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Abstract: This study proposes distributed energy management approach for charging multi-class electric vehicles (EVs) in
community microgrids. The energy management problem is implemented in real-time and represented by a non-cooperative
Stackelberg game for the power distribution inside the microgrid. In this game, a battery energy storage system is chosen as a
leader and the EVs are designated as followers. The charging power distribution among EVs is tackled in the two cases of
‘plenty of power’ and ‘lack of power’. The challenging case of ‘lack of power’ occurs when the total charging power is insufficient
to meet the need of each EV, such as when weather conditions are unfavourable. A priority factor is included in the EV utility
functions to address charging priorities of different classes of EVs in practical scenarios. A consensus-based distributed
algorithm is developed later to iteratively reach the Nash equilibrium, i.e. final charging power distribution, among EVs with
different charging priorities. Both simulation and experimental results show that the charging power is properly distributed when
the predefined charging priorities are followed, particularly in the case of a ‘lack of power’.

1 Introduction
The increasing environmental concerns have motivated the focus
on microgrids (MGs) and electric vehicles (EVs). MGs are local
power grid groupings of various distributed energy generators,
energy storage devices, and loads (e.g. buildings and EVs). They
can operate either in an islanded or a grid-connected mode [1].
Each component in an MG is expected to properly play its own
role so that the MG can be fully functional in terms of natural
resources (e.g. solar energy and wind energy) capture and storage,
continuous power supply, and pollution mitigation. The very
different dynamics and characteristics of the involved components,
however, introduce the challenge of how to achieve effective and
flexible energy management [2]. Further complicating energy
managements are the significant charging power demands of EVs.
With uncertainties in the number, types, capacities, and initial
conditions of EVs, as well as the impact of users' behaviour,
appropriate energy management strategies are highly desirable.
Especially important in developing an effective energy
management strategy is the need for flexibility and scalability in a
dynamic environment.

The energy management problem related to EV charging in
MGs has been widely studied in recent years. Current solutions to
the problem can be classified into centralised and distributed
approaches. One centralised solution involved a binary
optimisation formulated for EV charging scheduling [3]. To
improve computational efficiency for real-time implementation, a
convex relaxation had been developed. However, this on–off
charging strategy cannot provide continuous charging, and may
potentially damage the on-board battery. Yan et al. [4] introduced a
four-stage optimisation algorithm to reduce operational cost in an
EV charging station, while balancing real-time supply and demand.
No equations were provided to quantify the power flow among the
major components of the charging station. In [5], an improved
learning particle swarm optimisation algorithm was applied to
optimise power distribution in an MG focusing on enhanced
economic benefits. However, technical aspects were not fully
discussed, such as charging power distribution among individual
EVs and limited charging power capacity. Wu et al. [6] combined

approximate dynamic programming and an evolution algorithm to
determine the charging start time for each EV and thus reduce the
operation cost of the charging station. The configuration of the
charging system was relatively simple, and again there was no
discussion on the cases with limited charging power capacity.

On the other hand, distributed approaches have the advantage of
flexibility and scalability as well as lower communication
bandwidth and computational effort. Zhao et al. [7] applied game
theory to the context of an EV fast charging station. In this game
theoretical approach, EVs act as followers of a system operator and
decide how to optimise the trade-off between the benefits of
charging and reserve provision. The work emphasised maximising
social welfare instead of detailed charging power distribution
among EVs. Garcia-Trivino et al. [8] presented a distributed
control method for charging stations in which the control contains
two independent fuzzy logic systems to maintain the dc bus voltage
and SOC (state-of-charge) of ground battery energy storage
system, and to keep the power balance stable among the charging
station units. It lacked discussion on the practical cases with
limited total charging power. Liu et al. [9] developed a real-time
pricing scheme (i.e. an economic aspect) to minimise power
distribution losses in plug-in EV (PEV) charging stations and to
ensure system reliability. The preference of each PEV owner is
modelled to satisfy his/her charging demand with minimised cost.
Meanwhile, only the preferences of PEV owners were considered
in the scheme, which simplified the actual interactions with other
components. New developments included the application of the
neurodynamic algorithm and hybrid distributed and centralised
scheme to minimise the charging cost through a valley filling and
to reduce photovoltaic (PV) curtailment, in which the possible
insufficiency of the total available charging power was not
addressed [10, 11]. Therefore, the purpose of this paper is to
develop a real-time control scheme that (i) reflects the interactive
relationship among EVs and other components, and (ii) addresses
individual EV charging power distribution under limited total
available charging power.

