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Abstract
We provide an asymptotic expansion of the value func-
tion of a multidimensional utility maximization prob-
lem from consumption with small nonlinear price
impact. In our model, cross-impacts between assets are
allowed. In the limit for small price impact, we deter-
mine the asymptotic expansion of the value function
around its frictionless version. The leading order cor-
rection is characterized by a nonlinear second-order
PDE related to an ergodic control problem and a linear
parabolic PDE.We illustrate our result on a multivariate
geometric Brownian motion price model.
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1 INTRODUCTION

Choosing optimally the assets to own and to rebalance portfolios are the main tasks of portfo-
lio managers. Classical finance first provided a systematic way of doing so in markets without
frictions—inwhat follows wewill call it theMerton problem (without frictions) for the Nobel lau-
reate RobertMertonwhowas the first to give its systematic solution. Although elegant, the results
obtained with these models are of little help to real-world investors, as the optimal strategies pre-
scribed would lead to immediate ruin in the presence of the smallest frictions. Indeed, financial
markets do not behave in the idealized way described by the assumptions of these early models.
Trading actively costs, and all the more so when the size and speed of the portfolio rebalancing
increases. The type of trading costs that interests us in this article stems from the lack of market
depths and the insufficient liquidity of the assets traded. To trade, an investor needs counter-
parties, be it over-the-counter or in the limit-order-book. Attracting enough of these counter-
parties for a large trade necessitates a price move in the direction adverse to the investor. It is
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accepted that the size of this shift increases with the size of the trade and the speed of trading.
The seminal works of Bertsimas and Lo (1998) and of Almgren and Chriss (2001), and Almgren
(2003) set the models that are now widely used in the literature: the price impact is assumed pro-
portional to a power 𝛼 > 0 of the trading rate. For tractability, price impacts were first taken to
be linear (𝛼 = 1), and many interesting results sprouted in the literature (see, e.g., Bank, Soner, &
Voß, 2017; Collin-Dufresne, Daniel, Moallemi, & Saglam, 2015; Guasoni & Weber, 2017; Moreau,
Muhle-Karbe, & Soner, 2015; and references therein)1 . However, empirical studies such as Lillo,
Farmer, and Mantegna (2003) and Almgren, Thum, Hauptmann, and Li (2005) suggest that the
power 𝛼 of the trading speed is in the interval (0,1), which leads to superlinear but subquadratic
trading costs.
Portfolio choice problems with these types of frictions have only been recently studied. The

first article to analyze these frictions is by Guasoni and Weber (2020), in which the investor max-
imizes power utility of final wealth in a Black–Scholes market. Trading induces price impacts
proportional to a power 𝛼 of a “volume-renormalization” of the trading rate. They characterize
the optimizer, identify a family of asymptotically optimal strategies and find the relative loss of
utility to the leading order in the limit of small price impacts. These are expressed in terms of
the solution of an ordinary differential equation that depends on 𝛼. More recently, the problem
was solved in Cayé, Herdegen, andMuhle-Karbe (2020) for constant absolute risk averse (CARA)
investors and general one-dimensional markets where the price follows a not necessarily Marko-
vian Itô diffusion. The Ordinary Differential Equation (ODE) found in Guasoni andWeber (2020)
is still a crucial building block of the solution. In a parallel strand of literature, Cai, Rosenbaum,
and Tankov (2017a, 2017b) embed these problems in the study of tracking problems.
Although the previous works give a good understanding of the behavior of one-dimensional

markets, they do not take into account the important effects of interdependence in multi-asset
markets through correlation and cross-price impacts. Indeed, it is not unreasonable to think that,
asset prices being correlated, a liquidity strain on an asset may very well have a liquidity effect
on another asset. For proportional transaction costs and also for linear price impact, the conse-
quences of the asset liquidity interdependence on portfolio optimization problems are relatively
well understood (see, e.g., Bichuch & Guasoni, 2018; Guasoni & Weber, 2018; Gârleanu & Peder-
sen, 2016; Moreau et al., 2015; Possamaï, Soner, & Touzi, 2015). It is found that in contrast to the
one-dimensional case, it is not anymore optimal to trade directly toward a target strategy, which
turns out to be the frictionless optimizer, unless the current displacement is an eigenvector of the
inverse price impact matrix multiplied by the volatility matrix. The optimal strategy is, in general,
to trade in a direction given by a symmetric matrix depending on the price impact and volatility
matrices. This direction needs not be pointing to the currently optimal portfolio.
In the present article, we study a portfolio choice problem in amultidimensional market where

transaction costs are superlinear and subquadratic. We consider an investor with a constant rela-
tive risk aversion (CRRA) who is maximizing the utility of her consumption on a finite time hori-
zon. Ourmodel allows for general patterns of cross-impacts and we consider a general Markovian
Itô price process set-up. The presence of superlinear costs makes this problem very challenging
to solve explicitly and, as first done by Shreve and Soner (1994) in the context of transaction costs,
we turn to the powerful machinery of viscosity solutions developed by Crandall, Ishii, and Lions
(1992) to characterize its solution. In particular, one of the challenging features of the cost struc-
tures we consider is that the associated Hamilton–Jacobi–Bellman (HJB) equation is degenerate
with aHamiltonian growing superquadratically in the first derivativeswith power𝑚 = 1 +

1

𝛼
> 2.

Considering that in practice transaction costs are small, it is natural to make an asymptotic
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analysis of the problem for small price impact using techniques developed by Soner and Touzi
(2013) for proportional transaction costs. These techniques, inspired by the homogenization the-
ory for Partial Differential Equation (PDE) with periodic terms, mixed with general stability
results for viscosity solutions and the identification of two corrector equations rather than one,
were then extended to multidimensional markets with proportional transaction cost by Possamaï
et al. (2015) and later by Moreau et al. (2015) for linear price impact.2

Based on the approach developed in Soner and Touzi (2013), Possamaï et al. (2015), andMoreau
et al. (2015) and using tools from homogenization theory (Evans, 1989, 1992; Lions, Papanicolaou,
& Varadhan, 1986; Souganidis, 1999), we characterize the asymptotic expansion of the value func-
tion of the problem in terms of the solutions of the so-called corrector equations. The first correc-
tor equation is an ergodic-type Hamilton–Jacobi–Bellman equation with superquadratic Hamil-
tonian similar to the equations studied in Ichihara (2012) and Cirant (2014)3 . This PDE, whose
structure depends neither on the price dynamics nor on the utility function, seems to be ubiq-
uitous in the nonlinear price impact problems. It generalizes the ODE derived by Guasoni and
Weber (2020), which is also a crucial element of the solution in Cayé et al. (2020) in the setting of
one-dimensional markets with nonlinear price impact.
This first corrector equation cannot be solved explicitly and we have to rely on existence results

from Ichihara (2012) and Cirant (2014). In particular, in order to prove the asymptotic expansion,
we need second derivative estimates for the solution of this equation and they are, at themoment,
only available for a particular choice of the price impact functional (see (48)). For more general
impacts, we expect that, under some technical assumptions, such second derivative bounds can
still be obtained by using the adjoint method, but this is beyond the scope of this article.
The loss of utility at the leading order is then characterized by the second corrector equation,

which is a linear PDE. Similarly to the previous results in the literature, the second corrector
equation is a linearization of the PDE solved by the value function of the frictionless problem. Its
source term is provided by the first corrector equation and it reflects the local utility loss generated
by the optimal control of the fast variable in an ergodic control problem. The solution of the second
corrector equation can also be expressed as the expectation of a function of the state variables
integrated over the trading horizon as in Soner and Touzi (2013), Possamaï et al. (2015), Moreau
et al. (2015), and Cayé et al. (2020).
Due to the fact that the first corrector equation cannot be solved explicitly in general, one needs

to rely on numerical solutions of this equation to obtain approximations of the utility loss. Alter-
natively, some particular impact functions and choice of model allow to factorize its solution and
express the utility loss in closed form (up to the solution of a one-dimensional ODE). We pro-
vide such a factorization in Proposition 3.9 for the particular case of the Merton problem and cost
functionals satisfying a scaling property. In this case, the dependence of the solution to the first
corrector equation in the price, the time, and the wealth of the investor disappears. The only state
variable for this partial differential equation is the rescaled deviation from the Merton portfolio.
The solution of this equation is a couple (�̃�, 𝜆). Then, the utility loss can be directly written as a
linear function of 𝜆 and (𝑡, 𝑤)—where the state variable tuple represents time and current wealth
(marked to market). Although we do not prove here that they are, we also provide a family of
strategies conjectured to be asymptotically optimal. These strategies can also be written using �̃�

and the dual friction functionΦ. Thus, answers to natural questions about the portfolio optimiza-
tion problemwith price impact are contained in (�̃�, 𝜆). For example, knowing whether or not the
asymptotically optimal strategy consists in trading toward theMerton proportion can be answered
by studying the functions Φ𝑥 and �̃�𝑥.
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Besides this general statement on the Merton problem, we provide an example of impact func-
tionwhere the first corrector equation can be reduced to a one-dimensional PDE and (�̃�, 𝜆) can be
explicitly computed. Thus, for this impact function and similarly toGuasoni andWeber (2018) and
Moreau et al. (2015), 𝜆 can be explicitly computed and the utility loss can be explicitly obtained.
We also mention other examples of impact functions that could be considered.
The proof of the expansion relies on general stability results for viscosity solutions and locally

uniform bounds for the difference between the frictionless and frictional value functions. Regard-
ing the viscosity solution aspects, unlike in Moreau et al. (2015) and Ekren and Muhle-Karbe
(2019), the solution of the first corrector equation is not a simple quadratic function of the devia-
tion from the frictionless target. Thus, generating the test functions to use the viscosity property of
the frictional value is more challenging. Compared to previous literature, our test functions have
additional dependencies and do not always scale as a power function. Additionally, these features
have to be included in the remainder estimates in Proposition 5.1, which renders these estimates
more challenging.
The complexity of the solution of the first corrector equation also generates difficulties to check

the assumptions needed to apply our main theorem. In particular, a new method is needed to
obtain the locally uniform bounds for the difference between the frictionless and frictional value
functions. Indeed, in our case we cannot simply apply Itô’s formula to the squared difference
between the current position and the target position to obtain these bounds. Also, we are not able
to find a smooth subsolution of the frictional PDE as in Possamaï et al. (2015) to obtain them. To
exploit the strong mean-reversion property of the position to the frictionless target, one needs to
find an appropriate Lyapunov function. In fact, in our multidimensional framework, the solution
of the first corrector equation is this Lyapunov function. However, the application of Itô’s for-
mula to the Lyapunov function gets extremely technical and is left to the Appendix where we give
guidelines to obtain the locally uniform bounds of the renormalized difference between the two
value functions for a model with Geometric BrownianMotion. Refining these technical estimates
would prove the optimality of the candidate family of strategies. We are confident that these com-
putations would succeed, but their length and tediousness would not bring more insight to an
already quite technical article, and they are left to courageous readers.
Finally, our result, with additional assumptions on the initial wealth and constraints on the

available strategy, can be used to determine derivative prices by utility indifference, and find the
asymptotically optimal partial hedging strategies by subtracting its final payoff from the final con-
sumption of our investor (while ensuring that this quantity stays nonnegative). See Cayé et al.
(2020), for example, where the case of a smoothed and convexified put option with exponential
utility of final wealth is considered.
The paper is organized as follows.We state the problemof interest in Section 2.We then state our

main result in Section 3. In particular, in Subsection 3.3, we provide an expansion for the particular
case of the multidimensional Merton problem and a fairly general class of impact functions. In
Section 4, we also provide an explicit expression of impact function that satisfies the assumptions
of our main results and we give the expansion of the value function for this example. In Section 5,
we state the remainder estimates that are the main estimates to carry out the viscosity theory
proofs in Section 6. In the Appendix, we prove a technical lemma on the distance between the
asymptotically optimally controlled state variables and the frictionless target necessary to check
the assumptions of the main Theorem 3.7 for our example.
In the rest of this section, for readers’ convenience, we will list the frequently used notation.
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1.1 Notation

For a smooth function 𝜙, 𝜙𝑦 denotes the derivative of 𝜙 in 𝑦 (we reserve the notation 𝜕𝑦𝜙 for the
derivatives of any composition in 𝑦) and 𝜙𝑥𝑦 denotes the second-order derivative with respect
to 𝑥 and 𝑦. We denote by | ⋅ | the Euclidian norm for a vector or matrix, 𝑑 stands for the set
of symmetric matrices. For a deterministic vector 𝑥, 𝑥𝑖 denotes its 𝑖th component and for a vec-
tor valued process (𝑋𝑡), 𝑋𝑖

𝑡 denotes its 𝑖th component. We also define the sets  ∶= {(𝑡, 𝑤, 𝑠) ∈

[0, 𝑇) × ℝ++ × ℝ𝑑
++} and𝑇 ∶= {(𝑡, 𝑤, 𝑠) ∈ {𝑇} × ℝ++ × ℝ𝑑

++}where we writeℝ++ ∶= (0,∞). In
the article, we write 𝐶 for a generic positive constant or a positive continuous function onwith
polynomial growth, that may change from a line to the next. For vectors 𝑥, 𝑦 ∈ ℝ𝑑 and 𝛼 ⩾ 0, we
denote by 𝑥 ⋅ 𝑦 their Euclidian scalar product, 𝑥(𝛼) = (𝑠𝑖𝑔𝑛(𝑥1)|𝑥1|𝛼, … , 𝑠𝑖𝑔𝑛(𝑥𝑑)|𝑥𝑑|𝛼)⊤, 𝑥|𝛼| =
(|𝑥1|𝛼, … , |𝑥𝑑|𝛼)⊤ and 𝑥 × 𝑦 = (𝑥1𝑦1, … , 𝑥𝑑𝑦𝑑)

⊤.

2 THEMODEL

2.1 The Merton problem without friction

Let (Ω, , 𝔽 = (𝑡)𝑡∈[0,𝑇], ℙ) be a filtered probability space. The financial market consists of a
money market account with interest rate 𝑟(𝑆) and stocks. The dynamics of the assets are as fol-
lows:

𝑑𝑆
𝑗
𝑡 = 𝑆

𝑗
𝑡 (𝜇

𝑗(𝑆𝑡)𝑑𝑡 + 𝜎𝑗(𝑆𝑡) ⋅ 𝑑𝐵𝑡), with 𝑆
𝑗
0 = 𝑠

𝑗
0 for 1⩽𝑗⩽𝑑, (1)

𝑑𝑆0
𝑡 = 𝑆0

𝑡 𝑟(𝑆𝑡)𝑑𝑡, with 𝑆0
0 = 𝑠00,

where 𝐵 is a 𝑑-dimensional Brownian motion, 𝑟, 𝜇𝑗 are continuous real-valued functions, 𝜎𝑗 a
continuous vector-valued function, for 1⩽𝑗⩽𝑑. We also assume that 𝑠 ↦ 𝑠𝑗𝜇

𝑗(𝑠) and 𝑠 ↦ 𝑠𝑗𝜎
𝑗(𝑠)

are Lipschitz continuous for all 𝑗 = 1,…𝑑. We denote by 𝜎 the 𝑑 × 𝑑 matrix whose 𝑗th row is 𝜎𝑗 .
We assume furthermore that 𝜎𝜎𝑇 is positive definite. We write indifferently 𝑟𝑡 for 𝑟(𝑆𝑡), 𝜇𝑡 for
𝜇(𝑆𝑡), and 𝜎𝑡 for 𝜎(𝑆𝑡).

4

The investor chooses at time 𝑡 a consumption rate 𝑐𝑡 ⩾ 0 and the number of shares 𝐻𝑡 =

(𝐻1
𝑡 , … ,𝐻𝑑

𝑡 )
⊤ to hold in the stock. Her wealth evolves according to the following dynamics:

𝑑𝑊0
𝑡 = (𝑟𝑡𝑊

0
𝑡 − 𝑐𝑡)𝑑𝑡 +

𝑑∑
𝑗=1

𝐻
𝑗
𝑡 𝑆

𝑗
𝑡 (𝜇

𝑗
𝑡 − 𝑟𝑡)𝑑𝑡 +

𝑑∑
𝑖,𝑗=1

𝐻
𝑗
𝑡 𝑆

𝑗
𝑡 𝜎

𝑗

𝑖
(𝑆𝑡)𝑑𝐵

𝑖
𝑡 (2)

in vector notation,

𝑑𝑊0
𝑡 = (𝑟𝑡𝑊

0
𝑡 − 𝑐𝑡)𝑑𝑡 + (𝐻𝑡 × 𝑆𝑡) ⋅ (𝜇𝑡 − 𝑟𝑡11)𝑑𝑡 + (𝐻𝑡 × 𝑆𝑡)

𝑇𝜎𝑡𝑑𝐵𝑡, (3)

where 11 is the vector ofℝ𝑑 with 1 for every component. The objective is to maximize the expected
utility from consumption. The value function for (𝑡, 𝑤, 𝑠) ∈  ∪𝑇 is

𝑉0(𝑡, 𝑤, 𝑠) = sup
(𝑐,𝐻)∈0(𝑤)

𝔼

[
∫

𝑇

𝑡

𝑈(𝑐𝑟)𝑑𝑟 + 𝑈(𝑐𝑇)
|||||𝑊𝑡 = 𝑤, 𝑆𝑡 = 𝑠

]
. (4)
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𝑈(𝑥) = 𝑥1−𝑅∕(1 − 𝑅), 𝑅 > 0, 𝑅 ≠ 1 is the utility function, and0 is the set of admissible strategies
(i.e., number of shares in each asset and consumption) that guarantee that the Stochastic Differ-
ential Equation (SDE) for the wealth process has a strong solution and that𝑊0

𝑡 ⩾ 0 and 𝑐𝑡 ⩾ 0 for
all 𝑡 ⩾ 0 and 𝑐𝑇 ⩽ 𝑊0

𝑇 .

Remark 2.1.

(i) Note that although 𝑆𝑡 appears in the wealth dynamics, we could easily remove it by treating
the amount in units of numéraire invested in the stock,𝐻𝑡𝑆𝑡, as the control. Here, we consider
the number of shares as control in order to have more resemblance with the frictional case
introduced in the next section.

(ii) Note also that unlike the classical problem, the consumption at the final time is controlled.
This choice ismade so that the frictionless and the frictional problem (22) have the same struc-
ture. However, we obviously have the same value as the classical Merton problem because the
optimal control here is 𝑐𝑇 = 𝑊0

𝑇 as it is the case in the classical Merton problem.

Under some assumptions (e.g., the existence of regular solutions to the Hamilton–Jacobi–
Bellman equation and of an optimal policy for (4)), it can be proved that the frictionless value
function 𝑉0 satisfies the Hamilton–Jacobi–Bellman equation for all (𝑡, 𝑤, 𝑠) ∈ 

0(𝑉0)(𝑡, 𝑤, 𝑠) ∶= −𝜕𝑡𝑉
0 − sup

𝑐
{𝑈(𝑐) − 𝑉0

𝑤𝑐} − 𝑠𝑉0 − 𝑉0
𝑤𝑟𝑤 (5)

−sup
ℎ

{
𝑉0

𝑤

𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗(𝑠) − 𝑟) +

𝑑∑
𝑖,𝑗=1

𝑉0
𝑤𝑠𝑖

𝑠𝑖ℎ𝑗𝑠𝑗𝜎
𝑖(𝑠) ⋅ 𝜎𝑗(𝑠) +

𝑉0
𝑤𝑤

2

|||||
𝑑∑

𝑗=1

ℎ𝑗𝑠𝑗𝜎
𝑗(𝑠)

||||
2
}

= 0,

𝑉0(𝑇, 𝑤, 𝑠) = 𝑈(𝑤), (6)

where𝑠 is the infinitesimal generator associated to 𝑆, and the above supremum is attained point-
wise by

ℎ0(𝑡, 𝑤, 𝑠) ∶= argmax
ℎ∈ℝ𝑑

{
𝑉0

𝑤(𝑡, 𝑤, 𝑠)

𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗(𝑠) − 𝑟(𝑠)) +

𝑑∑
𝑖,𝑗=1

𝑉0
𝑤𝑠𝑖

(𝑡, 𝑤, 𝑠)𝑠𝑖ℎ𝑗𝑠𝑗𝜎
𝑖(𝑠) ⋅ 𝜎𝑗(𝑠)

+
𝑉0

𝑤𝑤(𝑡, 𝑤, 𝑠)

2

|||||
𝑑∑

𝑗=1

ℎ𝑗𝑠𝑗𝜎
𝑗(𝑠)

|||||
2⎫⎪⎬⎪⎭. (7)

Then ℎ0 satisfies the first-order condition for all (𝑡, 𝑤, 𝑠) ∈ 

𝑉0
𝑤𝑠𝑗

(
𝜇𝑗 − 𝑟

)
+

𝑑∑
𝑖=1

𝑉0
𝑤𝑠𝑖

𝑠𝑖𝑠𝑗𝜎
𝑖(𝑠) ⋅ 𝜎𝑗(𝑠) + 𝑉0

𝑤𝑤

𝑑∑
𝑖=1

ℎ0
𝑖
𝑠𝑖𝑠𝑗𝜎

𝑖(𝑠) ⋅ 𝜎𝑗(𝑠) = 0, for all 1⩽𝑗⩽𝑑. (8)
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We define additionally 𝐻0
𝑡 = ℎ0(𝑡,𝑊0

𝑡 , 𝑆𝑡), for 𝑡 ⩾ 0. Denote by

𝑈(𝑦) ∶= sup
𝑥

{𝑈(𝑥) − 𝑥𝑦} =
𝑅

1 − 𝑅
𝑦
−

1−𝑅

𝑅 , for 𝑦 > 0 (9)

the convex dual of 𝑈 and the optimal consumption rate

𝑐0(𝑡, 𝑤, 𝑠) ∶= −�̃�′(𝑉0
𝑤(𝑡, 𝑤, 𝑠)). (10)

Finally, define (𝑡, 𝑤, 𝑠) ↦ 𝑐ℎ
0
(𝑡, 𝑤, 𝑠) the function such that

𝑐ℎ
0

𝑡 = 𝑐ℎ
0(

𝑡,𝑊0
𝑡 , 𝑆𝑡

)
=

𝑑
⟨
ℎ0

(
𝑡,𝑊0

𝑡 , 𝑆𝑡

)⟩
𝑑𝑡

∈ 𝑑 (11)

is the quadratic variation of (𝐻0
𝑡 )𝑡∈[0,𝑇].

Assumption 2.2. We make the following assumption on the frictionless problem.

(i) 𝑉0, 𝑐0, ℎ0 are 1,2,2( ∪𝑇) functions, and 𝑐ℎ
0 is continuous and positive on ∪𝑇 .

(ii) The strategy ℎ0 does not allow short selling, borrowing, nor zero position in any of the assets:

ℎ0 × 𝑠

𝑤
∈ (0, 1)𝑑 and

𝑑∑
𝑖=1

𝑠𝑖ℎ
0
𝑖

𝑤
< 1. (12)

(iii) We have 𝑉0
𝑤 > 0 and 𝑉0

𝑤𝑤 < 0 on ∪𝑇 .

Remark 2.3.

(i) Short selling and borrowing to invest are forbidden as in Guasoni and Weber (2020) to avoid
ruin in the presence of market impact. Indeed, in the presence of price impact, the investor
might not be able to liquidate her short position or her overinvested portfolio fast enough in
case of a down-turn of themarket andmay face ruin, which is not allowed by the power utility
function.

(ii) However, unlike Guasoni and Weber (2020), in (12), we assume that the strategy strictly
belongs to the interior of the simplex for technical reasons: it is necessary to ensure admissi-
bility of our candidate strategy in the treated example; see Appendices A.1 and A.3 for details.

With these assumptions and notation, we can rewrite Equation (5) as

0 = −𝜕𝑡𝑉
0 − �̃�(𝑉0

𝑤) − 𝑠𝑉0 − 𝑉0
𝑤𝑟𝑤 − 𝑉0

𝑤(ℎ0 × 𝑠) ⋅ (𝜇 − 𝑟11)

−

𝑑∑
𝑖,𝑗=1

𝑉0
𝑤𝑠𝑖

𝑠𝑖ℎ
0
𝑗
(𝑡, 𝑤, 𝑠)𝑠𝑗𝜎

𝑗 ⋅ 𝜎𝑖 −
𝑉0

𝑤𝑤

2

|||||
𝑑∑

𝑗=1

ℎ0
𝑗
(𝑡, 𝑤, 𝑠)𝑠𝑗𝜎

𝑗
|||||
2

. (13)

Example 2.4. Throughout the article, we will illustrate our results for geometric Brownian
motion as the multidimensional price process and an investor with risk aversion 𝑅 ∈ (0, 1). This
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means that we take 𝜇, 𝜎, and 𝑟 constant, such that 𝜎𝜎⊤ is positive definite and denote

𝔖 =
(
𝜎𝜎𝑇

)1∕2
. (14)

In this case, one can show by verification (using the following ansatz, Equations 8 and 13) that
the value function takes the form

𝑉0(𝑡, 𝑤, 𝑠) = 𝑔(𝑡)𝑈(𝑤), (15)

𝑐0(𝑡, 𝑤, 𝑠) = 𝑔(𝑡)
−

1

𝑅 𝑤, (16)

ℎ0(𝑡, 𝑤, 𝑠) =

(
𝜋1

𝑤

𝑠1
, … , 𝜋𝑑

𝑤

𝑠𝑑

)⊤

, with 𝜋 = 𝑅−1
(
𝜎𝜎⊤

)−1
(𝜇 − 𝑟11), (17)

where

𝑔(𝑡) =

(
1 + (𝜈 − 1)𝑒−𝜈(𝑇−𝑡)

𝜈

)𝑅

(18)

satisfies 𝑔(𝑇) = 1 and 𝜈 = (𝑅 − 1)(
𝑟

𝑅
+

(𝜇−𝑟11)⊤(𝜎𝜎⊤)−1(𝜇−𝑟11)

2𝑅2
) ≠ 0.

Assumption 2.2 means that we require 𝜋𝑖(𝑡) = 𝜋𝑖 > 0 for all 𝑖 = 1, … 𝑑 and
∑𝑑

𝑖=1
𝜋𝑖 < 1.

Remark 2.5. Note that the function 𝑔 is bounded and bounded away from 0 on [0, 𝑇].

2.2 The Merton problem with price impact

Let the financial market be the same as in the frictionless case except that the execution price 𝑆𝑡

may be different from the fundamental price 𝑆𝑡. More precisely, we consider a temporary price
impact model,

𝑆
𝑗
𝑡 = 𝑆

𝑗
𝑡 + 𝑓𝑗(𝑆𝑡, 𝜀𝜃𝑡), (19)

where5 𝜃𝑡 = �̇�𝑡 is the trading rate, 𝜀 is a small parameter, and (𝑓𝑗) is a family of functions satisfy-
ing the following Assumption 2.6. We additionally define the convex conjugate Φ(𝑠, .) of the cost
functional 𝜃 ↦ 𝜃 ⋅ 𝑓(𝑠, 𝜃) in ℝ𝑑 by

Φ(𝑠, 𝑥) ∶= sup
𝜃∈ℝ𝑑

{
𝑥 ⋅ 𝜃 −

𝑑∑
𝑗=1

𝜃𝑗𝑓𝑗(𝑠, 𝜃)

}
, (20)

on which the Assumption 2.6 on 𝑓 can be equivalently formulated.
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Assumption 2.6. The function 𝑓 is continuous in both of its variables, continuously differen-
tiable in 𝜃 and positive homogeneous of degree 𝛼 ∈ (0, 1) and odd in 𝜃. Additionally, we assume
that for all 𝑠 ∈ (ℝ++)

𝑑, the function 𝜃 ↦ 𝜃 ⋅ 𝑓(𝑠, 𝜃) is strictly convex (it is then also homogeneous
of degree 𝛼 + 1

6 ).
Φ is assumed to be continuous in both of its variables and continuously differentiable in 𝑥.Φ is

convex positive homogeneous of degree𝑚 > 2 in 𝑥, andΦ𝑥, its derivative in 𝑥, is an odd function
in 𝑥 that is homogeneous of degree𝑚 − 1, where𝑚 = 1 +

1

𝛼
> 2.

In Subsection 3.3, we provide examples of impact functions satisfying this assumption.

Remark 2.7.

(i) The constant 𝛼 ∈ (0, 1) (or equivalently andmore conveniently for the PDE results used later
the constant 𝑚 = 1 +

1

𝛼
> 2) will be crucial in our study. It expresses the scaling of market

impact as a function of the trading rate. We fix 𝛼 ∈ (0, 1) (and therefore 𝑚 > 2) and define
𝑚∗ =

𝛼

𝛼+3
=

1

3𝑚−2
.

(ii) Note that the function 𝑓 is such that the instantaneous transaction costs function 𝜃 → 𝜃 ⋅

𝑓(𝑠, 𝜃) is nonnegative, convex, and positive homogeneous of order 𝛼 + 1 =
𝑚

𝑚−1
∈ (1, 2): this

is the 𝑑-dimensional version of the subquadratic trading cost as it appears in Guasoni and
Weber (2020) and Cayé et al. (2020) where the market is composed of a single risky asset and
a bank account. The importance of the dual friction Φ was already identified by Dolinsky
and Soner (2013) in discrete time frictional markets and used by Guasoni and Rásonyi (2015)
to provide a characterization of the optimizer of the solution of the nonlinear frictions in a
one-dimensional set-up using convex duality.

With these frictions, thewealth of the investor starting at 𝑡 = 0, with amarked-to-marketwealth
of 𝑤0, satisfies the following SDE (with initial condition𝑊𝜀

0 = 𝑤0) on [0, 𝑇]

𝑑𝑊𝜀
𝑡 =

(
𝑟𝑡𝑊

𝜀
𝑡 − 𝑐𝑡

)
𝑑𝑡 +

𝑑∑
𝑗=1

(
𝐻

𝑗
𝑡 𝑆

𝑗
𝑡

[(
𝜇
𝑗
𝑡 − 𝑟𝑡

)
𝑑𝑡 + 𝜎

𝑗
𝑡 ⋅ 𝑑𝐵𝑡

]
− 𝜃

𝑗
𝑡 𝑓𝑗(𝑆𝑡, 𝜀𝜃𝑡)𝑑𝑡

)
. (21)

The value function corresponding to this new control problem is

𝑉𝜀 ∶ (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 ↦ sup
(𝑐,𝜃)∈𝜀(𝑤)

𝔼

[
∫

𝑇

𝑡

𝑈(𝑐𝑟)𝑑𝑟+𝑈(𝑐𝑇)
|||𝑊𝑡 = 𝑤,𝐻𝑡 = ℎ, 𝑆𝑡 = 𝑠

]
, (22)

where (𝑐, 𝜃) ∈ 𝜀 if 𝑊𝜀
𝑠 −

∑𝑑

𝑖=1
𝐻𝑖

𝑠𝑆
𝑖
𝑠 ⩾ 0, 𝐻𝑖

𝑠 ⩾ 0 and 𝑐𝑠 ⩾ 0 for all 𝑠 ∈ [𝑡, 𝑇) and if 𝑐𝑇 ⩽ 𝑊𝜀
𝑇 −∑𝑑

𝑖=1
𝐻𝑖

𝑇𝑆
𝑖
𝑇 .

