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Abstract: This study is focused on the design of cooperative adaptive cruise control (CACC) to regulate the longitudinal motion
of connected and automated vehicles (CAVs) in mixed traffic that is composed of human-driven vehicles and CAVs. Wireless
vehicle-to-vehicle communication is exploited to monitor the motion of multiple broadcasting vehicles, and a strategy is designed
to determine whether the received data of other vehicles are incorporated into CACC. A condition is derived for choosing control
gains that ensure the internal stability of CAVs in the presence of time delays and switching connectivity topologies of
information flow. Moreover, because the switching connectivity topologies may change the dynamics of the whole vehicle chain,
the authors apply a data-driven approach for online optimisation of control gains such that CACC adapts to the variations of
connectivity topologies. The proposed selective CACC is validated through numerical simulations. To enhance the fidelity of
simulations, they use the data collected through on-road experiments to simulate the motion of human-driven vehicles and apply
the physics-based vehicle dynamic model to simulate the motion of CAVs. Simulation results demonstrate the advantages of the
proposed selective CACC in improving vehicle safety and in mitigating perturbations in mixed traffic.

1 Introduction
The ground transportation system plays an important role in the
modern society. However, the dramatically growing number of
vehicles has caused problems such as traffic congestions and
vehicle collisions. These problems are typically caused by the
limited perception capability and the large reaction time of human
drivers. By using range sensors (e.g. radar and lidar) to monitor the
distance and the relative velocity with respect to the vehicle
immediately ahead, adaptive cruise control (ACC) was designed to
regulate the longitudinal motion of vehicles, in order to enhance
vehicle safety and to improve passengers’ comfort [1]. However,
the improvement of the ACC on traffic efficiency is not significant
since the applied sensors can only monitor the motion of the
vehicles within the line of sight.

Nowadays, the emerging wireless vehicle-to-vehicle (V2V)
communication technology can be exploited to monitor the motion
of vehicles beyond the line of sight. This has great potential for
enhancing vehicle safety, improving traffic efficiency, and reducing
fuel consumption. In practice, V2V communication can be realised
by applying the dedicated short-range communication (DSRC) [2,
3], which provides high-speed data transmission for
communication-based active safety applications. Integrating V2V
communication into automated vehicles leads to the concept of
connected and automated vehicles (CAVs), and the cooperative
ACC (CACC) is proposed to regulate the longitudinal motion of
CAVs by incorporating the information received from V2V
communication [4]. According to whether the implementation
allows the incorporation of human-driven vehicles, CACC can be
divided into two categories: CACC platooning and CACC in mixed
traffic. CACC platooning requires all participant vehicles to be
automated vehicles and it aims to optimise the performance of the
whole platoon. A large number of studies have shown the benefits
of CACC platooning in increasing traffic capacity and reducing
fuel consumption by allowing small inter-vehicle distances and by
attenuating perturbations [5–9]. The impacts of CACC platooning
on the improvement of traffic dynamics were also demonstrated by
experimental projects such as California PATH [10], SARTRE [11],
GCDC [12], and experiment on heavy-duty trucks [13]. However,
in near future, the penetration of automated vehicles in daily traffic

may not be high enough for the implementation of CACC platoons
on general roads.

The traffic in the near future may be mixed by conventional
human-driven vehicles that do not broadcast information, advanced
human-driven vehicles that broadcast information, and CAVs. This
motivates the research on CACC in mixed traffic. The study in [14]
showed that CACC can improve the dynamics of mixed traffic
flow even when the penetration of CAVs is low. In [15], a
hierarchical control architecture was proposed for reducing the
complexity of CACC design in the presence of uncertain vehicle
dynamics and external disturbances. The effects of nonlinear
dynamics and time delays on CACC performance in mixed traffic
were investigated in [16–18], while optimal CACC was studied in
[19]. All these studies on CACC in mixed traffic were based on
non-selective strategies. That is, the motion data of other vehicles
received from V2V communication are always incorporated into
CACC. Although non-selective CACC has potential for reducing
collision risks when distant broadcasting vehicles brake sharply,
they also impose additional accelerations on CAVs when distant
broadcasting vehicles accelerate, which may cause safety
problems, especially when there are non-broadcasting human-
driven vehicles between the broadcasting vehicle and the CAV. For
example, consider the scenario shown in Fig. 1 (best viewed in
colour online) where vehicles 0 and 1 accelerate, vehicle 2
decelerates for turning, and vehicle 3 monitors the motion of
vehicles 0 and 2 by range sensors and/or V2V communication. If
vehicle 3 exploits non-selective CACC, it may collide with vehicle
2, because the acceleration of vehicle 0 pulls vehicle 3 to accelerate
when vehicle 3 should decelerate to avoid the collision. 

To deal with the aforementioned safety issue, in this study, we
investigate selective CACC in mixed traffic, which results in three
main contributions. First, a strategy is designed for the selective
use of the information provided by V2V communication, in order
to enhance the safety of CACC in mixed traffic. Then, a condition
is derived for choosing control gains that guarantee the internal
stability of CAVs in the presence of varying gains and switching
connectivity topologies. Finally, we propose a data-driven
approach for online optimisation of control gains without requiring
the knowledge about the dynamics of other vehicles, which is
particularly useful for mixed traffic that includes human-driven
vehicles.
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The rest of this paper is arranged as follows. In Section 2, the
system configuration of CAVs is briefly introduced and a selective
CACC strategy is presented to determine whether the information
received from V2V communication is used in CACC. Section 3 is
focused on the design of control gains, where a condition for
internal stability is presented and a data-driven approach is applied
for online optimisation of control gains. In Section 4, numerical
simulations are conducted to compare the performance of the
selective CACC and that of the non-selective CACC. Finally, we
conclude the results and discuss future research directions in
Section 5.