It is expected that improved interactions between EVs and MGs
can be achieved by fully respecting the unique characteristics or
preference of each individual component in the MG. To this end,
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the components in an islanded-mode MG, which is more restrictive
in terms of power distribution, are separately represented by
independent players. The individual preference of each player is
explicitly expressed through its own utility function. Due to the
selfish nature of EV charging behaviours, a non-cooperative game
theory is considered to be a suitable decision making tool. The
advantage here is that the approach can represent the interactions
among different EVs and the MG, solving the power distribution
problem in a distributed manner. This approach is particularly
relevant for the charging areas, where it will be of interest to assign
categories or classes to EVs (i.e. multiple privilege levels for
charging). A consensus-based distributed energy management
algorithm is then developed to iteratively reach the so-called Nash
equilibrium in game theory (i.e. balanced charging power
distribution among EVs), particularly when there is a lack of power
and plugged-in EVs have different charging priorities. Finally, both
simulation and experiments are carried out to validate the proposed
charging power distribution among multi-class EVs.

The major contributions of this paper are summarised as
follows:

i. This paper extends the use of Stackelberg game in developing
a real-time implementable energy management strategy for the
power distribution inside an MG. Note that the Stackelberg
game has been applied in the EV charging management
problem, mostly with regard to its economic and social aspects,
and scheduling [7, 12, 13].

ii. It tackles the EV charging power distribution problem in a
‘lack of power’ case, which is more dynamic than those in the
existing demand curtailment request and overload control [3,
14].

iii. A priority factor is newly added to the utility function of each
EV to address different classes of EVs. Unlike the existing
literature that assigned the priority to EVs based on the balance
between power demand and supply or the state parameters of
EVs [15, 16], this classification is practically needed such as
due to management purposes (e.g. workplace hierarchy and
membership) or emergency response (e.g. EV ambulances
operated by hospitals).

2 System configuration and modelling
As shown in Fig. 1, the example MG consists of a wind turbine
system (WTS), a PV system (PVS), a battery energy storage
system (BESS), a commercial building, and a charging station. 
Each component is connected to the dc bus through a compatible
type of converter. Note that to investigate the case of a ‘lack of
power’, which is challenging for power distribution, an islanded
mode MG is chosen. However, this MG can also be switched to a
grid-connected mode, such as through a bidirectional dc–ac
inverter and transformer, and managed by straightforwardly
extending the approach developed below.

The WT and PV models are derived as in [17], while the BESS
is modelled by their equivalent circuit models. To fully utilise wind
and solar energies, both the WTS and the PVS are operating in the
maximum power point tracking (MPPT) mode. Since this paper
focuses on EV charging, each EV ∈ N (number of plugged-in
EVs) is represented by its on-board battery and charger (dc–dc
converter). The on-board batteries can also be modelled using their
equivalent circuit models. In the following simulation, the SOCs of
both BESS and EV on-board batteries are updated based on the
classical Coulomb-counting [18]. For the commercial building, a
real-world profile (e.g. office) is taken [19]. Note that any other
type of load profile, such as a residential or industrial one, can be
also chosen. To reflect the realistic conditions of weather
uncertainties, the Weibull distribution and the Beta distribution are
chosen to represent wind speed and solar irradiance, respectively
[20].

An actual MG has numerous constraints that reflect existing
physical limitations (e.g. the dc-bus voltage and capacity of each
component). To avoid redundancy, only the common equality
constraint among all the components is highlighted here

pwt + ppv − pl − pb − ∑
j = 1

N

pev, i = 0, (1)

where the terms represent the powers generated or consumed by
the WTS (pwt), the PVS (ppv), the commercial building (pl), the
BESS (pb), and the ith EV (pev, i). As shown in Fig. 1, the
relationship in (1) exists because the above terms are the powers
flowing through the common dc bus. The line loss is assumed to be
neglectable in the example MG. Obvious power losses occur
during the conversions and battery charge/discharge, which may
range between 5 and 15% of the total power. This affects the
available pwt and ppv, and desired/preferred pl, pb, and pev, i.