Remark 2.8. We note that in our framework, the total wealth 𝑤 represents the frictionless liq-
uidation value of the portfolio where ℎ is the vector of number of shares held in each asset and
𝑤 −

∑𝑑

𝑖=1
ℎ𝑖𝑠𝑖 is the cash holdings of the agent. In other words, 𝑊𝜀 represents the “marked-to-

market” wealth of the investor.
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The associated Hamilton–Jacobi–Bellman equation is

−𝜕𝑡𝑉
𝜀 − sup

𝑐
{𝑈(𝑐) − 𝑉𝜀

𝑤𝑐} − 𝑠𝑉𝜀 − 𝑉𝜀
𝑤𝑟𝑤 − sup

𝜃

{
𝑉𝜀

ℎ
𝜃 − 𝑉𝜀

𝑤

𝑑∑
𝑗=1

𝜃
𝑗
𝑡 𝑓𝑗(𝑠, 𝜀𝜃𝑡)

}

−𝑉𝜀
𝑤

𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗 − 𝑟) −

𝑑∑
𝑖,𝑗=1

𝑉𝜀
𝑤𝑠𝑖

𝑠𝑖ℎ𝑗𝑠𝑗𝜎
𝑗 ⋅ 𝜎𝑖 −

𝑉𝜀
𝑤𝑤

2

|||||
𝑑∑

𝑗=1

ℎ𝑗𝑠𝑗𝜎
𝑗
|||||
2

= 0. (23)

Optimizing over 𝑐 and 𝜃, and using the homogeneity of 𝑓 and Φ, we rewrite the Hamilton–
Jacobi–Bellman equation (23) as

0 = 𝜀(𝑉𝜀)(𝑡, 𝑤, 𝑠, ℎ) ∶= −𝜕𝑡𝑉
𝜀 − �̃�(𝑉𝜀

𝑤) − 𝑠𝑉𝜀 − 𝑉𝜀
𝑤𝑟𝑤 −

(𝑉𝜀
𝑤)1−𝑚

𝜀
Φ
(
𝑠, 𝑉𝜀

ℎ

)
−𝑉𝜀

𝑤

𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗 − 𝑟) −

𝑑∑
𝑖,𝑗=1

𝑉𝜀
𝑤𝑠𝑖

𝑠𝑖ℎ𝑗𝑠𝑗𝜎
𝑗 ⋅ 𝜎𝑖 −

𝑉𝜀
𝑤𝑤

2

|||||
𝑑∑

𝑗=1

ℎ𝑗𝑠𝑗𝜎
𝑗
|||||
2

. (24)

We make the following assumption on the frictional value function.

Assumption 2.9 (Characterization of the frictional value function). For 𝜀 > 0, the value function
𝑉𝜀 is locally bounded and is a (possibly discontinuous) viscosity solution of the Hamilton–Jacobi–
Bellman equation

⎧⎪⎨⎪⎩
𝜀(𝑉𝜀)(𝑡, 𝑤, 𝑠, ℎ) = 0 for (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑

𝑉𝜀(𝑇, 𝑤, 𝑠, ℎ) = 𝑈
(
𝑤 −

∑𝑑

𝑖=1
ℎ𝑗𝑠𝑗

)
for (𝑤, 𝑠, ℎ) ∈ ℝ++ × ℝ𝑑

++ × ℝ𝑑,
(25)

where 𝜀 is defined in (24).

3 MAIN RESULTS

3.1 The corrector equations

3.1.1 Heuristic motivation of the equations

We postulate an asymptotic expansion for the value function of the frictional problem of the form

𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ) = 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗
𝑢(𝑡, 𝑤, 𝑠) − 𝜀4𝑚

∗
𝜛

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
,

for some functions 𝑢 and𝜛 satisfying integrability and growth conditions to be determined, and
where the fourth argument of𝜛 is the “fast variable”

𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ) =
ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗ . (26)
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Introducing this ansatz in the Hamilton-Jacobi-Bellman equation (24), we obtain (recall that 𝑉0

satisfies (13) and Φ is homogeneous of order𝑚)

𝜀(𝑉𝜀)(𝑡, 𝑤, 𝑠, ℎ) = 𝜀2𝑚
∗

(
𝐸1(𝑡, 𝑤, 𝑠, 𝜉𝜀, 𝜀

3𝑚∗−
1+2𝑚∗

𝑚 𝜛𝜉(𝑡, 𝑤, 𝑠, 𝜉𝜀),𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 𝜉𝜀)

)
+ 𝐸2(𝑡, 𝑤, 𝑠, 𝑢𝑡, 𝑢𝑤, 𝑢𝑠, 𝑢𝑤𝑤, 𝑢𝑤𝑠, 𝑢𝑠𝑠)

+ 𝑅𝜀(𝑡, 𝑤, 𝑠, ℎ, 𝑉𝜀),

where the functional 𝐸1 and 𝐸2 are defined as follows:

𝐸1(𝑡, 𝑤, 𝑠, 𝜉, 𝑝, 𝑋) ∶= −
𝑉0

𝑤𝑤

2

|||||
𝑑∑

𝑗=1

𝜉𝑗𝑠𝑗𝜎
𝑗
|||||
2

− |𝑉0
𝑤|1−𝑚Φ(𝑠, 𝑝) +

1

2
Tr

(
𝑐ℎ

0
𝑋
)
, (27)

𝐸2(𝑡, 𝑤, 𝑠, 𝑥, 𝑝, 𝑞, 𝑋𝑤𝑤, 𝑋𝑤𝑠, 𝑋𝑠𝑠) ∶= 𝑇(𝑡, 𝑤, 𝑠, 𝑝, 𝑋𝑤𝑤, 𝑋𝑤𝑠; ℎ
0(𝑡, 𝑠, 𝑤))

+𝑥 + (𝑞 × 𝑠) ⋅ 𝜇(𝑠) + 𝑟𝑤𝑝 +
1

2

𝑑∑
𝑖,𝑗=1

(𝜎𝜎⊤)𝑖,𝑗𝑠𝑖𝑠𝑗(𝑋𝑠𝑠)𝑖,𝑗 + �̃�′(𝑉0
𝑤)𝑝, (28)

and we denote

𝑇(𝑡, 𝑤, 𝑠, 𝑝, 𝑋𝑤𝑤, 𝑋𝑤𝑠; ℎ) ∶= 𝑝(ℎ × 𝑠) ⋅ (𝜇 − 𝑟11) + (𝑋𝑤𝑠 × 𝑠 × ℎ)
𝑇
𝜎𝜎𝑇𝑠

+
𝑋𝑤𝑤

2
(ℎ × 𝑠)

𝑇
𝜎𝜎𝑇(ℎ × 𝑠) (29)

and 𝑐ℎ
0
(𝑡, 𝑤, 𝑠) is the quadratic variation of the frictionless strategy defined in (11).

The value of the scaling factor 𝑚∗ =
1

3𝑚−2
is in fact the only choice that allows us to claim

𝜀
3𝑚∗−

1+2𝑚∗

𝑚 = 1 and the expansion yields

𝜀(𝑉𝜀)(𝑡, 𝑤, 𝑠, ℎ) = 𝜀2𝑚
∗(

𝐸1

(
𝑡, 𝑤, 𝑠, 𝜉𝜀,𝜛𝜉(𝑡, 𝑤, 𝑠, 𝜉𝜀),𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 𝜉𝜀)

)
+𝐸2(𝑡, 𝑤, 𝑠, 𝑢𝑡, 𝑢𝑤, 𝑢𝑠, 𝑢𝑤𝑤, 𝑢𝑤𝑠, 𝑢𝑠𝑠))

+ 𝑅𝜀(𝑡, 𝑤, 𝑠, ℎ, 𝑉𝜀), (30)

The last term of (30), under technical conditions on 𝑢 and 𝜛, converges to 0 as 𝜀 ↓ 0 for ℎ in a
neighborhood of ℎ0(𝑡, 𝑤, 𝑠). See Section 5 and, in particular, Proposition 5.1 for further details.
Thus, for the correct expansion, we expect𝜛 and 𝑢 to solve the so-called first and second cor-

rector equations,

𝐸1(𝑡, 𝑤, 𝑠, 𝜉,𝜛𝜉(𝑡, 𝑤, 𝑠, 𝜉),𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 𝜉)) = 𝑎(𝑡, 𝑤, 𝑠)( ∪𝑇) × ℝ𝑑,

𝜛(𝑡, 𝑤, 𝑠, 0) = 0 on (31)
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−𝐸2(𝑡, 𝑤, 𝑠, 𝑢𝑡, 𝑢𝑤, 𝑢𝑠, 𝑢𝑤𝑤, 𝑢𝑤𝑠, 𝑢𝑠𝑠) = 𝑎(𝑡, 𝑤, 𝑠) on ( ∪𝑇),

𝑢(𝑇, 𝑤, 𝑠) = 0 on ℝ∗
+ ×

(
ℝ∗

+

)𝑑
. (32)

Remark 3.1.

(i) For the first corrector equation (31), the triplet (𝑡, 𝑤, 𝑠) ∈  is in fact just a parameter of
the equation. The variable of the equation is 𝜉 ∈ ℝ𝑑 as in Barles and Meireles (2016), Cirant
(2014), and Ichihara (2012). The solution of the first corrector equation is a couple (𝜛, 𝑎). The
term 𝑎 of the solution of the first corrector equation is a source term in the second corrector
equation.

(ii) The first corrector equation (31) is themost important object in the study of small transaction
cost asymptotic theory. Indeed, as the transaction parameter 𝜀 goes to 0, the deviation from
the frictionless position 𝜉𝜀

𝑡 ∶=
𝐻𝜀

𝑡−𝐻0
𝑡

𝜀𝑚∗ oscillates faster around 0. The first corrector equation
expresses the trade-off the agent needs to make between keeping this quantity close to 0 and
the transaction cost she has to pay. In the first corrector equation, the utility loss due to the
displacement 𝜉𝜀 comes from the term−

𝑉0
𝑤𝑤(𝑡,𝑤,𝑠)

2
|∑𝑑

𝑗=1
𝜉𝑗𝑠𝑗𝜎

𝑗|2 ⩾ 0 and the transaction cost
comes from the term (𝑉0

𝑤(𝑡, 𝑤, 𝑠))1−𝑚Φ(𝑠, 𝑝). The local control problem that the agent solves
is an infinite horizon problem similar to Ichihara (2012, eq. 2). This comes from the difference
of time scale in which the different variables evolve. Indeed, as 𝜀 goes to 0 the variable 𝜉𝜀 (the
so-called fast variable in the homogenization theory) oscillates faster and faster and sees any
infinitesimally small interval (under the right scaling) as infinite, while the variable (𝑡, 𝑤, 𝑠)

stays almost constant on such small intervals.
(iii) Wenote also that in the system (31) and (32), the only nonlinearity is the dual friction function

Φ that is assumed to be convex positive homogeneous of degree𝑚 > 2.Φ is also the only term
in this system that depends on the price impact function 𝑓.

We now state the different assumptions needed for our main result.

Assumption 3.2 (Local boundedness of the renormalized utility loss). For all (𝑡0, 𝑤0, 𝑠0) ∈ ,
there exists 𝜀0 > 0 and 𝑟0 > 0 such that

sup

{
𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗ ∶ ||(𝑡, 𝑤, 𝑠, ℎ) − (𝑡0, 𝑤0, 𝑠0, ℎ
0(𝑡0, 𝑤0, 𝑠0))||⩽𝑟0, 𝜀 ∈ (0, 𝜀0)

}
< ∞,

(33)

where𝑚∗ =
1

3𝑚−2
is defined in Remark 2.7.

Assumption 3.2 is sufficient to define on the semilimits

𝑢∗(𝑡, 𝑤, 𝑠) ∶= lim sup
𝜀↓0,(𝑡′,𝑤′,𝑠′,ℎ′)→(𝑡,𝑤,𝑠,ℎ0(𝑡,𝑤,𝑠))

𝑉0(𝑡′, 𝑤′, 𝑠′) − 𝑉𝜀
∗(𝑡

′, 𝑤′, 𝑠′, ℎ′)

𝜀2𝑚∗ , (34)

𝑢∗(𝑡, 𝑤, 𝑠) ∶= lim inf
𝜀↓0,(𝑡′,𝑤′,𝑠′,ℎ′)→(𝑡,𝑤,𝑠,ℎ0(𝑡,𝑤,𝑠))

𝑉0(𝑡′, 𝑤′, 𝑠′) − 𝑉𝜀,∗(𝑡′, 𝑤′, 𝑠′, ℎ′)

𝜀2𝑚∗ , (35)
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used in Section 6, where 𝑉𝜀
∗ and 𝑉𝜀,∗ are, respectively, the lower and upper semicontinuous

envelopes of 𝑉𝜀. They allow us to characterize the deviation from the frictionless value and prove
our main theorem stated below.

Remark 3.3. This assumption is a property of the frictional value𝑉𝜀 and is in fact themost difficult
assumption to check. There are two ways of checking the assumption. Similarly to Possamaï et al.
(2015), one can try to exhibit a smooth subsolution of the frictional PDE (23) that is close enough to
the frictionless value function 𝑉0. However, in Possamaï et al. (2015), this method works due to a
proportionality between the frictionless value𝑉0 and the solution to the second corrector equation
𝑢. In our framework, such a proportionality does not hold and we cannot employ this method.
The second method is to exhibit an admissible control whose performance gives the required

bounds. This is the one we use for the example treated in Subsection 3.3. However, our task is
rendered technical by the controls admissibility condition and the fact that power utility is only
defined for positive consumptions.

Beforemaking assumptions on the solutions to the corrector equations, we define the following
class of functions.

Definition 3.4. We call 𝑚 the subset of 1,2,2,2([0, 𝑇] × ℝ++ × (ℝ++)
𝑑 × ℝ𝑑,ℝ+) containing the

functions 𝜒 with the following growth rates at infinity

sup
𝜉∈ℝ𝑑

(
1 + |𝜉|2)−(

1

2
+

1

𝑚

)(|𝜒| + |𝜒𝑤| + |𝜒𝑠| + |𝜒𝑤𝑤| + |𝜒𝑤𝑠| + |𝜒𝑠𝑠| + |||𝜒𝜉𝜉
|||)(𝑡, 𝑤, 𝑠, 𝜉)

+ sup
𝜉∈ℝ𝑑

(
1 + |𝜉|2)− 1

𝑚

(|||𝜒𝜉
||| + |||𝜒𝑤𝜉

||| + |||𝜒𝑠𝜉
|||)(𝑡, 𝑤, 𝑠, 𝜉)⩽𝐶(𝑡, 𝑤, 𝑠), (36)

where 𝐶 is a continuous function such that (𝑤, 𝑠) ↦ sup𝑡∈[0,𝑇] 𝐶(𝑡, 𝑤, 𝑠) is locally bounded.

Assumption 3.5 (Assumption on the corrector equations).

(i) The first corrector equation (31) admits a solution (𝑎,𝜛)

𝑎 ∶ (𝑡, 𝑤, 𝑠) ∈ [0, 𝑇] × ℝ++ × ℝ𝑑
++ ↦ ℝ+,

𝜛 ∶ (𝑡, 𝑤, 𝑠, 𝜉) ∈ [0, 𝑇] × ℝ++ × ℝ𝑑
++ × ℝ𝑑 ↦ ℝ+.

These two functions are in 0([0, 𝑇] × ℝ++ × ℝ𝑑
++,ℝ+) and 𝑚, respectively. The func-

tion 𝜛 is such that 𝜛(𝑡, 𝑤, 𝑠, 𝜉) > 0 on [0, 𝑇] × ℝ++ × ℝ𝑑
++ × (ℝ𝑑∖{0}) and 𝜛(𝑡, 𝑤, 𝑠, 0) =

𝜛𝜉(𝑡, 𝑤, 𝑠, 0) = 0 for (𝑡, 𝑤, 𝑠) ∈ [0, 𝑇] × ℝ++ × ℝ𝑑
++.

(ii) There exists a class of functions 𝔽𝑐𝑜𝑚𝑝 such that for all 𝑢1 ∈ 𝔽𝑐𝑜𝑚𝑝 (respectively, 𝑢2 ∈ 𝔽𝑐𝑜𝑚𝑝)
viscosity subsolution (respectively, supersolution) of (32) with

𝑢1(𝑇, 𝑤, 𝑠) ⩽ 𝑢2(𝑇, 𝑤, 𝑠) for all (𝑤, 𝑠) ∈ ℝ∗
+ ×

(
ℝ∗

+

)𝑑
,



BAYRAKTAR et al. 49

one has

𝑢1(𝑡, 𝑤, 𝑠) ⩽ 𝑢2(𝑡, 𝑤, 𝑠) for all (𝑡, 𝑤, 𝑠) ∈ .

(iii) 𝑢∗ and 𝑢∗ defined in (34) and (35) belong to 𝔽𝑐𝑜𝑚𝑝.

Remark 3.6.

(i) Note that the functions 𝑢∗ and 𝑢∗ are in fact only defined inside the domain, then extended
to𝑇 by upper and lower semi continuity. We prove in Proposition 6.3 that this extension is
0.

(ii) Note also that we only assume the comparison for the second corrector equation and our
Main Theorem 3.7 provides existence of solutions to this PDE via the Perron’s method.

(iii) Results of Ichihara (2012) show that the first corrector equation has indeed a unique solu-
tion with 𝜛(𝑡, 𝑤, 𝑠, 0) = 𝜛𝜉(𝑡, 𝑤, 𝑠, 0) = 0, 𝜛(𝑡, 𝑤, 𝑠, 𝜉) > 0 whenever 𝜉 ≠ 0. Furthermore,
the growth condition for𝜛 and𝜛𝜉 can be obtained using Ichihara (2012, Proposition 4.2) and
Barles andMeireles (2016, Proposition 3.4). We study in detail in Subsection 3.3 the corrector
equations and show the bounds on𝜛𝜉𝜉 needed to claim𝜛 ∈ 𝑚 for our main example. We
also provide a factorization of𝜛 in some natural models.

3.2 The main result

Theorem 3.7. Under Assumptions 2.2, 2.6, 2.9, 3.2, and 3.5, there exists a unique viscosity solu-
tion 𝑢 ∈ 𝔽𝑐𝑜𝑚𝑝 of the second corrector equation (32) and for all (𝑡, 𝑤, 𝑠) ∈  we have the following
expansion of the value function 𝑉𝜀:

𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠)) = 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗
𝑢(𝑡, 𝑤, 𝑠) + 𝑜(𝜀2𝑚

∗
), (37)

where𝑚∗ =
1

3𝑚−2
.

The proof of this theorem is provided in Section 6 after proving the necessary intermediate
results.

Remark 3.8.

(i) A more detailed analysis of our proof in fact shows that for all (𝑡, 𝑤, 𝑠) ∈ , there exists a
neighborhood (depending on 𝜀) of ℎ0(𝑡, 𝑤, 𝑠) such that the same expansion of 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

as in Theorem 3.7 holds for any ℎ in this neighborhood.
(ii) The term 𝑎 is the source term of the second corrector equation (32). This equation is linear

and its solution is the first-order utility loss in (37), the function 𝑎 governs the first-order
utility loss induced by the presence of friction, and we have the Feynman–Kac
representation
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𝑢(𝑡, 𝑤, 𝑠) = 𝔼

[
∫

𝑇

𝑡

𝑎
(
𝑟,𝑊0

𝑟 , 𝑆𝑟

)
𝑑𝑟

||| 𝑊0
𝑡 = 𝑤, 𝑆𝑡 = 𝑠

]
.

(iii) In the one-dimensional case, studied byGuasoni andWeber (2020) andCayé et al. (2020), the
first corrector equation simplifies to an ordinary differential equation. Its solution, a couple
consisting of a function and a constant, gives similarly both the speed of trading as a function
of the displacement from the frictionless optimizer and the leading order utility loss induced
by the presence of frictions.

(iv) As the small parameter 𝜀 in ourmodel appears inside the function𝑓 in Equation (19), it corre-

sponds to 𝜆
1

𝛼 in Guasoni andWeber (2020) and Cayé et al. (2020). Then, our expansion order
2𝑚∗ is equal to the expansion order 2

𝑝+2
found in these two articles, where the parameter 𝑝

corresponds to the transaction cost function degree of homogeneity (𝛼 + 1 in our model).
(v) In the limiting case 𝛼 → 1 (or equivalently 𝑚 → 2), we formally recover the order of the

utility loss 1

2
found in Moreau et al. (2015). Note additionally that the displacement from the

target position is rescaled by 𝜀𝑚
∗ in (26) and as 𝑚 → 2 this converges to 𝜀1∕4, which is the

rescaling of the displacement in Moreau et al. (2015).

One can show with some further work that a family of asymptotically optimal investment
strategies is “essentially” given by

�̇�𝜀
𝑡 ∶= 𝜀−1Φ𝑥

(
𝑆𝑡,

−𝜀3𝑚
∗

𝑉0
𝑤(𝑡,𝑊𝜀

𝑡 , 𝑆𝑡)
𝜛𝜉

(
𝑡,𝑊𝜀

𝑡 , 𝑆𝑡,
𝐻𝜀

𝑡 − ℎ0
𝑡

𝜀𝑚∗

))

= −

(
𝑉0

𝑤(𝑡,𝑊𝜀
𝑡 , 𝑆𝑡)

)1−𝑚

𝜀𝑚∗ Φ𝑥

(
𝑆𝑡,𝜛𝜉

(
𝑡,𝑊𝜀

𝑡 , 𝑆𝑡,
𝐻𝜀

𝑡 − ℎ0
𝑡

𝜀𝑚∗

))
(38)

and consumption rate

𝑐𝜀𝑡 ∶= −�̃�′
(
𝑉0

𝑤(𝑡,𝑊𝜀
𝑡 , 𝑆𝑡)

)
= 𝑐0(𝑡,𝑊𝜀

𝑡 , 𝑆𝑡). (39)

We will not prove this claim for the brevity of presentation. Indeed, although the proof of
this claim can be carried out similarly to Cayé et al. (2020) under appropriate assumptions,
in our case, due to the admissibility condition, one needs to modify these candidate strate-
gies at appropriate hitting times to avoid short selling (similar to (A.8)). This in turn neces-
sitates to prove properties of the solution 𝜛 of the first corrector equation that are beyond
the scope of this work. Technical difficulties also arise when proving that stopping the strat-
egy before the end of the trading interval happens with an asymptotically small probability.
This requires to additionally stop other processes depending on the primitive of the model
and obtain uniform moment existence for the renormalized displacement 𝜉𝜀(⋅,𝑊𝜀

⋅ , 𝑆⋅, 𝐻
𝜀
⋅ ).

These technical issues are similar to the ones appearing in the case of proportional costs (see
Kallsen & Li, 2013; Herdegen & Muhle-Karbe, 2018) or with nonlinear price impact (see Cayé
et al., 2020).
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3.3 Factorization of corrector equations for Black–Scholes markets

Consider the Merton problem of Example 2.4 with constant coefficients. Let us compute

𝑑⟨𝜋𝑖
𝑊0

𝑡

𝑆𝑖
𝑡

, 𝜋𝑗
𝑊0

𝑡

𝑆
𝑗
𝑡

⟩
𝑑𝑡

=
𝜋𝑖𝜋𝑗

𝑆𝑖
𝑡𝑆

𝑗
𝑡

(
𝑑∑

𝑘,𝑙=1

𝐻0,𝑘
𝑡 𝑆𝑘

𝑡 𝐻
0,𝑙
𝑡 𝑆𝑙

𝑡𝜎
𝑘 ⋅ 𝜎𝑙 − 𝑊0

𝑡

𝑑∑
𝑘=1

𝑆𝑘
𝑡 𝐻

0,𝑘
𝑡 𝜎𝑘 ⋅

(
𝜎𝑖 + 𝜎𝑗

)

+
(
𝑊0

𝑡

)2
𝜎𝑖 ⋅ 𝜎𝑗

)

=
(
𝑊0

𝑡

)2 𝜋𝑖𝜋𝑗

𝑆𝑖
𝑡𝑆

𝑗
𝑡

(
𝜋⊤𝜎𝜎⊤𝜋 − 𝜋⊤𝜎𝜎⊤(𝑒𝑖 + 𝑒𝑗) + 𝑒⊤

𝑖
𝜎𝜎⊤𝑒𝑗

)
=

(
𝑊0

𝑡

)2 𝜋𝑖𝜋𝑗

𝑆𝑖
𝑡𝑆

𝑗
𝑡

(𝜇 − 𝑟11 − 𝑅𝜎𝜎⊤𝑒𝑖)
⊤
(
𝑅2𝜎𝜎⊤

)−1 (
𝜇 − 𝑟11 − 𝑅𝜎𝜎⊤𝑒𝑗

)
,

where {𝑒𝑖}𝑖=1,…,𝑑 is the canonical basis of ℝ𝑑. Then

𝑐ℎ
0

𝑖,𝑗
(𝑡, 𝑤, 𝑠) =

𝑤2𝜋𝑖𝜋𝑗

𝑅2𝑠𝑖𝑠𝑗
(𝜇 − 𝑟11 − 𝑅𝜎𝜎⊤𝑒𝑖)

⊤
(
𝜎𝜎⊤

)−1 (
𝜇 − 𝑟11 − 𝑅𝜎𝜎⊤𝑒𝑗

)
is the function appearing in the first corrector equation (31) (recalling (27)). Denote byΣ thematrix
whose 𝑖th column is the vector

𝜋𝑖𝔖
−1(𝜇 − 𝑟11 − 𝑅𝜎𝜎⊤𝑒𝑖) = 𝜋𝑖𝑅𝔖(𝜋 − 𝑒𝑖), for 1 ⩽ 𝑖 ⩽ 𝑑.

We now state a Proposition on the factorization of the corrector equations for the geometric
Brownian motion.

Proposition 3.9. Assume that the frictionless problem is the Merton problem with constant coeffi-
cients described in Example 2.4 and the assumptions of Theorem 3.7 hold. Assume also that

Φ(𝑠, 𝑥) = Φ̃
(𝑥

𝑠

)
(40)

and the elliptic equation,

𝑅

2
|𝔖𝑥|2 − Φ̃(�̃�𝑥(𝑥)) +

1

2𝑅2
Tr

(
�̃�𝑥𝑥(𝑥)Σ

⊤Σ
)
= 𝜆, for 𝑥 ∈ ℝ𝑑, (41)

admits a unique solution (�̃�, 𝜆) satisfying �̃�(0) = 0 and

sup
𝑥∈ℝ𝑑

⎛⎜⎜⎝
|�̃�(𝑥)| + |�̃�𝑥𝑥(𝑥)|
(1 + |𝑥|2)( 1

2
+

1

𝑚

) +
|�̃�𝑥(𝑥)|

(1 + |𝑥|2) 1

𝑚

⎞⎟⎟⎠ < ∞. (42)
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Then, the solution of the first corrector equation has the form

𝜛(𝑡, 𝑤, 𝑠, 𝜉) = 𝑔(𝑡)𝑤1−𝑅+4𝑚∗
�̃�

(
𝜉 × 𝑠

𝑤1+𝑚∗

)
, (43)

𝑎(𝑡, 𝑤, 𝑠) = 𝜆𝑔(𝑡)𝑤3𝑚𝑚∗−𝑅 for all (𝑡, 𝑤, 𝑠) ∈ [0, 𝑇] × ℝ++ × ℝ𝑑
++.

and the expansion of the value function is

𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠)) = 𝑈(𝑤)
(
𝑔(𝑡) − 𝜆(1 − 𝑅)(𝑤𝜀)2𝑚

∗
�̄�(𝑡)

)
+ 𝑜(𝜀2𝑚

∗
), (44)

where the function �̄� solves the linear ODE

�̄�′(𝑡) + �̄�(𝑡)

[
−𝛽𝑔(𝑡)

−
1

𝑅 + 𝛽𝑟 +

[
𝛽

𝑅
+

𝛽(𝛽 − 1)

2𝑅2

]
(𝜇 − 𝑟11)

⊤(
𝜎𝜎⊤

)−1
(𝜇 − 𝑟11)

]
= −𝑔(𝑡),

�̄�(𝑇) = 0, (45)

𝛽 = 3𝑚𝑚∗ − 𝑅 and has the explicit expression

�̄�(𝑡) = ∫
𝑇

𝑡

𝑔(𝑠) exp

(
∫

𝑠

𝑡

[
−𝛽𝑔(𝑢)

−
1

𝑅 + 𝛽𝑟 +

[
𝛽

𝑅
+

𝛽(𝛽 − 1)

2𝑅2

]
(𝜇 − 𝑟11)

⊤(
𝜎𝜎⊤

)−1
(𝜇 − 𝑟11)

]
𝑑𝑢

)
𝑑𝑠.

(46)

Remark 3.10.

(i) The function 𝑔 is bounded from above and away from 0 on [0, 𝑇], therefore, so is �̄�.
(ii) Similarly to Guasoni andWeber (2020),Moreau et al. (2015), and Cayé et al. (2020), the utility

loss is proportional to a constant that we denote 𝜆 that is the only term in the expansion that
depends on the expression of 𝑓(�̄� depends on 𝑚 > 0 that is assumed to be fixed). To under-
stand the joint effect of correlation and impact functions on 𝜆 (and therefore the expansion),
we need to study an ergodic type Hamilton–Jacobi–Bellman equation, (41). This equation
was studied in Cirant (2014) and Ichihara (2012). Although we cannot explicitly compute �̃�,
Equation (41) fully describes the mechanism of how𝔖 and Φ affect the expansion. We pro-
vide below a choice of Φ̃ that allows an additional simplification of the solution of this PDE
as sum of one-dimensional functions. However, in general we do not expect explicit solution
to this PDE.

(iii) The trading direction of the asymptotically optimal strategies in (38) are determined by the
composition of the two functionsΦ𝑥 and𝜛𝜉 . The direction towhich𝜛𝜉 points is determined
by the one �̃�𝑥 due to the factorization (43). For example, the optimal strategies trading direc-
tions would point to the origin if the composition of the vector fields �̃�𝑥 andΦ𝑥 would point
to the origin. Thus, to understand how the direction of optimal portfolio depends on the var-
ious data of the problem one needs to compute �̃� numerically using the methods in Cacace
and Camilli (2016).
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Proof. Using the expression (15) for the frictionless value and the factorization of Φ, the first cor-
rector equation yields that the function �̃� defined by (43) that might eventually depend on 𝑡, 𝑤, 𝑠

solves the PDE

𝑅𝑔(𝑡)𝑤1−𝑅+2𝑚∗

2

|||||𝔖 𝜉 × 𝑠

𝑤1+𝑚∗

|||||
2

− 𝑔(𝑡)𝑤−𝑅+3𝑚𝑚∗
Φ̃

(
�̃�𝑥

(
𝜉 × 𝑠

𝑤1+𝑚∗

))

+
𝑔(𝑡)𝑤−𝑅+3𝑚𝑚∗

2𝑅2
Tr

(
�̃�𝑥𝑥

(
𝜉 × 𝑠

𝑤1+𝑚∗

)
ΣΣ⊤

)
= 𝑎(𝑡, 𝑤, 𝑠).