2 Selective CACC in mixed traffic
In this section, a general system configuration of CAVs is
introduced, and a CACC strategy is presented to regulate the
longitudinal motion of CAVs by selectively incorporating the
motion data of broadcasting vehicles received from V2V
communication. Throughout this study, we focus on the mixed
traffic composed of human-driven vehicles that neither broadcast
nor receive information, human-driven vehicles that only broadcast
information, and CAVs that broadcast information and also utilise
the received information in longitudinal motion control.

2.1 System configuration of CAVs

CAV systems are typically constructed by three layers as
demonstrated in Fig. 2, where the arrows indicate the directions of
information flow. The sensing layer monitors the environment
around CAVs and it includes a digital map, sensing on-board units
(OBUs), and communication OBUs. The digital map contains
information about the road network topologies, locations of traffic
signs (e.g. traffic light and stop/yield sign), and traffic rules (e.g.
speed limit). Sensing OBUs usually include sensors like global
positioning system (GPS), inertial measurement unit (IMU),
camera, radar, and lidar for localising the ego vehicle and
monitoring the surrounding objects. Communication OBUs are
used for information exchange among traffic participants such as
vehicles, infrastructure, and pedestrians. 

The processing layer processes the raw data provided by the
sensing layer and determines the control commands for the motion
of CAVs. The perception module localises the ego vehicle on the
digital map, and it also comprehends the surrounding environment
through object detection, classification, and tracking. After the
CAV receives a destination, the mission planner exploits the digital

map and plans a route to the destination. Based on the route and the
surrounding environment, the decision maker determines the policy
(e.g. lane keeping/change, turn left/right, yield, overtake etc.). The
path planner takes the policy given by the decision maker and
generates a collision-free path accordingly. Finally, the motion
controller calculates the inputs to the actuators (e.g. pedal, brake,
steering wheel etc.) in the execution layer such that the vehicle can
track the desired path. Note that Fig. 2 only presents the basic
layers and modules of CAV systems. In practice, it may vary for
different CAVs.

2.2 Selective CACC

According to the planned route and the surrounding environments,
the decision maker determines the optimal policy from a variety of
policies, which include yielding for the cut-in vehicles, keeping the
current lane, overtaking slow vehicles, changing to the left/right
lane, turning left/right, and many other policies. Each of these
policies may correspond to a specific control strategy. In particular,
when the CAV aims to keep the current lane, a steering control is
applied for lane keeping, and CACC is applied to regulate the
longitudinal motion, either following the vehicles ahead or
maintaining the speed limit when there are no vehicles ahead. In
this study, we assume that there is a steering controller that
maintains the vehicle in the lane [20] and hence focus on the
design of CACC.

CACC exploits V2V communication to monitor the motion of
broadcasting vehicles, even those beyond the line of sight. In
practice, V2V communication can be realised through the DSRC,
which transmits basic safety messages (BSMs) to support active
safety applications. According to the SAE J2735 Message Set
Dictionary standard [21], BSMs are comprised of two parts where
Part I includes state information of the broadcasting vehicle such as
position, speed, heading, and vehicle size; see Table 1 for details.
For the implementation of CACC, we first transform the global
coordinate (latitude and longitude) to the local s–e coordinate
where s denotes the longitudinal distance along the centreline of
the lane and e is the lateral deviation from the centreline. For
structured roads, the digital map provides a sequence of waypoints
that represent the centreline location and the heading of each lane.
By matching the global coordinate and the heading of CAV with
those of waypoints, one can project the vehicle in the certain lane
on the digital map with lateral error e. The distance s along the
centreline can be accumulated from the predefined origin where
s = 0. Typically, CACC only incorporates the motion data of the

Fig. 1  A traffic scenario where vehicles 0 and 1 accelerate while vehicle 2 decelerates for turning. Here, vehicle 3 is a CAV that monitors the motion of
vehicles 0 and 2, while vehicle 1 does not broadcast information. The arrows indicate the directions of information flow, where the short-range link (blue) can
be realised by range sensors or V2V communication while long-range links (red) can only be realised through V2V communication since distant vehicles are
typically beyond the line of sight

 

Fig. 2  System configuration of CAVs
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vehicles that are in the same lane with the receiving CAV. Another
important factor for integrating V2V communication in CACC is
clock synchronisation among all vehicles. In practice, the local
clocks of vehicles can be synchronised to the coordinated universal
time through the GPS receiver, or they can be synchronised with
the precision time protocol through a computer network [22]. 

Fig. 3 (best viewed in colour online) shows a vehicle chain
where vehicle i is a CAV that monitors the position sj and the
velocity vj of broadcasting vehicle j, where vehicle p denotes the
furthest broadcasting vehicle within the communication range of
vehicle i. The symbol lj denotes the length of vehicle j. The motion
of the vehicle immediately ahead can be monitored by range
sensors (e.g. radar and lidar) or V2V communication, while the
motion of distant vehicles can only be monitored by using V2V
communication since these vehicles are beyond the line of sight. σi
represents the information delay, which is caused by intermittency
of sensors or V2V communication. In practice, the value of σi can
be obtained by comparing the time stamp of the received data and
the clock of the receiving CAV. 

To design CACC, we consider a simplified model

ṡi(t) = vi(t),
v̇i(t) = ui(t),

(1)

where the acceleration ui is to be designed to determine the position
si and velocity vi by incorporating the motion data of broadcasting
vehicles received from V2V communication. The corresponding
results can be implemented in vehicles as a high-level controller
through the hierarchical control architecture presented in [15],
where a low-level controller is provided to regulate engine torque
and brake such that the vehicle states track the desired states
generated by (1) in the presence of uncertainties and disturbances
(see Fig. 4). 

