the SAR data are samples of the 2D Fourier transform of g, a
natural means of image formation uses 2D inverse Fourier
transformation. To utilise fast algorithms for Fourier
transformation, the polar-grid data usually is first interpolated onto
a Cartesian grid. The interpolated SAR data can be described by

Gc[l
′, k ′] =

∑M−1

l=0

∑N−1

k=0

Gp[l, k]CPC[l
′, k ′; l, k], (3)

where ΨPC is a polar-to-Cartesian interpolation kernel, and l′ and k′
are indices corresponding to sample points in the range and
cross-range spatial frequency, respectively. By taking a 2D inverse
discrete Fourier transform (DFT) of Gc, we obtain the image
gc[m, n] = DFT−1

l′ ,k ′{Gc[l
′, k ′]}.
Fig. 1 Geometry of data collection in spotlight-mode SAR
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An accurate reconstruction of the image gc requires precise
knowledge of any variation in the round-trip distances, 2Rθ, which
may be difficult to measure within a small fraction of a
wavelength. As a result, each of the demodulated returns is
contaminated with an unknown phase shift; the contaminated
demodulated returns can be described by

G̃p[l, k] = Gp[l, k] e
jfl , ∀l, k, (4)

where fl is the unknown phase shift corresponding to the return from
look angle θl [2]. Generally, the measurement errors are different for
each return, and the resulting phase errors are considered to be a 1D
function of the look angle. In the presence of phase errors, the
reconstructed image becomes improperly focused, and the
resulting challenge is referred to as the SAR defocusing problem.

2.2 1D autofocus methods

The aim of SAR autofocus is to restore the perfectly focused image
gc given the set of corrupted SAR data {G̃p[l, k]} and assumptions
about the characteristics of the underlying scene. A common
assumption is that the range of look angles Θ is small, so that the
polar data grid in the Fourier domain is nearly Cartesian. Then,
the corrupted data can be approximated as

G̃c[l
′, k ′] = Gc[l

′, k ′] ejf1D[l
′], ∀l′, k ′, (5)

where f1D is a 1D phase-error function depending only on the
cross-range index l′. Since the resulting image under this model is
blurred only in one spatial direction, the small-angle assumption is
also known as the 1D defocusing assumption.

Existing efficient autofocus methods estimate the phase-error
function f1D under the small-angle assumption and other
reasonable assumptions. For example, phase gradient autofocus
(PGA) [3] implicitly assumes certain characteristics of the imaging
scene, such as strong reflectors in the various range bins; and a
statistical model is assumed in [4], providing the basis for
maximum-likelihood estimation. Metric-based autofocus methods
[5–7] assume the suitability of a particular image focus metric,
such as image entropy [5, 7]. Entropy of an image g is defined as

E(g) W −
∑
m,n

|�g[m, n]|2 ln (|�g[m, n]|2), (6)

where

�g[m, n] W g[m, n]/
∑
m,n

|g[m, n]|2
( )

is the power-normalised image. Lower entropy generally
corresponds to better focus, and we will use image entropy as a
performance measure of autofocus algorithms throughout this paper.

2.3 Multichannel autofocus

MCA is a direct approach to the defocusing problem, which assumes
that a small portion of the perfectly-focused image is zero-valued, or
least nearly zero-valued [8]. This assumption of a low-return region
is satisfied in practice due to the spatial limitation of the antenna
footprint and oversampling.

Like most autofocus methods, MCA was developed under the
small-angle approximation. In matrix notation, MCA describes the
autofocused image ĝ [ C

NY×NX in terms of the corrupted
Cartesian-grid Fourier data G̃c [ C

NY×NX and phase
compensations f̂ [ CNY as

ĝ[m, n] = FMCA,{[m,n]} e
−jf̂ , ∀m, n (7)

where e−jf̂ is an NY × 1 vector with entries
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e−jf̂ l , l = 0, . . . , NY − 1, and FMCA,{[m,n]} is a 1 × NY vector with
its (l′ + 1)th entry being

F
(l′)
MCA,{[m,n]} =

∑NX−1

k ′=0

G̃c[l
′, k ′] exp j2p

nk ′

NX

+ ml′

NY

( ){ }
. (8)

(Note that this formula is different from the one in the original paper
[8]; however, they are equivalent descriptions.)