3 Energy management
The aim of this paper is to develop a general and scalable approach
for the charging management of multi-class EVs. A non-
cooperative generalised Stackelberg game, in which the leader
moves first and then the followers move sequentially, is utilised to
model the strategic interactions in the present energy management
problem [7, 12, 13]. In this game, the ground BESS is set to be a
‘leader’ because it is a major and controllable energy source for
charging, while the EV charging systems ( EVCSs), energy
consumers, are designated as ‘followers’. In real applications, the
number of plugged-in EVs, i.e. active EVCSs, along with their
SOCs and the SOC of the BESS may change over time. Thanks to
its distributed nature, the proposed approach is particularly
advantageous in private information protection, scalability, and
computational efficiency, as discussed and validated in the
following sections.

3.1 Utility functions

The commonly used concave quadratic form is selected to describe
the preferences of the players, i.e. the BESS and the EVCSs,
because the form allows a negotiable solution based on variable
marginal effects [12, 21].

• The BESS: The preference of the BESS is defined for it to be
properly charged and discharged, which maximises the following
utility function:

ub = − (pb − pb
opt)2, (2)

with

pb
opt =

(SOCb
max − SOCb)Pb

max N = 0

−(SOCb − SOCb
min)Pb

max N > 0,
(3)

Fig. 1  Example system configuration
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where N is the number of the plugged-in EVs; pb
opt is the desired

power of the BESS that is inversely proportional to its SOCb.
SOCb

min and SOCb
max are the minimum and maximum allowed

SOCs; Pb
max is the maximum charging/discharging power of the

BESS. The BESS is expected to be charged when no EVs are
plugged in, and discharged when they are. It helps to buffer the
power and utilise it during the intermittence or lack of the
generated power by the WTS and the PVS.
• The EVCS: This system consists of a charging pole along with a
plugged-in EV. Note that in this context, the EVCSs and the EVs
are used interchangeably. If there is a sufficient generated power, it
is desirable for each EV to be charged following its charging power
preference during bulk charge, i.e. when the SOC of the on-board
battery is lower than a specific percentage. The EVCS utility
function below is specifically designed for cases when the EVs
have to compete for limited total available charging power, i.e.
realistic cases of a lack of power

uev, i = αev, i −
1
2

pev, i
2 +

Pev, i
ref

0.2
(1 − SOCev, i)pev, i

= αev, i 5Pev, i
ref (1 − SOCev, i) −

1
2

pev, i pev, i .

(4)

The above utility function is formulated so that the two terms in the
function share the same unit. In (4), SOCev, i is the SOC of the EV
battery; Pev, i

ref  is the reference charging power of a specific EV
during a bulk charge here when SOCev, i is lower than
80%( = 1 − 0.2); pev, i is the actual charging power of the EV; and
αev, i is the priority factor, defined as faster charging at a higher
value. As explained below, the term (Pev, i

ref /0.2)(1 − SOCev, i) is
introduced to reflect the desired charging power of an on-board
battery at its different SOC, i.e. the cases when SOCev, i ≤80% and
>80% here. For the utility function, (4),

i. A larger pev, i, the charging power, leads to a larger uev, i because
the quadratic function (4) always monotonically increases for
increasing pev, i under the physical relationship of
pev, i ≤ Pev, i

ref < (Pev, i
ref /0.2)(1 − SOCev, i) when SOCev, i is lower

than 80%. Note that mathematically (Pev, i
ref /0.2)(1 − SOCev, i) is

the charging power that maximises uev, i. Thus, again, if there is
sufficient generated power, the EV is simply charged with its
preference charging power during a bulky charge, i.e. Pev, i

ref . If,
however, the SOCev, i is larger than 80%,
(Pev, i

ref /0.2)(1 − SOCev, i) becomes smaller than Pev, i
ref  and

eventually becomes zero when SOCev, i reaches 100%. Thus,
pev, i has a tendency to be as close to (Pev, i

ref /0.2)(1 − SOCev, i) as
possible because it maximises uev, i.

ii. Under a given Pev, i
ref  and pev, i, a lower SOCev, i results in a higher

value of uev, i. Note that a lower on-board battery SOC means
that the specific EV is more ‘anxious’ to be charged. Thus,
with the same amount of charging power, that EV has a higher
level of satisfaction than when its SOC is already high.

iii. Similarly, a larger Pev, i
ref  corresponds to a larger uev, i. Thus, an

EV with a larger capacity on-board battery is more ‘motivated’
to compete for charging power.

iv. Finally, the priority factor αev, i scales uev, i. For the same EV, a
larger αev, i results in a preferred status in terms of desired
charging power. The priority factor, αev, i, is added to the above
utility function (4) to address different classes of EVs, such as
those needed for emergency response or management
purposes.