In general, CACC can be designed in the form

ui(t) = ∑
j = p

i − 1
γi, j f i, j(sj(t − σi), si(t − σi), vj(t − σi), vi(t − σi)), (2)

where the switch coefficient γi, j is used to determine whether the
motion data received from vehicle j are used by vehicle i, the
function f i, j determines how vehicle i responds to the motion of
vehicle j (see Fig. 3). In practice, the acceleration ui is bounded by
an upper bound amax, i > 0 and a lower bound amin, i < 0, where the
magnitude of amin, i denotes the maximum deceleration. Thus, we
impose the constraint amin, i ≤ ui(t) ≤ amax, i for all t ≥ 0.

For selective use of the information received from vehicle j, we
propose a strategy

γi, j =
1, if f i, j(sj, si, vj, vi) < 0,
0, otherwise . (3)

Note that γi, i − 1 = 1 always holds since CAVs shall always respond
to the motion of the vehicle immediately ahead for safety. The
logic behind strategy (3) is stated as follows. When the motion of
vehicle j leads to f i, j < 0, it implies that either the distance
between vehicles i and j is smaller than the desired distance or the
speed of vehicle j is smaller than that of vehicle i. In this case,
CACC shall respond for improving vehicle safety. In the opposite
case when f i, j ≥ 0, vehicle i shall not respond to the motion of
vehicle j to prevent the collision mentioned in Fig. 1.

In general, the function f i, j in (2) can be designed in any form.
Here, we use

f i, j sj, si, vj, vi = αi, j Vi hi, j − vi + βi, j Ui vj − vi , (4)

where the positive gains αi, j and βi, j are used to regulate the inter-
vehicle distances and the relative velocity between vehicles i and j,
respectively. The quantity

Table 1 SAE J2735 standard for DSRC BSM Part I [21]
Data item name Description
DSRC_MessageID the first element in every message, used by the parser to determine how to parse the rest of the message
MsgCount a sequence number, incremented with each successive transmission of a BSM, used primarily to estimate packet error

statistics
TemporaryID a value chosen randomly and held constant for a few minutes, it helps a receiver correlate a stream of BSMs from a

sender
DSecond the current time, modulo one minute, with resolution 1 ms
latitude and longitude geographic latitude and longitude, with resolution 1/10 microdegree
elevation position above or below sea level, resolution 0.1 m
PositionAccurary conveys the one-standard-deviation position error along both semi-major and semi-minor axes, and the heading of the

semi-major axis
TransmissionAndSpeed vehicle transmission (gear) setting and unsigned vehicle speed with resolution 1 cm/s
heading compass heading of vehicle's motion, resolution 1/80°
SteeringWheelAngle current position of the steering wheel, resolution 1.5°. Clockwise rotation is positive
AccelerationSet4Way longitudinal acceleration, lateral acceleration, vertical acceleration, and yaw rate
BrakeSystemStatus conveys whether or not braking is active on each of four wheels
VehicleSize vehicle length and width, resolution 1 cm

 

Fig. 3  A vehicle chain where vehicle i (red) is a CAV that receives information from multiple vehicles ahead. Vehicle p denotes the furthest broadcasting
vehicle within the communication range of vehicle i.  sj, lj, and vj denote position, length, and velocity of vehicle j, respectively.  σi is used to denote the
information delay
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hi, j = sj − si − ∑ℓ = j
i − 1 lℓ

i − j
(5)

represents the average inter-vehicle distance between vehicles i and
j (see Fig. 3). Here, the quantity i–j represents the number of
vehicles between vehicles i and j. In a vehicle chain that includes
non-broadcasting vehicles, the value of i–j can be obtained by
applying the link-length estimator proposed in [23]. The range
policy Vi(h) in (4) determines the desired velocity as a function of
the inter-vehicle distance h in the form

Vi(h) =

0, if h ≤ hst, i,
vmax(h − hst, i)

hgo, i − hst, i
, if hst, i < h < hgo, i,

vmax, if h ≥ hgo, i,

(6)

where hst, i, hgo, i, and vmax are all positive constants. This implies
that the vehicle tends to stop for small distances h ≤ hst, i while it
aims to maintain the preset maximum speed vmax for large distances
h ≥ hgo, i. In the middle range hst, i < h < hgo, i, the desired velocity
increases when the distance h increases. One can use large values
for hst, i and hgo, i to enhance safety, but it also increases inter-
vehicle distances and hence reduces traffic capacities. For different
vehicles, the parameters in (6) may be different. In case that the
vehicles ahead may over speed, we apply the saturation function

Ui(v) =
v, if v ≤ vmax,

vmax, otherwise, (7)

for the desired velocity. Note that the preset maximum speed vmax
is used to constrain the speed at steady state. The transient speed
may temporarily exceed vmax due to the possible overshoots. When
vehicles drive forward, the deceleration is generated by brakes,
which cannot lead to negative speed.

Combining (1), (2), and (4) leads to the closed-loop longitudinal
dynamics of CAVs

ṡi(t) = vi(t),

v̇i(t) = ∑
j = p

i − 1
γi, j αi, j(Vi(hi, j(t − σi)) − vi(t − σi))

+βi, j Ui(vj(t − σi)) − vi(t − σi) .

(8)

Based on the model (8), we investigate the design of control gains
αi, j, βi, j to improve the safety and the comfort of CAVs in mixed
traffic that include human-driven vehicles which may or may not
broadcast information.

3 Data-driven optimisation of control gains
In this section, we study the data-driven optimisation of control
gains. A fundamental requirement for safety is that CACC
guarantees the internal stability of CAVs. The stability analyses of
CACC in mixed traffic presented in [14–19] were based on non-
selective strategies and hence they cannot be applied when the
information provided by V2V communication is selectively used.
Thus, we begin by deriving a condition that guarantees the internal
stability of CAVs that exploit selective CACC.