Given our uniqueness assumption for (41), we have that �̃� does not depend on 𝑡, 𝑤, 𝑠 and
𝑎(𝑡, 𝑤, 𝑠) = 𝜆𝑔(𝑡)𝑤−𝑅+3𝑚𝑚∗ where (�̃�, 𝜆) is given by the solution of (41). For the second corrector
equation, given the fact that 𝑎 does not depend on 𝑠, we make the following ansatz

𝑢(𝑡, 𝑤, 𝑠) = 𝜆𝑤3𝑚𝑚∗−𝑅�̄�(𝑡) = 𝑈(𝑤)(1 − 𝑅)𝜆𝑤2𝑚∗
�̄�(𝑡). (47)

Then, plugging this in (28), with the optimal values obtained for ℎ0 in (17), we obtain the linear
ODE (45) for �̄�. The solution of this Riccati equation is (46). □

4 EXAMPLES OF IMPACT FUNCTIONS

4.1 Main example of impact function

The main example that we fully treat is the price impact function

𝑓𝑗(𝑠, 𝜃) = 𝜅
𝑚 − 1

𝑚
𝑠𝑗

(
𝔖(𝔖(𝜃 × 𝑠))

(
1

𝑚−1
)
)

𝑗

for some 𝜅 > 0. (48)

Whether the impact function (48) holds for a givenmarket is an empirical question that is beyond
the scope of this paper. To motivate this choice of the price impact function, let us look at the case
𝑚 = 2. For this choice of parameter, one recovers the quadratic transaction cost of Gârleanu and
Pedersen (2016) (where the impact matrix and the covariation of the market are assumed to be
proportional) and Guasoni and Weber (2018):

𝜃 ⋅ 𝑓(𝑠, 𝜃) =
𝜅

2
|𝔖(𝜃 × 𝑠)|2 =

𝜅

2
(𝜃 × 𝑠)⊤𝔖2(𝜃 × 𝑠) =

𝜅

2

𝑑∑
𝑗=1

|(𝔖(𝜃 × 𝑠))𝑗|2. (49)

InGârleanu and Pedersen (2016), the rationale for such a cost functional stems from the risk taken
by the counterparts of our investor: to accept to hold these assets until they find an end buyer,
the market makers must be compensated for risk. This (instantaneous) cost functional quantifies
the reward necessary for these market maker to enter the transaction. In Gârleanu and Pedersen
(2016), this reward is quadratic in the trading speed. The price impact function that we present in
this section makes the choice of an 𝛼 + 1-homogeneity for the cost
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𝜃 ⋅ 𝑓(𝑠, 𝜃) = 𝜅
𝑚 − 1

𝑚

𝑑∑
𝑗=1

|(𝔖(𝜃 × 𝑠))𝑗| 𝑚

𝑚−1 = 𝜅
𝑚 − 1

𝑚

𝑑∑
𝑗=1

|(𝔖(𝜃 × 𝑠))𝑗|1+𝛼.

The second and most important reason for the choice of (48) is the fact that for this choice
of impact function, the solution to the first corrector equation can be written as sums of one-
dimensional functions. We use this property of the solution to obtain second derivative estimates
on𝜛 and show that it is 𝑚 as needed for Assumption 3.5. Indeed, for this choice of 𝑓, Φ is

Φ(𝑠, 𝑥) ∶= sup
𝜃∈ℝ𝑑

{
𝑥 ⋅ 𝜃 − 𝜅

𝑚 − 1

𝑚

𝑑∑
𝑗=1

|(𝔖(𝜃 × 𝑠))𝑗| 𝑚

𝑚−1

}
=

1

𝑚𝜅𝑚−1

𝑑∑
𝑗=1

|||(𝔖−1
(𝑥

𝑠

))
𝑗

|||𝑚, (50)

where
(

𝑥

𝑠

)
stands for

(
𝑥1

𝑠1
, … ,

𝑥𝑑

𝑠𝑑

)⊤

and Φ has the same form as (40). Therefore, defining

Φ̃(𝑥) =
1

𝑚𝜅𝑚−1

𝑑∑
𝑗=1

|||(𝔖−1(𝑥)
)
𝑗

|||𝑚 (51)

we can use Proposition 3.9 to obtain a first factorization of the first corrector equation. Then,
we show that (51) allows us to write �̃� defined as the solution (41) as sum of one-dimensional
functions. The formof𝑓 in (48) is also in linewith Possamaï et al. (2015, Example 3.1) where a form
is postulated for the first corrector equation directly. We provide in Subsection 4.2 other examples
of impact function and mention what types of estimates are needed for these problems. For the
general setting, the second derivative estimates for 𝜛 needed for Assumption 3.5 are believed to
be true, but their proof is far beyond the scope of this article and would require one of its own.
Therefore, we choose to illustrate our main result for (48) only.

4.1.1 Corrector equations for the main example

For the example (48), in order to simplify the impact of the correlation structure in the term
𝑅

2
|𝔖𝑥|2 of (41), we slightly change the ansatz (43) to

𝜛(𝑡, 𝑤, 𝑠, 𝜉) = 𝑔(𝑡)𝑤1−𝑅+4𝑚∗
�̃�

(
𝔖(𝜉 × 𝑠)

𝑤1+𝑚∗

)
.

Then, (41) becomes

𝑑∑
𝑗=1

(
𝑅

2
𝑥2
𝑗
−

1

𝑚
𝜅1−𝑚|�̃�𝑥𝑗

(𝑥)|𝑚)
+

1

2𝑅2
Tr

(
�̃�𝑥𝑥(𝑥)(Σ𝔖)⊤Σ𝔖

)
= 𝜆. (52)

We will solve this equation in terms of �̃�1, which is the solution of an ODE

(�̃�1)′′(𝑥) = −𝑥2 + 𝜆𝑚 +
𝑚−𝑚

(𝑚 − 1)1−𝑚
|(�̃�1)′(𝑥)|𝑚, for 𝑥 ∈ ℝ, and �̃�1(0) = 0, (53)
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where 𝜆𝑚 > 0 is the unique constant such that lim𝑥→±∞
(�̃�1)′(𝑥)|𝑥|2∕𝑚 = ±𝑚(𝑚 − 1)

1

𝑚
−1. The existence

of such a solution can be provided by two differentmethods. One can either note that this equation
is in fact (52) reduced to one dimension and use the theory developed in Ichihara (2012), Barles
and Meireles (2016), and Cirant (2014) or, alternatively, remark that −(�̃�1)′ is in fact equal to the
function defined in Guasoni and Weber (2020, Theorem 6) and that 𝜆𝑚 is the constant 𝑐𝛼 defined
in the same theorem. We now provide additional properties of �̃�1.

Lemma 4.1. The function �̃�1 defined by the ODE (53) is convex and has a bounded second-
order derivative.

Proof. By symmetry, we only show the bound at +∞. As it is an anti-derivative of an odd,
increasing function (see, e.g., Cayé et al., 2020, Lemma 3.1), �̃�1 is convex. Therefore, we only
need an upper bound for (�̃�1)′′. The second derivative being a function of the first derivative
and 𝑚 > 2, we have that �̃�1 is four times continuously differentiable. �̃�1 being subquadratic
the limit of (�̃�1)′′ at infinity cannot be infinity. Thus, there exists 𝑀 > 0 and 𝑦𝑛 ↑ ∞ such that
(�̃�1)′′(𝑦𝑛) ⩽ 𝑀. Assume that (�̃�1)′′ is not bounded, meaning, there exists 𝑥𝑛 → ∞ such that
(�̃�1)′′(𝑥𝑛) ↑ ∞ and (�̃�1)′′(𝑥𝑛) > 𝑀. Thus, for all 𝑥𝑛 there exists 𝑦𝑚1(𝑛) and 𝑦𝑚2(𝑛) such that
𝑦𝑚1(𝑛) ⩽ 𝑥𝑛 ⩽ 𝑦𝑚2(𝑛). Note that (�̃�

1)′′ has a local maximum on [𝑦𝑚1(𝑛), 𝑦𝑚2(𝑛)]. Denote �̃�𝑛 this
local maximum and note that 𝑦𝑚1(𝑛) < �̃�𝑛 < 𝑦𝑚2(𝑛) and �̃�′′′(�̃�𝑛) = 0. We differentiate (53) twice
to obtain that at the local maximum �̃�𝑛 of (�̃�1)′′, we have

0 ⩾ (�̃�1)′′′′(𝑥) = −2 + 𝐶|(�̃�1)′(�̃�𝑛)|𝑚−2|(�̃�1)′′(�̃�𝑛)|2
for a constant 𝐶 that only depends on𝑚. Thus,

|(�̃�1)′(�̃�𝑛)|𝑚−2|(�̃�1)′′(�̃�𝑛)|2 ⩽
2

𝐶
.

The growth of (�̃�1)′ and𝑚 > 2 gives that for some 𝑛 large enough the assumption (�̃�1)′′(𝑥𝑛) > 𝑀

is contradicted. We conclude that (�̃�1)′′ is bounded. Note that repeating the procedure, replacing
the 𝑦𝑛’s by the �̃�𝑛’s, we can prove that (�̃�1)′′ converges to 0 at infinity. □

Remark 4.2. The result of Lemma 4.1 is actually stronger than what is necessary for the analysis
in the rest of the article. To prove Theorem 3.7, the growth conditions defined in the class 𝑚 (cf.
Definition 3.4) are enough, that is, the ones stated below in (56).

We now give the following lemma for thewell-posedness of the reduced first corrector equation
(52).

Lemma 4.3. Provided that the diagonal terms of ((Σ𝔖)⊤(Σ𝔖)) are all positive, there exists a unique
solution, denoted by (𝜆, �̃�), of (52) satisfying �̃�(0) = 0, �̃� ⩾ 0and lim inf |𝑥|→∞ 𝜛(𝑥) > 0. This solu-
tion is given by �̃�(𝑥) =

∑𝑑

𝑗=1
𝛽𝑗�̃�

1(𝛾𝑗𝑥𝑗), where �̃�1 is the solution of (53) and

𝛾𝑗 =

(
2

(
𝑚

𝜅(𝑚 − 1)

)𝑚−1
𝑅3𝑚−1

((Σ𝔖)⊤(Σ𝔖))
𝑚
𝑗𝑗

)𝑚∗

,
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𝛽𝑗 = 2−4𝑚∗(
(Σ𝔖)⊤(Σ𝔖)

)4𝑚𝑚∗−1

𝑗𝑗
𝑅−1−4𝑚∗

(
𝜅(𝑚 − 1)

𝑚

)4(𝑚−1)𝑚∗

,

𝜆 = 𝜆𝑚

𝑑∑
𝑗=1

𝑅

2𝛾2
𝑗

. (54)

Here, 𝜆𝑚 is also identified in (53). Additionally, �̃�1 and �̃� are 2, convex, and satisfy the limit and
bounds

lim|𝑥|→∞

�̃�1(𝑥)

|𝑥|1+ 2

𝑚

=
𝑚2

(𝑚 + 2)(𝑚 − 1)
1−

1

𝑚

, (55)

(1 + |𝑥|2) 1

2
+

1

𝑚

𝐶
− 𝐶 ⩽ �̃�(𝑥) ⩽ 𝐶(1 + |𝑥|2) 1

2
+

1

𝑚 , (56)

and sup
𝑖∈{1,…,𝑑},𝑥∈ℝ𝑑

|||||�̃�𝑥𝑖
(𝑥)𝑥𝑖

�̃�(𝑥)

||||| +
|||||�̃�𝑥𝑖

(𝑥)|𝑥| ||||| +
||||||

�̃�𝑥𝑖
(𝑥)

1 + |𝑥| 2

𝑚

|||||| < ∞, (57)

where 𝐶 is a positive constant.

Proof. By verification, we see that the given function solves the PDE (52). As the solution of this
PDE is unique (this is a consequence of Ichihara, 2012, Theorem4.14), our candidate is the solution
of (52). For the limits, let 𝜂 > 0 be arbitrarily small. By Guasoni and Weber (2020), there exists
𝑥𝜂 > 0 such that for all 𝑥 ⩾ 𝑥𝜂 it holds

⎛⎜⎜⎝
𝑚

(𝑚 − 1)
1−

1

𝑚

− 𝜂
⎞⎟⎟⎠𝑥

2

𝑚 ⩽ (�̃�1)′(𝑥) ⩽
⎛⎜⎜⎝

𝑚

(𝑚 − 1)
1−

1

𝑚

+ 𝜂
⎞⎟⎟⎠𝑥

2

𝑚 . (58)

Then integrating between 0 and 𝑥 for 𝑥 ⩾ 𝑥𝜂, we obtain

𝐶−
𝜂 +

⎛⎜⎜⎝
𝑚

(𝑚 − 1)
1−

1

𝑚

− 𝜂
⎞⎟⎟⎠

𝑚

𝑚 + 2
𝑥
1+

2

𝑚 ⩽ �̃�1(𝑥) ⩽ 𝐶+
𝜂 +

⎛⎜⎜⎝
𝑚

(𝑚 − 1)
1−

1

𝑚

+ 𝜂
⎞⎟⎟⎠

𝑚

𝑚 + 2
𝑥
1+

2

𝑚 ,

where 𝐶±
𝜂 = ∫ 𝑥𝜂

0
(�̃�1)′(𝑦)𝑑𝑦 −

(
𝑚

(𝑚−1)
1−

1
𝑚

± 𝜂

)
𝑚

𝑚+2
𝑥
1+

2

𝑚
𝜂 . As 𝜂 was arbitrary we obtain the

growth behavior of �̃�1 at +∞. The reasoning for its growth behavior at −∞ is exactly the same.
Now take 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ 𝑑, and 𝑟 > 0. We have

�̃�(𝑟𝑥)

𝑟
1+

2

𝑚

=

𝑑∑
𝑖=1

𝛽𝑗

�̃�1(𝛾𝑗𝑟𝑥𝑗)

𝑟
1+

2

𝑚

, (59)
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and then, using the growth behavior of �̃�1, we obtain

lim
𝑟→∞

�̃�(𝑟𝑥)

𝑟
1+

2

𝑚

=
𝑚2

(𝑚 + 2)(𝑚 − 1)
1−

1

𝑚

𝑑∑
𝑖=1

𝛽𝑗|𝛾𝑗𝑥𝑗|1+ 2

𝑚 . (60)

Finally, (56) is a consequence of (59), (58), and the same reasoning on 𝑑 as above. Then (57) is a
consequence of the linear growth of (�̃�1)′ around 0 and its growth at infinity given in Guasoni
and Weber (2020, Theorem 4). □

We summarize here our results for the price impact function (48).

Theorem4.4. Let𝜇, 𝜎, 𝑟 be such that the strategy (17) does not have any short selling and borrowing,
meaning 𝜋𝑖 > 0, for all 1 ⩽ 𝑖 ⩽ 𝑑 and

∑𝑑

𝑖=1
𝜋𝑖 < 1. Assume also that the price impact is as in (48)

and 0 < 𝑅 < 1. Then for all (𝑡, 𝑤, 𝑠) ∈ , the following expansion of the value function holds
𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠)) = 𝑈(𝑤)

(
𝑔(𝑡) − 𝜆(1 − 𝑅)(𝑤𝜀)2𝑚

∗
�̄�(𝑡)

)
+ 𝑜(𝜀2𝑚

∗
),

where 𝑔 is given by (18), �̄� solves (45) and 𝜆 is given by (54).

Proof. Note that from the closed-form solutions obtained for Example 2.4, and the assumptions
of the theorem, Assumption 2.2 is satisfied. The definition of the price impact function in (48)
satisfies Assumption 2.6. By Lemma 4.3, Assumption 3.5(i) is satisfied. By the weak dynamic pro-
gramming result of Bouchard and Touzi (2011, Corollary 5.6), Assumption 2.9 is satisfied. Now,
considering the computations above, in order to use our main theorem and Proposition 3.9, we
need to show that Assumptions 3.2 and the last three items of Assumption 3.5 are satisfied, that
is, (a) define a set 𝔽𝑐𝑜𝑚𝑝 containing the function 𝑢 defined in (47) and prove that it has the prop-
erties of Assumption 3.5, (b) prove the bound (33). These are the aims of Lemma 4.6 and Proposi-
tion 4.7. □

Remark 4.5.

(i) Similarly to Guasoni and Weber (2020) and Cayé et al. (2020), the utility loss is proportional
to a constant found as a part of the solution of the relevant ODE (𝑐𝛼 or 𝑐𝑝, respectively, in
these articles).

(ii) Themain computational simplification of our choice (48) is that we can compute 𝜆 as in (54)
and obtain the second derivative estimates in (42) due to the one-dimensional factorization
of �̃� proven in Lemma 4.3. In this case, 𝜆 and therefore the utility loss is proportional to
𝜅2(𝑚−1)𝑚∗ that represents the size of the price impact in (48).

(iii) The restriction 0 < 𝑅 < 1 is a technical condition and is needed to obtain the bounds (33) in
the Appendix. Under this condition, we can easily control the utility at final time by increas-
ing the consumption.7

(iv) Given the choice of impact function (48), we can show that the state that is controlled via
conjectured asymptotically optimal controls has a particular behavior. Indeed one can show
that with this control, each component of the vector𝔖𝐻𝜀

𝑡−ℎ0
𝑡

𝜀𝑚∗ representing the deviation from
the target positionmultiplied by𝔖, has a one-dimensional behavior at the leading order. The
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factorization of the function𝜛 given in Lemma 4.3 is then not surprising. For the case𝑚 = 2,
at the leading order the mean reversion speed of every component is equal. Thus, we obtain
that any direction is a principal portfolio in the sense of Guasoni and Weber (2020) and the
asymptotically optimal strategy points to the target position. However, in the case 𝑚 > 2, a
straightforward computation shows that, although each component of𝔖𝐻𝜀

𝑡−ℎ0
𝑡

𝜀𝑚∗ solves a one-
dimensional ODE at the leading order, the local mean reversion speed of each component to
0 might be different. Therefore, the conjectured asymptotically optimal portfolio might not
locally point to the target position.

(v) Unlike the one-dimensional framework of Guasoni and Weber (2020) and Cayé et al. (2020)
where the expansion is characterized by the solution of a unique ODE (53) that does not
depend on the impact function but only on 𝛼, in the general multidimensional case for each
impact function one might need to solve a PDE. It would be interesting to see whether the
PDE (41) would admit further simplification for a fairly large class of impact functions.

4.1.2 Verification of Assumptions 3.2 and 3.5 for the main example

Lemma 4.6. The class of function

𝔽𝑐𝑜𝑚𝑝 =

⎧⎪⎨⎪⎩𝜙 ∶  ↦ ℝ ∶ ∃𝑘 > 0 ∶ sup
(𝑡,𝑤,𝑠)∈

|𝜙(𝑡, 𝑤, 𝑠)|
1 + 𝑤𝑘 + 𝑤−𝑘 +

∑𝑑

𝑖=1
(𝑠𝑘

𝑖
+ 𝑠−𝑘

𝑖
)
< ∞

⎫⎪⎬⎪⎭ (61)

has the comparison property defined in Assumption 3.5.

Note that if a function 𝜙 ∈ 𝔽𝑐𝑜𝑚𝑝 satisfies the boundedness assumption for a 𝑘 > 0, it also sat-
isfies it for all 𝑘′ ⩾ 𝑘. This is due to the fact that

sup
𝑤>0

1 + 𝑤𝑘

1 + 𝑤𝑘′
+ sup

𝑤>0

1 + 𝑤−𝑘

1 + 𝑤−𝑘′
< ∞.

Proof. Wenowshowcomparison of viscosity solutionswithin𝔽𝑐𝑜𝑚𝑝. Let𝑢1, 𝑢2 ∈ 𝔽𝑐𝑜𝑚𝑝 be, respec-
tively, viscosity subsolution and supersolution of (32) such that 𝑢1(𝑇, ⋅)⩽𝑢2(𝑇, ⋅) on ℝ++ × ℝ𝑑

++.
Take 𝑘 > 0 such that

sup
𝑗=1,2

sup
(𝑡,𝑤,𝑠)∈

|𝑢𝑗(𝑡, 𝑤, 𝑠)|
1 + 𝑤𝑘 + 𝑤−𝑘 +

∑𝑑

𝑖=1
(𝑠𝑘

𝑖
+ 𝑠−𝑘

𝑖
)
< ∞.

A direct computation shows that for 𝓁 > 0 large enough the function

Γ ∶ (𝑡, 𝑤, 𝑠) ↦ 𝑒−𝓁𝑡

(
1 + 𝑤2𝑘 + 𝑤−2𝑘 +

𝑑∑
𝑖=1

(
𝑠2𝑘
𝑖

+ 𝑠−2𝑘
𝑖

))

is a viscosity supersolution of (32). The argument to show the comparison property on  is the
standard dedoubling of variables technique as in the proof of Theorems 4.4.3 and 4.4.4 in Pham
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(2009). By definition of Γ, we have that for all 𝛿 > 0,

lim
𝑤→0, 𝑤>0

𝑢1(𝑡, 𝑤, 𝑠) − 𝑢2(𝑡, 𝑤, 𝑠) − 𝛿Γ(𝑡, 𝑤, 𝑠) = −∞,

lim
𝑠𝑖→0, 𝑠𝑖>0

𝑢1(𝑡, 𝑤, 𝑠) − 𝑢2(𝑡, 𝑤, 𝑠) − 𝛿Γ(𝑡, 𝑤, 𝑠) = −∞, for 1 ⩽ 𝑖 ⩽ 𝑑,

lim
𝑤→+∞

𝑢1(𝑡, 𝑤, 𝑠) − 𝑢2(𝑡, 𝑤, 𝑠) − 𝛿Γ(𝑡, 𝑤, 𝑠) = −∞,

lim
𝑠𝑖→+∞

𝑢1(𝑡, 𝑤, 𝑠) − 𝑢2(𝑡, 𝑤, 𝑠) − 𝛿Γ(𝑡, 𝑤, 𝑠) = −∞, for 1 ⩽ 𝑖 ⩽ 𝑑.

Thus, defining

Φ𝛿(𝑡, 𝑡
′, 𝑤, 𝑤′, 𝑠, 𝑠′) = 𝑢1(𝑡, 𝑤, 𝑠) − 𝑢2(𝑡

′, 𝑤′, 𝑠′) − 𝛿Γ(𝑡′, 𝑤′, 𝑠′)

−
1

2𝛿

(||𝑡 − 𝑡′||2 + ||𝑤 − 𝑤′||2 + ||𝑠 − 𝑠′||2),
the maximizers (𝑡𝛿, 𝑡′𝛿, 𝑤𝛿, 𝑤

′
𝛿
, 𝑠𝛿, 𝑠

′
𝛿
) of Φ𝛿 exists for all 𝛿 > 0. One can now conclude similarly to

the proof of Theorem 4.4.4. in Pham (2009). □

The remaining ingredient for the proof of Theorem 4.4 is to check Assumption 3.2 and to show
that 𝑢∗ defined in (79) is in 𝔽𝑐𝑜𝑚𝑝 defined by (61) that is proved in Proposition 4.7.

Proposition 4.7. Assume that the assumptions of Theorem 4.4 hold. Then, for all (𝑡0, 𝑤0, 𝑠0) ∈ ,
there exists 𝜀0 > 0 and 𝑟0 > 0 such that

sup

{
𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗ ∶

|𝑡 − 𝑡0| + |𝑤 − 𝑤0| + |𝑠 − 𝑠0| + |ℎ − ℎ0(𝑡0, 𝑤0, 𝑠0)|⩽𝑟0, 𝜀 ∈ (0, 𝜀0)
}

< ∞, (62)

and 𝑢∗ defined in (79) is in 𝔽𝑐𝑜𝑚𝑝.

The proof of (62), which is very technical, is provided in the Appendix.

4.2 Further examples of impact functions

Example 4.8. Another possible price impact is 𝑓𝑗(𝑠, 𝜃) = 𝜅𝑗𝑠

𝑚

𝑚−1

𝑗
𝜃𝑗|𝜃𝑗| 2−𝑚

𝑚−1 where the impact on
each asset price depends on the trading on this asset. In this case, Φ only depends on the vector

of the ratios
(

𝑥1

𝑠1
, … ,

𝑥𝑑

𝑠𝑑

)⊤

,

Φ(𝑠, 𝑥) =

𝑑∑
𝑖=1

(𝑚 − 1)𝑚−1

𝑚𝑚𝜅𝑚−1
𝑖

||||𝑥𝑖

𝑠𝑖

||||
𝑚

=∶ Φ̃
(𝑥

𝑠

)
.
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Similarly to the main example with price impact function (48) in the case of a Black–Scholes
market, this scaling in 𝑠 allows to use Proposition 3.9. If 𝔖 is not diagonal, the couple (�̃�, 𝜆)

still solves an equation similar to (41) but they cannot be expressed as sums of one-dimensional
functions. We are not able to compute 𝜆 explicitly.

Remark 4.9. We are not able to fully treat this example. Indeed, currently, there are no estimates
available in the literature for the growth of the second derivative of �̃� in (42). These estimates
are necessary to check the Assumption 3.5 and to proceed with the proof of the estimates of
the Appendix.
However, under appropriate assumptions, one can use a refined version of the so-called adjoint

method to show for Example 4.8, that the second derivative of𝜛 satisfies the bound8

|𝜛𝜉𝜉(𝜉)|
(1 + |𝜉|2) 1

2
+

1

𝑚

⩽𝐾.

Then, one can use the methodology presented here to obtain the expansion of the utility loss.

Example 4.10. The simplest choices for 𝑓𝑗 are given by 𝑓𝑗(𝑠, 𝜃) = 𝜅𝑗𝜃𝑗|𝜃𝑗| 2−𝑚

𝑚−1 and 𝑓𝑗(𝑠, 𝜃) =

𝜅𝑗𝑠𝑗𝜃𝑗|𝜃𝑗| 2−𝑚

𝑚−1 for some 𝜅𝑗 > 0 and𝑚 > 2 that lead, respectively, to an additive and multiplicative
price impact independent of the stock price. However, in these cases, the first corrector equation
(31) has a complicated dependence on 𝑡, 𝑤 and 𝑠 and the factorization of Proposition 3.9 is not
possible. Thus, unlike the first two examples where one needed to solve a unique first corrector
equation, it is necessary here to solve a first corrector equation for each (𝑡, 𝑤, 𝑠) ∈  (and prove
smooth dependence on (𝑡, 𝑤, 𝑠) of the solution, see Assumption 3.5).

5 THE REMAINDER ESTIMATES

In this section, we gather some results that will be useful in the proofs of Propositions 4.7 (espe-
cially Lemma A.4), 6.1, and 6.2. Let us define the rescaled displacement function 𝜉𝜀 for 𝜀 > 0 as

𝜉𝜀 ∶= 𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ) =
ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗ . (63)

Let us denote by (𝜈𝜀)𝜀>0 a family of functions in 1,2,2,2 and (𝜒𝜀)𝜀>0 be a family of functions in 𝑚

(recall Definition 3.4) and define

𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗

(
𝜈𝜀(𝑡, 𝑤, 𝑠, ℎ) + 𝜀2𝑚

∗
𝜒𝜀

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

))
. (64)

Proposition 5.1. For 𝜀 ∈ (0, 1), let 𝜈𝜀 ∈ 1,2,2,2 and 𝜒𝜀 ∈ 𝑚 be real-valued functions and 𝜓𝜀

defined as in (64) with 𝜈𝜀 and 𝜒𝜀. We assume that 𝜈𝜀 and its first two derivatives admit bounds uni-
form in 𝜀 > 0, that is, sup𝜀>0 |𝜈𝜀

𝑎(𝑡, 𝑤, 𝑠, ℎ)| + |𝜈𝜀
𝑏𝑐
(𝑡, 𝑤, 𝑠, ℎ)| ⩽ 𝐷(𝑡, 𝑤, 𝑠, ℎ) where 𝑎 ∈ {𝑡, 𝑤, 𝑠, ℎ},

𝑏, 𝑐 ∈ {𝑤, 𝑠, ℎ} and 𝐷 is a locally bounded function.
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Then

𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ) = 𝑅𝜀(𝑡, 𝑤, 𝑠, ℎ, 𝜓𝜀) + 𝜀2𝑚
∗(

𝐸2

(
𝑡, 𝑤, 𝑠, 𝜈𝜀

𝑡 , 𝜈
𝜀
𝑤, 𝜈𝜀

𝑠 , 𝜈
𝜀
𝑤𝑤, 𝜈𝜀

𝑤𝑠, 𝜈
𝜀
𝑠𝑠

)
+𝐸1

(
𝑡, 𝑤, 𝑠, 𝜉𝜀, 𝜒𝜀

𝜉
(𝑡, 𝑤, 𝑠, 𝜉𝜀), 𝜒𝜀

𝜉𝜉
(𝑡, 𝑤, 𝑠, 𝜉𝜀)

)
+ (𝜕𝑤𝜓𝜀)1−𝑚

(
Φ(𝑠, 𝜒𝜀

𝜉
) − Φ

(
𝑠, 𝜒𝜀

𝜉
+ 𝜀−𝑚∗

𝜈𝜀
ℎ

)))
, (65)

where 𝜀 was defined in (24) and 𝑅𝜀 satisfies the following properties on the set

{𝜕𝑤𝜓𝜀 > 𝜁1} ∩

{
𝑉0

𝑤 − 𝜕𝑤𝜓𝜀

𝑉0
𝑤

< 𝜁2

}
for some 𝜁1 > 0 and 𝜁2 < 1. (66)

(i) Let (𝑡, �̄�, 𝑠) ∈  and 𝑟 > 0. Assume that 𝜈𝜀 and 𝜒𝜀 depend on 𝜀 > 0 but that 𝜈𝜀 does not depend
on ℎ and that the derivatives of the𝜒𝜀 up to second order are uniformly bounded on𝐵𝑟(𝑡, �̄�, 𝑠) ×

ℝ𝑑 . Then it holds on 𝐵𝑟(𝑡, �̄�, 𝑠) × ℝ𝑑 that

|𝑅𝜀(𝑡, 𝑤, 𝑠, ℎ, 𝜓𝜀)|
𝜀2𝑚∗ ⩽𝐶(1 + |ℎ − ℎ0(𝑡, 𝑤, 𝑠)|2)

for some 𝐶 > 0 independent of 𝑡, 𝑤, 𝑠, ℎ but depending on the second derivatives bounds for 𝜒
and (𝑡, �̄�, 𝑠, 𝑟).

(ii) Let (𝑡, �̄�, 𝑠, ℎ̄) ∈  × ℝ𝑑, and 𝑟 > 0. Assume that 𝜒𝜀 does not depend on 𝜀 (and write 𝜒). Then
it holds on 𝐵𝑟(𝑡, �̄�, 𝑠, ℎ̄) that

||||𝑅𝜀(𝑡, 𝑤, 𝑠, ℎ, 𝜓𝜀)

𝜀2𝑚∗

||||⩽𝐶
(
1 + |𝜉𝜀(𝑡, 𝑤, 𝑠)|2) 1

2
+

1

𝑚

for some 𝐶 > 0 depending only on 𝑟, 𝑡, �̄�, 𝑠, and ℎ̄.
(iii) Assume that 𝜒𝜀 does not depend on 𝜀 (and write it 𝜒). If the set

𝐾1 =

{(
𝑡𝜀, 𝑤𝜀, 𝑠𝜀,

ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)

𝜀𝑚∗

)
∶ 𝜀 > 0

}
⊂  × ℝ𝑑

is bounded, then

||||𝑅𝜀(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀, 𝜓𝜀)

𝜀2𝑚∗

||||⩽𝐶𝜀𝑚
∗

for some 𝐶 > 0 depending only on the bound of the set 𝐾1.

Remark 5.2. Because the solution of the first corrector equation𝜛 is not homogeneous in 𝜉 (unlike
in Moreau et al., 2015) we have to include a dependence of 𝜈 on 𝜀 in the result that we will use in
Section 6.