Now, let Ω, [0:NY− 1] × [0:NX− 1] denote the set of discrete
indices corresponding to the presumed low-return region, i.e.

ĝ[m, n]
∣∣ ∣∣ ≃ 0, ∀[m, n] [ V. (9)

The samples of the phase-compensated image that correspond to the
presumed low-return region can be concatenated into a vector:
ĝV = FMCA,Ve

−jf̂ , where FMCA,V is a |Ω| ×M matrix, composed
of row vectors {FMCA,{[m,n]}:[m, n] [ V}. MCA aims to find the
phase compensations f̂ that minimise ĝV

∥∥ ∥∥
2 and estimates the

phase errors by

f̂MCA = −/ argmin
v‖ ‖2=1

FMCA,Vv
∥∥ ∥∥

2

{ }
. (10)

When the presumed low returns are exactly zero and FMCA,V has
rank NY− 1, MCA recovers the focused image exactly. However,
the restoration is not guaranteed to be exact in most other cases.
The accuracy of the estimate is greatly related to the choice of
low-return pixels and their values; thus, the low-return constraints
must be chosen carefully.
3 Reversed-step MCA

3.1 MCA and the polar-format issue

MCA is based on the 1D defocusing model described by (5). In
reality, the actual Fourier data lies on a polar grid and the
corrupted Cartesian-grid data are described as

G̃c[l
′, k ′] =

∑M−1

l=0

∑N−1

k=0

Gp[l, k]CPC[l
′, k ′; l, k] ejf[l], (11)

and are not related to the uncorrupted data Gc[l′, k′] by multiplicative
1D phase errors. Although MCA is based on an erroneous model, the
amount of deviation from the 1D defocusing model has been
assumed to be small when the polar data grid is nearly Cartesian,
i.e. when the range of look angles Θ is small, so that the effect on
the performance of MCA would be correspondingly small.
However, the modelling error can grow very fast as the polar grid
deviates from a Cartesian grid, and so the performance of MCA
can be much poorer than expected.

It is difficult to construct a simple model for the 2D phase errors in
G̃c; however, in [9], we compared the dependence of the
performance of MCA, on the departure from a 1D phase error,
with that of two other 1D autofocus methods: PGA and minimum
entropy autofocus. By applying an additive independent 2D
random phase error uniformly distributed between −σπ and σπ, all
three algorithms showed degradation in performance as the amount
of deviation σ became larger. Moreover, while MCA exhibited
outstanding performance when the defocusing effect was truly 1D,
it degraded the most rapidly as σ became larger. A possible reason
for the high sensitivity of MCA to the departure from the 1D
defocusing model is that the individual singular vectors of a
matrix may be unstable, i.e. small perturbations in data can result
in a considerably different set of singular vectors [10].

Even if the phase errors in G̃c are truly 1D, the error in the
magnitude of G̃c may also affect the performance of MCA. The
role of Fourier magnitude in image reconstruction is known to be
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much less important than that of the phase [11], and a similar
observation has been made for SAR data [12]. However, an error
at a single Fourier sample point affects the entire image [13], and
uncorrelated errors in Fourier magnitude may introduce
uncorrelated errors in the reconstructed image, resulting in a loss
of contrast [14]. Thus, the errors in the Fourier magnitude affect
the region of low return, which is especially problematic when the
contrast of the original scene is low, resulting in poor performance
of MCA. Although not presented in this paper, simulation results
showed that the amount of magnitude error in the interpolated
Fourier data is large when the phase errors are uncorrelated, and,
as expected, the average energy in the presumed low-return region
increased as the range of look angles became wider. However, the
amount of degradation in the performance of MCA due to the
magnitude errors was much smaller than that caused by the 2D
phase errors.

3.2 Basic idea

Hence MCA suffers from inaccuracy of the 1D phase assumption in
the Cartesian domain, we propose estimating the phase errors before
applying polar-to-Cartesian interpolation. For a given polar data grid
in the 2D Fourier space, we define the inverse-polar data gp of an
image ga as

gp[m, n] =
∑M−1

l=0

∑N−1

k=0

Gp[l, k] e
j2p (ml/M )+(nk/N )( ), (12)

where {Gp} is the Fourier transformation of ga collected on a polar
grid. We call the space of inverse-polar data the inverse-polar
domain. (Note that we use this more accurate terminology rather
than ‘warped-domain data’ and ‘warped domain’ as in our
preliminary work [9].)