Note that the coefficient of the quadratic term, 1/2, is
introduced to simplify the following derivations as in (10). In order
to avoid padding in the context, the ev notation in the subscript will
be dropped in the following sections.

3.2 Solution of generalised Stackelberg game

For the leader, BESS, it is straightforward that

pb = pb
opt + Δp, (5)

where pb is the final charging/discharging power of the BESS.
Besides pb

opt, physically the BESS must absorb Δp, surplus power
beyond the charging powers required by the commercial building
and the EVs [refer to the common constraint in (1)].

To charge EVs, however, there exists another game between the
followers themselves, i.e. EVCSs, who share the inequality
constraint (7)

pava = pwt + ppv − pl − pb
opt, (6)

∑
i = 1

N

pi ≤ pava ≤ pdis, (7)

where pava is the total charging power available for EVs
considering the proper charge/discharge of the BESS (i.e. pb

opt, the
preference of the leader). Note that there is usually a physical limit
on the capacity of charging power distribution inside an EV
charging facility, pdis, which is intuitively assumed to be larger than
pava here. Meanwhile, this assumption does not change the essence
of the present problem, namely a charging power distribution
problem under limited total available charging power. This sub-
game is a generalised Nash equilibrium (GNE) problem, in which
all players need to reach the so-called Nash equilibrium in order to
define the power distribution at each control instant. In this paper,
the approach to finding the GNE is based on the Karush–Kuhn–
Tucker (KKT) conditions of optimality and the Lagrange
multipliers method, and thus the proposed Nash equilibrium here is
in fact Pareto-optimal. The optimisation problem for each player is
as follows:

OBJ: f min = − ui

s . t . ∑
i = 1

N

pi − pava ≤ 0.
(8)

The Lagrange function L is

Li(pi, λi) = − ui + λi ∑
i = 1

N

pi − pava , (9)

where λi is the Lagrange multiplier of each player. Let

∂Li

∂pi
= αi pi − 5Pi

ref(1 − SOCi) + λi = 0, (10)

∂Li

∂λi
= ∑

i = 1

N

pi − pava = 0. (11)

The KKT conditions can then be directly solved, assuming all the
EV related information are revealed. The most socially stable
equilibrium is of interest and can be reached by requiring all λi's to
have the same value, λ here [12]. If λ is zero, namely
∑i = 1

N
pi − pava ≤ 0, simply

pi = 5Pi
ref(1 − SOCi) . (12)

Otherwise, for a common non-zero λ, pi can be solved as

pi =
pava − 5∑i = 1

N
Pi

ref(1 − SOCi)

αi∑i = 1
N 1

αi

+ 5Pi
ref(1 − SOCi) . (13)
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With the concave ui's, both the existence and the uniqueness of the
GNE can be mathematically proved.

As discussed in Section 1, the interest is in a distributed energy
management approach that provides flexibility and scalability,
secures the private information and lowers the complexity in
computation in a dynamic environment. The aim in the proposed
distributed approach is to let each player updates its demand
repetitively until a uniform value of all λi's (i.e. λ) is reached. To
this end, the concept of consensus network will be utilised [21].
Intuitively, because of the distributed nature, there is an individual
controller for each player, who shares only its own control variable
(λi) rather than revealing all its internal parameters to others, such
as SOCi, Pi

ref, and αi here. Thus, to reach the equilibrium state, one

of the players is randomly selected to tune its own parameters so
that it corresponds to the power mismatch, i.e. violating (7), as
explained below. Without loss of generality, this random player
will be indexed as ‘1’.

The attempt to reach the Nash equilibrium can be accomplished
iteratively. This can be achieved by the proposed consensus-based
distributed energy management (CDEM) algorithm, as shown in
Algorithm 1 (see Fig. 2) for a single control instant. In the first
step, an initialisation of all λi's, αi's, and pi's is performed,
respectively, with zero value, an identical priority level such as
one, preferred initial charging powers of the EVs Pi

ini, respectively,
namely a preferred ideal case. If the available charging power pave

is sufficient to meet all the Pi
ini's, the algorithm simply terminates.