3.1 Internal stability

The motion of a vehicle chain is said to be in equilibrium when all
vehicles move at the same constant speed v*. Note that the
equilibrium distances are also constant but they may be different
(i.e. hj, j − 1* ≠ hk, k − 1*  for j ≠ k) if vehicles use different range
policies. Let sj* and vj* be the equilibrium positions and the
equilibrium velocities of vehicles j = p, …, i. Then, we have

sj − 1* − sj* − lj − 1 = hj, j − 1* , vj* = v*, (9)

for all j–s. It follows that the equilibrium average inter-vehicle
distance between vehicles i and j is given by

hi, j* =
sj* − si* − ∑ℓ = j

i − 1 lℓ
i − j , (10)

cf. (5). Also, the motion of vehicle i is said to be internally stable if
its state si, vi approaches its equilibrium si*, vi* in the absence of
disturbances from other vehicles.

In practice, the average distance hi, j and velocity vj can be any
positive values. However, the domain of our interest is

Dh = hi, j:hst, i < hi, j < hgo, i ,
Dv = vj:0 < vj < vmax ,

(11)

since only in this domain the desired velocity Vi hi, j  changes with
the inter-vehicle distance hi, j; cf. (6). Then, in the following

Fig. 4  Hierarchical framework for CACC design [15]. At the high level, the acceleration ui is designed to determine the desired position si and the desired
velocity vi by incorporating the motion data received from vehicles j = p, …, i − 1. At the low level, a physics-based dynamic model is considered to design the
actuation input Ti (e.g. engine torque and brake) such that the real position si and real velocity vi can track their desired values si and vi, respectively. The
external disturbance wi is composed of headwind speed and road angle, while θi is composed of vehicle parameters (e.g. vehicle mass, aerodynamic drag
coefficient etc.). A specific physics-based vehicle dynamic model is given in Section 7.2
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theorem, a condition is presented for choosing gains that ensure the
internal stability of CAVs with selective CACC.
 

Theorem 1: Suppose that the average distances and velocities
are in the domain (11). Then, the longitudinal dynamics of CAVs
given in (8) is internally stable in the presence of switching
connectivity topologies and varying gains if there exist positive
definite matrices P, Q, W such that the matrix

Ξ =

Ξ1, 1 Ξ1, 2 −P ∑ j = p
i − 1 Ai, j

Ξ1, 2
T Ξ2, 2 02 × 2

− ∑ j = p
i − 1 Ai, j

T
P 02 × 2 −W

(12)

is negative definite, where 02 × 2 denotes the two-dimensional zero
matrix and

Ξ1, 1 =
∑ j = p

i Ai, j
T
P + P ∑ j = p

i Ai, j + Q
σi

+ Ai, i
T WAi, i,

Ξ1, 2 = Ai, i
T W ∑

j = p

i − 1
Ai, j ,

Ξ2, 2 =
σi ∑ j = p

i − 1 Ai, j
T
W ∑ j = p

i − 1 Ai, j − Q
σi

,

(13)

with matrices given by

Ai, j =
0 0

− γi, jαi, jvmax
(i − j) hgo, i − hst, i

−γi, j αi, j + βi, j
,

Ai, i = 0 1
0 0 ,

(14)

where j = p, …, i − 1. The proof of Theorem 1 is given in Section
7.1. Since the connectivity topologies may vary, we consider the
combinations of gains ∑ j = p

i − 1 γi, jαi, j/(i − j) and ∑ j = p
i − 1 γi, j αi, j + βi, j

as variables when solving the linear matrix inequalities (LMIs) in
Theorem 1; cf. (14). We solve the LMIs by applying the numerical
solver YALMIP [24], leading to a region for choosing gains that
ensure the internal stability. In real traffic when the motion of
vehicles is not in equilibrium, satisfying Theorem 1 leads to stable
car-following dynamics of CAVs. This is necessary for safety
because unstable car-following dynamics may result in collisions.
When the states are outside the domain (11), the longitudinal
dynamics of CAVs is still determined by the controllers (2) and (4)
with the range policy (6), but the internal stability may not be
guaranteed. For example, if the CAV is a heavy-duty truck with
lower maximum speed than the speed of vehicles ahead, the CAV
will maintain its maximum speed but its distances from vehicles
ahead keep increasing instead of reaching a constant equilibrium.
The capabilities of acceleration and deceleration do not affect the
internal stability if the control gains are chosen according to
Theorem 1, however, lower maximum deceleration increases the
risk of collisions and hence requires large values for hst, i and hgo, i in
the range policy (6) to enhance safety.

3.2 Data-driven optimisation

After the internal stability is guaranteed, another desired property
is that CAVs are able to attenuate the disturbances arising from
vehicles ahead. Due to the incorporation of human-driven vehicles
of which the dynamics are unknown, disturbance attenuation of
CAVs in mixed traffic cannot be ensured through analytical
analysis. To address this problem, we apply a data-driven approach
for online optimisation of control gains. In particular, we first

choose the gains αi, i − 1 and βi, i − 1 within the stability region
presented in [14], which enables CAV i to attenuate the
perturbations arising from vehicle i − 1 when the motion data
received from all other vehicles j < i − 1 are not utilised. Then, the
other gains αi, j and βi, j j < i − 1  are optimised by using the
historical data of broadcasting vehicles. According to the UMTRI
Safety Pilot Project [25], V2V communication provides
information to every δt = 0.1 s. To make the subsequent
expressions more compact, we define vectors

ui tk = ui tk − Δ , …, ui tk ,
Vi tk = Vi hi, i − 1 tk − Δ , …, Vi hi, i − 1 tk ,
vi tk = vi tk − Δ , …, vi tk ,

(15)

where tk = k ⋅ δt for k = 0, 1, 2, …, and the symbol Δ denotes the
amount of historical data stored in the memory. For optimisation,
we consider the following cost function: (see (16)) where c1 and c2
are positive constants. This cost function is designed by
considering the trade-off between comfort, safety, and traffic
efficiency. The first term is used to avoid large accelerations and
decelerations for improving passengers’ comfort. The second term
is used to make the velocity track the desired distance-dependent
velocity determined by the range policy (6), in order to maintain
the desired distance from the vehicle immediately ahead. The third
term is used to attenuate the velocity perturbations, which has
potential for improving traffic efficiency. In practice, safety shall
be the most critical, while comfort may be more important than
traffic efficiency. Thus, we choose the weights such that
c1 > 1 > c2, where 1 is indeed the gain of the first term. Note that
the cost function (16) depends on the gains αi, j and βi, j through the
dynamics (8). The ∞-norm used in the cost function (16) is defined
by