Clearly, the inverse-polar data are corrupted by a 1D blurring
kernel, regardless of the range of look angles. Thus, we can expect
better performance in estimating the blurring kernel, so long as we
can identify an appropriate low-return region in the inverse-polar
domain. Then, we can correct the errors in {G̃p} and obtain the
autofocused image by the usual polar format algorithm
(polar-to-Cartesian interpolation followed by a 2D fast Fourier
transform). We call our method RMCA since the order of image
formation and autofocus are reversed.

3.3 Impulse response in the inverse-polar domain

Since a low-return region is naturally provided by the antenna
footprint in practice, the low-return constraints for MCA are
straightforward to choose. The low-return region in the
inverse-polar domain also depends on the shape of the antenna
footprint, but in a less straightforward way. To gain insight into
what the inverse-polar data might look like, we derive impulse
responses for a continuous-version of the inverse-polar domain.
Although we make assumptions in deriving the formula, for the
tractability of our analysis, the result will help us understand
where the low-return regions are in the inverse-polar domain.

Instead of having a discrete set of Fourier samples {Gp[l, k]},
assume that we have access to the Fourier data Gp( fR, θ) =G
( fRcosθ, fRsinθ) for fR∈ [ f0− Δf/2, f0 + Δf/2] and θ∈ [−Θ/2, Θ/2].
The continuous inverse-polar data gp(xp, yp) can be defined as

gp(xp, yp) W

∫ ∫
Gp( fR, u) e

i2p(xp fR+ f0ypu) d fR du. (13)

Suppose we have an impulse at location (r0cosθ0, r0sinθ0) in the
spatial domain, where we assume that r0 > 0. Then, the
inverse-polar data corresponding to the impulse is

hp(xp, yp) = Df e
i2p f0xp

∫Q/2

−Q/2
A(xp, u) e

−iv(yp,u) du, (14)
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 132–139
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Fig. 2 Inverse-polar data corresponding to a scene consisting of 25 point reflectors

a For Θ = 3°
b For Θ = 5°
c For Θ = 10°
Amplitude is plotted on a logarithmic scale
where

A(xp, u) = sinc Df xp − r0 cos (u0 − u)
{ }[ ]

and

v(yp, u) = 2p f0 r0 cos (u0 − u)− ypu
{ }

.

The centre frequency, f0, is high in practice, and it follows that ω is
rapidly varying as a function of θ, whereas A is relatively slowly
varying. By the principle of stationary phase, |hp| will have
relatively large values if stationary phase is realised within the
range of integration [15]. For a fixed y-coordinate yp, stationary
phase is realised at θ*(yp) = θ0− arcsin(yp/r0). If θ*(yp)∈ [−Θ/2,
Θ/2], i.e. if

yp [ r0 sin (u0 − u):u [ −Q

2
,
Q

2

[ ]{ }
,

then (14) can be approximated as

hp(xp, yp) ≃
Df A(xp, u

∗(yp)) e
i{2p f0xp−v(yp,u

∗(yp))}���������������������������
−j f0r0 cos u0 − u∗(yp)

{ }√ (15)

by using a second-order Taylor-series expansion of ω about the
stationary point. From the approximation, we can see that |hp| will
have large values near the x-coordinate xp = r0cos{θ0− θ*(yp)} for
a fixed yp. Having assumed that the stationary phase point is
within the range of integration, the impulse response in the
Fig. 3 Inverse-polar data corresponding to different antenna patterns for Θ=
contours of a, c inverse-polar data corresponding to a rectangular antenna footpr
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inverse-polar domain will have large values near an arc described by

(r0 cos u, r0 sin u), u [ u0 −
Q

2
, u0 +

Q

2

[ ]
.

Note that the arc becomes longer as the range of look angles and
distance of the point target from the centre of scene increase.

Fig. 2 shows simulated inverse-polar data for a scene consisting of
25 point reflectors of equal reflectivity and equal spacing in both
directions. The simulation results agree with the above analysis,
which was done for the continuous-version of the inverse-polar
domain, showing impulse responses having arc-like features. Also,
the sharp responses are smoothed as the range of look angles
becomes wider and as distance from the origin of the scene
increase, as suggested by the analysis.