Otherwise, a compromised solution has to be reached through a
negotiation among the players, i.e. the EVCSs:

i. Tuning phase: The required charging power for the EVs is
decreased by pulling them down to their predefined groups, i.e.
classes. The priority condition will be checked and a step
decrement of the EVs towards their reference priorities (αi

ref)
will be applied [refer to line 9].

ii. Triggering phase: A modification of λ1, as a translation of the
power mismatch will be carried out, as in lines 12 and 13. This
shift in λ1 will trigger an adjustment to the λi's and thus the plan
for the distribution of charging power, as discussed in the next
phase.

iii. Consensus phase: The aim of this stage is to converge all the
values of λi's to a single one, λ. This can be achieved by
updating the λi of each node, utilising the sum of weighted
differences between one node's λi and that of its neighbours'
λj's as in line 15 [21]. Ni is the neighbour's set of node i, and
wi, j is the connectivity strength between nodes i and j which
should be chosen in the range [0 (1/Ni)] to ensure the intended
convergence. When the desired convergence is achieved, the
charging power distribution among the players will be assigned
accordingly within the local boundaries, i.e. pi ≤ Pi

ref [refer to
line 19].

iv. Checking phase: The validity of the common constraint will be
checked. The algorithm will reach the Nash equilibrium when
the constraint is satisfied. Otherwise, the algorithm will return
to the above three phases for modification to further suppress
and lower the EV charging power currently demanded in order
to meet the common constraint.

It is worth mentioning that in the above algorithm, the local
information for a specific EVCS, αi, Pi

ref, and SOCi, does not need
to be public. Only λi is shared among the other EVCSs [refer to
lines 13, 15, and 18 in Algorithm 1 (Fig. 2)]. This advantage is
especially useful for improving the flexibility and scalability of the
charging management, and protect private information. Note that
the values of ε0, ε1, and ε2 are user defined, with better resolution at
lower values sacrificing more iterations to reach convergence. Fig.
3 illustrates an example of the convergence of λi's after the
triggering phase in the realistic case presented in Section 4.2,
consisting of three EVs. As can be seen, the convergence is fast
enough to be implemented in real time.

4 Simulation results
This paper investigates in detail the EV charging power
distribution in real time. Showing the power distribution among a
large number of EVs is realistic but may distract the focus of the
discussion. Instead, a small-scale case study is first introduced for
explanation purposes. A dedicated subsection is added later to
especially investigate the scalability of the proposed approach
when there is a large number of EVs. Thus, three EVs are first
chosen as an example, and the size of the system is accordingly
listed in Table 1 following the below guidelines: 

Fig. 2  Algorithm 1: CDEM
 

Fig. 3  Example: number of iterations for convergence of λi's
 

Table 1 Sizing of example system
Component WTS PVS Load BESS EV1, 2, 3

capacity 90 84.4 25 175 12, 24, 12
kWp kWp kWp kWh kWh
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i. The number of WT and PV modules meet the total load
demand, i.e. the commercial building and the EVs loads here.

ii. The ratio between the WT and PV modules depends on
criteria, such as the setup cost and the abundance of wind and
solar energy.

iii. The capacity of the BESS mostly covers the cumulative
difference between the generated and the consumed powers.
Thus, the BESS buffers the power at the surplus generated
power periods and utilises it during the intermittence or
shortage periods of generated power.

The priority factors of the three EVs, EV1 − 3, are chosen with
different levels (i.e. classes), 0.75, 1, and 0.63, respectively. Again,
the larger the number, the higher the charging priority. These three
example priority factor levels are determined to enable a similar
amount of differences in charging power. Note that in real
applications, the priority factor for a specific EV could be assigned
by the charging facility management company based on real needs.
The sampling interval for the computation is chosen as 1 min,
which is common in energy management [22].

4.1 Baseline case–plenty of power

A baseline ‘plenty of power’ case is designed to verify the system
sizing given in Table 1 and to serve as a reference for comparison
with the following ‘lack of power’ case. Three EV arrival time
scenarios are created: morning (S1: 8:00–10:00 AM), afternoon (S2:
1:00–3:00 PM), and evening (S3: 6:00–8:00 PM) [14]. As an
example of the distributed arrivals of EVs in each scenario, one-
hour interval is set, for instance 8:00, 9:00, and 10:00 AM in S1.
The initial SOCs of the EVs arriving for charging are 0.3, 0.25, and
0.2, respectively, i.e. low SOCs. To protect the on-board batteries,
the desired ending SOC of the EVs is considered to be 90% [21].
The time a specific EV spends at the charging station can be
straightforwardly calculated based on its initial and final SOCs, the
capacity of the on-board battery, and the distributed charging
power. Note that here all the EVs are supposed to be fully charged,
i.e. with 90% ending SOC, before departure. Meanwhile, the
proposed approach is capable to manage the cases with arbitrary
departure time of the EVs because it is again a charging power
redistribution problem. At the end of the following subsection,
Section 4.2, a case with different EV ending SOCs is discussed and
solved for verification purposes.