Proof. We drop the dependence of 𝜈𝜀 and 𝜒𝜀 in 𝜀 to simplify notations. Consider first a function
𝜓𝜀 as in (64), and define the following feedback control function:
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𝑐𝜀(𝑡, 𝑤, 𝑠, ℎ) = −�̃�′(𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ)), (67)

�̃�𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝜀−1Φ𝑥

(
𝑠, −

𝜕ℎ𝜓
𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ)

)
= 𝜀−𝑚∗

(𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ))
1−𝑚

Φ𝑥

(
𝑠, 𝜒𝜉

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
+ 𝜀−𝑚∗

𝜈ℎ(𝑡, 𝑤, 𝑠, ℎ)

)
. (68)

Note that the trading rate �̃�𝜀 and the consumption 𝑐𝜀 are functions of 𝑡, 𝑤, 𝑠 and ℎ and these func-
tions are the maximizers of the Hamiltonian in the HJB equation (23) evaluated at 𝜓𝜀.
The wealth process and strategy obtained using these controls and started at (𝑡, 𝑤, 𝑠, ℎ) ∈  ×

ℝ𝑑 are denoted �̃�𝜀,𝑡,𝑤,𝑠,ℎ and �̃�𝜀,𝑡,𝑤,𝑠,ℎ. We have

𝑑�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 = �̃�𝜀(𝑢, �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 , 𝑆𝑢, �̃�
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑑𝑢.

We denote the drift function of the diffusion Ψ̃𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 = 𝜓𝜀(𝑢, �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 , 𝑆𝑢, �̃�
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 ) by �̃�𝜓𝜀 . It

holds

�̃�𝜓𝜀
(𝑡, 𝑤, 𝑠, ℎ) = 𝑉0

𝑡 − 𝜀2𝑚
∗
𝜈𝑡 − 𝜀4𝑚

∗
𝜒𝑡 + 𝜀3𝑚

∗(
ℎ0
𝑡

)⊤
𝜒𝜉

+
(
𝑉0

𝑤 − 𝜀2𝑚
∗
𝜈𝑤 − 𝜀4𝑚

∗
𝜒𝑤 + 𝜀3𝑚

∗
(ℎ0

𝑤)⊤𝜒𝜉

)
𝑟𝑤 − 𝑐𝜀𝜕𝑤𝜓𝜀

+
(
𝑉0

𝑤 − 𝜀2𝑚
∗
𝜈𝑤 − 𝜀4𝑚

∗
𝜒𝑤 + 𝜀3𝑚

∗ (
ℎ0
𝑤

)⊤
𝜒𝜉

) 𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗 − 𝑟) − (𝜕𝑤𝜓𝜀)

𝑑∑
𝑗=1

�̃�𝜀,𝑗𝑓𝑗(𝑠, 𝜀�̃�𝜀)

+
1

2

(
𝑉0

𝑤𝑤 − 𝜀2𝑚
∗
𝜈𝑤𝑤 − 𝜀4𝑚

∗
𝜒𝑤𝑤

) 𝑑∑
𝑖,𝑗=1

ℎ𝑖ℎ𝑗𝑠𝑖𝑠𝑗𝜎
𝑖 ⋅ 𝜎𝑗

+

(
𝜀3𝑚

∗

((
ℎ0
𝑤

)⊤
𝜒𝑤𝜉 +

1

2

(
ℎ0
𝑤𝑤

)⊤
𝜒𝜉

)
−

1

2
𝜀2𝑚

∗ (
ℎ0
𝑤

)⊤
𝜒𝜉𝜉ℎ

0
𝑤

) 𝑑∑
𝑖,𝑗=1

ℎ𝑖ℎ𝑗𝑠𝑖𝑠𝑗𝜎
𝑖 ⋅ 𝜎𝑗

+ 𝑠(𝑉0 − 𝜀2𝑚
∗
𝜈 − 𝜀4𝑚

∗
𝜒) + 𝜀3𝑚

∗
𝑑∑

𝑖=1

(
ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝑠𝑖𝜇

𝑖

+
1

2

𝑑∑
𝑖,𝑗=1

(
𝜀3𝑚

∗

((
ℎ0
𝑠𝑗

)⊤

𝜒𝜉𝑠𝑖 +
(
ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝑠𝑗 +

(
ℎ0
𝑠𝑖𝑠𝑗

)⊤

𝜒𝜉

)
− 𝜀2𝑚

∗ (
ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝜉ℎ

0
𝑠𝑗

)
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

+

𝑑∑
𝑖,𝑗=1

(
𝑉0

𝑤𝑠𝑖
− 𝜀2𝑚

∗
𝜈𝑤𝑠𝑖 − 𝜀4𝑚

∗
𝜒𝑤𝑠𝑖 + 𝜀3𝑚

∗
((

ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝑤 +

(
ℎ0
𝑤

)⊤
𝜒𝜉𝑠𝑖 +

(
ℎ0
𝑤𝑠𝑖

)⊤
𝜒𝜉

)
− 𝜀2𝑚

∗
(ℎ0

𝑤)⊤𝜒𝜉𝜉ℎ
0
𝑠𝑖

)
𝑠𝑖ℎ𝑗𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗 − (𝜀3𝑚
∗
𝜒𝜉 + 𝜀2𝑚

∗
𝜈ℎ)

⊤�̃�𝜀.
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Note that the functional 𝜀 applied to 𝜓𝜀 gives

𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ) = −
(
�̃�𝜓𝜀

(𝑡, 𝑤, 𝑠, ℎ) + 𝑈(𝑐𝜀)
)
, (70)

as the choices made for �̃�𝜀 and 𝑐𝜀 provide the equalities �̃�(𝜕𝑤𝜓𝜀) = 𝑈(𝑐𝜀) − 𝜕𝑤𝜓𝜀𝑐𝜀 and
(�̃�𝜀)⊤𝜕ℎ𝜓

𝜀 − 𝜕𝑤𝜓𝜀 ∑𝑑

𝑗=1
�̃�𝜀,𝑗𝑓𝑗(𝑠, 𝜀�̃�𝜀) = 𝜀−1(𝜕𝑤𝜓𝜀)1−𝑚Φ(𝑠, 𝜕ℎ𝜓

𝜀).
We now reorder the terms in �̃�𝜓𝜀 and group them to facilitate the analysis. The quadratic vari-

ation of ℎ0 is given by (omitting the argument (𝑡, 𝑤, 𝑠))

(
𝑐ℎ

0
)
𝑙,𝑚

=

𝑛∑
𝑖=1

(
𝑑∑

𝑗=1

(
ℎ0,𝑙
𝑤 ℎ0,𝑗 + ℎ0,𝑙

𝑠𝑗

)
𝑠𝑗𝜎

𝑗

𝑖

)(
𝑑∑

𝑘=1

(
ℎ0,𝑚
𝑤 ℎ0,𝑘 + ℎ0,𝑚

𝑠𝑘

)
𝑠𝑘𝜎

𝑘
𝑖

)
. (71)

The formula for the trace of the quadratic variation of ℎ0 multiplied by the Hessian of 𝜒 with
respect to 𝜉 is given by

Tr(𝑐ℎ0
𝜒𝜉𝜉) = (ℎ0

𝑤)⊤𝜒𝜉𝜉ℎ
0
𝑤

𝑑∑
𝑖,𝑗=1

ℎ0
𝑖
ℎ0
𝑗
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗 + 2

𝑑∑
𝑖,𝑗=1

(ℎ0
𝑠𝑖
)⊤𝜒𝜉𝜉ℎ

0
𝑤ℎ0

𝑗
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

+

𝑑∑
𝑖,𝑗=1

(ℎ0
𝑠𝑖
)⊤𝜒𝜉𝜉ℎ

0
𝑠𝑗
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗. (72)

The definition of 𝐸1, 𝐸2, and 𝑇 are given in Equations (27), (28), and (29). We regroup

�̃�
𝜓𝜀

𝑡 (𝑤, 𝑠, ℎ) = 𝑉0
𝑡 + �̃�(𝑉0

𝑤) + 𝑠𝑉0

+ 𝑉0
𝑤𝑟𝑤 + 𝑉0

𝑤

𝑑∑
𝑗=1

ℎ0
𝑗
𝑠𝑗(𝜇

𝑗 − 𝑟) +

𝑑∑
𝑖,𝑗=1

𝑉0
𝑤𝑠𝑖

𝑠𝑖ℎ
0
𝑗
𝑠𝑗𝜎

𝑗 ⋅ 𝜎𝑖 +
𝑉0

𝑤𝑤

2

𝑑∑
𝑖,𝑗=1

ℎ0
𝑖
ℎ0
𝑗
𝑠𝑖𝑠𝑗𝜎

𝑖𝜎𝑗

+ 𝑉0
𝑤

𝑑∑
𝑗=1

(ℎ𝑗 − ℎ0
𝑗
)𝑠𝑗(𝜇

𝑗 − 𝑟) +

𝑑∑
𝑖,𝑗=1

𝑉0
𝑤𝑠𝑖

(ℎ𝑗 − ℎ0
𝑗
)𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

+
𝑉0

𝑤𝑤

2

𝑑∑
𝑖,𝑗=1

(
ℎ𝑖ℎ𝑗 − ℎ0

𝑖
ℎ0
𝑗

)
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗 + 𝜀2𝑚
∗

(
(𝑉0

𝑤)1−𝑚Φ(𝑠, 𝜒𝜉) −
1

2
Tr(𝑐ℎ0

𝜒𝜉𝜉)𝑗

)

+ 𝜀2𝑚
∗

(
−𝜈𝑡 − 𝑠𝜈 − 𝜈𝑤𝑟𝑤 − 𝑈′(𝑉0

𝑤)𝜈𝑤 − 𝜈𝑤

𝑑∑
𝑗=1

ℎ0
𝑗
𝑠𝑗(𝜇

𝑗 − 𝑟) −

𝑑∑
𝑖,𝑗=1

𝜈𝑤𝑠𝑖 𝑠𝑖ℎ
0
𝑗
𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

−
𝜈𝑤𝑤

2

𝑑∑
𝑖,𝑗=1

ℎ0
𝑖
ℎ0
𝑗
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

)
− 𝑅𝜀 − 𝑈(𝑐𝜀) − (𝜕𝑤𝜓𝜀)1−𝑚(Φ(𝑠, 𝜒𝜉) − Φ(𝑠, 𝜒𝜉 + 𝜀−𝑚∗

𝜈ℎ))

)
= −𝜀2𝑚

∗(
𝐸1(𝑡, 𝑤, 𝑠, 𝜀−𝑚∗

(ℎ − ℎ0), 𝜒𝜉, 𝜒𝜉𝜉) + 𝐸2(𝑡, 𝑤, 𝑠, 𝜈𝑡, 𝜈𝑤, 𝜈𝑠, 𝜈𝑤𝑤, 𝜈𝑤𝑠, 𝜈𝑠𝑠)

−(𝜕𝑤𝜓𝜀)1−𝑚(Φ(𝑠, 𝜒𝜉) − Φ(𝑠, 𝜒𝜉 + 𝜀−𝑚∗
𝜈ℎ))

)
− 𝑅𝜀 − 𝑈(𝑐𝜀). (73)



64 BAYRAKTAR et al.

The first line is obtained using that 𝑐0 is the pointwise maximizer (in 𝑤 and 𝑠) of 𝑐 ↦ 𝑈(𝑐) −

𝑉0
𝑤𝑐, that is, 𝑈(𝑐0) − 𝑉0

𝑤𝑐0 = �̃�(𝑉0
𝑤). Recall that 0(𝑉0) = 0 (cf. (5)), therefore the first two

lines of the right-hand side of the above equation cancel. Due to the first-order condition
(8), the third line (and a part of the fourth) of the right-hand side can then be rewritten
as 1

2
𝑉0

𝑤𝑤

∑𝑑

𝑖,𝑗=1
(ℎ𝑖ℎ𝑗 − 2ℎ𝑖ℎ

0
𝑗
+ ℎ0

𝑖
ℎ0
𝑗
)𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗 =
1

2
𝑉0

𝑤𝑤|∑𝑑

𝑖=1
(ℎ𝑖 − ℎ0

𝑖
)𝑠𝑖𝜎

𝑖|2. This term, added
to the fourth line gives −𝐸1(𝑡, 𝑤, 𝑠, 𝜀−𝑚∗

(ℎ − ℎ0), 𝜒𝜉, 𝜒𝜉𝜉). The fourth and fifth lines give
−𝐸2(𝑡, 𝑤, 𝑠, 𝜈, 𝜈𝑡, 𝜈𝑤, 𝜈𝑠, 𝜈𝑤𝑤, 𝜈𝑤𝑠, 𝜈𝑠𝑠). The terms remaining or forcefully introduced into the above
equality are gathered in the function 𝑅𝜀, that can be further decomposed into

𝑅𝜀 = 𝐼𝜀,�̃� + 𝜀2𝑚
∗(

𝑇(𝑡, 𝑤, 𝑠, 𝜈𝑤, 𝜈𝑤𝑤, 𝜈𝑤𝑠; ℎ) − 𝑇(𝑡, 𝑤, 𝑠, 𝜈𝑤, 𝜈𝑤𝑤, 𝜈𝑤𝑠; ℎ
0)

+ 𝐼𝜀,1 + 𝐼𝜀,2 + 𝐼𝜀,3 + 𝐼𝜀,4
)
,

where the 𝐼𝜀’s are functions defined below in (74)–(78).
We now bound each term constituting 𝑅𝜀. Note that the sets of items (i), (ii), and (iii) are such

that (𝑡, 𝑤, 𝑠) is in a compact.
𝑇 is quadratic inℎ and does not depend on𝜒, therefore the bounds in all three cases are obvious.
Similarly, although the derivatives of �̃� have negative powers in their argument, the assump-

tions (66), the boundedness of (𝑡, 𝑤, 𝑠) on the considered set and the fact that �̃�, 𝜈, 𝜒, 𝑉0 and 𝜓𝜀

are continuous allow us to treat these functions as Lipschitz-continuous with respect to the three
first variables. Thus, defining 𝐼𝜀,�̃� and using a Taylor expansion twice, there exist 𝜂1, 𝜂2 ∈ (0, 1)

depending on (𝑡, 𝑤, 𝑠, ℎ) with

𝐼𝜀,�̃�(𝑡, 𝑤, 𝑠, ℎ, 𝜈, 𝜒) = �̃�(𝑉0
𝑤) − �̃�(𝜕𝑤𝜓𝜀) − 𝜀2𝑚

∗
�̃�′(𝑉0

𝑤)𝜈𝑤

= 𝜀2𝑚
∗

[
�̃�′

(
𝑉0

𝑤

(
1 + 𝜂1

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤

𝑉0
𝑤

))
− �̃�′(𝑉0

𝑤)

]
𝜈𝑤

+𝜀4𝑚
∗
�̃�′

(
𝑉0

𝑤

(
1 + 𝜂1

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤

𝑉0
𝑤

))
𝜕𝑤𝜒

= 𝜀2𝑚
∗
𝜈𝑤𝜂2

(
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤

)
�̃�′′

(
𝑉0

𝑤

(
1 + 𝜂2

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤

𝑉0
𝑤

))
(74)

+𝜀4𝑚
∗
�̃�′

(
𝑉0

𝑤

(
1 + 𝜂

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤

𝑉0
𝑤

))
𝜕𝑤𝜒.

Then, given that 𝜒 ∈ 𝑚 and for 0 < 𝜀 < 1 the following bounds obtain on the set defined in (66).

𝜀−2𝑚∗ |𝐼𝜀,�̃�(𝑡, 𝑤, 𝑠, ℎ, 𝜈, 𝜒)| ⩽ 𝐶(𝜀2𝑚
∗ |𝜒𝑤| + 𝜀𝑚

∗ |𝜒𝜉|)(𝑡, 𝑤, 𝑠, 𝜉𝜀)

⩽ 𝐶

(
𝜀𝑚

∗
+ 𝜀2𝑚

∗ |𝜉𝜀|1+ 2

𝑚 + 𝜀𝑚
∗ |𝜉𝜀| 2

𝑚

)
.



BAYRAKTAR et al. 65

The expression for 𝐼𝜀,1 is

𝐼𝜀,1(𝑡, 𝑤, 𝑠, ℎ, 𝜒) = 𝜀2𝑚
∗

(
𝜒𝑡 + 𝑠𝜒 + 𝜒𝑤𝑟𝑤 + 𝜒𝑤

𝑑∑
𝑗=1

ℎ𝑗𝑠𝑗(𝜇
𝑗 − 𝑟)

+

𝑑∑
𝑖,𝑗=1

𝜒𝑤𝑠𝑖 𝑠𝑖𝑠𝑗ℎ𝑗𝜎
𝑖 ⋅ 𝜎𝑗 +

1

2
𝜒𝑤𝑤

𝑑∑
𝑖,𝑗=1

ℎ𝑖ℎ𝑗𝑠𝑖𝑠𝑗𝜎
𝑖 ⋅ 𝜎𝑗

)
. (75)

If (𝑡, 𝑤, 𝑠, ℎ) is in a bounded set the fact 𝜒 ∈ 𝑚 implies

|𝐼𝜀,1(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶𝜀2𝑚
∗

(
1 + |𝜉𝜀|1+ 2

𝑚

)
,

and if 𝜒 has bounded derivatives (as in item (i)),

|𝐼𝜀,1(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶𝜀2𝑚
∗
(1 + |ℎ − ℎ0(𝑡, 𝑤, 𝑠)|2).

The expression for 𝐼𝜀,2 is

𝐼𝜀,2(𝑡, 𝑤, 𝑠, ℎ, 𝜈, 𝜒) = ((𝑉0
𝑤)1−𝑚 − (𝜕𝑤𝜓𝜀)1−𝑚)Φ(𝑠, 𝜒𝜉) . (76)

Similarly as in (74), (66) allows us to treat negative powers of 𝜕𝑤𝜓𝜀 as a Lipschitz function. If
(𝑡, 𝑤, 𝑠, ℎ) takes value on a bounded set, ((𝑉0

𝑤)1−𝑚 − (𝜕𝑤𝜓𝜀)1−𝑚) can be uniformly bounded for
ℎ − ℎ0(𝑡, 𝑤, 𝑠) small enough and we obtain

|𝐼𝜀,2(𝑡, 𝑤, 𝑠, ℎ, 𝜈, 𝜒)| ⩽ 𝐶𝜀2𝑚
∗
Φ(𝑠, 𝜒𝜉) ⩽ 𝐶𝜀2𝑚

∗
(1 + |𝜉𝜀|2) ⩽ 𝐶

(
1 + |𝜉𝜀|1+ 2

𝑚

)
.

If the derivatives of 𝜒 are bounded, the inequality becomes

|𝐼𝜀,2(𝑡, 𝑤, 𝑠, ℎ, 𝜈, 𝜒)| ⩽ 𝐶|((𝑉0
𝑤)1−𝑚 − (𝜕𝑤𝜓𝜀)1−𝑚)| ⩽ 𝐶𝜀2𝑚

∗
.

The definition of 𝐼𝜀,3 and 𝐼𝜀,4 are

𝐼𝜀,3(𝑡, 𝑤, 𝑠, ℎ, 𝜒) = − 𝜀𝑚
∗

((
ℎ0
𝑡

)⊤
𝜒𝜉 +

(
ℎ0
𝑤

)⊤
𝜒𝜉

(
𝑟𝑤 +

𝑑∑
𝑖=1

ℎ𝑖𝑠𝑖(𝜇
𝑖 − 𝑟)

)
+

𝑑∑
𝑖=1

(
ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝑠𝑖𝜇

𝑖

+

(
(ℎ0

𝑤)⊤𝜒𝑤𝜉 +
1

2
(ℎ0

𝑤𝑤)⊤𝜒𝜉

) 𝑑∑
𝑖,𝑗=1

ℎ𝑖ℎ𝑗𝑠𝑖𝑠𝑗𝜎
𝑖 ⋅ 𝜎𝑗

+
1

2

𝑑∑
𝑖,𝑗=1

((ℎ0
𝑠𝑗
)⊤𝜒𝜉𝑠𝑖 + (ℎ0

𝑠𝑖
)⊤𝜒𝜉𝑠𝑗 + (ℎ0

𝑠𝑖𝑠𝑗
)⊤𝜒𝜉)𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

+

𝑑∑
𝑖,𝑗=1

(
(ℎ0

𝑠𝑖
)⊤𝜒𝜉𝑤 + (ℎ0

𝑤)⊤𝜒𝜉𝑠𝑖 + (ℎ0
𝑤𝑠𝑖

)⊤𝜒𝜉

)
ℎ𝑖𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

)
(77)
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and

𝐼𝜀,4(𝑡, 𝑤, 𝑠, ℎ, 𝜒) =
1

2
(ℎ0

𝑤)⊤𝜒𝜉𝜉ℎ
0
𝑤

𝑑∑
𝑖,𝑗=1

(
ℎ𝑖ℎ𝑗 − ℎ0

𝑖
ℎ0
𝑗

)
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗

+

𝑑∑
𝑖,𝑗=1

(
ℎ0
𝑠𝑖

)⊤
𝜒𝜉𝜉ℎ

0
𝑤

(
ℎ𝑗 − ℎ0

𝑗

)
𝑠𝑖𝑠𝑗𝜎

𝑖 ⋅ 𝜎𝑗. (78)

Again, if (𝑡, 𝑤, 𝑠, ℎ) is on a bounded domain, ℎ0 ∈ 1,2,2 (cf. Assumption 2.2) and 𝜒 ∈ 𝑚 imply
the bounds

|𝐼𝜀,3(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶𝜀𝑚
∗

(
1 + |𝜉𝜀| 2

𝑚

)
⩽ 𝐶, and |𝐼𝜀,4(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶

(
1 + |𝜉𝜀|1+ 2

𝑚

)
,

and if the derivatives of 𝜒 are bounded

|𝐼𝜀,3(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶𝜀𝑚
∗
(1 + |ℎ − ℎ0(𝑡, 𝑤, 𝑠)|2)

|𝐼𝜀,4(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶(1 + |ℎ − ℎ0(𝑡, 𝑤, 𝑠)|2).
Then, results (i) and (ii) are a consequence of the estimates above. Note that if additionally 𝜉𝜀 is
bounded as in (iii), all terms except 𝐼𝜀,4 are bounded by 𝐶𝜀𝑚

∗ . For 𝐼𝜀,4 we have ℎ − ℎ0 = 𝜀𝑚
∗
𝜉𝜀.

Thus, we also obtain the bound |𝐼𝜀,4(𝑡, 𝑤, 𝑠, ℎ, 𝜒)| ⩽ 𝐶𝜀𝑚
∗ due to the boundedness of 𝜉𝜀, and 0 <

𝜀 < 1. This conclude the proof of the remainder estimates. □

6 PROOF OF THEMAIN THEOREM

In this section, we prove Theorem 3.7.

6.1 The semilimits

Let𝑉𝜀
∗ (respectively,𝑉𝜀,∗) be the lower (respectively, upper) semicontinuous envelope of the func-

tion 𝑉𝜀. Assumption 3.2 allows us to define the following semilimits for (𝑡, 𝑤, 𝑠) ∈ 

𝑢∗(𝑡, 𝑤, 𝑠) ∶= lim sup
𝜀↓0,(𝑡′,𝑤′,𝑠′,ℎ′)→(𝑡,𝑤,𝑠,ℎ0(𝑡,𝑤,𝑠))

𝑉0(𝑡′, 𝑤′, 𝑠′) − 𝑉𝜀
∗(𝑡

′, 𝑤′, 𝑠′, ℎ′)

𝜀2𝑚∗ , (79)

𝑢∗(𝑡, 𝑤, 𝑠) ∶= lim inf
𝜀↓0,(𝑡′,𝑤′,𝑠′,ℎ′)→(𝑡,𝑤,𝑠,ℎ0(𝑡,𝑤,𝑠))

𝑉0(𝑡′, 𝑤′, 𝑠′) − 𝑉𝜀,∗(𝑡′, 𝑤′, 𝑠′, ℎ′)

𝜀2𝑚∗ , (80)

where 𝑚∗ =
1

3𝑚−2
. By definition 𝑢∗ is upper semicontinuous, 𝑢∗ is lower semicontinuous and

they satisfy
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0⩽𝑢∗ ⩽𝑢∗.

Define additionally for 𝜀 > 0

𝑢𝜀∗(𝑡, 𝑤, 𝑠, ℎ) =
𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀

∗(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗ ⩾ 0, (81)

𝑢𝜀
∗(𝑡, 𝑤, 𝑠, ℎ) =

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀,∗(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗ ⩾ 0. (82)

In the case of amarket with sublinear price impact as here (i.e., subquadratic transaction costs),
any finite position can be liquidated fast enough so that the loss of utility is negligible at the leading
order (𝑂(𝜀2𝑚

∗
)) and the penalty due to holding the “wrong” number of shares (𝐻𝜀

𝑡 ≠ 𝐻0
𝑡 , or ℎ ≠

ℎ0(𝑡, 𝑤, 𝑠)) is of order strictly higher than 2𝑚∗, unlike in Moreau et al. (2015) where the authors
had to introduce the adjusted semilimits.
Finally recall the definition of the function 𝜉𝜀 ∶ (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 ↦

ℎ−ℎ0(𝑡,𝑤,𝑠)

𝜀𝑚∗ , which gives
the renormalized displacement from the frictionless optimal strategy.

6.2 The supersolution property

Proposition 6.1. Under the assumption of Theorem 3.7, the function 𝑢∗ is a lower semicontinuous
viscosity supersolution of the second corrector equation (32).

Proof. The proof is based on Moreau et al. (2015, Proof of Proposition 6.4). Lower semicontinuity
of the function holds by the definition of the function. We now show the viscosity property. Let
(𝑡0, 𝑤0, 𝑠0) ∈  and 𝜙 ∈ 1,2,2() such that (𝑡0, 𝑤0, 𝑠0) is a strict minimizer of 𝑢∗ − 𝜙 on  and
that 𝑢∗(𝑡

0, 𝑤0, 𝑠0) − 𝜙(𝑡0, 𝑤0, 𝑠0) = 0. Then, for all (𝑡, 𝑤, 𝑠) ∈ ∖{(𝑡0, 𝑤0, 𝑠0)} the following holds:

0 = 𝑢∗(𝑡
0, 𝑤0, 𝑠0) − 𝜙(𝑡0, 𝑤0, 𝑠0) < 𝑢∗(𝑡, 𝑤, 𝑠) − 𝜙(𝑡, 𝑤, 𝑠). (83)

We want to show that 𝜙 is a supersolution of the second corrector equation (32) at the point
(𝑡0, 𝑤0, 𝑠0), in other words −𝐸2(𝑡

0, 𝑤0, 𝑠0, 𝜙𝑡, 𝜙𝑤, 𝜙𝑠, 𝜙𝑤𝑤, 𝜙𝑤𝑠, 𝜙𝑠𝑠) ⩾ 𝑎(𝑡0, 𝑤0, 𝑠0).
By the definition of 𝑢∗ (see (79)), there exists a family (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ∈  × ℝ𝑑 such that

(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → (𝑡0, 𝑤0, 𝑠0, ℎ0(𝑡0, 𝑤0, 𝑠0)), 𝑢𝜀
∗(𝑡

𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → 𝑢∗(𝑡
0, 𝑤0, 𝑠0)

and 𝑝𝜀 ∶= 𝑢𝜀
∗(𝑡

𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) − 𝜙(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) → 0 as 𝜀 → 0. (84)

By Assumptions 2.2 (continuity of ℎ0 on ), and 3.5 (continuity of 𝜛 on  × ℝ𝑑), there exist
𝜀0, 𝑟0 > 0 such that �̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) ⊂  and for all 𝜀 ∈ (0, 𝜀0] we have

|(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) − (𝑡0, 𝑤0, 𝑠0)|⩽𝑟0
2
, |𝑝𝜀|⩽1. (85)

Let 𝑀 = sup{𝜙(𝑡, 𝑤, 𝑠) | (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0)} + 4 and note that (85) implies |(𝑡, 𝑤, 𝑠) −

(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)|4 ⩾ (𝑟0∕2)
4 on 𝜕𝐵𝑟0(𝑡

0, 𝑤0, 𝑠0), for 0 < 𝜀 ⩽ 𝜀0. We can now choose 𝑐0 > 0 such that
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𝑐0(𝑟0∕2)
4 ⩾ 𝑀 and define 𝜑𝜀 and 𝜑0 on ℝ𝑑+2 by

𝜑𝜀(𝑡, 𝑤, 𝑠) = 𝜙(𝑡, 𝑤, 𝑠) + 𝑝𝜀 − 𝑐0|(𝑡, 𝑤, 𝑠) − (𝑡𝜀, 𝑤𝜀, 𝑠𝜀)|4, (86)

𝜑0(𝑡, 𝑤, 𝑠) = 𝜙(𝑡, 𝑤, 𝑠) − 𝑐0|(𝑡, 𝑤, 𝑠) − (𝑡0, 𝑤0, 𝑠0)|4.
Given the choice of these constants, (85) gives

𝜑𝜀(𝑡, 𝑤, 𝑠)⩽ − 3 on 𝜕𝐵𝑟0(𝑡
0, 𝑤0, 𝑠0) for all 𝜀 ∈ (0, 𝜀0], (87)

and by definition of 𝑝𝜀 (see (84)), we have

−𝑢𝜀
∗(𝑡

𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) + 𝜑𝜀(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) = 0. (88)

□

Claim. There exist a neighborhood around 0 in ℝ𝑑 and 𝐶 > 0 constant such that on this neigh-
borhood sup(𝑡,𝑤,𝑠)∈�̄�𝑟0

(𝑡0,𝑤0,𝑠0) 𝜛(𝑡, 𝑤, 𝑠, 𝜉) ⩽ 𝐶|𝜉|2 and sup(𝑡,𝑤,𝑠)∈�̄�𝑟0
(𝑡0,𝑤0,𝑠0) 𝜛(𝑡, 𝑤, 𝑠, 𝜉)𝜉 ⩽ 𝐶|𝜉|.