∥ ui tk ∥∞ = max
ℓ = 0, …, Δ

|ui tk − ℓ | , (17)

which is used to evaluate the peak value. The expectation operator

E vi(tk) = 1
Δ + 1 ∑

ℓ = 0

Δ
vi tk − ℓ (18)

is used to calculate the average of the data in memory.
To find the optimal gains that minimise the cost (16), we apply

a data-driven approach by utilising the historical motion data of
other vehicles received from V2V communication. The process for
implementing the data-driven optimisation is summarised in the
flow chart shown in Fig. 5. When V2V communication receives
information from vehicles ahead, it will store the data in the
memory and increment the data length; cf. (15). The optimisation
of gains is triggered when the data length Δ reaches the given
threshold Δ. Since a small amount of data is insufficient for finding
appropriate results while a large amount of data increases
computation time, the threshold Δ shall be chosen by considering
the trade-off between the robustness and the real-time performance.
To find the appropriate values for Δ, we have conducted a large
number of simulations. Based on our observation, the appropriate
values of Δ are between 80 and 200, which corresponds to window
size between 8 and 20 s. 

In practice, the motion of closer vehicles shall have more
impacts on the motion of CAVs. Accordingly, we choose αi, j > αi, k
and βi, j > βi, k for any j > k; see Fig. 3. One crucial step for
implementing the data-driven approach is to determine the ranges
for sampling gains αi, j and βi, j such that the internal stability is
always ensured. In practice, we first select αi, i − 1 and βi, i − 1 that
ensure the internal stability and also enable CAV i to attenuate the
perturbations arising from vehicle i − 1 when CAV i does not
utilise the information received from vehicles j < i − 1. Then, we

J = ∥ ui tk ∥∞ + c1 ∥ Vi tk − vi tk ∥∞ + c2 ∥ vi tk − E vi tk ∥∞ , (16)
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propose an approach to determine the ranges for sampling the other
gains. Specifically, we create a rectangle which takes
αi, i − 1 + βi, i − 1, αi, i − 1  as the lower left vertex and expands the

rectangle by keeping the ratio between length and height as 2 to 1
until the rectangle reaches the boundary of internal stability region.
Suppose that the height of the largest rectangle is Hmax, i. Then, the
values of αi, j and βi, j can be selected between 2−(i − j)Hmax, i and
2−(i − j − 1)Hmax, i for j < i − 1. Since limp → − ∞ ∑ j = p

i − 2 2−(i − j − 1) = 1, it
follows that the combinations of gains ∑ j = p

i − 1 γi, jαi, j/(i − j) and
∑ j = p

i − 1 γi, j αi, j + βi, j  are always within the rectangle such that the
internal stability of CAVs with selective CACC is guaranteed.

For data-driven optimisation of gains, we randomly sample N
sets of gains αi, p, βi, p, …, αi, i − 2, βi, i − 2  in the corresponding ranges
based on the uniform distribution. Then, by using the historical
motion data of broadcasting vehicles stored in the memory, we
simulate the dynamics (8) with the sampled gains, which yields the
cost for each sampled set of gains. Finally, we select the set of
gains associated with the minimum cost and keep using them until
the next update. The computation time for optimisation is
determined by the threshold of data length Δ and the number of
samples N. To achieve real-time performance, the value of N shall
decrease when the value of Δ increases. Note that significant
changes in gains may lead to large jerks through the longitudinal
dynamics (8), which may cause passengers’ discomfort. Thus, at
each period we bound the variation of gains to one-tenth of
corresponding ranges.

4 Numerical simulations
In this section, we evaluate the performance of selective CACC by
using numerical simulations. To enhance the fidelity of
simulations, we consider the physics-based vehicle dynamics for
CAVs, which include aerodynamic drags and rolling resistance; for
details see Section 7.2. Then, we apply the selective CACC as a
high-level controller through the hierarchical control architecture
shown in Fig. 4, where a low-level controller regulates the vehicle
to track the desired motion generated by selective CACC. For CAV
i, the symbols si and vi obtained from CACC (8) are treated as the
desired states, and we use symbols si and vi for the real position
and the real velocity which are obtained by solving the physics-
based vehicle model with the low-level controller. For the motion
of human-driven vehicles, we first apply car-following models to
demonstrate the response of selective CACC in extreme cases.

Then, we also test the selective CACC by using the experimental
data of human-driven vehicles.

4.1 Simulation using car-following models

Here, we conduct simulations by considering the eight-vehicle
chain displayed in Fig. 6, which is composed of CAVs (e.g.
vehicles 4 and 7), human-driven vehicles that broadcast
information (e.g. vehicles 0, 2, and 5), and human-driven vehicles
that do not broadcast information (e.g. vehicles 1, 3, and 6).
Human-driven vehicles only respond to the motion of the vehicle
immediately ahead, while CAVs respond to the vehicle
immediately ahead and they can also access the motion data of
distant broadcasting vehicles through V2V communication. For
simulating the dynamics of human-driven vehicles, the optimal
velocity model (OVM) and the intelligent driver model (IDM) are
widely used [26]. OVM is indeed given by (8) but setting γi, i − 1 = 1
while γi, j = 0 for all j ≠ i − 1. IDM is in the form [27]

ṡ j(t) = vj(t),

v̇ j(t) = amax, j 1 − vj(t − σ j)
vmax, j

4

− g(vj(t − σ j), vj − 1(t − σ j))
hj, j − 1(t − σ j)

2

,

(19)

where

g vj, vj − 1 = hst, j + vjT j + vj vj − vj − 1

2 |amax, j ⋅ amin, j|
. (20)

Here, σ j represents the response time of the human driver, T j is the
desired time gap, and amax, j and amin, j denote the maximum
acceleration and the maximum deceleration, respectively. 