The arc shapes of the impulse responses suggest a region of low
return in the inverse-polar domain; the outermost corners of the
inverse-polar domain are likely to have low returns, where the
exact shape of the corner regions depends on the antenna pattern
and the range of look angles. To test this hypothesis, we applied
ideal circular and rectangular antenna patterns to a scene of
scatterers of uniform strength and random phase, and then
calculated Fourier data on a polar grid [12]. We then calculated
inverse-polar data, averaged over multiple realisations of spatial
phases to reduce the speckle.

Fig. 3 shows the synthesised inverse-polar data and their contours
for ideal circular and rectangular antenna patterns with no sidelobes.
Here, we took an average over 100 realisations for Θ = 30°. For
larger Θ, the shape of the contours deviates more from the original
window shape and expand outwards in the horizontal direction
towards the edges.
30°: a inverse-polar data corresponding to a circular antenna footprint, b
int, and d contours of c
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Fig. 4 Realistic simulation of SAR imaging. a SAR scene modelled by a 256 × 256 image with a 2D separable sinc window applied, and b image defocused by a
white phase error function. The squares in a and b indicate the reduced FOV corresponding to the region of interest
4 Simulation results

4.1 Simulation with 2D separable sinc antenna footprint

Fig. 4a shows a realistic SAR scene, which was obtained by
applying an antenna pattern to a SAR image made available from
Fig. 5 Simulation of MCA. a Perfectly-focused image of size 128 × 128, formed in th
MCArestorationwith the lowest entropymeasure forΘ= 0.1°, anddMCArestorationw
within the reduced FOV. Entropy of the images: a 7.6028, c 8.2562, and d 8.5056. Th
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Sandia National Laboratories [16]. A 2D separable sinc function
was used to model the attenuation by the antenna, where the main
lobe of each sinc function covered half the width of the scene. The
white square in the figure circumscribes the main lobe of the sinc,
and later will be used as the borderline of a reduced field of view
(FOV) for the restored images. Spatial phases were created
e absence of phase errors, b presumed low-return region in the original FOV, c
ith the lowest entropymeasure forΘ= 1°.a, c, anddonly show the restored image
e number of low-return constraints for MCA restorations: c 5376, and d 2048
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independently from a uniform distribution ranging from −π to π.
SAR data were then synthesised on a polar grid in the Fourier
domain, and a white phase error function was applied to model a
severe defocusing effect. We used PFA for SAR image formation,
with the resolution and FOV being equal to that of the scene
shown in Fig. 4a. Fig. 4b shows a defocused image for Θ = 0.1°.
Images in Fig. 4 and the contours of the attenuation windows to
be shown later are presented with a wide FOV in order to show
the low-return region. However, we will use the reduced FOV for
restored images since we generally are interested in imaging the
region that is strongly illuminated.

A perfectly focused image for Θ = 0.1° is shown in Fig. 5a for
comparison purpose. For MCA, pixels corresponding to the lowest
values of the antenna footprint were selected to comprise the
low-return region, and the number of constraints was linearly
increased from the number of cross-range indices in the
defocused image to 24 times that minimum number. Among the
restored images, the one with the lowest entropy measure was
selected as the ‘best’ MCA restoration. The shaded region in
Fig. 5b shows the presumed low-return region that yielded the
‘best’ MCA restoration for Θ = 0.1°, and Fig. 5c shows the
corresponding MCA restoration. MCA works to some extent in
this challenging scenario and we can see some features in this
image; however, it is not nearly as sharp as the
perfectly-focused image even though the polar data grid is
nearly Cartesian. As discussed earlier, the restoration quality of
MCA drastically decreases as the range of look angles becomes
wider. This is illustrated in Fig. 5d where the MCA restoration
for Θ = 1° is poorly focused even though the data collection
Fig. 6 Simulation of RMCA. a and c show contours of the inverse-polar domain at
different sets of low-return constraints for RMCA. b and d are RMCA restorations w
The number of low-return constraints for RMCA restorations: b 5160 and d 840
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angle is still narrow. Restorations for Θ larger than about 3° are
not distinguishable from the defocused image.