This follows from the first corrector equation and the fact that𝜛(𝑡, 𝑤, 𝑠, 0) = 𝜛𝜉(𝑡, 𝑤, 𝑠, 0) = 0

for any (𝑡, 𝑤, 𝑠).𝜛 is a solution of the first corrector equation (31). Then it holds for all (𝑡, 𝑤, 𝑠) ∈

�̄�𝑟0(𝑡
0, 𝑤0, 𝑠0) that 1

2
Tr(𝑐ℎ0

(𝑡, 𝑤, 𝑠)𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 0)) = 𝑎(𝑡, 𝑤, 𝑠). The inequality |𝑋|⩽Tr(𝑋) for sym-

metric nonnegative matrices, the fact that 𝜛 is convex, 𝑐ℎ0 is positive definite and continu-
ous (cf. Assumption 2.2), and the continuity and positivity of 𝑎 yield |𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 𝜉)|⩽𝐶 on a
neighborhood  of 0 in ℝ𝑑, for some 𝐶 > 0 constant. Then, on �̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) × , we have|𝜛𝜉(𝑡, 𝑤, 𝑠, 𝜉)|⩽𝐶|𝜉| and |𝜛(𝑡, 𝑤, 𝑠, 𝜉)|⩽𝐶|𝜉|2, and the claim is proved.
For fixed (𝑡0, 𝑤0, 𝑠0) and 𝑟0, the continuity of 𝐸2, 𝑐ℎ

0 , 𝑎, Φ𝑥, and 𝜎, the regularity of 𝜙 and 𝜛,
the (𝑚 − 1)-homogeneity of Φ𝑥, the fact that𝜛 ∈ 𝑚 by Assumption 3.5 and the last claim allow
us to define the following positive finite constants:

𝐾0 ∶=1 + sup
{|𝐸2

(
𝑡, 𝑤, 𝑠, 𝜑0

𝑡 , 𝜑
0
𝑤, 𝜑0

𝑠 , 𝜑
0
𝑤𝑤, 𝜑0

𝑤𝑠, 𝜑
0
𝑠𝑠

) | ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0)

}
, (89)

𝐾Σ ∶=1 + sup
{|||𝑐ℎ0

(𝑡, 𝑤, 𝑠)
||| ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0)
}
, (90)

𝐾𝜛 ∶=1 + sup

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
|𝜛𝜉(⋅, 𝜉)|

|𝜉| 2

𝑚

+
|𝜛𝜉𝜉(⋅, 𝜉)| + |𝜛(⋅, 𝜉)|

|𝜉|1+ 2

𝑚

⎞⎟⎟⎠(𝑡, 𝑤, 𝑠) ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0), |𝜉|⩾1

⎫⎪⎬⎪⎭
+ sup

⎧⎪⎨⎪⎩
|𝜛(𝑡, 𝑤, 𝑠, 𝜉)|

|𝜉|1+ 2

𝑚

+ |𝜛𝜉𝜉(𝑡, 𝑤, 𝑠, 𝜉)| ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0), |𝜉|⩽1

⎫⎪⎬⎪⎭, (91)
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𝐾′
𝜛 ∶= 1 + sup

{(|𝜛𝜉(⋅, 𝜉)||𝜉| +
|𝜛𝜉𝜉(⋅, 𝜉)| + |𝜛(⋅, 𝜉)||𝜉|2

)
(𝑡, 𝑤, 𝑠) ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0), |𝜉|⩾1

}
+ sup

{(|𝜛(⋅, 𝜉)||𝜉|2 +
|𝜛𝜉(⋅, 𝜉)||𝜉| + |𝜛𝜉𝜉(⋅, 𝜉)|)(𝑡, 𝑤, 𝑠) ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0) |𝜉|⩽1

}
, (92)

𝐾𝑎 ∶=1 + sup
{|𝑎(𝑡, 𝑤, 𝑠)| ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0)
}
, (93)

𝐾Φ𝑥
∶=1 + sup

{ |Φ𝑥(𝑠, 𝑥)|
1 ∨ |𝑥|𝑚−1

∶ |𝑠 − 𝑠0| ⩽ 𝑟0, 𝑥 ∈ ℝ𝑑

}
, (94)

𝛾𝑣 ∶= inf

{
−

𝜕𝑤𝑤𝑉0(𝑡, 𝑤, 𝑠)

2

||||
𝑑∑

𝑗=1

𝜉𝑗𝑠𝑗𝜎
𝑗(𝑠)

||||
2

∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0), |𝜉| = 1

}
. (95)

Additionally, it holds by Assumption 2.2 that 𝑉0
𝑤 > 0 on, so there exists 𝜄 > 0 such that

1

𝜄
⩽𝑉0

𝑤(𝑡, 𝑤, 𝑠)⩽𝜄 for all (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0). (96)

Similarly to Possamaï et al. (2015, LemmaA.2) andMoreau et al. (2015, Proof of Proposition 6.4),
there exists 𝐶∗ > 0 such that for all 𝜂 > 0 we can find a function ℎ𝜂 ∈ ∞(ℝ𝑑, [0, 1]) and 𝑎𝜂 > 1

satisfying

ℎ𝜂 = 1 on �̄�1(0), ℎ𝜂 = 0 on �̄�𝑐
𝑎𝜂

(0), |ℎ𝜂
𝑥(𝑥)| ∧ |𝑥ℎ𝜂

𝑥(𝑥)|⩽𝜂 and |𝑥|2|ℎ𝜂
𝑥𝑥|⩽𝐶∗. (97)

Fix 𝛿 and 𝜂 in (0,1). Note that due to the inequality 1 +
2

𝑚
< 2, there exists 𝜉∗,𝛿 > 0, the unique

positive solution of

(𝜉∗,𝛿)2 =
2(𝜉∗,𝛿)

1+
2

𝑚 𝑑𝐾Σ𝐾𝜛 + 2(𝐾𝑎 + 𝐾0) + 𝑑𝐾Σ𝐾
′
𝜛(𝐶∗ + 2)

(1 − (1 − 𝛿)𝑚)𝛾𝑣
. (98)

Define also the functions

𝐻𝜂,𝛿 ∶ 𝜉 ∈ ℝ𝑑 ↦ (1 − 𝛿)ℎ𝜂

(
𝜉

𝜉∗,𝛿

)
, (99)

𝜓𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗
𝜑𝜀(𝑡, 𝑤, 𝑠) − 𝜀4𝑚

∗
(𝜛𝐻𝜂,𝛿)(𝑡, 𝑤, 𝑠, 𝜉𝜀),

𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) ∶=
𝑉𝜀,∗(𝑡, 𝑤, 𝑠, ℎ) − 𝜓𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗ ,
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where we make a slight abuse of notation for brevity in writing (𝜛𝐻𝜂,𝛿)(𝑡, 𝑤, 𝑠, 𝜉𝜀) for

𝐻𝜂,𝛿(𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ))𝜛(𝑡, 𝑤, 𝑠, 𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ)) for (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑.

We want here to use 𝜓𝜀,𝜂,𝛿 as a test function for the viscosity subsolution property of 𝑉𝜀,∗ (see
Assumption 2.9 and Equation 24). For this, we need interior maximizers of the functions 𝑉𝜀,∗ −

𝜓𝜀,𝜂,𝛿 (or equivalently of 𝐼𝜀,𝜂,𝛿) in �̄�𝑟0 (𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑. However, the supremum of 𝐼𝜀,𝜂,𝛿 may not

be attained or lie on 𝜕�̄�𝑟0(𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑 and we therefore need to modify 𝜓𝜀,𝜂,𝛿.

First, note that for the elements of the family (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀)0<𝜀⩽𝜀0 we have by (88) and nonneg-
ativity of𝜛 (see Assumption 3.5)

𝐼𝜀,𝜂,𝛿(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩾ 0. (100)

Defining 𝜀𝜂,𝛿 ∶= 𝜀0 ∧ 1 ∧ (𝐾𝜛(𝑎𝜂𝜉
∗,𝛿)

1+
2

𝑚 )−1∕(2𝑚∗), similarly to Moreau et al. (2015, Proof of
Proposition 6.4), we obtain the following inequality on �̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑 for all 0 < 𝜀⩽𝜀𝜂,𝛿

𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)⩽𝜑𝜀(𝑡, 𝑤, 𝑠)

+ 𝜀2𝑚
∗ |𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ)|1+ 2

𝑚
𝜛(𝑡, 𝑤, 𝑠, 𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ))

|𝜉𝜀(𝑡, 𝑤, 𝑠, ℎ)|1+ 2

𝑚

11{|𝜉𝜀(𝑡,𝑤,𝑠,ℎ)|⩽𝑎𝜂𝜉∗,𝛿}

⩽𝜑𝜀(𝑡, 𝑤, 𝑠) + 𝜀2𝑚
∗
(𝑎𝜂𝜉

∗,𝛿)
1+

2

𝑚 𝐾𝜛 ⩽ 𝜑𝜀(𝑡, 𝑤, 𝑠) + 1, (101)

where the first inequality holds by (82) and the estimate 0⩽𝐻𝜂,𝛿(𝜉)⩽11{|𝜉|⩽𝑎𝜂𝜉∗,𝛿} and the second
by the definition (91) of 𝐾𝜛 and the choice of 𝜀𝜂,𝛿.
As the right-hand side of (101) is uniformly bounded on �̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) for 0 < 𝜀⩽𝜀𝜂,𝛿, we can
pick (𝑡𝜀,𝜂,𝛿, �̂�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̂𝜀,𝜂,𝛿) ∈ 𝐵𝑟0(𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑 such that

𝐼𝜀,𝜂,𝛿(𝑡𝜀,𝜂,𝛿, �̂�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̂𝜀,𝜂,𝛿) ⩾ sup
𝐵𝑟0

(𝑡0,𝑤0,𝑠0)×ℝ𝑑

{
𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)

}
−

𝜀2𝑚
∗

2
. (102)

We now add a penalization to 𝜓𝜀,𝜂,𝛿 in the direction of ℎ. Let 𝑓 ∈ 2(ℝ+, [0, 1]) be a function
satisfying for some 𝑐 > 0

𝑓(0) = 1, 𝑓(𝑥) = 0 for |𝑥| ⩾ 1, 0⩽𝑓⩽1 and |𝑓′(𝑥)|⩽𝑐|𝑥| in a neighborhood of 0. (103)

Then, define the functions for 𝜂 ∈ (0, 1], 𝛿 ∈ (0, 1) and 𝜀 ∈ (0, 𝜀𝜂,𝛿)

�̄�𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) = 𝜓𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) − 𝜀4𝑚
∗
𝑓(|ℎ − ℎ̂𝜀,𝜂,𝛿|),

𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) =
𝑉𝜀,∗(𝑡, 𝑤, 𝑠, ℎ) − �̄�𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗

= 𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) + 𝜀2𝑚
∗
𝑓(|ℎ − ℎ̂𝜀,𝜂,𝛿|),



BAYRAKTAR et al. 71

and the compact set

𝑄𝜀,𝜂,𝛿 ∶= {(𝑡, 𝑤, 𝑠, ℎ) ∶ (𝑡, 𝑤, 𝑠) ∈ �̄�𝑟0(𝑡
0, 𝑤0, 𝑠0), |ℎ − ℎ̂𝜀,𝜂,𝛿|⩽1}.

Claim. there exists (𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿) ∈ 𝐼𝑛𝑡(𝑄𝜀,𝜂,𝛿) a maximizer of 𝑉∗,𝜀 − �̄�𝜀,𝜂,𝛿 on
𝐵𝑟0(𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑.

The proof of this claim is similar to Moreau et al. (2015, Proof of Proposition 6.4, Step 3). As
𝑓(0) = 1 the definition of 𝐼𝜀,𝜂,𝛿 leads to

𝐼𝜀,𝜂,𝛿(𝑡𝜀,𝜂,𝛿, �̂�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̂𝜀,𝜂,𝛿) = 𝐼𝜀,𝜂,𝛿(𝑡𝜀,𝜂,𝛿, �̂�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̂𝜀,𝜂,𝛿) + 𝜀2𝑚
∗
.

Furthermore, on (�̄�𝑟0(𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑)∖𝑄𝜀,𝜂,𝛿, it holds 𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) = 𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ). This, with

(102), gives

sup
�̄�𝑟0

(𝑡0,𝑤0,𝑠0)×ℝ𝑑

{
𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)

}
= sup

𝑄𝜀,𝜂,𝛿

{
𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)

}
. (104)

The function 𝐼𝜀,𝜂,𝛿 is upper semicontinuous and 𝑄𝜀,𝜂,𝛿 is compact, so there exists a maximizer
(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿) of 𝑉∗,𝜀 − �̄�𝜀,𝜂,𝛿 on 𝑄𝜀,𝜂,𝛿. It is also the maximizer on �̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑.
Now, let (𝑡, 𝑤, 𝑠, ℎ) ∈ 𝜕�̄�𝑟0(𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑. Then, by the bounds 0⩽𝑓⩽1, and 0 < 𝜀𝜂,𝛿 ⩽ 1 and the
two inequalities (87) and (101), we have

𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ)⩽𝐼𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, ℎ) + 𝜀2𝑚
∗
⩽ − 2 + 𝜀2𝑚

∗
⩽ − 1.

On the other hand, in the interior of �̄�𝑟0 (𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑, for the family (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀)0<𝜀⩽𝜀𝜂,𝛿 , it

holds by (100) and definition of 𝐼𝜀,𝜂,𝛿

𝐼𝜀,𝜂,𝛿(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩾ 𝐼𝜀,𝜂,𝛿(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩾ 0

and the maximizer is therefore a point of 𝐵𝑟0(𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑 and the claim is proved.

Thus, for 𝜀 ∈ (0, 𝜀𝜂,𝛿], we have a 1,2,2,2( × ℝ𝑑,ℝ) function �̄�𝜀,𝜂,𝛿 and a local strict maximizer
of 𝑉𝜀,∗ − �̄�𝜀,𝜂,𝛿 denoted (𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿). As 𝑉𝜀,∗ is a subsolution of (24), it holds

𝜀(�̄�𝜀,𝜂,𝛿)(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿)⩽0. (105)

Denoting

�̃�𝜀,𝜂,𝛿(𝑡, 𝑤, 𝑠, 𝜉) = (𝜛𝐻𝜂,𝛿)(𝑡, 𝑤, 𝑠, 𝜉) + 𝑓(|𝜀𝑚∗
𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|)

and �̃�𝜀,𝜂,𝛿 ∶= 𝜉𝜀(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿)

the remainder estimate (65) of Proposition 5.1 for �̄�𝜀,𝜂,𝛿 (in that case the function 𝜈 of Proposi-
tion 5.1 is 𝜑𝜀 and does not depend on ℎ) with (105) yields
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𝐸2

(
𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, 𝜑𝜀

𝑡 , 𝜑
𝜀
𝑠 , 𝜑

𝜀
𝑤, 𝜑𝜀

𝑠𝑤, 𝜑𝜀
𝑤𝑤, 𝜑𝜀

𝑠𝑠

)
+𝐸1

(
𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, �̃�

𝜀,𝜂,𝛿

𝜉
, �̃�

𝜀,𝜂,𝛿

𝜉𝜉

)
+

𝑅𝜀(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿, �̄�𝜀,𝜂,𝛿)

𝜀2𝑚∗ ⩽0. (106)

The family {(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿) | 𝜀 ∈ (0, 𝜀𝜂,𝛿], 𝜂 ∈ (0, 1), 𝛿 ∈ (0, 1)} is bounded. For fixed 𝜂 ∈

(0, 1), 𝛿 ∈ (0, 1), due to the choice of 𝑓 and 𝐻𝜂,𝛿, the assumptions of claim (i) in Proposition 5.1
holds (up to reducing 𝜀0 > 0 for (𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿) to be in the set defined in (66)) and we
obtain the existence of 𝐶 > 0 that may depend on 𝜂, 𝛿 ∈ (0, 1) but not on 𝜀 > 0 such that

|𝑅𝜀(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿, �̄�𝜀,𝜂,𝛿)|
𝜀2𝑚∗ ⩽𝐶(1 + |𝜀𝑚∗

�̃�𝜀,𝜂,𝛿|2). (107)

Claim. Fix 𝜂 ∈ (0, 1) and 𝛿 ∈ (0, 1), the family {�̃�𝜀,𝜂,𝛿 ∶ 𝜀 ∈ (0, 𝜀𝜂,𝛿)} is bounded by 𝐶�̃� . To prove
this, we assume that there exists a sequence (𝜀𝑛)𝑛∈ℕ such that lim𝑛→∞ �̃�𝜀𝑛,𝜂,𝛿 = ∞ with 𝜀𝑛 ∈

(0, 𝜀𝜂,𝛿] for all 𝑛 ∈ ℕ and 𝜀𝑛 → 0 as 𝑛 → ∞ (indeed, the function 𝜉𝜀 is continuous and the family
{(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿) | 𝜀 ∈ (0, 𝜀𝜂,𝛿], 𝜂 ∈ (0, 1), 𝛿 ∈ (0, 1)} is bounded and 𝜀𝑛 bounded away from 0
would imply that the family {�̃�𝜀,𝜂,𝛿 ∶ 𝜀 ∈ (0, 𝜀𝜂,𝛿)} is bounded). Without loss of generality, we can
assume that the sequence (𝜀𝑛) is decreasing. By definition (99) of𝐻𝜂,𝛿 it holds that𝜛𝐻𝜂,𝛿 and its
derivatives vanish at (𝑡, 𝑤, 𝑠, �̃�𝜀𝑛,𝜂,𝛿) for (𝑡, 𝑤, 𝑠) ∈ 𝐵𝑟0(𝑡

0, 𝑤0, 𝑠0) and 𝑛 large enough (say 𝑛 ⩾ 𝑛1).
Then we have for 𝑛 ⩾ 𝑛1,

�̃�
𝜀𝑛,𝜂,𝛿

𝜉
= 𝜕𝜉𝑓(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|), �̃�
𝜀𝑛,𝜂,𝛿

𝜉𝜉
= 𝜕𝜉𝜉𝑓(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|).
Furthermore, it holds for 𝜂 ∈ (0, 1), 𝛿 ∈ (0, 1) and 𝜀 ∈ (0, 𝜀𝜂,𝛿),

𝜕𝜉𝑓(|𝜀𝑚∗
𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|) = 𝜀𝑚

∗
𝑓′(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀𝑛,𝜂,𝛿|)⊤𝐷𝜀𝑛,𝜂,𝛿
1 ,

𝜕𝜉𝜉𝑓(|𝜀𝑚∗
𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|) = 𝜀2𝑚

∗
𝑓′′(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀𝑛,𝜂,𝛿|)𝐷𝜀𝑛,𝜂,𝛿
1 (𝐷

𝜀𝑛,𝜂,𝛿
1 )⊤

+ 𝜀2𝑚
∗
𝑓′(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀𝑛,𝜂,𝛿|)𝐷𝜀𝑛,𝜂,𝛿
2 ,

where 𝜀𝑚
∗
𝐷

𝜀𝑛,𝜂,𝛿
1 and 𝜀2𝑚

∗
𝐷

𝜀,𝜂,𝛿
2 are the gradient and the Hessian of the function 𝜉 ∈ ℝ𝑑 ↦|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀𝑛,𝜂,𝛿| (at the point (𝑡, 𝑤, 𝑠, 𝜉) that is omitted in the equation above). With
the assumption made on 𝑓′ (see (103)), we have for (𝑡, 𝑤, 𝑠, 𝜉) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0) × ℝ𝑑

|||𝜕𝜉𝑓(|𝜀𝑚∗
𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|)|||⩽𝜀𝑚

∗
𝐶𝑓 and|||𝜕𝜉𝜉𝑓(|𝜀𝑚∗

𝜉 + ℎ0(𝑡, 𝑤, 𝑠) − ℎ̂𝜀,𝜂,𝛿|)|||⩽𝜀2𝑚
∗
𝐶𝑓, (108)

where 𝐶𝑓 is a positive constant that can be chosen independent of 𝜂, 𝛿 and 𝜀. Then, by 𝑚-
homogeneity of Φ (remember that𝑚 > 2) and linearity of the trace, there exists 𝐶′

𝑓
> 0 such that

||||−|||𝑉0
𝑤(𝑡, 𝑤, 𝑠)

|||1−𝑚
Φ
(
𝑠, �̃�

𝜀𝑛,𝜂,𝛿

𝜉
(𝑡, 𝑤, 𝑠, 𝜉)

)
+

1

2
Tr

(
𝑐ℎ

0
(𝑡, 𝑤, 𝑠)�̃�

𝜀𝑛,𝜂,𝛿

𝜉𝜉
(𝑡, 𝑤, 𝑠, 𝜉

)||||⩽𝜀2𝑚
∗
𝐶′

𝑓
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on �̄�𝑟0 (𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑. This finally provides the estimate for 𝐸1 (see (27))

𝐸1

(
𝑡𝜀𝑛,𝜂,𝛿, �̃�𝜀𝑛,𝜂,𝛿, 𝑠𝜀𝑛,𝜂,𝛿, �̃�𝜀𝑛,𝜂,𝛿, �̃�

𝜀𝑛,𝜂,𝛿

𝜉
, �̃�

𝜀𝑛,𝜂,𝛿

𝜉𝜉

)
⩾ −𝐶′

𝑓
𝜀2𝑚

∗
−

𝑉0
𝑤𝑤(𝑡𝜀𝑛,𝜂,𝛿, �̃�𝜀𝑛,𝜂,𝛿, 𝑠𝜀𝑛,𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜀𝑛,𝜂,𝛿

𝑗
𝑠
𝜀𝑛,𝜂,𝛿

𝑗
𝜎𝑗(𝑠𝜀𝑛,𝜂,𝛿)

||||
2

⩾ −𝐶′
𝑓
𝜀2𝑚

∗
+ 𝛾𝑣

|||�̃�𝜀𝑛,𝜂,𝛿|||2. (109)

Note that 𝐸2(𝑡, 𝑤, 𝑠, 𝜑𝜀
𝑡 , 𝜑

𝜀
𝑤, 𝜑𝜀

𝑠 , 𝜑
𝜀
𝑤𝑤, 𝜑𝜀

𝑤𝑠, 𝜑
𝜀
𝑠𝑠) does not depend on 𝜉 (or ℎ) and is bounded on

�̄�𝑟0 (𝑡
0, 𝑤0, 𝑠0) for 𝜀 ∈ (0, 1). Hence, putting together (106), (107), and (109), we obtain for some

positive constant 𝐶

𝛾𝑣
|||�̃�𝜀,𝜂,𝛿|||2⩽𝐶(1 + |𝜀𝑚∗

�̃�𝜀,𝜂,𝛿|2),
which contradicts the convergence of �̃�𝜀𝑛,𝜂,𝛿 to infinity while 𝜀𝑛 converges to 0 when 𝑛 goes to∞.
Thus, the claim is proved, and there exists a subsequence in 𝜀 > 0 such that

𝑡𝜀,𝜂,𝛿 → 𝑡𝜂,𝛿, �̃�𝜀,𝜂,𝛿 → �̃�𝜂,𝛿, 𝑠𝜀,𝜂,𝛿 → 𝑠𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿 → ℎ̃𝜂,𝛿 = ℎ0(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

and 𝜉𝜀(𝑡𝜀,𝜂,𝛿, �̃�𝜀,𝜂,𝛿, 𝑠𝜀,𝜂,𝛿, ℎ̃𝜀,𝜂,𝛿) → �̃�𝜂,𝛿.

Using this convergence, the continuity of the functions 𝜙, (𝜑𝜀)𝜀>0, 𝜛, 𝐻𝜂,𝛿, 𝑉0
𝑤𝑤, 𝑉0

𝑤, Φ, 𝑐ℎ
0 , 𝑅𝜀,

𝐸1, and 𝐸2 on their domain, the fact that (𝜑𝜀)𝜀>0 converges uniformly on �̄�𝑟0 (𝑡
0, 𝑤0, 𝑠0) to 𝜑0 as

𝜀 → 0, the claim (iii) of Proposition 5.1 (note that again (𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, ℎ̃𝜂,𝛿) is in the set defined
in (66), as we have taken the limit 𝜀 → 0 of a sequence of elements of the set in (66)), and taking
the limit of (106) as 𝜀 → 0 we obtain the inequality

𝐸1(𝑡
𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, �̃�𝜂,𝛿,𝜕𝜉(𝜛𝐻𝜂,𝛿), 𝜕𝜉𝜉(𝜛𝐻𝜂,𝛿))

⩽ − 𝐸2(𝑡
𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, 𝜑0, 𝜑0

𝑠 , 𝜑
0
𝑤, 𝜑0

𝑤𝑤, 𝜑0
𝑤𝑠, 𝜑

0
𝑠𝑠). (110)

We used as well estimate (108), to conclude that on 𝐵𝑟0(𝑡
0, 𝑤0, 𝑠0) × 𝐵𝐶�̃�

(0), �̃�𝜀𝑛,𝜂,𝛿

𝜉
and �̃�

𝜀𝑛,𝜂,𝛿

𝜉𝜉

converge uniformly to 𝜕𝜉(𝜛𝐻𝜂,𝛿) and 𝜕𝜉𝜉(𝜛𝐻𝜂,𝛿), respectively, as 𝜀 → 0 (where 𝐶�̃� bounds the
family {�̃�𝜀,𝜂,𝛿 ∶ 𝜀 ∈ (0, 𝜀𝜂,𝛿)} by the previous claim).
Note that (𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿) ∈ �̄�𝑟0(𝑡

0, 𝑤0, 𝑠0). Direct computation of 𝜕𝜉𝜉(𝐻
𝜂,𝛿𝜛), the properties

(97) ofℎ𝜂’s derivatives, the definitions of𝐾0, 𝐾𝜛,𝐾′
𝜛 , and𝐾Σ in (89)–(92), the elementary equation

Tr(𝐴) ⩽ 𝑑|𝐴|, the inequality 0 < 𝛿 < 1 and (110) yield the following inequality at the point𝑃𝜂,𝛿 ∶=

(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, �̃�𝜂,𝛿)

−
𝑉0

𝑤𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜂,𝛿

𝑗
𝑠
𝜂,𝛿

𝑗
𝜎𝑗(𝑠𝜂,𝛿)

||||
2

− |𝑉0
𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)|1−𝑚Φ

(
𝑠𝜂,𝛿, 𝜕𝜉(𝜛𝐻𝜂,𝛿)

)
(𝑃𝜂,𝛿)
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⩽ − 𝐸2(𝑡
𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, 𝜑0

𝑡 , 𝜑
0
𝑤, 𝜑0

𝑠 , 𝜑
0
𝑤𝑤, 𝜑0

𝑤𝑠, 𝜑
0
𝑠𝑠) −

1

2
Tr

(
𝑐ℎ

0
𝜕𝜉𝜉(𝜛𝐻𝜂,𝛿)

)(
𝑃𝜂,𝛿

)
⩽𝐾0 +

𝑑

2
𝐾Σ

(
𝐾′

𝜛𝐶∗ + 2𝜂𝐾′
𝜛 + 𝐾𝜛

(|||�̃�𝜂,𝛿|||1+ 2

𝑚 ∨ 1

))
. (111)

We also write this term as

−
𝑉0

𝑤𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜂,𝛿

𝑗
𝑠
𝜂,𝛿

𝑗
𝜎𝑗(𝑠𝜂,𝛿)

||||
2

− (𝑉0
𝑤)1−𝑚Φ

(
𝑠𝜂,𝛿,𝜛𝜉𝐻

𝜂,𝛿 + 𝜛𝐻
𝜂,𝛿

𝜉

)(
𝑃𝜂,𝛿

)
= −

𝑉0
𝑤𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜂,𝛿

𝑗
𝑠
𝜂,𝛿

𝑗
𝜎𝑗(𝑠𝜂,𝛿)

||||
2

− (𝑉0
𝑤)1−𝑚Φ

(
𝑠𝜂,𝛿,𝜛𝜉𝐻

𝜂,𝛿
)(

𝑃𝜂,𝛿
)

+ (𝑉0
𝑤)1−𝑚

(
Φ
(
𝑠𝜂,𝛿,𝜛𝜉𝐻

𝜂,𝛿
)
− Φ

(
𝑠𝜂,𝛿,𝜛𝜉𝐻

𝜂,𝛿 + 𝜛𝐻
𝜂,𝛿

𝜉

))(
𝑃𝜂,𝛿

)
=∶ 𝐼

𝜂,𝛿
1 + 𝐼

𝜂,𝛿
2 . (112)

We first bound 𝐼
𝜂,𝛿
1 ,

𝐼
𝜂,𝛿
1 ⩾ −

𝑉0
𝑤𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜂,𝛿

𝑗
𝑠
𝜂,𝛿

𝑗
𝜎𝑗(𝑠

𝜂,𝛿

𝑗
)
||||
2

− (𝑉0
𝑤)1−𝑚(1 − 𝛿)𝑚Φ

(
⋅,𝜛𝜉

)
(𝑃𝜂,𝛿)

= −(1 − (1 − 𝛿)𝑚)
𝑉0

𝑤𝑤(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

2

||||
𝑑∑

𝑗=1

�̃�
𝜂,𝛿

𝑗
𝑠
𝜂,𝛿

𝑗
𝜎𝑗(𝑠

𝜂,𝛿

𝑗
)
||||
2

− (1 − 𝛿)𝑚
(

1

2
Tr

(
𝑐ℎ

0
𝜕𝜉𝜉𝜛

)
(𝑃𝜂,𝛿) − 𝑎(𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿)

)

⩾ (1 − (1 − 𝛿)𝑚)𝛾𝑣
|||�̃�𝜂,𝛿|||2 − (1 − 𝛿)𝑚

(
𝑑

2
𝐾Σ𝐾𝜛

(|||�̃�𝜂,𝛿|||1+ 2

𝑚 ∨ 1

)
+ 𝐾𝑎

)
. (113)

We obtained the first inequality using that (𝑉0
𝑤)1−𝑚 is nonnegative by Assumption 2.2, that Φ is

nonnegative by construction and homogeneous of degree 𝑚 by Assumption 2.6, we then used
the first corrector equation (31) satisfied by 𝜛 to obtain the second equality and the definitions
of the constants (90)–(95) to obtain the last inequality. By the convexity of Φ, and estimate (96),
we have (we drop the argument of the functions for clarity in the next two sets of computations,
they are taken at the point (𝑡𝜂,𝛿, �̃�𝜂,𝛿, 𝑠𝜂,𝛿, �̃�𝜂,𝛿))

|𝐼𝜂,𝛿2 |⩽𝜄𝑚−1

(|||Φ𝑥

(
𝑠,𝜛𝜉𝐻

𝜂,𝛿
)||| + ||||Φ𝑥

(
𝑠,𝜛𝜉𝐻

𝜂,𝛿 + 𝜛𝐻
𝜂,𝛿

𝜉

)||||
)|||𝜛𝐻

𝜂,𝛿

𝜉

|||
⩽𝜄𝑚−1(1 − 𝛿)𝑚𝐾Φ𝑥

(
1 ∨

|||𝜛𝜉
|||𝑚−1

+ 1 ∨
|||||𝜛𝜉ℎ

𝜂

(
�̃�𝜂,𝛿

𝜉∗,𝛿

)
+

𝜛|𝜉∗,𝛿|ℎ𝜂

𝜉

(
�̃�𝜂,𝛿

𝜉∗,𝛿

)|||||
𝑚−1)

𝜂
𝜛|�̃�𝜂,𝛿|
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⩽𝜄𝑚−1(1 − 𝛿)𝑚2𝐶𝑚𝐾Φ𝑥

(
1 ∨

|||𝜛𝜉
|||𝑚−1

+ 1 ∨
||||| 𝜛|𝜉∗,𝛿|ℎ𝜉

(
�̃�𝜂,𝛿

𝜉∗,𝛿

)|||||
𝑚−1)

𝜂
𝜛|�̃�𝜂,𝛿| , (114)

where the second inequality is obtained by (97), the definition (94) of 𝐾Φ𝑥
and the 𝑚 −

1-homogeneity of Φ𝑥. For the third inequality, we set 𝐶𝑚 ⩾ 1 a constant, so that (𝑎 +

𝑏)𝑚−1⩽𝐶𝑚(𝑎𝑚−1 + 𝑏𝑚−1) for all 𝑎, 𝑏 > 0, and use the estimate 0⩽𝐻𝜂,𝛿⩽1.
Assume now that |�̃�𝜂,𝛿|2∕𝑚 ⩾ 1 and recall that 𝐾𝜛 ⩾ 1, then

|𝐼𝜂,𝛿2 |⩽2𝜄𝑚−1(1 − 𝛿)𝑚𝐶𝑚𝐾Φ𝑥

(
1 ∨

|||𝜛𝜉
|||𝑚−1

+ 1 ∨
|||||𝜂 𝜛|�̃�𝜂,𝛿| |||||

𝑚−1)
𝜂

𝜛|�̃�𝜂,𝛿|
⩽2𝜄𝑚−1(1 − 𝛿)𝑚𝐶𝑚𝐾Φ𝑥

(
1 ∨

||||𝐾𝜛|�̃�𝜂,𝛿| 2

𝑚
||||
𝑚−1

+ 1 ∨
||||𝐾𝜛|�̃�𝜂,𝛿| 2

𝑚
||||
𝑚−1

)
𝜂𝐾𝜛|�̃�𝜂,𝛿| 2

𝑚

⩽4𝜄𝑚−1(1 − 𝛿)𝑚𝐶𝑚𝐾Φ𝑥
𝐾𝑚

𝜛𝜂|�̃�𝜂,𝛿|2, (115)

where the first inequality follows from the property of ℎ𝜂 (see (97)), the second from the definition
(91) of 𝐾𝜛 and the third from the assumption on �̃�𝜂,𝛿. Hence, if |�̃�𝜂,𝛿| ⩾ 1, joining together (111),
(112), (113), and (115), we get(

(1 − (1 − 𝛿)𝑚)𝛾𝑣 − 4𝜄𝑚−1(1 − 𝛿)𝑚𝐶𝑚𝐾Φ𝑥
𝐾𝑚

𝜛𝜂
)|�̃�𝜂,𝛿|2 (116)

⩽(1 − 𝛿)𝑚

⎛⎜⎜⎜⎝𝑑
𝐾Σ𝐾𝜛

|||�̃�𝜂,𝛿|||1+ 2

𝑚

2
+ 𝐾𝑎

⎞⎟⎟⎟⎠ + 𝐾0 +
𝑑

2
𝐾Σ

(
𝐾′

𝜛𝐶∗ + 2𝜂𝐾′
𝜛 + 𝐾𝜛

|||�̃�𝜂,𝛿|||1+ 2

𝑚

)
.