We assume that the leading vehicle 0 has length l0 = 4.8 m and
its speed profile is given by the experimental data collected
through the UMTRI Safety Pilot Project [25]. Considering the
heterogeneity in real traffic, we use different models and different
parameters for different vehicles, as listed in Table 2. Although
amax, k and amin, k are not explicitly expressed in OVM and CACC (8),
we use them to constrain the acceleration inputs such that neither
acceleration nor deceleration will exceed the limits. Moreover,
when the speed becomes zero while CACC still requests

Fig. 5  Process flow for data-driven optimisation of CACC gains
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deceleration, we set the deceleration to be zero to avoid negative
speed, since in practice brakes cannot lead to negative speed. In the
simulation, when vehicle k collides with vehicle k − 1, we freeze
the position of vehicle k and also set its velocity and acceleration to
be zeros. 

Applying the parameters σk, hst, k, hgo, k, and vmax, k (k = 4 and 7)
given in Table 2 to Theorem 1 yields the region for selecting gains
that guarantee the internal stability of CAVs, as shown by the
shaded region in Fig. 7a (best viewed in colour online). In Fig. 7b,
the shaded region marks the gains αi, i − 1 and βi, i − 1 that enable
CAVs to attenuate the perturbations arising from the vehicle
immediately ahead when CACC does not utilise the information
received from distant vehicles. In particular, for CAVs 4 and 7, we
use the gains as marked by the red star and the black cross,
respectively. Accordingly, in Fig. 7a, we obtain the corresponding
ranges for sampling other gains as enclosed by the dashed-dotted
rectangles. The control gains along the long-range links are
randomly initialised within their corresponding ranges, and then
they are updated through the data-driven optimisation presented in
Section 3. For data-driven optimisation, we set c1 = 1.5 and
c2 = 0.5 in the cost function (16), choose Δ = 100 for the threshold

of data length, and sample N = 100 sets of gains. For this setup,
the update of gains can be completed in 0.1 s. 

To evaluate the performance of selective CACC, we consider
two scenarios with two cases being compared for each scenario, as
summarised in Table 3. First, we consider case I in Scenario I. The
corresponding results are displayed in Fig. 8. In particular, Fig. 8a
shows the inter-vehicle distances, where the zoomed-in panel
highlights the moment when vehicle 0 makes a sharp brake. For
CAVs 4 and 7, we use their real states such that h4, 3 = s3 − l3 − s4,
h5, 4 = s4 − l4 − s5, and h7, 6 = s6 − l6 − s7. One can observe that the
distances of vehicles 1–4 from the vehicles immediately ahead
become zeros, implying that the sharp brake of vehicle 0 leads to a
chain collision of vehicles 1–4. Fig. 8b shows the velocity of each
vehicle, where the zoomed-in panel highlights the velocity of each
vehicle when vehicle 0 sharply brakes. Fig. 8c shows that the
acceleration requests of CAVs 4 and 7 never exceed their limits
marked by dashed-dotted lines. Fig. 8d shows that the real state
si, vi tracks the desired state si, vi with small errors. The peak error
between s4 and s4 occurs when vehicle 4 collides with vehicle 3. To
show multiple switch coefficients in one figure without overlaps,
we add biases 2, 4, 6 to γ7, 4, γ7, 2, and γ7, 0, respectively; cf. (3). Then,

Fig. 6  An 8-vehicle chain which is composed of CAVs (e.g. vehicles 4 and 7), human-driven vehicles that broadcast information (e.g. vehicles 0, 2, and 5),
and human-driven vehicles that do not broadcast information (e.g. vehicles 1, 3, and 6)

 
Table 2 Models and parameters for vehicles 1–7 in the vehicle chain shown in Fig. 6
Vehicle k 1 2 3 4 5 6 7
Model OVM IDM OVM CACC IDM OVM CACC
lk, m 4.3 4.6 5.5 4 4.5 3.9 4.2
σk, s 0.5 0.6 0.7 0.2 0.5 0.6 0.2

αk, k − 1,  s−1 0.6 N/A 0.5 1 N/A 2.5 1

βk, k − 1,  s−1 0.7 N/A 0.5 1.5 N/A 1.5 1

hst, k, m 3 2 2 3 3 3 5
hgo, k, m 30 N/A 31 33 N/A 32 35
Tk, s N/A 1 N/A N/A 1.2 N/A N/A
vmax, k, m/s 30 30 30 30 30 30 30

amax, k, m/s2 2.5 2.5 2.5 2.5 2.5 2.5 2.5

amin, k, m/s2 −2 −2 −2 −2 −2 −2 −2

 

Fig. 7  Stability regions for choosing control gains
(a) The shaded region highlights the combinations of control gains that ensure the internal stability of CAVs, which is obtained according to Theorem 1 with range policy parameters
given in Table 2. The domains enclosed by the dashed-dotted rectangles highlight the regions for sampling gains for vehicles 4 and 7, where the red star and black cross are
determined by the chosen (α4, 3, β4, 3) and (α7, 6, β7, 6),
(b) The shaded domain is constructed according to the calculation presented in [14], which highlights the gains αi, i − 1 and βi, i − 1 that enable CAVs to attenuate the disturbances
arising from the vehicle immediately ahead when they do not utilise the information received from distant vehicles. For CAVs 4 and 7, the chosen gains (α4, 3, β4, 3) and (α7, 6, β7, 6) are
marked by the red star and black cross, respectively
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the switch coefficients of vehicle 7 are shown in Fig. 8e. Fig. 8f
shows that the evolution of gains is mild such that the acceleration
varies smoothly during the update of gains; see the blue curve in
Fig. 8c. 