Figs. 4a and b show the power and SOC responses of all the
involved major components throughout one day i.e. 24 h. In Fig.
4a, the dynamics of the power generated by the WTS and the PVS
and the power consumed by the commercial building follow the
distribution functions and profile mentioned in Section 2. The
BESS in the three scenarios differs in its power responses due to
the different BESS–EV interactions, i.e. different EV arrival times.
All of the EVs are charged following the prescribed profile given
in Section 3.1.

As shown in Fig. 4b, the SOC responses of the BESS reflect its
mission to meet the load demands from the commercial building
and EV charging. The difference in the SOCs in the above three
scenarios is again due to the different arrival times of the EVs.
Note that the final value of the BESS SOC matches the initial one,
0.45. This result indicates the appropriateness of the system sizing
design in Table 1. In this ‘plenty of power’ case, the EVs are
charged following their respective preferred charging profiles
[refer to Section 3.1]. Their durations at the charging station are
listed in the rows designated as ‘CT’ (charging time) in Table 2. 

4.2 Effect of priority factor–lack of power

When weather conditions are uncertain, there may be a lack of
power. In such cases, some EVs may need to be charged with a
higher priority, for instance, vehicles needed for emergencies or
management purposes. This special need is represented in the
EVCS utility function, (4), by the priority factor, αev, i or αi

afterwards. This priority factor scales the EVCS utility function
and thus gives the high priority EVs a preferred status over others
to enlarge their portions of the total available charging power. Of

interest here is that, the class of an EV can be identified by the
charging pole through a membership card or a communication
protocol.

In order to highlight the influence of the priority factor, the
arrival times, SOCs and capacities of the on-board batteries of all
three EVs are unified, 12:00 PM, 0.2, and 24 kWh. As explained in
line 18 of the CDEM algorithm, pi increases with a larger αi under
given Pi

ref, SOCi, and λi. As shown in Table 3 and Fig. 5, in order to
clearly investigate responses, the two cases of ‘plenty of power’
and ‘lack of power’, i.e. the cases of ∑ pi ≤ pava and ∑ pi ≥ pava,
are included in the newly designed power profile. 

Fig. 4  Responses in scenarios of S1, S2, and S3

(a) Power (kW), (b) SOC
 

Table 2 Comparison of two iterative methods
Criterion EV Plenty of power Lack of power

Cen. Dis. Cen. Dis.
CT, min EV1 158 158 366 366

EV2 170 170 250 250
EV3 182 182 258 258

ETavg, s EV1 0.0191 0.0015 0.0234 0.0022
EV1, 2 0.0222 0.0017 0.0451 0.0024

EV1, 2, 3 0.0412 0.0019 0.0563 0.0026
EV1 − 100 3.26 0.0121 5.56 0.3931

 

Table 3 Total available power for EV charging
Time, h 12:00–13:00 PM 13:00–15:00 PM 15:00–18:00 PM
pava, kW 18 15 10
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As shown in Fig. 5, during the first period, i.e. 12:00–13:00
PM, pava(=18 kW) rightly equals the sum of the optimal charging
powers of the EVs. Thus, all three EVs are charged with their
optimal power levels. From 13:00 to 15:00 PM, as pava decreases to
15 kW, which is below the sum of the optimal EV powers, i.e. there
is a lack of power. The difference in the priority factors starts to
have an influence. Meanwhile, as discussed below the final
charging power of the EVs is dynamically determined according to
the interactive relationship between the priority factors and the
present battery SOCs [again refer to (4)].