Let 𝜂𝛿 =
(1−(1−𝛿)𝑚)𝛾𝑣

8𝜄𝑚−1(1−𝛿)𝑚𝐶𝑚𝐾Φ𝑥𝐾𝑚
𝜛

, for 𝜂 ∈ (0, 𝜂𝛿 ∧ 1), we have

(1 − (1 − 𝛿)𝑚)𝛾𝑣
|||𝜉𝜂,𝛿|||2

2
⩽
(
(1 − (1 − 𝛿)𝑚)𝛾𝑣 − 4𝜄𝑚−1(1 − 𝛿)𝑚𝐶𝑚𝐾Φ𝑥

𝐾𝑚
𝜛𝜂

)|�̃�𝜂,𝛿|2.
Thus, under the assumption |�̃�𝜂,𝛿| ⩾ 1 and for 𝜂 ∈ (0, 𝜂𝛿 ∧ 1), (116) leads to

|||�̃�𝜂,𝛿|||2⩽2
|||�̃�𝜂,𝛿|||1+ 2

𝑚 𝑑𝐾Σ𝐾𝜛 + 2(𝐾𝑎 + 𝐾0) + 𝑑𝐾Σ𝐾
′
𝜛(𝐶∗ + 2)

(1 − (1 − 𝛿)𝑚)𝛾𝑣
.

This shows, due to the definition (98) of 𝜉∗,𝛿 that for all 𝜂 ∈ (0, 𝜂𝛿 ∨ 1), |�̃�𝜂,𝛿| is bounded by 1 ∨

𝜉∗,𝛿. Hence, up to taking a subsequence, as 𝜂 → 0, for every 𝛿 ∈ (0, 1), there exists (𝑡𝛿, �̃�𝛿, 𝑠𝛿, �̃�𝛿) ∈

�̄�𝑟0(𝑡
0, 𝑤0, 𝑠0) × ℝ𝑑 such that we have the following convergence as 𝜂 → 0,

𝑡𝜂,𝛿 → 𝑡𝛿, �̃�𝜂,𝛿 → �̃�𝛿, 𝑠𝜂,𝛿 → 𝑠𝛿, �̃�𝜂,𝛿 → �̃�𝛿.
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As ℎ𝜂 converges uniformly on compacts to 1 and by continuity of the functions involved, we can
now take the limit to 0 in 𝜂 in (110) to obtain

− 𝐸2(𝑡
𝛿, �̃�𝛿, 𝑠𝛿, 𝜑0

𝑡 , 𝜑
0
𝑤, 𝜑0

𝑠 , 𝜑
0
𝑤𝑤, 𝜑0

𝑤𝑠, 𝜑
0
𝑠𝑠) ⩾ 𝐸1(𝑡

𝛿, �̃�𝛿, 𝑠𝛿, �̃�𝛿, (1 − 𝛿)𝜛𝜉, (1 − 𝛿)𝜛𝜉𝜉)

= −
𝑉0

𝑤𝑤(𝑡𝛿, �̃�𝛿, 𝑠𝛿)

2

||||
𝑑∑

𝑗=1

�̃�𝛿
𝑗
𝑠𝛿
𝑗
𝜎𝑗(𝑠𝛿)

||||
2

+
1 − 𝛿

2
Tr

(
𝑐ℎ

0
(𝑡𝛿, �̃�𝛿, 𝑠𝛿)𝜛𝜉𝜉(𝑡

𝛿, �̃�𝛿, 𝑠𝛿, �̃�𝛿)
)

− (𝑉0
𝑤(𝑡𝛿, �̃�𝛿, 𝑠𝛿))1−𝑚(1 − 𝛿)𝑚Φ

(
𝑠𝛿,𝜛𝜉(𝑡

𝛿, �̃�𝛿, 𝑠𝛿, �̃�𝛿)
)

= (1 − 𝛿)𝑚𝑎(𝑡𝛿, �̃�𝛿, 𝑠𝛿) + ((1 − 𝛿)𝑚 − 1)
𝑉0

𝑤𝑤(𝑡𝛿, �̃�𝛿, 𝑠𝛿)

2

||||
𝑑∑

𝑗=1

�̃�𝛿
𝑗
𝑠𝛿
𝑗
𝜎𝑗(𝑠𝛿)

||||
2

+ ((1 − 𝛿) − (1 − 𝛿)𝑚)
1

2
Tr

(
𝑐ℎ

0
(𝑡𝛿, �̃�𝛿, 𝑠𝛿)𝜛𝜉𝜉(𝑡

𝛿, �̃�𝛿, 𝑠𝛿, �̃�𝛿)
)

⩾ (1 − 𝛿)𝑚𝑎(𝑡𝛿, �̃�𝛿, 𝑠𝛿), (117)

where we used the first corrector equation (31), the signs of 𝑉0
𝑤𝑤(𝑡𝛿, �̃�𝛿, 𝑠𝛿), ((1 − 𝛿) − (1 − 𝛿)𝑚),

((1 − 𝛿)𝑚 − 1), the convexity of𝜛, the positive definiteness of 𝑐ℎ0 , and the fact that the trace of the
product of symmetric positive semidefinite matrices is nonnegative. Due to the compactness of
�̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0), up to a subsequence, we can take the limit of the family (𝑡𝛿, �̃�𝛿, 𝑠𝛿)𝛿∈(0,1) as 𝛿 → 0

and obtain

𝑡𝛿 → 𝑡, �̃�𝛿 → �̃�, 𝑠𝛿 → 𝑠.

Using (83), one can show by a classical argument of the theory of viscosity solution (see, e.g.,
Crandall et al., 1992) that

(𝑡, �̃�, 𝑠) = (𝑡0, 𝑤0, 𝑠0).

Additionally, by continuity of 𝑎,𝐸2, and (𝑡, 𝑤, 𝑠) ↦ 𝑐0|(𝑡, 𝑤, 𝑠) − (𝑡0, 𝑤0, 𝑠0)|we have the following
limits as 𝛿 → 0

−𝐸2(𝑡
𝛿, �̃�𝛿, 𝑠𝛿, 𝜑0

𝑡 , 𝜑
0
𝑤, 𝜑0

𝑠 , 𝜑
0
𝑤𝑤, 𝜑0

𝑤𝑠, 𝜑
0
𝑠𝑠) → −𝐸2(𝑡

0, 𝑤0, 𝑠0, 𝜙𝑡, 𝜙𝑤, 𝜙𝑠, 𝜙𝑤𝑤, 𝜙𝑤𝑠, 𝜙𝑠𝑠),

(1 − 𝛿)𝑚𝑎(𝑡𝛿, �̃�𝛿, 𝑠𝛿) → 𝑎(𝑡0, 𝑤0, 𝑠0),

which gives the supersolution property for 𝑢∗ via (117).

6.3 The subsolution property

Proposition 6.2. Under the assumption of Theorem 3.7, the function 𝑢∗ is an upper semicontinuous
viscosity subsolution of the second corrector equation (32).

Proof. The proof is based onMoreau et al. (2015, Proof of Proposition 6.3). Let (𝑡0, 𝑤0, 𝑠0) ∈  and
𝜙 ∈ 1,2,2(, ℝ) such that (𝑡0, 𝑤0, 𝑠0) is a strict maximizer of 𝑢∗ − 𝜙 on. Then, for all (𝑡, 𝑤, 𝑠) ∈
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∖{(𝑡0, 𝑤0, 𝑠0)} it holds

0 = 𝑢∗(𝑡0, 𝑤0, 𝑠0) − 𝜙(𝑡0, 𝑤0, 𝑠0) > 𝑢∗(𝑡, 𝑤, 𝑠) − 𝜙(𝑡, 𝑤, 𝑠). (118)

By definition of 𝑢∗ (see (81)), there exists a family (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀)𝜀>0 such that

(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → (𝑡0, 𝑤0, 𝑠0, ℎ0(𝑡0, 𝑤0, 𝑠0)), 𝑢𝜀,∗(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → 𝑢∗(𝑡0, 𝑤0, 𝑠0)

and 𝑝𝜀 ∶= 𝑢𝜀,∗(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) − 𝜙(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) → 0. (119)

By Assumption 3.2 and the regularity of ℎ0, there exist 𝜀0, 𝑟0 > 0, 𝛼 ∈ (0, 𝑟0), 𝜀0 < 1 such that
�̄�𝑟0 (𝑡

0, 𝑤0, 𝑠0) ⊆  , and such that for all 𝜀 ∈ (0, 𝜀0), we have

𝑏∗ ∶= sup
{
𝑢𝜀∗(𝑡, 𝑤, 𝑠, ℎ) ∶ ||(𝑡, 𝑤, 𝑠, ℎ) − (𝑡0, 𝑤0, 𝑠0, ℎ0(𝑡0, 𝑤0, 𝑠0))||⩽𝑟0, 𝜀 ∈ (0, 𝜀0)

}
< ∞,

and |ℎ0(𝑡, 𝑤, 𝑠) − ℎ0(𝑡0, 𝑤0, 𝑠0)| ⩽ 𝑟0
4
if |(𝑡, 𝑤, 𝑠) − (𝑡0, 𝑤0, 𝑠0)| ⩽ 𝛼.

For (𝑡, 𝑤, 𝑠) ∈ (�̄�𝛼(𝑡
0, 𝑤0, 𝑠0)∖𝐵𝛼∕2(𝑡

0, 𝑤0, 𝑠0)) and (𝑡′, 𝑤′, 𝑠′) ∈ �̄�𝛼∕4(𝑡
0, 𝑤0, 𝑠0) we have

||(𝑡, 𝑤, 𝑠) − (𝑡′, 𝑤′, 𝑠′)||4 ⩾
(𝛼

4

)4

.

Denote 𝑀 ∶= 2 + 𝑏∗ + sup{−𝜙(𝑡, 𝑤, 𝑠) ∶ (𝑡, 𝑤, 𝑠) ∈ 𝐵𝛼(𝑡
0, 𝑤0, 𝑠0)} < ∞. Due to Assumption 3.5,

we can define 𝛿0 ∶= inf {(𝑡,𝑤,𝑠)∈�̄�𝑟0
,|𝜉|⩾ 𝑟0

4
}
𝜛(𝑡,𝑤,𝑠,𝜉)|𝜉|1+2∕𝑚

> 0 and

𝑐0 ∶=
𝑀(

𝛼

4

)4

∧ 𝛿2
0

(
𝑟0

4

)1+
2

𝑚

.

The growth of𝜛 in its last variable at infinity assumed in Assumption 3.5 provides the inequal-
ity

𝜛2

(
𝑡𝜀, 𝑤𝜀, 𝑠𝜀,

ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)

𝜀𝑚∗

)
⩽ 𝐶(𝑡𝜀, 𝑤𝜀, 𝑠𝑒)

|ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)|2+4∕𝑚

𝜀𝑚∗(2+4∕𝑚)
.

Then, the continuity of ℎ0 (Assumption 2.2), and the convergence of (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) to the point
(𝑡0, 𝑤0, 𝑠0, ℎ0) allows us to choose 𝜀0 > 0 smaller to also have for 0 < 𝜀 ⩽ 𝜀0,

𝜀
2𝑚∗(1+

2

𝑚
)
𝜛2

(
𝑡,𝜀 , 𝑤𝜀, 𝑠𝜀,

ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)

𝜀𝑚∗

)
⩽

1

3𝑐0
. (120)

As𝑚 > 2, we can also take 𝜀0 small enough so that

𝜀2𝑚
∗
𝜛

(
𝑡𝜀, 𝑤𝜀, 𝑠𝜀,

ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)

𝜀𝑚∗

)
⩽

1

3
, (121)

||(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) − (𝑡0, 𝑤0, 𝑠0)||4 ⩽
𝛼

4
, and |𝑝𝜀| ⩽ 1, for 𝜀 ∈ (0, 𝜀0).
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We now define

�̃�𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑐0𝜀
2𝑚∗(1+

2

𝑚
)
𝜛2

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
,

𝜙𝜀(𝑡, 𝑤, 𝑠, ℎ)∶= 𝑐0
(
(𝑡 − 𝑡𝜀)4 + (𝑤 − 𝑤𝜀)4 + (𝑠 − 𝑠𝜀)4

)
+ �̃�𝜀(𝑡, 𝑤, 𝑠, ℎ).

By (120), we have |𝜙𝜀(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀)| ⩽ 1∕3. The definitions of 𝛿0, 𝑐0, and𝑀 were set so that 𝜙𝜀 ⩾ 𝑀

if |ℎ − ℎ0(𝑡, 𝑤, 𝑠)| ⩾ 𝑟0

4
or if (𝑡, 𝑤, 𝑠) ∈ �̄�𝛼(𝑡

0, 𝑤0, 𝑠0)∖𝐵𝛼∕2(𝑡
0, 𝑤0, 𝑠0), for 𝜀 ∈ (0, 𝜀0). Now define for

𝜂 ∈ (0, 1)

�̄�𝜀 ∶= 𝑝𝜀 + 𝜙, 𝜑𝜀 ∶= �̄�𝜀 + 𝜙𝜀,

𝜓𝜀,𝜂(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗
(�̄�𝜀 + 𝜙𝜀)(𝑡, 𝑤, 𝑠, ℎ)

− 𝜀4𝑚
∗
(1 + 𝜂)𝜛

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
.

□

Claim. 𝑉𝜀
∗ − 𝜓𝜀,𝜂 is a lower semicontinuous function that, for 0 < 𝜀 ⩽ 𝜀0, attains its min-

imum on �̄�𝛼(𝑡
0, 𝑤0, 𝑠0) × �̄�𝑟0(ℎ

0(𝑡0, 𝑤0, 𝑠0)) at an interior point (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) such that|ℎ̃𝜀,𝜂 − ℎ0(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)| + |ℎ̃𝜀,𝜂 − ℎ0(𝑡0, 𝑤0, 𝑠0)| ⩽ 𝑟1 for some 𝑟1 > 0 independent of 𝜀, 𝜂. Indeed
by (120), (121), and the inequality 0 < 𝜂 < 1, it holds that 𝜀−𝑚∗

(𝑉𝜀
∗ − 𝜓𝜀,𝜂)(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) < 1, while

if (𝑡, 𝑤, 𝑠) ∈ �̄�𝛼(𝑡
0, 𝑤0, 𝑠0)∖𝐵𝛼∕2(𝑡

0, 𝑤0, 𝑠0) or if (𝑡, 𝑤, 𝑠) ∈ �̄�𝛼∕2(𝑡
0, 𝑤0, 𝑠0) and |ℎ − ℎ0(𝑡, 𝑤, 𝑠)| ⩾

𝑟0

4
, by definition of 𝑏∗, the bound on 𝑝𝜀, the definition of 𝑀, 𝑐0, the fact that (𝑡𝜀, 𝑤𝜀, 𝑠𝜀) ∈

�̄�𝛼∕4(𝑡
0, 𝑤0, 𝑠0) and the nonnegativity of𝜛, the inequality 𝜀−𝑚∗

(𝑉𝜀
∗ − 𝜓𝜀,𝜂)(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩾ 1holds.

Furthermore, by the triangular inequality, we can choose 𝑟1 = 5𝑟0∕4.

Denote �̃�𝜀,𝜂 = 𝜀−𝑚∗
(ℎ̃𝜀,𝜂 − ℎ0(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)). Now using the viscosity property of 𝑉𝜀

∗ at
(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) for the test function 𝜓𝜀,𝜂, we obtain

𝜀(𝜓𝜀,𝜂)(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) ⩾ 0.

Using Equation (65) from Proposition 5.1 applied to 𝜓𝜀,𝜂 with 𝜈 = 𝜑𝜀 and 𝜒 = (1 + 𝜂)𝜛, we
get

0⩽𝜀(𝜓𝜀,𝜂)(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) = 𝜀2𝑚
∗
𝐸2(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, 𝜑𝜀
𝑡 , 𝜑

𝜀
𝑤, 𝜑𝜀

𝑠 , 𝜑
𝜀
𝑤𝑤, 𝜑𝜀

𝑤𝑠, 𝜑
𝜀
𝑠𝑠)

+ 𝜀2𝑚
∗
𝐸1(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂, (1 + 𝜂)𝜛𝜉(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂), (1 + 𝜂)𝜛𝜉𝜉(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂))

+ 𝑅𝜀(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂, 𝜓𝜀,𝜂)

+ 𝜀2𝑚
∗(

(𝜕𝑤𝜓𝜀)1−𝑚(Φ(𝑠, (1 + 𝜂)𝜛𝜉) − Φ(𝑠, (1 + 𝜂)𝜛𝜉 + 𝜀−𝑚∗
�̃�𝜀

ℎ
))
)
(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂), (122)

where we have slightly abused notation for 𝜛𝜉 because this function does not depend on ℎ but
on 𝜉. Note that this last term is in fact nonpositive. Indeed,
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(1 + 𝜂)𝜛𝜉 + 𝜀−𝑚∗
�̃�𝜀

ℎ
= (1 + 𝜂)𝜛𝜉

⎛⎜⎜⎝1 +
2𝑐0𝜀

4𝑚∗

𝑚

1 + 𝜂
𝜛

⎞⎟⎟⎠
and𝜛 ⩾ 0. Thus, (1 +

2𝑐0𝜀
4𝑚∗∕𝑚

1+𝜂
𝜛) ⩾ 1 and by the𝑚-homogeneity of Φ

𝜀2𝑚
∗(

(𝜕𝑤𝜓𝜀)1−𝑚(Φ(𝑠, (1 + 𝜂)𝜛𝜉) − Φ(𝑠, (1 + 𝜂)𝜛𝜉 + 𝜀−𝑚∗
�̃�𝜀

ℎ
))
)

= 𝜀2𝑚
∗
(𝜕𝑤𝜓𝜀)1−𝑚Φ(𝑠, (1 + 𝜂)𝜛𝜉)

⎛⎜⎜⎜⎝1 −
⎛⎜⎜⎝1 +

2𝑐0𝜀
4𝑚∗

𝑚

1 + 𝜂
2𝑐0𝜛

⎞⎟⎟⎠
𝑚⎞⎟⎟⎟⎠ ⩽ 0. (123)

Claim. Up to reducing 𝜀0, �̃�𝜀,𝜂 ∶= (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) is in the set defined in (66) for 0 < 𝜀 ⩽ 𝜀0.
We need to bound |(𝑉0

𝑤 − 𝜕𝑤𝜓𝜀)(�̃�𝜀,𝜂)|. We have
(
𝑉0

𝑤 − 𝜕𝑤𝜓𝜀,𝜂
)
(�̃�𝜀,𝜂) = 𝜀2𝑚

∗

(
𝜙𝑤(�̃�𝜀,𝜂) + 4𝑐0|�̃�𝜀,𝜂 − 𝑤𝜀|3 + 2𝑐0𝜀

2𝑚∗(1+
2

𝑚
)
(𝜛𝜕𝑤𝜛)(�̃�𝜀,𝜂)

)
+ 𝜀4𝑚

∗
(1 + 𝜂)𝜕𝑤𝜛(�̃�𝜀,𝜂).

As 𝜛 ∈ 𝑚 by Assumption 3.5, we have on �̄�𝛼(𝑡
0, 𝑤0, 𝑠0) × �̄�𝑟0(ℎ

0(𝑡0, 𝑤0, 𝑠0)) with 𝐶0 =

sup{𝐶(𝑡, 𝑤, 𝑠) | (𝑡, 𝑤, 𝑠) ∈ �̄�𝛼(𝑡
0, 𝑤0, 𝑠0)}

𝜀
𝑚∗(1+

2

𝑚
)
𝜛

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
⩽ 𝐶0|ℎ − ℎ0(𝑡, 𝑤, 𝑠)|1+ 2

𝑚 ,

𝜀
𝑚∗(1+

2

𝑚
)
(
𝜛𝑤 − 𝜀−𝑚∗(

ℎ0
𝑤(𝑡, 𝑤, 𝑠)

)⊤
𝜛𝜉

)(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)
⩽ 𝐶0|ℎ − ℎ0(𝑡, 𝑤, 𝑠)|1+ 2

𝑚 .

As |ℎ̃𝜀,𝜂 − ℎ0(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)| is bounded, we get that |𝜀−2𝑚∗
(𝑉0

𝑤 − 𝜕𝑤𝜓𝜀,𝜂)(�̃�𝜀,𝜂)| is too. Then tak-
ing 𝜀0 smaller if necessary, and using that 𝑉0

𝑤 is bounded away from 0 on 𝐵𝑟0(𝑡
0, 𝑤0, 𝑠0), the

claim obtains.
Similarly, the scaling of 𝜛 and its derivatives yields that �̃�𝜀 and its derivatives in fact admit

uniform bounds in 𝜀. Then, we can apply item (ii) of Proposition 5.1 and we have on the bounded
set {(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) | 𝜀 ∈ (0, 𝜀0), 𝜂 ∈ (0, 1)}

|𝑅𝜀(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂, 𝜓𝜀,𝜂)|
𝜀2𝑚∗ ⩽𝐶(1 + |�̃�𝜀,𝜂|2) 1

2
+

1

𝑚

for 𝐶 that does not depend on 𝜀 nor 𝜂. Then, due to the continuity of ℎ0, 𝐸2, the regularity of 𝜑𝜀,
and the boundedness of (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂){𝜀∈(0,𝜀0], 𝜂∈(0,1)}, we obtain the inequality

𝐸2(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, 𝜑𝜀

𝑡 , 𝜑
𝜀
𝑤, 𝜑𝜀

𝑠, 𝜑
𝜀
𝑤𝑤, 𝜑𝜀

𝑤𝑠, 𝜑
𝜀
𝑠𝑠) +

|𝑅𝜀(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂, 𝜓𝜀,𝜂)|
𝜀2𝑚∗

⩽𝐶(1 + |�̃�𝜀,𝜂|2) 1

2
+

1

𝑚
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for some 𝐶 > 0 independent of 𝜀 and 𝜂. This inequality implies, due to (122) and (123), the follow-
ing estimate:

− 𝐸1(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂, (1 + 𝜂)𝜛𝜉(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂), (1 + 𝜂)𝜛𝜉𝜉(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂))

⩽ 𝐶(1 + |�̃�𝜀,𝜂|2) 1

2
+

1

𝑚 . (124)

Additionally, using the definition of 𝐸1 from (27), we have

− 𝐸1(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂, (1 + 𝜂)𝜛𝜉(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂), (1 + 𝜂)𝜛𝜉𝜉(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂))

=
𝑉0

𝑤𝑤(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)

2

||||
𝑑∑

𝑗=1

�̃�
𝜀,𝜂

𝑗
𝑠𝜀,𝜂𝜎𝑗(𝑠𝜀,𝜂)

||||
2

+ (𝑉0
𝑤(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂))1−𝑚Φ

(
𝑠𝜀,𝜂,

(
1 + 𝜂)𝜛𝜉

(
𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂)

)
−

1 + 𝜂

2
Tr

(
𝑐ℎ

0
(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)𝜛𝜉𝜉(𝑡

𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂)
)
.

Wenowuse that𝜛 solves the first corrector equation (31) to obtain the equation (we drop the argu-
ment of the functions for clarity: (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂) for 𝑉0, its derivatives and 𝑎, (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂)

for𝜛 and its derivatives)

− 𝐸1(𝑡
𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, �̃�𝜀,𝜂, (1 + 𝜂)𝜛𝜉, (1 + 𝜂)𝜛𝜉𝜉) = −𝜂

𝑉0
𝑤𝑤

2

||||
𝑑∑

𝑗=1

�̃�
𝜀,𝜂

𝑗
𝑠𝜀,𝜂𝜎𝑗(𝑠𝜀,𝜂)

||||
2

− (1 + 𝜂)𝑎 + (𝑉0
𝑤)1−𝑚

(
Φ
(
𝑠𝜀,𝜂, (1 + 𝜂)𝜛𝜉

)
− (1 + 𝜂)Φ

(
𝑠𝜀,𝜂,𝜛𝜉

))
. (125)

We note that due to the boundedness of (𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂){𝜀∈(0,𝜀0], 𝜂∈(0,1)}, and the continuity of 𝑎
the term (1 + 𝜂)𝑎(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂) is bounded uniformly in 𝜀 > 0 and 𝜂 ∈ (0, 1). Additionally, we
have by𝑚-homogeneity and nonnegativity of Φ for 𝜂 ∈ (0, 1)

Φ
(
𝑠𝜀,𝜂, (1 + 𝜂)𝜛𝜉

)
− (1 + 𝜂)Φ

(
𝑠𝜀,𝜂,𝜛𝜉

)
= ((1 + 𝜂)𝑚 − (1 + 𝜂))Φ

(
𝑠𝜀,𝜂,𝜛𝜉

)
⩾ 0.

Putting together this inequality with (124) and (125) finally yields

−𝜂
𝑉0

𝑤𝑤(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)

2

||||
𝑑∑

𝑗=1

�̃�
𝜀,𝜂

𝑗
𝑠𝜀,𝜂𝜎𝑗(𝑠𝜀,𝜂)

||||
2

⩽𝐶(1 + |�̃�𝜀,𝜂|2) 1

2
+

1

𝑚

for 𝐶 > 0 independent of 𝜀 > 0 and 𝜂 ∈ (0, 1). Due to the nondegeneracy of 𝜎𝜎⊤, and the fact that
(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂){𝜀∈(0,𝜀0], 𝜂∈(0,1)} ⊆ 𝐵𝑟0(𝑡

0, 𝑤0, 𝑠0) ⊆ , we can find 𝑐 > 0 such that

−𝜂
𝑉0

𝑤𝑤(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂)

2

||||
𝑑∑

𝑗=1

�̃�
𝜀,𝜂

𝑗
𝑠𝜀,𝜂𝜎𝑗(𝑠𝜀,𝜂)

||||
2

⩾ 𝜂𝑐|�̃�𝜀,𝜂|2.
Thus, as𝑚 > 2, we deduce that for all 𝜂 ∈ (0, 1), the family {�̃�𝜀,𝜂 ∶ 𝜀 ∈ (0, 𝜀0]} is bounded.



BAYRAKTAR et al. 81

Now, for every 𝜂 ∈ (0, 1), we extract a subsequence of {(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂, �̃�𝜀,𝜂) | 𝜀 ∈ (0, 𝜀0)}

converging to (𝑡𝜂, �̃�𝜂, 𝑠𝜂, ℎ̃𝜂, �̃�𝜂). Additionally, the boundedness of {�̃�𝜀,𝜂 ∶ 𝜀 ∈ (0, 𝜀0]} allows us
to use the last point of Proposition 5.1 to pass to the limit in (122) and obtain that for all 𝜂 ∈

(0, 1), (note that 𝜑𝜀 converges uniformly on compacts to 𝜙 and that (𝑡𝜂, �̃�𝜂, 𝑠𝜂, ℎ̃𝜂) as limit of
(𝑡𝜀,𝜂, �̃�𝜀,𝜂, 𝑠𝜀,𝜂, ℎ̃𝜀,𝜂) along a subsequence is in the set of (66))

0⩽𝐸2(𝑡
𝜂, �̃�𝜂, 𝑠𝜂, 𝜙𝑡, 𝜙𝑤, 𝜙𝑠, 𝜙𝑤𝑤, 𝜙𝑤𝑠, 𝜙𝑠𝑠)

+ 𝐸1(𝑡
𝜂, �̃�𝜂, 𝑠𝜂, �̃�𝜂, (1 + 𝜂)𝜛𝜉(𝑡

𝜂, �̃�𝜂, 𝑠𝜂, �̃�𝜂), (1 + 𝜂)𝜛𝜉𝜉(𝑡
𝜂, �̃�𝜂, 𝑠𝜂, �̃�𝜂)).

We use (125) one more time and obtain that

𝐸2(𝑡
𝜂, �̃�𝜂, 𝑠𝜂, 𝜙𝑡, 𝜙𝑤, 𝜙𝑠, 𝜙𝑤𝑤, 𝜙𝑤𝑠, 𝜙𝑠𝑠) ⩾ −(1 + 𝜂)𝑎.

Note that 𝜉𝜂 is not present in this inequality and (𝑡𝜂, �̃�𝜂, 𝑠𝜂) is bounded for 𝜂 ∈ (0, 1). One can
now take the limit 𝜂 → 0 to obtain due to (118) (using classical arguments of the theory of viscosity
solutions, see Crandall et al., 1992) that a subsequence of (𝑡𝜂, �̃�𝜂, 𝑠𝜂) converges to (𝑡0, 𝑤0, 𝑠0). Then
passing to the limit in the equality above, we obtain

−𝐸2(𝑡
0, 𝑤0, 𝑠0, 𝜙𝑡, 𝜙𝑤, 𝜙𝑠, 𝜙𝑤𝑤, 𝜙𝑤𝑠, 𝜙𝑠𝑠)⩽𝑎(𝑡0, 𝑤0, 𝑠0),

which gives the viscosity subsolution property.

6.4 The terminal condition

Proposition 6.3. Under the assumption of Theorem 3.7, 𝑢∗ satisfies

lim sup
(𝑡,𝑤′,𝑠′)→(𝑇,𝑤,𝑠)

𝑢∗(𝑡, 𝑤′, 𝑠′) = 0 for all (𝑤, 𝑠) ∈ ℝ++ × ℝ𝑑
++.

Thus, the upper semicontinuous extension of 𝑢∗ to𝑇 and lower semicontinuous extensions of 𝑢∗ to𝑇 satisfy

𝑢∗(𝑇,𝑤, 𝑠) = 𝑢∗(𝑇, 𝑤, 𝑠) = 0.