Then, we consider case II in scenario I stated in Table 3. The
corresponding results are summarised in Fig. 9 (best viewed in
colour online). In particular, comparing h4, 3 (red curve) in the
zoomed-in panels of Figs. 8a and 9a, one can observe that selective
CACC makes vehicle 4 avoid the collision by incorporating the
motion data of distant vehicles received from V2V communication.
Fig. 9b shows the velocities of vehicles 0–7. The acceleration
inputs and the tracking errors of CAVs 4 and 7 are shown in
Figs. 9c and d, respectively. In particular, the small steady error
between s4 and s4 at the end occurs since vehicle 4 stops in front of
the desired position and cannot drive backwards. The switch
coefficients and the evolution of gains of vehicle 7 are shown in
Fig. 9e and f while those of vehicle 4 are shown in Figs. 9g and h.
Note that we add a bias 2 to γ4, 0 in order to display γ4, 2 and γ4, 0 in
the same figure without overlaps. 

Now we consider scenario II described in Table 3 and compare
the performance of non-selective CACC and that of selective
CACC. We begin with case I such that vehicle 4 always utilise the
motion data of vehicles 0 and 2. The corresponding coefficients are
set to be α4, 2 = 0.6 s−1, β4, 2 = 0.9 s−1, α4, 0 = 0.14 s−1, and β4, 0 = 0.2
 s−1. The simulation results are shown in Fig. 10 (best viewed in
colour online). In particular, the zoomed-in panel in Fig. 10a shows
that non-selective CACC causes a collision of vehicle 4 (red
curve). This collision occurs because the motion of vehicle 0 leads
to acceleration of vehicle 4 through the non-selective CACC. 

Then, we consider case II in scenario II described in Table 3.
The simulation results are displayed in Fig. 11 (best viewed in
colour online). Comparing the distance between vehicles 3 and 4
(red curve) in the zoomed-in panels of Figs. 10a and 11a, one can
observe that selective CACC makes vehicle 4 avoid the collision
caused by non-selective CACC. The switch coefficient γ4, 0 (red
curve) in Fig. 11g indicates that the CAV 4 ignores the motion of
vehicle 0 immediately after vehicle 1 makes a sharp brake such that
the motion of vehicle 0 does not lead to an acceleration of vehicle
4. This contributes to the avoidance of the collision caused by non-
selective CACC. 

For the simulation results above, CAV 4 demonstrates the
advantages of selective CACC for enhancing safety, while CAV 7
is used to show that the proposed selective CACC can be applied
when the number of vehicles increases and when the complexity of
connectivity topology increases.

4.2 Simulation using experimental data

Here, we consider the five-vehicle chain as shown in Fig. 12 where
vehicle 4 is a CAV that monitors the motion of human-driven
vehicles 0–3 through V2V communication. The motion of human-
driven vehicles 0–3 are given by the data collected through an on-
road experiment along a 4.5 km long section of Mast road near
Dexter, Michigan, USA; see [28]. Then, we consider the physics-
based dynamics given in Appendix B for CAV 4 and apply the
selective CACC through the hierarchical control architecture
shown in Fig. 4. The corresponding results are shown in Fig. 13
(best viewed in colour online). In particular, Fig. 13a shows that
the selective CACC attenuates the perturbations caused by human-

Table 3 Scenarios and cases for evaluating the performance of selective CACC
scenario I vehicle 0 makes a sharp brake at t = 180 s with constant deceleration 2 m/s2 until it stops

case I vehicle 4 exploits ACC while vehicle 7 exploits selective CACC
case II both vehicles 4 and 7 exploit selective CACC

scenario II vehicle 1 makes a sharp brake at t = 180 s with constant deceleration 2 m/s2 until it stops, while vehicle 0 maintains its speed profile
case I vehicle 4 exploits non-selective CACC while vehicle 7 exploits selective CACC
case II both vehicles 4 and 7 exploit selective CACC

 

Fig. 8  Simulation for case I in scenario I described in Table 3
(a) Inter-vehicle distances of vehicles 1–7, where zero distance indicates the collision with the vehicle immediately ahead. The zoomed-in panel highlights the moment when vehicle
0 makes a sharp brake. Here, h4, 3 = s3 − l3 − s4, h5, 4 = s4 − l4 − s5, and h7, 6 = s6 − l6 − s7, where s4 and s7 denote the real positions of CAVs 4 and 7 that are obtained by solving the
physics-based dynamic model,
(b) Velocities of vehicles 0–7,
(c) The acceleration inputs for vehicles 4 and 7, where the dashed-dotted lines represent the upper and lower bounds of accelerations,
(d) Errors between desired states si, vi and real states si, vi of CAVs 4 and 7,
(e) Switch coefficients of vehicle 7. To show multiple switch coefficients in one figure without overlaps, we add biases 2, 4, and 6 to γ7, 4, γ7, 2, and γ7, 0, respectively. The low value of
γ7, j indicates that the information of vehicle j is not utilised by vehicle 7, while the high value of γ7, j indicates that vehicle 7 utilises the information of vehicle j; cf. (3),
(f) Evolution of control gains of vehicle 7 that are determined by the data-driven optimisation
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driven vehicles; compare the red curve and other curves. The
noises in Figs. 13c and d arise due to the measurement noises in the
collected experimental data. The switch coefficients and the
evolution of control gains are displayed in Figs. 13e and f,
respectively. 

5 Conclusions
In this study, we investigated the design of CACC that selectively
incorporated the motion data of other vehicles received through
V2V communication. A condition was derived for choosing control

gains that guaranteed the internal stability of selective CACC in the
presence of switching connectivity topologies and varying gains. A
data-driven approach was applied for online optimisation of control
gains without requiring the knowledge about the dynamics of other
vehicles, which was particularly useful in mixed traffic comprised
of human-driven vehicles. Numerical simulations demonstrated the
advantages of the proposed selective CACC in improving vehicle
safety and reducing perturbations.