To specify the low-return region for RMCA, attenuation windows
corresponding to the antenna pattern were computed in the
inverse-polar domain as described in the second last paragraph of
Section 3.3. Again, RMCA was applied multiple times with the
number of constraints ranging from the number of angular samples
to 24 times the minimum number, and the image with the lowest
entropy measure was selected as the ‘best’ RMCA restoration. The
contours of the inverse-polar domain attenuation windows are
shown in Figs. 6a and c for Θ = 0.1° and Θ = 5°, respectively.
They each show contours of the antenna footprint at three levels,
each corresponding to different sets of low-return constraints; the
three correspond to the low-return region with (i) the fewest
number of constraints, (ii) the ‘best’ RMCA restoration, and (iii)
the largest number of constraints. For Θ = 0.1°, the shapes of
contours in the inverse-polar domain are very close to those in the
spatial domain. Accordingly, the low-return constraints for RMCA
remain similar to the spatial-domain low-return constraints for
MCA, yet, RMCA performs much better than MCA and produces
a nearly perfect image, as shown in Fig. 6b. The improvement in
quality is due to applying autofocus in the inverse-polar domain
where the defocus truly is 1D. As the range of look angles
becomes wider, the inverse-polar domain attenuation windows
become less similar to a 2D separable sinc function. Furthermore,
the low-return pixel values of the attenuation windows become
higher. Consequently, RMCA restorations are less focused for
larger values of Θ, although the degradation in RMCA
performance is not nearly so severe as for MCA. Fig. 6d shows
tenuation window. The three contour levels of each figure correspond to three
ith the lowest entropy measure. Entropy of the images: b 7.5708 and d 7.6335.
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the RMCA restoration for Θ = 5°, which still clearly shows most of
the detail in the scene. RMCA successfully restores reasonably
well-focused images even for fairly wide angles of 10°—20°, and
the extremely challenging white phase error used in these
simulations. To conserve space, these results are not presented in
this paper.

Fig. 7 shows how the performance of the multichannel autofocus
algorithms relates to the range of look angles and the number of
low-return constraints. The x’s and crosses represent MCA for Θ =
0.1° and Θ = 1°, respectively, and the dots, stars, and pentagrams
represent RMCA for Θ = 0.1°, Θ = 1°, and Θ = 5°, respectively.
Among the different sets of constraints, the ones corresponding to
the lowest image entropy are marked with circles for each set of
simulations. The performance is measured by image entropy and
the image corresponding to (number of constraints) = 0 is the
defocused image. Regardless of the number of the constraints,
MCA is not effective for either angle and RMCA shows excellent
performance for Θ = 0.1°. However, for a wider range of look
angles, RMCA needs a proper number of low-return constraints to
achieve good performance. In general, the performance of RMCA
tends to improve as the number of constraints increases from zero,
and the number of constraints needs to exceed the number of
phase errors to achieve best performance. However, a larger
number of constraints are not always beneficial. Normalised
root-mean-squared error (NRMSE) also can be a good indicator of
performance in simulations, although we cannot compute NRMSE
in real situations because we do not have knowledge of the
perfectly focused image. The restorations corresponding to the
smallest NRMSE are marked with squares.
4.2 Remarks

Hence we are considering the challenging case with an i.i.d. phase
error, which can occur in practice, we have not presented
autofocus examples in this paper using the well-known PGA
algorithm. For the i.i.d. phase error case, PGA often does not
produce properly focused images for typical data collection angles
Fig. 7 Performance of the multichannel autofocus algorithms measured by entrop
indicate the restorations with the lowest entropy measure and the squares indicate
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[17]. However, for smoother phase errors PGA can be a very good
choice.

We presented simulation results and discussed the quality of MCA
restorations for an attenuation function modelled by a 2D separable
sinc. We also have produced simulation results for other antenna
footprints. MCA and RMCA can be more effective in situations
where the attenuation function has a steeper fall-off or where the
attenuation function is weighted with a tapering function, such as
Hamming window to suppress the signal outside the main lobe.
The extreme case is when the attenuation is modelled by a rect
function, in which case the performance can be nearly perfect,
even for MCA when the range of look angles is small.

As we presented in [18], the geometry of the low-return region
also influences the performance. The effect of the geometry is not
completely understood, but certain guidelines for choosing
effective low-return constraints are intuitive. For example,
zero-return columns in a perfectly-focused image are not useful at
all as low-return constraints. This is because the corresponding
columns in any image formed by filtering the defocused image
with a 1D kernel are zero-valued, and trying to minimise the
energy in such a region is useless. Although zero-return columns
are not likely to be encountered, there are columns of low returns
in some realistic attenuation windows, and they may be ineffective
by a similar argument.