Proof. Due to the inequality 0 ⩽ 𝑢∗ ⩽ 𝑢∗, it is sufficient to show that 𝑢∗(𝑇,𝑤, 𝑠) ⩽ 0. Assume
on the contrary that 𝑢∗(𝑇,𝑤0, 𝑠0) ⩾ 5𝛿 > 0 for some (𝑤0, 𝑠0) ∈ ℝ𝑑+1

++ . Similarly to the proof of
Proposition 6.2, by definition of 𝑢∗ (see (81)) there exists a sequence (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀)𝜀>0 such that

(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → (𝑇,𝑤0, 𝑠0, ℎ0(𝑇, 𝑤0, 𝑠0)), 𝑢𝜀,∗(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) → 𝑢∗(𝑇,𝑤0, 𝑠0).

Note that, the functions 𝑢∗ and 𝑢∗ are only defined on and then extended by semicontinuity to
{𝑇} × ℝ𝑑+1

++ , and that therefore, we can take 𝑡𝜀 < 𝑇 for all 𝜀 > 0.
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Similarly to the proof of Proposition 6.2, there exist 𝜀0 > 0, 𝑟0 ⩾ 𝛼 > 0, 𝑐0 > 0 large enough such
that for all 𝜀 ∈ (0, 𝜀0], we have the following estimates

|ℎ0(𝑡, 𝑤, 𝑠) − ℎ0(𝑇, 𝑤0, 𝑠0)|⩽𝑟0
4
, ∀(𝑡, 𝑤, 𝑠) ∈  such that |(𝑡, 𝑤, 𝑠) − (𝑇,𝑤0, 𝑠0)|⩽𝛼,

|(𝑡𝜀, 𝑤𝜀, 𝑠𝜀) − (𝑇,𝑤0, 𝑠0)|⩽𝛼

4
, 𝑢𝜀,∗(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩾ 4𝛿, |ℎ𝜀 − ℎ0(𝑡𝜀, 𝑤𝜀, 𝑠𝜀)|2 ⩽

𝛿

𝑐0

and 𝑢𝜀,∗(𝑡, 𝑤, 𝑠, ℎ) − �̄�𝜀(𝑡, 𝑤, 𝑠, ℎ) < 0 on 𝐵𝛼∖𝐵0,𝛼,

where

�̄�𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑐0
(|(𝑡, 𝑤, 𝑠) − (𝑡𝜀, 𝑤𝜀, 𝑠𝜀)|4 + |ℎ − ℎ0(𝑡, 𝑤, 𝑠)|2),

𝐵𝛼 ∶= (𝑇 − 𝛼, 𝑇) × 𝐵𝛼(𝑤
0, 𝑠0) × 𝐵𝑟0(ℎ

0(𝑇, 𝑤0, 𝑠0)),

𝐵0,𝛼 ∶=
{
(𝑡, 𝑤, 𝑠, ℎ) ∈ 𝐵𝛼 ∶ (𝑡, 𝑤, 𝑠) ∈

(
𝑇 −

𝛼

2
, 𝑇

)
× 𝐵𝛼∕2(𝑤

0, 𝑠0)

and ℎ ∈ 𝐵𝑟0∕2(ℎ
0(𝑇, 𝑤0, 𝑠0))

}
.

Define the functions 𝜙𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝛿
𝑇−𝑡

𝑇−𝑡𝜀
+ �̄�𝜀(𝑡, 𝑤, 𝑠, ℎ) and 𝜓𝜀 ∶= 𝑉0 − 𝜀2𝑚

∗
𝜙𝜀. Then, simi-

larly to the proof of Moreau et al. (2015, Proposition 6.5), the function𝑉𝜀
∗ − 𝜓𝜀 admits a local mini-

mizer (𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀) ∈ �̄�𝛼 satisfying 𝑢𝜀,∗(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀) ⩾ 𝛿 and 𝑡𝜀 < 𝑇. Indeed, we have 𝜀−2𝑚∗
(𝑉𝜀

∗ −

𝜓𝜀)(𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀) ⩽ −2𝛿 and on 𝐵𝛼∖𝐵0,𝛼 it holds that (𝑉𝜀
∗ − 𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ) > 0.

Now, using that𝑉𝜀
∗ is a supersolution of (25) by Assumption 2.9, and applying Proposition 5.1(ii)

to 𝜓𝜀 with 𝜈 = 𝜙𝜀 and𝜛 = 0, Equation (65) yields

0⩽𝜀(𝜓𝜀)(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀) = 𝜀2𝑚
∗
𝐸2(𝑡

𝜀, �̃�𝜀, 𝑠𝜀, 𝜙𝜀
𝑡 , 𝜙

𝜀
𝑤, 𝜙𝜀

𝑠, 𝜙
𝜀
𝑤𝑤, 𝜙𝜀

𝑤𝑠, 𝜙
𝜀
𝑠𝑠)

+ 𝜀2𝑚
∗
𝐸1(𝑡

𝜀, �̃�𝜀, 𝑠𝜀, �̃�𝜀, 0, 0) + |𝑅𝜀(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀, 𝜓𝜀)|
+ 𝜀2𝑚

∗
(𝜕𝑤𝜓𝜀(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀))1−𝑚(Φ(𝑠𝜀, 0) − Φ(𝑠𝜀, 𝜀−𝑚∗

�̄�ℎ(𝑡
𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀))), (126)

with

|𝑅𝜀(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀, 𝜓𝜀)|
𝜀2𝑚∗ ⩽𝐶(1 + |�̃�𝜀|2) 1

2
+

1

𝑚 .

Note that up to reducing 𝜀0 > 0 and taking 0 < 𝛿 ⩽ 𝛿𝜀 for some small enough 𝛿𝜀, the point
(𝑡𝜀, �̃�𝜀, 𝑠𝜀) is in the set defined in (66). Now, the last term in (126) is

−(𝑉0
𝑤(𝑡𝜀, �̃�𝜀, 𝑠𝜀) − 𝜀2𝑚

∗
�̄�𝜀
𝑤(𝑡𝜀, �̃�𝜀, 𝑠𝜀, ℎ̃𝜀))1−𝑚Φ(𝑠𝜀, 2𝑐0�̃�

𝜀) = −𝐶𝜀|�̃�𝜀|𝑚,

where 𝐶𝜀 is bounded from below away from 0 as 𝜀 → 0 and �̃�𝜀 = 𝜀−𝑚∗
(ℎ̃𝜀 − ℎ0(𝑡𝜀, �̃�𝜀, 𝑠𝜀)).
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The set {(𝑡𝜀, �̃�𝜀, 𝑠𝜀) | 𝜀 ∈ (0, 𝜀0)} is bounded, 𝐸2 is continuous, 𝜙𝜀 and its first- and second-order
derivatives in𝑤 and 𝑠 are 0 at (𝑡𝜀, 𝑤𝜀, 𝑠𝜀, ℎ𝜀). This, with the definition of 𝐸1 and 𝐸2 in (27) and (28)
yields

𝛿

𝑇 − 𝑡𝜀
+

𝑉0
𝑤𝑤(𝑡𝜀, �̃�𝜀, 𝑠𝜀)

2

||||
𝑑∑

𝑗=1

�̃�𝜀
𝑗
𝑠𝜀
𝑗
𝜎𝑗

||||
2

⩽ 𝐶(1 + |�̃�𝜀|2) 1

2
+

1

𝑚 − 𝐶𝜀|�̃�𝜀|𝑚.

Thus, using that 𝜎𝜎⊤ is positive definite, that 𝑠 is bounded away from 0 on {(𝑡𝜀, �̃�𝜀, 𝑠𝜀) | 𝜀 ∈ (0, 𝜀0)}

and that𝑉0
𝑤𝑤 is negative and bounded fromabove by−𝐶 < 0 on {(𝑡𝜀, �̃�𝜀, 𝑠𝜀) | 𝜀 ∈ (0, 𝜀0)}, we obtain

𝛿

𝑇 − 𝑡𝜀
− 𝐶|�̃�𝜀|2 ⩽ 𝐶(1 + |�̃�𝜀|2) 1

2
+

1

𝑚 − 𝐶𝜀|�̃�𝜀|𝑚.

Now, 𝑚 > 2 implies that both �̃�𝜀 and 𝛿

𝑇−𝑡𝜀
are bounded. This is a contradiction with 𝑡𝜀 → 𝑇 and

the result is proved. □

Proof of Theorem 3.7. A combination of Propositions 6.1–6.3 allows us to claim that 𝑢∗ and 𝑢∗ are,
respectively, viscosity subsolution and supersolution of the second corrector equation (32) with 0
final condition. They also satisfy 𝑢∗ ⩾ 𝑢∗ due to their definition as limsup and liminf. Due to the
Assumption 3.5(ii), we also have 𝑢∗ ⩽ 𝑢∗. Denote 𝑢 = 𝑢∗ = 𝑢∗ that is the unique viscosity solution
of the (32). We now have the following inequalities:

lim inf
𝜀↓0

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠))

𝜀2𝑚∗ ⩾ lim inf
𝜀↓0

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀,∗(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠))

𝜀2𝑚∗

⩾ 𝑢∗(𝑡, 𝑤, 𝑠) = 𝑢(𝑡, 𝑤, 𝑠) = 𝑢∗(𝑡, 𝑤, 𝑠)

⩾ lim sup
𝜀↓0

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀
∗(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠))

𝜀2𝑚∗

⩾ lim sup
𝜀↓0

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠))

𝜀2𝑚∗ .

The reverse inequality between the supremum and infimum limits being trivial, we have

lim
𝜀↓0

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ0(𝑡, 𝑤, 𝑠))

𝜀2𝑚∗ = 𝑢(𝑡, 𝑤, 𝑠).

□
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ENDNOTES
1 Note that in these works and in our study price impact are only temporary: the asset price immediately reverts to
its “base value” after the trade. For a review of the differentmodels for transient (and temporary) price impact, see
the survey by Gatheral and Schied (2013) and the work of Roch and Soner (2013). Recent developments include
Bank and Voss (2019), Ekren andMuhle-Karbe (2019), Gârleanu and Pedersen (2016), Guéant and Pu (2017), and
Schied and Schöneborn (2009).

2 Note that to use this methodology, the setting of the problem needs to be Markovian. This constraint can be
relaxed in one-dimensional markets through the use of convex duality (see Guasoni & Rásonyi, 2015) and ergodic
theory for one-dimensional diffusions, see, for example, Kallsen and Muhle-Karbe (2017), Kallsen and Li (2013),
and Cayé et al. (2020).

3 The study of portfolio problems with frictions is closely linked to ergodic control problem as was already made
clear in Soner and Touzi (2013), Kallsen and Li (2013), and Cayé et al. (2020). For recent developments in ergodic
control theory and on how to approximate their solutions, see Cirant (2014), Cacace and Camilli (2016), and the
references therein.

4 Note that the interest rate and the drift and volatility of the price could depend on time and a multidimensional
factor process. All the analysis of the article goes through. We choose to omit them for readability and simplicity
of notations.

5 In the presence of price impacts, only strategies absolutely continuous with respect to the Lebesgue measure can
be optimal: infinite variation leads to immediate ruin.

6 This is the degree of homogeneity of the transaction cost in the trading speed, parameter called 𝑝 in Cayé et al.
(2020).

7 For𝑅 > 1 cumbersome estimates would be needed, andwe omit them so as not to drown the already complicated
analysis in more technical details.

8 This has been pointed out to us by Marco Cirant and is the topic of an ongoing work with him.
9 This ensures the strict positivity of the wealth until final time and that the lump sum consumption at the final
time is strictly positive.
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APPENDIX
The Appendix is dedicated to the proof of Proposition 4.7. First, in Appendix A.1, we define the
strategies that we use to obtain the bound (62). Then in Appendix A.2, we study the drift of the
process Ψ𝜀,𝑡,𝑤,𝑠,ℎ defined in (A.13). In Appendix A.3, we bound the renormalized loss of utility
due to price impact; see Lemmas A.4–A.7. Finally, we provide the proofs of Proposition 4.7 and of
Lemma A.2 in Appendix A.4.

A.1 Candidate asymptotically optimal strategies
Let 0 < 𝜀 ⩽ 1. Consider the following function (note that it is of the form of the functions stud-
ied in Section 5 and that it corresponds to the candidate value function expansion obtained in
Theorem 4.4)

𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝑉0(𝑡, 𝑤, 𝑠) − 𝜀2𝑚
∗

(
𝑢(𝑡, 𝑤, 𝑠) + 𝜀2𝑚

∗
𝜛

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

))
= 𝑔(𝑡)𝑈(𝑤) − (𝑤𝜀)2𝑚

∗
𝜆𝑤1−𝑅�̄�(𝑡) − (𝑤𝜀)4𝑚

∗
𝜆𝑔(𝑡)𝑤1−𝑅�̃�

(
𝔖

(𝑤𝜀)𝑚∗

(
ℎ × 𝑠

𝑤
− 𝜋

))
. (A.1)

Also denote the set of admissible states

 ∶=

{
(𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 ∶ ℎ𝑖 > 0 for all 1 ⩽ 𝑖 ⩽ 𝑑 and

𝑑∑
𝑖=1

𝑠𝑖ℎ𝑖

𝑤
< 1

}
. (A.2)

We will need the following property of 𝜕𝑤𝜓𝜀.
Lemma A.1. There exists 𝑐𝑊 > 0 such that if (𝑡, 𝑤, 𝑠, ℎ) ∈  we have that

1 + 𝑐𝑊(𝑤𝜀)
1

𝑚 ⩾
𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ) + 𝜀2𝑚

∗
𝜕𝑤𝑢(𝑡, 𝑤, 𝑠)

𝑔(𝑡)𝑤−𝑅
⩾ 1 − 𝑐𝑊(𝑤𝜀)

1

𝑚

and 1 + 𝑐𝑊((𝑤𝜀)2𝑚
∗
+ (𝑤𝜀)

1

𝑚 ) ⩾
𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝑔(𝑡)𝑤−𝑅
⩾ 1 − 𝑐𝑊((𝑤𝜀)2𝑚

∗
+ (𝑤𝜀)

1

𝑚 ) (A.3)

https://doi.org/10.1111/mafi.12283
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for all (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 .

Proof. By differentiation, we obtain

𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ)

= 𝑔(𝑡)𝑤−𝑅 − (1 − 𝑅 + 2𝑚∗)�̄�(𝑡)𝜆𝑤−𝑅(𝑤𝜀)2𝑚
∗

− (1 − 𝑅 + 4𝑚∗)(𝑤𝜀)4𝑚
∗
𝜆𝑔(𝑡)𝑤−𝑅�̃�

(
𝔖

(𝑤𝜀)𝑚∗

(
ℎ × 𝑠

𝑤
− 𝜋

))
+ (𝑤𝜀)3𝑚

∗
𝜆𝑔(𝑡)𝑤−𝑅

(
𝔖

(
(1 + 𝑚∗)

ℎ × 𝑠

𝑤
− 𝑚∗𝜋

))
⋅ �̃�𝑥

(
𝔖

(𝑤𝜀)𝑚∗

(
ℎ × 𝑠

𝑤
− 𝜋

))
.

Note that the continuity of the second derivative �̃�𝑥𝑥 and the fact that �̃�(0) = 0 = �̃�𝑥(0) imply
that for |𝜉| ⩽ 1, �̃�(𝜉) ⩽ 𝐶|𝜉|2 and |�̃�𝑥(𝜉)| ⩽ 𝐶|𝜉|. Combined with the bounds in Lemma 4.2,
these inequalities yield

�̃�(𝜉) ⩽ 𝐶|𝜉|1+ 2

𝑚 and |�̃�𝑥(𝜉)| ⩽ 𝐶|𝜉| 2

𝑚 for 𝜉 ∈ ℝ𝑑. (A.4)

Now, considering the boundedness from above and away from zero of 𝑔, �̄�, and the fact that 𝑠𝑖ℎ𝑖

𝑤
is uniformly bounded on for all 1 ⩽ 𝑖 ⩽ 𝑑, we obtain

|(1 − 𝑅 + 2𝑚∗)
�̄�(𝑡)

𝑔(𝑡)
(𝑤𝜀)2𝑚

∗ | ⩽ 𝑐𝑊(𝑤𝜀)2𝑚
∗
,

(1 − 𝑅 + 4𝑚∗)(𝑤𝜀)4𝑚
∗
𝜆�̃�

(
𝔖

(𝑤𝜀)𝑚∗

(
ℎ × 𝑠

𝑤
− 𝜋

))
⩽

1

2
𝑐𝑊(𝑤𝜀)

1

𝑚 ,

(𝑤𝜀)3𝑚
∗
𝜆

(
𝔖

(
(1 + 𝑚∗)

ℎ × 𝑠

𝑤
− 𝑚∗𝜋

))
⋅ �̃�𝑥

(
𝔖

(𝑤𝜀)𝑚∗

(
ℎ × 𝑠

𝑤
− 𝜋

))
⩽

1

2
𝑐𝑊(𝑤𝜀)

3𝑚∗−(
2

𝑚
)𝑚∗

=
1

2
𝑐𝑊(𝑤𝜀)

1

𝑚

for some 𝑐𝑊 > 0. □

Define the feedback control functions

𝑐0(𝑡,𝑤, 𝑠) ∶= −�̃�′(𝑉0
𝑤(𝑡, 𝑤, 𝑠)) = 𝑔(𝑡)

−
1

𝑅 𝑤, (A.5)

𝜃𝜀
𝑗
(𝑡, 𝑤, 𝑠, ℎ) ∶= 𝜀−1Φ𝑥𝑗

(
𝑠,

−𝜀3𝑚
∗

𝑉0
𝑤(𝑡, 𝑤, 𝑠)

𝜛𝜉

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

))
= 𝜀−𝑚∗

𝑉0
𝑤(𝑡, 𝑤, 𝑠)

1−𝑚
Φ𝑥𝑗

(
𝑠, −𝜛𝜉

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

))
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= −(𝑤𝜀)−𝑚∗
𝑑∑

𝑖=1

(
𝑤

𝜅𝑚−1𝑠𝑗
|||�̃�𝑥𝑖

(𝑋(𝑡, 𝑤, 𝑠, ℎ))
|||𝑚−2

�̃�𝑥𝑖
(𝑋(𝑡, 𝑤, 𝑠, ℎ))

)
(𝔖−1)𝑖,𝑗. (A.6)

Note that in this example, the function Φ𝑥 defined in (50) is odd and the functions 𝑢 and 𝜛 are
the solutions of the corrector equations (31) and (32) whose properties are listed in Lemma 4.3.
We fix an initial condition (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 and consider 𝜀 ∈ (0, (𝑇 − 𝑡)1∕2𝑚

∗
). We denote by

𝑊𝜀,𝑡,𝑤,𝑠,ℎ and𝐻𝜀,𝑡,𝑤,𝑠,ℎ the state variables controlled with the above 𝑐0 and 𝜃𝜀 starting at (𝑡, 𝑤, 𝑠, ℎ)

up to the stopping time (A.8). Additionally, we define the rescaled portfolioweights displacement

𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 = 𝔖

⎛⎜⎜⎜⎝
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,1
𝑢 𝑆1

𝑢

𝑊
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋1

(𝜀𝑊𝜀,𝑡,𝑤,𝑠
𝑢 )𝑚∗

, … ,

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑑
𝑢 𝑆𝑑

𝑢

𝑊
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑑

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

⎞⎟⎟⎟⎠, (A.7)

𝜏𝜀,𝑡,𝑤,𝑠,ℎ = inf

⎧⎪⎨⎪⎩𝑢 ∈ [𝑡, 𝑇]
|||||𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 − 𝑊0
𝑢| ⩾ 𝜋∗

2
𝑊0

𝑢 or𝑊0
𝑢 ⩽ 𝜀𝑚

∗ or 𝜀𝑊0 ⩾
2

2 + 𝜋∗

(
1

4𝑐𝑊
∧ 1

) 1

2𝑚∗

or (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(𝑚+2)𝑚∗

𝑚

(
1 + �̃�

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

))
⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

16𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚
⎫⎪⎪⎬⎪⎪⎭

∧ (𝑇 − 𝜀2𝑚
∗
), (A.8)

where 𝜋∗ and 𝐶�̃� are given by 𝜋∗ ∶= inf 1⩽𝑖⩽𝑑 𝜋𝑖 ∧ (1 −
∑𝑑

𝑖=1
𝜋𝑖) > 0 and 𝐶�̃� ∶= sup𝑥

|𝑥|1+2∕𝑚

1+�̃�(𝑥)
<

∞ (cf. (A.4)) and 𝑐𝑊 is the constant defined in Lemma (A.1). This complicated form of 𝜏𝜀,𝑡,𝑤,𝑠,ℎ is
due to two reasons. First, we are only able to express the strong mean reversion to the frictionless
position by applying Itô’s formula to �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )(see (A.35)). Indeed, application of Itô’s formula
to quantities such as

𝑑∑
𝑖=1

||||𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑟 𝑆𝑖

𝑟

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

− 𝜋𝑖
||||
2

or
||||𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑟 𝑆𝑖

𝑟

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

− 𝜋𝑖
||||
2

for some 𝑖

do not provide any expression that could allow us to claim that these quantities are small for 𝜀 > 0

small. The second reason is that if we do not multiply (1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )) by (𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(𝑚+2)𝑚∗

𝑚

we will have to study the hitting time of a process to a random barrier. It appears that

(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(𝑚+2)𝑚∗

𝑚 (1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )) is the simplest expression allowing us to define the liquida-

tion time as the hitting time of a constant barrier by a mean reverting process.
Now, we consider an investor following the control 𝑐0 and 𝜃𝜀 as given on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]] and who

liquidates her invested position on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
]], and consumes the remaining cash9

at rate 𝑐0(𝑡,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑡 , 𝑆𝑡) on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝑇]]. The controls for𝑊𝜀,𝑡,𝑤,𝑠,ℎ and𝐻𝜀,𝑡,𝑤,𝑠,ℎ are
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�̇�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 =

⎧⎪⎨⎪⎩
𝜃𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]]

−𝜀−2𝑚∗
𝐻𝜀,𝑡,𝑤,𝑠,ℎ

𝜏𝜀,𝑡,𝑤,𝑠,ℎ
on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
]]

0 on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
, 𝑇]],

(A.9)

with the consumption process

𝐶𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 =

⎧⎪⎪⎨⎪⎪⎩
𝑐0

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟

)
on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]]

𝐶𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
]]

𝑐0
(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟

)
on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
, 𝑇]],

(A.10)

where the choice of the consumption on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
]] is kept, so that

𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ⩽

1

(4𝑐𝑊)
1

2𝑚∗

∧ 1 ∧ 2𝜀𝑊0
𝑟

on this interval. It is also chosen large enough, so that if

𝜏𝜀,𝑡,𝑤,𝑠,ℎ < 𝑇 − 𝜀2𝑚
∗ then𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝜏𝜀,𝑡,𝑤,𝑠,ℎ+𝜀2𝑚∗ ⩽ 1 ∧
1

𝜀(4𝑐𝑊)
1

2𝑚∗

, (A.11)

and small enough, so that

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ⩾

𝜋∗

2
𝑊0

𝜏𝜀,𝑡,𝑤,𝑠,ℎ
for 𝑟 ∈ [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
]].

The first of these last two inequalities implies in particular by Lemma A.1 that along admissible
portfolios it holds

1

2
𝑔(𝑡)𝑤−𝑅 ⩽ 𝜕𝑤𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ) ⩽

3

2
𝑔(𝑡)𝑤−𝑅. (A.12)

On [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
, 𝑇]], 𝑊𝜀,𝑡,𝑤,𝑠,ℎ satisfies the SDE 𝑑𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 = (𝑟 − 𝑔(𝑧)
−

1

𝑅 )𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 𝑑𝑧. Its

supremum has therefore moments of all positive and negative orders on this interval. We have
additionally

𝑊0
𝑟

𝐶
⩽ 𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 ⩽ 𝐶𝑊0
𝑟 on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]].

Finally, note that this strategy is indeed admissible as proven in Lemma A.2.
Define also on [𝑡, 𝑇] the processes

Ψ𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ∶= 𝜓𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ), (A.13)
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Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟
∶= 𝜛𝜉

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟,
𝐻𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 − ℎ0(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟)

𝜀𝑚∗

)

= 𝑔(𝑟)(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )−𝑅+3𝑚∗

(
𝑠 × 𝔖�̃�𝑥

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

))
. (A.14)

The following lemma provides a bound on the probability of stopping stricly before𝑇 − 𝜀2𝑚
∗ when

using the controls we just defined. Its proof will be given in Appendix A.4 after the study of the
generator of Ψ𝜀,𝑡,𝑤,𝑠,ℎ in Appendix A.2 and the necessary auxiliary Lemmas stated and proved in
Appendix A.3.

Lemma A.2. The control defined above is admissible and there exists 𝐶 ∈ 𝔽𝑐𝑜𝑚𝑝 such that for all
(𝑡, 𝑤, 𝑠) ∈ , there exists 𝛿1 > 0 such that for all ℎ ∈ ℝ𝑑 satisfying |ℎ𝑖𝑠𝑖

𝑤
− 𝜋𝑖|⩽𝛿1, we have

ℙ(𝜏𝜀,𝑡,𝑤,𝑠,ℎ < 𝑇 − 𝜀2𝑚
∗
)⩽𝜀2𝑚

∗
𝐶(𝑡, 𝑤, 𝑠).

A.2 Semi-martingale decomposition of (A.13)
Define the following process:

�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 = 𝜀2𝑚

∗

((
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

))−𝑚

−
(
𝑉0

𝑤(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟)

)−𝑚
)

× 𝜕𝑤𝜓𝜀
(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
𝑓
(
𝑆𝑟, Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

))
+ 𝜀2𝑚

∗

((
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

))1−𝑚

−
(
𝑉0

𝑤(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟)

)1−𝑚
)

× Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟
⋅ Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
.

On [[𝜏𝜀, 𝜏𝜀 + 𝜀2𝑚
∗
]], �̃�𝜀,𝑡,𝑤,𝑠,ℎ is given by

�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 = 𝜀2𝑚

∗
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)1−𝑚

Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
𝑓
(
𝑆𝑟, Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

))
− 𝜀

𝑚∗(𝑚−2)

𝑚−1 𝜕𝑤𝜓𝜀
(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
𝐻𝜀,𝑡,𝑤,𝑠,ℎ

𝜏𝜀 ⋅ 𝑓
(
𝑆𝑟,𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝜏𝜀

)
+ 𝜀2𝑚

∗
(
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

))1−𝑚

Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟
⋅ Φ𝑥

(
𝑠, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
+ 𝜀𝑚

∗
Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟
𝐻𝜀,𝑡,𝑤,𝑠,ℎ

𝜏𝜀 ,

and on [[𝜏𝜀 + 𝜀2𝑚
∗
, 𝑇]] we define

�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 = 𝜀2𝑚

∗
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)1−𝑚

Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
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⋅
[
𝑓
(
𝑆𝑟, Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

))
+ Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

]
= −𝜀2𝑚

∗
𝜕𝑤𝜓𝜀

(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)1−𝑚

Φ
(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
⩽ 0.

�̃�𝜀,𝑡,𝑤,𝑠,ℎ takes into account the difference in drift of Ψ𝜀,𝑡,𝑤,𝑠,ℎ if it had been conrolled by 𝑐0 (same
control for the consumption) and the optimizer of the Hamiltonians in ℎ in the functional 𝜀(𝜓𝜀).
This allows us to relate the remainder estimate of Section 5 (Equation 73) to the drift of Ψ𝜀,𝑡,𝑤,𝑠,ℎ

below (see Equation A.15). We now give the following estimates for �̃�𝜀,𝑡,𝑤,𝑠,ℎ.
Lemma A.3. It holds

|�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 | ⩽ 𝐶(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )2𝑚
∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅 on [[𝑡, 𝜏𝜀]],

|�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 | ⩽ 𝐶

(
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅 + (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )−𝑅(𝑊0

𝜏𝜀,𝑡,𝑤,𝑠,ℎ
)

𝑚

𝑚−1

+ (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

1

𝑚
−𝑅

(𝑊0
𝜏𝜀,𝑡,𝑤,𝑠,ℎ

)

)
on [[𝜏𝜀, 𝜏𝜀 + 𝜀2𝑚

∗
]],

|�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 | ⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅 ⩽ 𝐶 on [[𝜏𝜀 + 𝜀2𝑚
∗
, 𝑇]].

Proof. First note that by LemmaA.1, and the fact that 𝑔 is bounded away from 0 on [0, 𝑇], we have
for the chosen control𝐻𝜀,𝑡,𝑤,𝑠,ℎ and 𝐶𝜀,𝑡,𝑤,𝑠,ℎ the following inequality on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]]

||||𝜕𝑤𝜓𝜀
(
𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
−

(
𝑉0

𝑤(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟)

)||||
⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )−𝑅((𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 𝜀)2𝑚

∗
+ (𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 𝜀)
1

𝑚 ),

which yields, by Taylor’s expansion and (A.12)

|||(𝜕𝑤𝜓𝜀)
−𝑚

−
(
𝑉0

𝑤

)−𝑚|||(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
⩽ 𝐶

(
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )−𝑅
)−1−𝑚|𝜕𝑤𝜓𝜀 − 𝑉0

𝑤|
⩽ 𝐶

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

)𝑅𝑚

((𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )2𝑚

∗
+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )
1

𝑚 ),

|||(𝜕𝑤𝜓𝜀)
1−𝑚

−
(
𝑉0

𝑤

)1−𝑚|||(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
⩽ 𝐶

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

)𝑅(𝑚−1)

((𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )2𝑚

∗
+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )
1

𝑚 ).

Second, by definition of 𝑓 in (48) and Φ𝑥 in (50), it holds for some constant 𝐶 > 0,

Φ
(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
⩽𝐶

|||||
Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

𝑆𝑟

|||||
𝑚

,
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0 ⩽ Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟
⋅ Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
⩽𝐶

|||||
Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

𝑆𝑟

|||||
𝑚

,

0 ⩽ 𝑓
(
𝑆𝑟, Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

))
⋅ Φ𝑥

(
𝑆𝑟, −Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

)
⩽𝐶

|||||
Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

𝑆𝑟

|||||
𝑚

.

Finally, the definition of Π𝜀,𝑡,𝑤,𝑠,ℎ in (A.14), the estimate (A.4) on �̃�𝑥, and the fact that
𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖𝑆𝑖

𝑊𝜀,𝑡,𝑤,𝑠,ℎ

is uniformly bounded for an admissible strategy and 1 ⩽ 𝑖 ⩽ 𝑑, provides the bound

|||||
Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉,𝑟

𝑆𝑟

||||| ⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )−𝑅+3𝑚∗ 1

|(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )𝑚∗ | 2

𝑚

⩽ 𝐶𝜀
−

2𝑚∗

𝑚 (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

−𝑅+
1

𝑚 .

Now the result follows from combining the definition of �̃�𝜀,𝑡,𝑤,𝑠,ℎ on the three stochastic intervals,
the estimates we just stated, the fact that 𝑔 is bounded and bounded away from 0 (see Remark 2.5),
the definition of 𝑓, Π𝜀,𝑡,𝑤,𝑠,ℎ

𝜉
, and 𝜏𝜀,𝑡,𝑤,𝑠,ℎ (in (48), (A.14), and (A.8)), the fact that 𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖𝑆𝑖

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
is

uniformly bounded for an admissible strategy and the inequalities (A.4) and (A.12). □

Denote 𝜇𝜓𝜀 the drift of the diffusion Ψ𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 = 𝜓𝜀(𝑢,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 , 𝑆𝑢,𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 ). Note that in (69)

we computed the drift of 𝜓𝜀 applied to processes controlled by a different strategy. In (69), the
controls appear in three different lines. Thus,

𝜇
𝜓𝜀

𝑧 =�̃�
𝜓𝜀

𝑧 + 𝜕𝑤𝜓𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )

[
𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

]
+ �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 .