In future, we will improve the safety of selective CACC by
explicitly including safety distance constraints. Moreover, the

Fig. 9  Simulation for case II in scenario I described in Table 3. Notations are the same as used in Fig. 8. In particular, incorporating the motion data of
distant vehicles in CACC makes vehicle 4 avoid the collision; compare Figs. 8a and 9a. In (g), a bias 2 is added to γ4, 0 such that the switch coefficients γ4, 0 and
γ4, 2 can be displayed in one figure without overlaps. The low value of γ4, j indicates that the information of vehicle j is not utilised by vehicle 4, while the high
value of γ4, j indicates that vehicle 4 utilises the information of vehicle j; cf. (3)

 

Fig. 10  Simulation for case I in scenario II described in Table 3. Notations are the same as used in Fig. 8
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Fig. 11  Simulation for case II in scenario II described in Table 3. Notations are the same as used in Fig. 9. In particular, γ4, 0 in (g) indicates that the selective
CACC of CAV 4 discards the motion data of vehicle 0 immediately after vehicle 1 makes a sharp brake, which makes vehicle 4 avoid the collision; compare
h4, 3 (red curve) in the zoomed-in panels of Figs. 10a and 11a

 

Fig. 12  A 5-vehicle chain where vehicle 4 is a CAV that monitors the motion of human-driven vehicles 0–3 through V2V communication
 

Fig. 13  Application of selective CACC to vehicle 4 in the vehicle chain shown in Fig. 12. The motion of human-driven vehicles 0–3 is given by the data
collected through on-road experiments. Notations are the same as used in Fig. 8. In particular, panel (a) demonstrates that selective CACC attenuates the
perturbations caused by human-driven vehicles; compare the red curve and the curves of other colours
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optimisation of the selection strategies for efficient use of V2 V
communication will also be investigated.
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7 Appendix

 
7.1 Proof of theorem 1

We define the perturbations about equilibrium (9) as

xj =
s~ j

v~ j
=

sj − sj*
vj − v*

, (21)

for all j − s. When vehicles p, …, i − 1 are in the equilibrium and
the states are in the domain (11), we substitute equilibrium (9) into
the model (8), subtract the result from (8), and write the result into
the matrix form, yielding

ẋi(t) = Ai, ixi(t) + ∑
j = p

i − 1
Ai, jxi t − σi , (22)

where Ai, i and Ai, j j = p, …, i − 1  are given in (14). Applying the
Newton–Leibniz formula, we obtain

xi(t − σi) = xi(t) − ∫
t − σi

t
ẋi(τ)dτ . (23)

Substituting this into (22) yields

ẋi(t) = ∑
k = p

i
Ai, kxi(t) − ∑

j = p

i − 1
Ai, j∫

t − σi

t
ẋi(τ)dτ . (24)

To prove the internal stability of time-delayed systems with
switching connectivity topologies, we leverage the Lyapunov–
Krasovskii approach [29]. That is, one needs to construct a single
positive definite functional, of which the time derivative is always
negative definite for all possible connectivity topologies. Here, we
use the functional

ℒ = xi
T(t)Pxi(t) + ∫

t − σi

t
xi

T(τ)Qxi(τ)dτ

+∫
−σi

0∫
t + θ

t
ẋi

T(τ)Wẋi(τ)dτdθ,
(25)

where P, Q, W are all positive definite matrices such that the
functional ℒ is also positive definite.

Differentiating (25) with respect to time leads to

ℒ̇ = ẋi
T(t)Pxi(t) + xi

T(t)Pẋi(t) + xi
T(t)Qxi(t)

−xi
T(t − σi)Qxi(t − σi) + σiẋi

T(t)Wẋi(t)

−∫
t − σi

t
ẋi

T(τ)Wẋi(τ)dτ .
(26)

To make the subsequent expressions more compact, we define

χ (t, τ) =
xi(t)

xi(t − σi)
ẋi

T(τ)
. (27)

Substituting (22) and (24) into (26), and considering the identity

xT(t)Ax(t) = 1
σi
∫

t − σi

t
xT(t)Ax(t)dτ (28)

in the result, we obtain

ℒ̇ = ∫
t − σi

t
χ i

T(t, τ)Ξ χ i(t, τ)dτ, (29)
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where the matrix Ξ is given in (12). If Ξ is negative definite,
χi

T(t, τ)Ξχi(t, τ) is also negative definite for all t − σi ≤ τ ≤ t. Note
that the integration does not change the negative sign, ℒ̇ is always
negative definite, which completes the proof.

7.2 Physics-based vehicle dynamic model

The physics-based longitudinal dynamic model is given by [30] in
the form

si = vi,

vi = − mg
meff

sin ϕi − rmg
meff

cos ϕi

− k
meff

vi + vw
2 + 1

meffR
Ta, i,

(30)

where si and vi denote the real position and real velocity of vehicle
i. The effective mass meff = m + J /R2 is determined by the vehicle
mass m, the moment of inertia J of the rotating elements, and the
wheel radius R. g, r, and k represent the gravitational constant,
rolling resistance coefficient, and aerodynamic drag coefficient,
respectively. ϕi and vw denote the road grade and headwind speed,
respectively. When implementing CACC through the hierarchical
control architecture presented in [15], the axle torque Ta, i is
designed to regulate the vehicle states si and vi to track the desired
states si and vi given by (8), respectively.

In the simulation, we use the following parameters in the model
(30). The mass m = 1500 kg, the aerodynamic drag coefficient k = 
0.3 kg/m, the tire radius R = 0.5 m, the tire rolling resistance
coefficient r = 0.006, the rotational inertia J = 5 kg m2, and
gravitational constant g = 9.81 m/s2.

1254 IET Intell. Transp. Syst., 2018, Vol. 12 Iss. 10, pp. 1243-1254
© The Institution of Engineering and Technology 2018