The sampling intervals of the Fourier data also affect the
performance. When using PFA to form images, we resampled onto
a dense Cartesian grid so that the FOV of the formed image is
larger than the scene of interest. This was to provide more
low-return pixels near the nulls of the sinc in the spatial domain,
so that MCA could utilise the near-zero pixels as the low-return
constraints. Since the performance of multichannel autofocus
algorithms strongly depends on the level of the low-return region,
over-sampling in the Fourier domain is a key to achieving better
performance. Similarly, the sampling intervals of the polar data
grid should be dense enough to provide a decent set of low-return
pixels in the inverse-polar domain. In our simulations, the
polar-grid sampling intervals were chosen so that the maximum
range and cross-range distances between the samples do not
y of restored images for various numbers of low-return constraints. The circles
the restorations with the smallest NRMSE for each set of simulations
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exceed the range and cross-range sampling intervals of the
over-sampled Cartesian grid, respectively. However, the sampling
rates were not optimised in any sense, and adequate sampling rates
could differ for other antenna footprints. Thus, MCA and RMCA
could achieve better performance than presented here if we had
used denser Fourier data grids, and more importantly, they will not
achieve the quality presented if the Fourier data grids are not
sufficiently dense.

The reader might assume that a wider range of look angles in our
simulations corresponds to more angular samples and
higher-resolution images; however, this is not the case. Rather
than fixing the radar centre frequency for all simulations, the
centre frequency was changed for different ranges of look angles
so that the amount of Fourier coverage remained almost the same.
The resolution of restored images and the sizes of the Fourier
region covered by the Cartesian grids were fixed for all ranges of
look angles, and the polar data grids were chosen so that they
circumscribed the Cartesian grids. Thus, the polar grid with a
small range of look angles was located further away from the
origin in Fourier space. We used this formulation for our
simulations to avoid possibly misleading results.

Another recently developed multichannel autofocus algorithm,
termed Fourier-domain MCA (FMCA) [17] is more successful for
a wider range of look angles than RMCA. The performance of
RMCA and FMCA is comparable for fairly small ranges of look
angles, and the computational cost for FMCA is much higher
because of the need for sophisticated interpolation required for the
process of estimating the blurring kernel.
5 Conclusions

MCA does not provide the expected performance when used with
SAR data collected on a polar grid, even for quite narrow
data-collection angles. Our proposed method, RMCA, overcomes
this problem by forming the solution space in the inverse-polar
domain, where the defocusing effect is truly one dimensional. As
with MCA, the performance of RMCA depends on the choice of
the low-return constraints; thus, the low-return region must be
carefully specified in the inverse-polar domain to achieve the best
performance. To gain a better understanding of the inverse-polar
domain, we provided an analytical formula for the impulse
response. Simulation results demonstrated that, with an adequate
selection of low-return constraints, RMCA achieves excellent
performance for practical ranges of look angles, up to several
degrees.

The performance of multichannel autofocus algorithms is
degraded when the attenuation pattern has a relatively wide
transition band. In fact, the transition is relatively smooth in the
inverse-polar domain compared to that in the spatial domain, and
even more, it is smoother for a wider range of look angles. Hence,
the robustness to non-zero pixels in the presumed low-return
region is very important for RMCA. Fortunately, the quality of
RMCA restorations can be improved by incorporating sharpness
metric optimisation as a regularisation term, as discussed in [8].
This challenge becomes more extreme if there are strong point
reflectors in the weakly illuminated region of the radar beam.
Since we cannot detect the strong reflectors prior to focusing the
image, we have suggested using random subregions of the
presumed low-return region [18], or iteratively refining the image
and the low-return constraints. Other possible issues that relate to
IET Radar Sonar Navig., 2016, Vol. 10, Iss. 1, pp. 132–139
& The Institution of Engineering and Technology 2016
non-ideal low returns include multiplicative noise due to system
non-linearities, displacement of moving targets, and error in the
inertial measurement unit of the radar.

The performance of RMCA is affected by variables that must be
prescribed, such as the geometry of the presumed low-return
region and the number of constraints. Methods for optimal
selection of these parameters are not known. By seeking answers
to some of these open questions, we believe that we can provide
an even more robust algorithm that has better performance in
challenging scenarios.
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