Starting from 13:00 PM, the EV charging power distribution
follows the different priority levels of the three EVs. The charging
power of EV3 is the lowest, but it increases because it has the
lowest battery SOC of the three EVs. Similarly, the increasing and
highest SOC of EV2 causes it to gradually become less ‘anxious’ to
compete for the limited charging power. This provides an
opportunity for EV1 and EV3 to increase their share of the available
charging powers. EV3 eventually acquires the highest charging
power due to its lowest SOC. In contrast, the highest SOC of EV2,
however, causes its charging power to drop to the lowest, despite
its highest charging priority. All the above charging behaviours
well follow the definition in (4) and match the needs of real
applications. Note that the reference charging profile shown in Fig.
4a works any time the total supplied charging power is sufficient,
e.g. before 15:00 PM. When pava suddenly drops to 10 kW at 15:00
PM, however, the lack of power reappears. After EV2 quits
charging (SOC≥0.9), pava becomes sufficient for the two remaining
EVs to follow their reference charging profiles.

For further verification, the realistic wind and PV power
profiles in Fig. 4 are modified to create a case of ‘lack of power’,
as could occur during unfavourable weather conditions. Taken S1

for instance, the wind power and commercial load power are
assumed to be zero. The power from the PVS is scaled down by a
factor of 0.15. The initial SOC of the BESS at 6:00 AM is set to be
0.2, rather than 0.3 as in the above section, to make the charging
power distribution more challenging too, and thus better validate
the proposed approach. The arrival times, battery capacities and
initial SOCs of the three EVs in Section 4.1 are applied again. To
avoid redundancy, only the EV SOCs are shown in Fig. 6a. The
SOC responses are quite different from those in the baseline [see
Fig. 4b]. As expected, as the highest priority, EV2 is the first EV to
be fully charged, even though it actually arrives at the charging
station later than EV1. EV1's charging slows down significantly
when EV2 plugs in, and resumes again when the battery SOC of
EV2 is sufficiently high. When EV3 joins the charging, the SOCs of
EV1 and EV2 are already high. This provides capacity to charge
EV3 largely following its ideal charging profile. Different ending
SOCs, 0.86, 0.68, and 0.57, for EV1, EV2, and EV3, have also been
chosen, respectively, namely the case with arbitrary EV departure
time, and the EV SOC responses are shown in Fig. 6b. For
comparison purposes, the simulation results of S2 and S3 scenarios
are also shown in Fig. 6, in which a similar trend is observed. The
same as for S1, the wind and PV power profiles are adjusted
accordingly to create the case of ‘lack of power’. Note that here the
BESS SOC varies between 0.2 and 0.3 in the three scenarios. The
BESS is slightly charged through the down-scaled PVS and/or
WTS, and then discharged due to the EV charging. In terms of
energy management, the influence of this low remaining energy
level of the BESS is equivalent with that of an insufficient battery
capacity.

4.3 Scalability

Because of its distributed nature, the proposed approach is
particularly advantageous in terms of scalability. For clarity of the
explanation, the above case studies of the three EVs are used.
However, the approach itself is general in that it can handle cases
with even more EVs. The number of EVs is increased from 3 to
100. A100-run Monte Carlo simulation is adopted to investigate
the average number of iterations to reach convergence in ‘lack of
power’ cases. A random on-board battery capacity is chosen for the
EVs, considering a normal distribution, 10–50 kWh [23]; the initial
EV SOC values are again considered to follow a normal
distribution, 0.2–0.6 [24] [see Fig. 7]. As shown in Fig. 8, the
increase in the number of iterations does not follow an exponential
growth. This observation validates the scalability when dealing
with cases of a large number of EVs.

4.4 Computational efficiency

For reference purposes, the proposed distributed (Dis.) approach is
compared with its centralised (Cen.) counterpart, taking S1 as an

Fig. 5  EVs' power and SOC responses under different priority levels
(a) Total available charging power and sum of EVs' powers (kW), (b) EVs' powers
(kW), (c) EVs' SOCs

 

Fig. 6  SOC Responses of EVs in S1 − 3 under a downscaled power profile
(a) The same desired ending SOC (=0.9) for all EVs, (b) Different ending SOC (=0.86,
0.68, 0.57) for EV1, EV2, and EV3, respectively

 

Fig. 7  Example: distribution of battery capacities and initial SOCs of 100-
EV case

 

5262 IET Gener. Transm. Distrib., 2019, Vol. 13 Iss. 22, pp. 5257-5264
© The Institution of Engineering and Technology 2019



example. The constrained non-linear optimisation problem is
solved via the sequential quadratic programming (SQP), an
iterative but centralised method [25]. Two quantitative criteria are
chosen for the evaluation, charging time (CT) to fully charge an EV
and average execution time (ETavg) for the algorithm code. The
simulation setup is Matlab platform running on a personal
computer (PC) with a 64-bit, dual core processor (2 GHz), and 6 
GB RAM. As shown in Table 2, the CTs of the two iterative
methods are identical, which validates the correctness of the results
of the distributed approach; while the results are quite different for
ETavg when managing the charging of a single EV (EV1), two EVs
(EV1, 2), and then three EVs (EV1, 2, 3). Similarly, in the above 100-
EV case, ETavg of the distributed approach is much smaller than
that of the centralised approach. The distributed iterative approach
shows an obviously improved computational efficiency, particulary
when the number of EVs is large.

5 Experimental verification
A downscaled testbed, 1:550 at power level, is setup to validate the
distributed implementation of the proposed charging management.
As shown in Fig. 9, the WTS and the PVS are combined and
emulated through a controllable power supply on the left side,
while on the same side, the load of the commercial building is
emulated by the electronic load. The BESS is set up using actual
cells. The BESS is connected directly to the dc bus. The emulated
EV charging facility on the right side contains three poles. Each
pole consists of its own unidirectional buck dc–dc converter,
electronic load to mimic the on-board battery dynamics, and a local
National Instruments (NI) myRIO controller. The host PC collects
and records all the experimental data as well as communicates with
the NI CompactRIO and NI myRIOs via Ethernet and Wi-Fi,
respectively. The host PC also controls all of the power supplies
and electronic loads through its RS232 serial communication ports.
All of the dc–dc converters are controlled by PI (proportional and

integral)-based pulse-width-modulation. The high-accuracy
sampling resistors (±0.02%) are used as current sensors. Based on
the above description, the functional block diagram of the testbed
is shown in Fig. 10. The specifications for the major components of
the testbed are listed in Table 4. 

In order to conserve space, the experimental and simulation
results are shown in Fig. 11, taking the realistic ‘lack of power’
case in the second half of Section 4.2 as an example. Experimental
results, the EV charging powers, and SOCs, well match the results
in the simulation. This validates the real-time implementation and
correctness of the distributed charging management when EVs
arrive at different times and with different charging priorities. The

Fig. 8  Number of iterations versus number of EVs in scalability analysis
 

Fig. 9  Downscaled testbed
 

Fig. 10  Functional blockdiagram of the testbed
 

Table 4 Specifications for major components
Power Supply Max power: 800 W
(Takasago ZX-800L) (0–80 V, 0–80 A)
electronic load [left] max power: 600 W (1 PLZ-50F,
(1 Kikusui PLZ-50F/150U) 4 PLZ150USs with 1.5–150 V,

0–30 A each)
electronic loads [right] max power: 150 W each
(3 Maynuo M9711) (0–150 V, 0–30 A each)
dc–dc converters max power: 100 W each
(design/fabricated in house) switch frequency: 20 kHz
Li-ion battery pack (BESS) four cells (series), 12.5 Ah/cell,
(Lishen LP2770102AC) 3.2 V/cell (nominal voltage)
high-accuracy sampling resistors
(PCN corporation RH series) RH250M4 0.01 Ω (± 0.02%)
 

Fig. 11  Experimental versus simulation results with a scaled time
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efficiencies of the dc–dc converters, from which the most power
losses occur in the present setup, are about 90%.

6 Conclusion
In order to handle emergencies and to ensure effective charging
management of community microgrids, priority may need to be
given to the charging of specific classes of EVs, particularly when
the available charging power is insufficient, such as when weather
conditions are unfavourable. This EV charging management
problem can be represented by a non-cooperative Stackelberg
game. In this game, the BESS is treated as a leader because it is a
major energy source, while EVs are designated as followers. The
different charging preferences of the two types of players are
quantified on the basis of utility functions. Included in the utility
functions of EVs are priority factors that define the classes of EVs
in terms of charging. The consensus-based distributed algorithm is
then developed to iteratively reach the Nash equilibrium (i.e. a
balanced solution to the charging power distribution problem)
among the multi-class EVs. The proposed distributed approach
improves flexibility and scalability, secure private information, and
significantly lower the required computational burden, together
with reflecting the actual need to assign classes for EV charging.
This practical idea of prioritising the charging of different classes
of EVs could be extended to other contexts, such as taking into
account different types or behaviours of EV drivers in charging
management.
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