Here, the second term corresponds to the difference in consumption between the control used in
(69) and (A.10), the last term corresponds to the difference in strategy 𝜃 between (69) and (A.9).
Thus, using (70) we obtain

𝑑Ψ𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 = −

[𝜀(𝜓𝜀)(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) + 𝑈

(
𝑐𝜀
(
𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧

))]
𝑑𝑧

+ 𝜕𝑤𝜓𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )

[
𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

]
𝑑𝑧

+ �̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 𝑑𝑧 + 𝑑𝑀𝑧, on [𝑡, 𝑇], (A.15)

where𝑀 is amartingale. The first line corresponds to the generator computed in Section 5, the sec-
ond line and the process �̃�𝜀,𝑡,𝑤,𝑠,ℎ are the contributions due to the fact that consumption, respec-
tively, the candidate strategy 𝜃𝜀, are not the maximizers of the Hamiltonian in (24).

A.3 Local boundedness of the renormalized loss of utility
We also need to define �̃�0,𝑡,𝑤,𝑠,ℎ, the frictionless wealth process started at (𝑡, 𝑤, 𝑠) when the
investor does not consume (𝑐 ≡ 0 in the wealth dynamics) and follows 𝜃𝜀. Let ̃ be the gen-
erator of the diffusion (⋅, �̃�0,𝑡,𝑤,𝑠,ℎ

⋅ , 𝑆⋅, 𝜀
−𝑚∗

(ℎ − ℎ0(⋅, �̃�0,𝑡,𝑤,𝑠,ℎ
⋅ , 𝑆⋅))). We now provide the main
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decomposition for the renormalized loss of utility associated with the controls 𝐻𝜀,𝑡,𝑤,𝑠,ℎ and
𝐶𝜀,𝑡,𝑤,𝑠,ℎ. Before we proceed, let us define for a function 𝜓𝜀 of the form defined in (A.1) and 𝜀 > 0

the remainder functional

𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ) ∶= (𝑚 − 1)Φ(𝑠,𝜛𝜉)(𝑉
0
𝑤)−𝑚

(
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤

)
− �̃�′(𝑉0

𝑤)
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤 + 𝜀2𝑚
∗
𝑢𝑤

𝜀2𝑚∗ . (A.16)

Lemma A.4. For all (𝑡, 𝑤, 𝑠) ∈ , and ℎ ∈ ℝ𝑑 it holds

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗
− 𝑢(𝑡, 𝑤, 𝑠) (A.17)

⩽𝔼

[
∫

𝑇

𝑡

𝑇(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠;𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

−𝑇(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ

0(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟))𝑑𝑟

]

+ 𝜀2𝑚
∗

(
𝔼

[
𝜛

(
𝑇, �̃�0

𝑇, 𝑆𝑇,
ℎ − ℎ0(𝑇, �̃�0

𝑇, 𝑆𝑇)

𝜀𝑚∗

)]

−𝔼
[
𝜛

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇, −𝜀−𝑚∗
ℎ0(𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇)
)])

+ 𝔼

[
∫

𝑇

𝑡

(𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ) − 𝜀−2𝑚∗

�̃�𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 𝑑𝑟

)]

− 𝜀−2𝑚∗
𝔼

[
∫

𝑇

𝑡

𝜕𝑤𝜓𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

×
(
𝑐𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

)
𝑑𝑟

]

+ 𝜀−2𝑚∗
𝔼

[
∫

𝑇

𝑡

(
𝑈

(
𝑐𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

)
− 𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )
)
𝑑𝑟

]
.

Proof. Due to (A.15) and the fact that𝐻𝜀,𝑡,𝑤,𝑠,ℎ
𝑇 = 0, we have

𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ) = 𝔼
[
Ψ𝜀,𝑡,𝑤,𝑠,ℎ

𝑇

]
+ 𝔼

[
∫

𝑇

𝑡

(𝜀(𝜓𝜀)(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

− 𝜕𝑤𝜓𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )

[
𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

]
+𝑈(𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ))

)
𝑑𝑧

]
.
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By definition of 𝜓𝜀 and the boundary conditions of 𝑉0 and 𝑢 (see Equations 6 and 31), it holds

𝔼
[
Ψ𝜀,𝑡,𝑤,𝑠,ℎ

𝑇

]
= 𝔼

[
𝑉0(𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇)
]
− 𝜀2𝑚

∗
𝔼
[
𝑢(𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇)
]

− 𝜀4𝑚
∗
𝔼

⎡⎢⎢⎢⎣𝜛
⎛⎜⎜⎜⎝𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇,
𝐻𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 − ℎ0
(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇

)
𝜀𝑚∗

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

= 𝔼
[
𝑈

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇

)]
− 𝜀4𝑚

∗
𝔼
[
𝜛

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇, −𝜀−𝑚∗
ℎ0

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇

))]
.

Note that the condition 𝐻𝜀,𝑡,𝑤,𝑠,ℎ
𝑇 = 0 implies that the position in cash at final time is indeed

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑇 . Thus, given the admissibility of the strategy and the terminal condition (25) for 𝑉𝜀,

we have 𝔼[𝑈(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑇 ) + ∫ 𝑇

𝑡
𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 )𝑑𝑧] ⩽ 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ) and obtain

𝜓𝜀(𝑡, 𝑤, 𝑠, ℎ)⩽𝔼

[
∫

𝑇

𝑡

(𝜀(𝜓𝜀)(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

)
𝑑𝑧

]

+ 𝔼

[
∫

𝑇

𝑡

(
−𝜕𝑤𝜓𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )

[
𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

]
+𝑈(𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )) − 𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 )
)
𝑑𝑧

]
+ 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ) − 𝜀4𝑚

∗
𝔼
[
𝜛

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇, −𝜀−𝑚∗
ℎ0

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇

))]
,

which implies

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗
⩽

1

𝜀2𝑚∗ 𝔼

[
∫

𝑇

𝑡

(𝜀(𝜓𝜀)(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − �̃�𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

)
𝑑𝑟

]

+ 𝑢(𝑡, 𝑤, 𝑠) + 𝜀2𝑚
∗
𝜛

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀𝑚∗

)

+ 𝜀−2𝑚∗
𝔼

[
∫

𝑇

𝑡

−𝜕𝑤𝜓𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )

[
𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 , 𝑆𝑧, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧

]

+𝑈(𝑐𝜀(𝑧,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 , 𝑆𝑧, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑧 )) − 𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑧 )𝑑𝑧

]

− 𝜀2𝑚
∗
𝔼
[
𝜛

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇, −𝜀−𝑚∗
ℎ0

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇

))]
, (A.18)

where the left-hand side is nonnegative by construction.
We note that the remainder estimates of Section 5 for this choice of 𝜓𝜀 give

𝜀−2𝑚∗𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ) = 𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ) − 𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ
0(𝑡, 𝑤, 𝑠))
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+ 𝜀2𝑚
∗̃(𝜛) −

1

2
Tr

(
𝑐ℎ

0
𝜛𝜉𝜉

)
+

(
(𝑉0

𝑤)1−𝑚 − (𝜕𝑤𝜓𝜀)1−𝑚
)
Φ(𝑠, −𝜛𝜉)

+
�̃�(𝑉0

𝑤) − �̃�(𝜕𝑤𝜓𝜀) − 𝜀2𝑚
∗
�̃�′(𝑉0

𝑤)𝑢𝑤

𝜀2𝑚∗ .

This follows indeed from (70) and (73), the fact that for the solutions 𝑢 and 𝜛 of the corrector
equations (31) and (32), it holds

𝐸1(𝑡, 𝑤, 𝑠, 𝜉,𝜛𝜉,𝜛𝜉𝜉) + 𝐸2(𝑡, 𝑤, 𝑠, 𝑢, 𝑢𝑡, 𝑢𝑤, 𝑢𝑠, 𝑢𝑤𝑤, 𝑢𝑤𝑠, 𝑢𝑠𝑠) = 0,

and the equation (obtained by direct computation from (72) and the definitions (75), (77), and
(78))

𝐼𝜀,1 + 𝐼𝜀,3 + 𝐼𝜀,4 = 𝜀2𝑚
∗̃(𝜛) −

1

2
Tr

(
𝑐ℎ

0
𝜛𝜉𝜉

)
.

Recall that Φ(𝑠, ⋅) is even for the choice made for 𝑓 in (48). Due to the convexity of 𝑥 → 𝑥1−𝑚

and �̃� the following two inequalities hold for all (𝑡, 𝑤, 𝑠, ℎ),(
(𝑉0

𝑤)1−𝑚 − (𝜕𝑤𝜓𝜀)1−𝑚
)
Φ(𝑠, −𝜛𝜉)⩽(𝑚 − 1)Φ(𝑠,𝜛𝜉)(𝑉

0
𝑤)−𝑚

(
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤

)
,

�̃�(𝑉0
𝑤) − �̃�(𝜕𝑤𝜓𝜀) − 𝜀2𝑚

∗
�̃�′(𝑉0

𝑤)𝑢𝑤

𝜀2𝑚∗ ⩽ − �̃�′(𝑉0
𝑤)

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤 + 𝜀2𝑚

∗
𝑢𝑤

𝜀2𝑚∗ .

Hence, by the convexity of 𝜉 ↦ 𝜛(𝑡, 𝑤, 𝑠, 𝜉) and the fact that 𝑐ℎ0 is nonnegative (the trace of the
product of symmetric nonnegative matrices is nonnegative), we obtain

𝜀−2𝑚∗𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ)⩽𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ) − 𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ
0(𝑡, 𝑤, 𝑠))

+ 𝜀2𝑚
∗̃(𝜛) + (𝑚 − 1)Φ(𝑠,𝜛𝜉)(𝑉

0
𝑤)−𝑚

(
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤

)
− �̃�′(𝑉0

𝑤)
𝜕𝑤𝜓𝜀 − 𝑉0

𝑤 + 𝜀2𝑚
∗
𝑢𝑤

𝜀2𝑚∗ .

With the definition of𝜀 in (A.16), we obtain

1

𝜀2𝑚∗ 𝔼

[
∫

𝑇

𝑡

𝜀(𝜓𝜀)(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )𝑑𝑟

]

⩽𝔼

[
∫

𝑇

𝑡

(𝑇(⋅; 𝐻𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ) − 𝑇(⋅; ℎ0(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟))(𝑟,𝑊
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑡, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠)𝑑𝑟

]
+ 𝔼

[
𝜀2𝑚

∗
𝜛

(
𝑇, �̃�0

𝑇, 𝑆𝑇, 𝜀
−𝑚∗

(ℎ − ℎ0(𝑇, �̃�0
𝑇, 𝑆𝑇))

)]
− 𝜀2𝑚

∗
𝜛

(
𝑡, 𝑤, 𝑠, 𝜀−𝑚∗

(ℎ − ℎ0(𝑡, 𝑤, 𝑠))
)

+ 𝔼

[
∫

𝑇

𝑡

𝜀(𝑟,𝑊𝜀
𝑟, 𝑆𝑟, 𝐻

𝜀
𝑟)𝑑𝑟

]
.

Combining this inequality with (A.18), we conclude the proof. □

The following lemmas allow us to locally bound the renormalized loss of utility.
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Lemma A.5. Let 𝑢 be the function defined in (47) and 𝑇 defined in (29). Then, for (𝑡, 𝑤, 𝑠, ℎ) ∈ 
(defined in (A.2)), we have

||||𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ) − 𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ
0(𝑡, 𝑤, 𝑠)) +𝜀(𝑡, 𝑤, 𝑠, ℎ)

||||
⩽ 𝐶

(
1 + 𝑤1+2𝑚∗−𝑅 + 𝑤

1+
1

𝑚
−𝑅

)
⩽ 𝐶

(
1 + 𝑤𝑘

)
holds for some 𝑘 > 0.

Proof. Note that due to the admissibility of the strategieswe have that ℎ×𝑠

𝑤
−

ℎ0(𝑡,𝑤,𝑠)×𝑠

𝑤
is uniformly

bounded. Thus, |𝑇(𝑡, 𝑤, 𝑠, 𝑢𝑤, 𝑢𝑤𝑤, 𝑢𝑤𝑠; ℎ)| ⩽ 𝐶𝑤1−𝑅+2𝑚∗ for admissible strategies. Similarly, to
the proof of Lemma A.3 we have

|||||Φ
(
𝑠,𝜛𝜉

(
𝑡, 𝑤, 𝑠,

ℎ − ℎ0(𝑡, 𝑤, 𝑠)

𝜀−𝑚∗

))||||| ⩽ 𝐶𝜀−2𝑚∗
𝑤1−𝑅𝑚

|(𝑉0
𝑤)−𝑚| ⩽ 𝐶𝑤𝑅𝑚

|𝜕𝑤𝜓𝜀 − 𝑉0
𝑤| ⩽ 𝐶((𝑤𝜀)2𝑚

∗
+ (𝑤𝜀)

1

𝑚 )𝑤−𝑅

|||�̃�′(𝑉0
𝑤)

𝜕𝑤𝜓𝜀 − 𝑉0
𝑤 + 𝜀2𝑚

∗
𝑢𝑤

𝜀2𝑚∗

||| ⩽ 𝐶𝜀
1

𝑚 𝑤
1−𝑅+

1

𝑚 .

Thus,

|𝜀(𝜓𝜀)(𝑡, 𝑤, 𝑠, ℎ)| ⩽ 𝐶

(
1 + 𝑤1+2𝑚∗−𝑅 + 𝑤

1+
1

𝑚
−𝑅

)
.

□

Lemma A.6. Define the process

𝐾𝑟 ∶= − 𝜕𝑤𝜓𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

[
𝑐𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ) − 𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

]
+ 𝑈(𝑐𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )) − 𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 ) for 𝑟 ∈ [𝑡, 𝑇]. (A.19)

Then, the admissibility of the strategy implies

|𝐾𝑟| ⩽𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 𝜀)2𝑚

∗ |𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 |1−𝑅 on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]],

|𝐾𝑟| ⩽𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )1−𝑅 on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝑇]].

Proof. First, on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]] and [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
, 𝑇]], it holds

𝐶𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ∶= 𝑐0(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟) = −�̃�′(𝑉0
𝑤(𝑡, 𝑤, 𝑠)).
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We also have for 𝑅 < 1, 𝑈(𝐶𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 ) ⩾ 0. Thus, using (A.12), the definition of 𝑐𝜀 in (67) and of �̃�

in (9) and the fact that 𝑔 is bounded and bounded away from 0, the following inequality holds on
[[𝜏𝜀, 𝑇]]

|𝐾𝑟| ⩽|𝜕𝑤𝜓𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )|(|�̃�′

(
𝜕𝑤𝜓𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 , 𝑆𝑟, 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

)|
+|�̃�′(𝑉0

𝑤(𝑡, 𝑤, 𝑠))|) + 𝑈(𝑐𝜀(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )) ⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅,

for some 𝐶 > 0. Now using Lemma A.1 similarly to the proof of Lemma A.3, we have the
inequalities

|||(𝜕𝑤𝜓𝜀)
−

1

𝑅 −
(
𝑉0

𝑤

)− 1

𝑅 |||(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
⩽ 𝐶

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

)
((𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )2𝑚
∗
+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )
1

𝑚 ),

|||(𝜕𝑤𝜓𝜀)
−

1−𝑅

𝑅 −
(
𝑉0

𝑤

)−1−𝑅

𝑅 |||(𝑟,𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 , 𝑆𝑟, 𝐻

𝜀,𝑡,𝑤,𝑠,ℎ
𝑟

)
⩽ 𝐶

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟

)1−𝑅

((𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )2𝑚

∗
+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )
1

𝑚 ).

Then, on the interval [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]], by definition (A.8) of 𝜏𝜀,𝑡,𝑤,𝑠,ℎ and using (A.12), we have

|𝐾𝑟| ⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 𝜀)2𝑚

∗ |𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 |1−𝑅.

□

The proof of LemmaA.2 requires moments existence for𝑊𝜀 for which we need first the follow-
ing result on𝑊0.

LemmaA.7. In theBlack–Scholes setting, the supremumof𝑊0 over [𝑡, 𝑇]hasmoments of all orders

𝔼𝑡

[
sup

𝑢∈[𝑡,𝑇]

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)𝜂
]

+ 𝔼𝑡

[
∫

𝑇

𝑡

(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)𝜂

𝑑𝑢

]
+ 𝔼𝑡

[
sup

𝑢∈[𝑡,𝑇]

(
𝑊0

𝑢

)𝜂]
= 𝐶

𝑡,𝜂
0 𝑤𝜂 < ∞,

where 𝔼𝑡 denotes the expectation conditional on 𝑡 and 𝜂 > 0.

Proof. The result is a direct consequence of the fact that 𝑊0 is a geometric Brownian motion,
the fact that by the definition of our strategies we have 𝑊0

𝐶
⩽ 𝑊𝜀 ⩽ 𝐶𝑊0 for some 𝐶 > 0 until

𝜏𝜀,𝑡,𝑤,𝑠,ℎ, the SDE satisfied by𝑊𝜀,𝑡,𝑤,𝑠,ℎ on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚
∗
]] and on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
, 𝑇]],

the fact that𝐻𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 is strictly decreasing on [[𝜏𝜀,𝑡,𝑤,𝑠,ℎ, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗
]] and the 𝑚

𝑚−1
homogeneity

of 𝜃 ↦ 𝜃 ⋅ 𝑓(𝑠, 𝜃). □
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A.4 Proofs of Proposition 4.7 and Lemma A.2
Proof of Proposition 4.7. Combining the inequality (A.17) of Lemma A.4 with Lemmas A.3, A.5,
and A.6, we obtain the inequality

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗
− 𝑢(𝑡, 𝑤, 𝑠)⩽𝔼

[
∫

𝑇

𝑡

𝐶
(
1 + (𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )𝑘
)
𝑑𝑟

]

+ 𝔼

[
∫

𝜏𝜀,𝑡,𝑤,𝑠,ℎ

𝑡

𝐶𝜀−2𝑚∗
(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )2𝑚
∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅𝑑𝑟

]

+ 𝔼
⎡⎢⎢⎣∫

𝜏𝜀,𝑡,𝑤,𝑠,ℎ+𝜀2𝑚
∗

𝜏𝜀,𝑡,𝑤,𝑠,ℎ

𝐶𝜀−2𝑚∗

(
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑟 )1−𝑅 + (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )−𝑅(𝑊0

𝜏𝜀,𝑡,𝑤,𝑠,ℎ
)

𝑚

𝑚−1

+ (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )

1

𝑚
−𝑅

(𝑊0
𝜏𝜀,𝑡,𝑤,𝑠,ℎ

)

)
𝑑𝑟

]

+ 𝔼

[
∫

𝑇

𝜏𝜀,𝑡,𝑤,𝑠,ℎ+𝜀2𝑚∗
𝐶𝜀−2𝑚∗

(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑟 )1−𝑅𝑑𝑟

]

+ 𝜀2𝑚
∗
𝔼

[
𝜛

(
𝑇, �̃�0

𝑇, 𝑆𝑇,
ℎ − ℎ0(𝑇, �̃�0

𝑇, 𝑆𝑇)

𝜀𝑚∗

)]

− 𝜀2𝑚
∗
𝔼

[
𝜛

(
𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇,
ℎ − ℎ0(𝑇,𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑇 , 𝑆𝑇)

𝜀𝑚∗

)]
,

where 𝑘 > 0 is the constant of LemmaA.5. Nowwith the boundedness of thewealth on (𝜏𝜀,𝑡,𝑤,𝑠,ℎ +

𝜀2𝑚
∗
, 𝑇) (indeed after 𝜏𝜀,𝑡,𝑤,𝑠,ℎ + 𝜀2𝑚

∗ ,𝑊𝜀,𝑡,𝑤,𝑠,ℎ satisfies a linear, deterministic ODE with starting
value satisfying (A.11)) and Lemma A.2, the moments (of all positive and negative orders) of𝑊0,
�̃�0, and𝑊𝜀,𝑡,𝑤,𝑠,ℎ in Lemma A.7, the definition of𝜛 in Lemma 4.3, and the growth of �̃� in 𝜉 we
obtain for some constant 𝐶 > 0 and some positive function 𝐶 of 𝑤

𝑉0(𝑡, 𝑤, 𝑠) − 𝑉𝜀(𝑡, 𝑤, 𝑠, ℎ)

𝜀2𝑚∗
− 𝑢(𝑡, 𝑤, 𝑠)⩽𝐶(𝑤) + 𝐶𝜀−2𝑚∗

ℙ(𝜏𝜀,𝑡,𝑤,𝑠,ℎ < 𝑇 − 𝜀2𝑚
∗
)

+ 𝜀
2𝑚∗−𝑚∗ 2+𝑚

𝑚 𝔼

[|�̃�0
𝑇|1−𝑅+

1

𝑚

]
.

Note that �̃�0 is dominated by the wealth of an investor investing in a frictionless market
with interest rate 𝑟 + sup{𝑔(𝑡) | 𝑡 ∈ [0, 𝑇]} and following the strategy given in Example 2.4 and
has therefore finite 𝑝 norm by Lemma A.7. Note that the right-hand side is in 𝔽𝑐𝑜𝑚𝑝 due
to Lemma A.2 (in fact the last term goes to 0 as 𝜀 → 0, as 𝑚 > 2). This proves as well that
𝑢∗ ∈ 𝔽𝑐𝑜𝑚𝑝. □

Proof of Lemma A.2. Part 1: Bounds on the drift and volatility of the SDE satisfied by 𝑋𝜀,𝑡,𝑤,𝑠,ℎ:
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Let (𝑡, 𝑤, 𝑠, ℎ) ∈  × ℝ𝑑 and 𝜀 ∈ (0, 1]. Recall also the constants 𝐶�̃� ∶= sup𝑥
|𝑥|2

1+�̃�
2𝑚
𝑚+2 (𝑥)

< ∞

(it exists, see Lemma 4.3) and the stopping time 𝜏𝜀,𝑡,𝑤,𝑠,ℎ in (A.8).
Writing 𝐶2,�̃� ∶= sup𝑥

�̃�(𝑥)|𝑥|1+2∕𝑚
< ∞ (see Lemma 4.3), assume that (𝜀, 𝑡, 𝑤, 𝑠, ℎ) ∈ (0, 1) × ×

ℝ𝑑 is such that

(𝜀𝑤)
(𝑚+2)𝑚∗

𝑚 + 𝐶2,�̃�

||||||
𝑑∑

𝑖=1

(
ℎ𝑖𝑠𝑖

𝑤
− 𝜋𝑖

)2||||||
1

2
−

1

𝑚

⩽
(𝜋∗)2

12𝐶�̃�
, (A.20)

and all the estimates below will be uniform in these quantities, provided that (A.20) holds. By the
definition (A.8) of 𝜏𝜀,𝑡,𝑤,𝑠,ℎ and of 𝐶�̃� , we have on [[𝑡, 𝜏𝜀]] the two inequalities

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

16𝐶

2𝑚

𝑚+2
�̃� 𝑑2

⎞⎟⎟⎟⎠
𝑚+2

2𝑚

⩾(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(𝑚+2)𝑚∗

𝑚

(
1 + �̃�

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

))

⩾
(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(𝑚+2)𝑚∗

𝑚 |𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 |1+ 2

𝑚

𝐶�̃�
, (A.21)

𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ ⩾

(
1

8𝑐𝑊
∧ 1

) 1

2𝑚∗

and |𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 − 𝑊0

𝑢| ⩽ 𝜋∗

2
𝑊0

𝑢. (A.22)

This implies that on [[𝑡, 𝜏𝜀]], we have

𝑊𝜀,𝑡,𝑤,𝑠,ℎ > 0 and
(𝜆min𝜋

∗)2

16𝑑2𝐶

2𝑚

𝑚+2
�̃�

⩾
𝜆2
min

𝐶

2𝑚

𝑚+2
�̃�

𝑑∑
𝑖=1

|||||𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑟 𝑆𝑖

𝑟

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑖
|||||
2

. (A.23)

This provides a useful inequality

𝜆2
min

𝐶

2𝑚

𝑚+2
�̃�

𝑑∑
𝑖=1

|||||𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑟 𝑆𝑖

𝑟

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑖
|||||
2

⩽ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(𝑚+2)𝑚∗

𝑚

(
1 + �̃�

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

))
. (A.24)

These estimates also imply that for all 1 ⩽ 𝑖 ⩽ 𝑑, the proportion of wealth invested in asset 𝑖

satisfies

−
𝜋∗

4𝑑
⩽

𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 𝑆𝑖

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑖 ⩽
𝜋∗

4𝑑
(A.25)

on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]]. This last inequality, combined with the fact that 𝜋∗ is less than 𝜋𝑖 for all 𝑖, yields
that the proportion of wealth in each asset is positive, 𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖 > 0. Summing (A.25) in 𝑖, the
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definition of 𝜋∗ also implies that the fraction of wealth in cash is positive, and it is larger or equal
to 3𝜋∗

4
. Thus, the amount of wealth in cash is larger than

3𝜋∗

4
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ⩾
3𝜋∗

4

𝜋∗

2
𝑊0

𝑢 for 𝑢 ∈ [𝑡, 𝜏𝜀], (A.26)

the strategy is therefore admissible up to time 𝜏𝜀.
Given the price impact in (48), and the strategy defined in (A.9) and (A.6), the dynamics of the

wealth (21) becomes on [[𝑡, 𝜏𝜀]]

𝑑𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

=

(
𝑟 − 𝑔(𝑢)

−
1

𝑅

)
𝑑𝑢 +

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

((𝜇𝑗 − 𝑟)𝑑𝑢 + 𝜎𝑗𝑑𝐵𝑢)

− (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

𝑑𝑢.

We can directly compute for any 𝑝 ≠ 0,

𝑑
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)𝑝

𝑝
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)𝑝 =

(
𝑟 − 𝑔(𝑢)

−
1

𝑅

)
𝑑𝑢 +

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

((𝜇𝑗 − 𝑟)𝑑𝑢 + 𝜎𝑗𝑑𝐵𝑢) (A.27)

+
𝑝 − 1

2

||||
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

𝑑𝑢

−
(
𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)2𝑚∗ 𝑑∑
𝑗=1

𝑚 − 1

𝜅𝑚−1𝑚

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

𝑑𝑢.

Thus, the dynamics of the investment proportion displacement is given by (remember that the
frictionless investment proportions 𝜋𝑖 ’s are constant in the Black–Scholes model)

𝑑

(
𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 𝑆𝑖
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

)
=

𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 𝑆𝑖

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(
(𝜇𝑖 − 𝑟 + 𝑔(𝑢)

−
1

𝑅 )𝑑𝑢 + 𝜎𝑖𝑑𝐵𝑢

−

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(𝜇𝑗 − 𝑟 + (𝜎𝑗)⊤𝜎𝑖)𝑑𝑢 −

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗𝑑𝐵𝑢

+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

𝑑𝑢 +
||||

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

𝑑𝑢

)

− (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )−𝑚∗ 1

𝜅𝑚−1

𝑑∑
𝑗=1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚−2

�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)
(𝔖−1)𝑖,𝑗𝑑𝑢.
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We now compute the evolution of 𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖 and obtain

𝑑𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 =

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)

(
(𝜇𝑘 − 𝑟 + 𝑔(𝑢)

−
1

𝑅 )𝑑𝑢

−

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(𝜇𝑗 − 𝑟 + (𝜎𝑗)⊤𝜎𝑘)𝑑𝑢 −

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗𝑑𝐵𝑢 + 𝜎𝑘𝑑𝐵𝑢

+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

|||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)|||𝑚𝑑𝑢 +
||||

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

||||
2

𝑑𝑢

)

− 𝑚∗𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢

(
(𝑟 − 𝑔(𝑢)

−
1

𝑅 )𝑑𝑢 +

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

((𝜇𝑗 − 𝑟)𝑑𝑢 + 𝜎𝑗𝑑𝐵𝑢)

−(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

𝑑𝑢 −
𝑚∗ + 1

2

||||
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

𝑑𝑢

)

− 𝑚∗
𝑑∑

𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)

(
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗

)⊤(
𝜎𝑘 −

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗

)
𝑑𝑢

− (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )−2𝑚∗ 1

𝜅𝑚−1

||||�̃�𝑥𝑖

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚−2

�̃�𝑥𝑖

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)
𝑑𝑢.

Note that due to the finiteness of 𝐶�̃�𝑥
∶= sup𝑖,𝑥

|�̃�𝑥𝑖
(𝑥)||𝑥|2∕𝑚 , we have the inequality

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

⩽ 𝐶𝑚
�̃�𝑥

𝜆2
max

𝑑∑
𝑖=1

||||𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 𝑆𝑖

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑖

||||
2

, (A.28)

where 𝜆max is the largest eigenvalue of the matrix𝔖. Additionally, the equalities

𝐻𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)1+𝑚∗ =

(
(𝔖−1)𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 +
𝜋

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

)
𝑘

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)
= 𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 +
(𝔖𝜋)𝑖

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

allow us to claim that there exist processes 𝑌1,𝑖 valued inℝ, and 𝑌2,𝑖 valued inℝ𝑑, function of the

state variables and with growth in 𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

at most quadratic such that
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𝑑𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 = −(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )−2𝑚∗ 1

𝜅𝑚−1

||||�̃�𝑥𝑖

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚−2

�̃�𝑥𝑖

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)
𝑑𝑢

+

(
(1 + 𝑚∗)𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 +
(𝔖𝜋)𝑖

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

)(
𝑌1,𝑖

𝑢 𝑑𝑢 + (𝑌2,𝑖
𝑢 )⊤𝑑𝐵𝑢

)

+
𝑚∗(𝑚∗ + 1)

2

(𝔖𝜋)𝑖

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

||||
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

+

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)

((
𝜇𝑘 − (1 + 𝑚∗)

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗 ⋅ 𝜎𝑘

)
𝑑𝑢 + 𝜎𝑘𝑑𝐵𝑢

)
,

where we can define the processes 𝑌 as follows

𝑌1,𝑖
𝑢 =

(
−𝑟 + 𝑔(𝑢)

−
1

𝑅 −

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(𝜇𝑗 − 𝑟)

+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

+
||||

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2
)
,

𝑌2,𝑖
𝑢 = −

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗.

By (A.25) and (A.28), the processes 𝑌1,𝑖 , 𝑌2,𝑖 are bounded (uniformly in (𝑢, 𝜔)) on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]].
We now compute (remember that by Lemma (4.3), �̃�𝑥𝑖𝑥𝑗

≡ 0 for 𝑖 ≠ 𝑗)

𝑑�̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 ) = −(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )−2𝑚∗
𝑑∑

𝑖=1

1

𝜅𝑚−1
|�̃�𝑥𝑖

(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )|𝑚𝑑𝑢

+

𝑑∑
𝑖=1

�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )

(
(1 + 𝑚∗)𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 +
(𝔖𝜋)𝑖

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

)(
𝑌1,𝑖

𝑢 𝑑𝑢 +
(
𝑌2,𝑖

𝑢

)⊤

𝑑𝐵𝑢

)

+
𝑚∗(𝑚∗ + 1)

2

𝑑∑
𝑖=1

�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(𝔖𝜋)𝑖

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚∗

||||
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

𝑑𝑢

+

𝑑∑
𝑖,𝑘=1

�̃�𝑥𝑖

(
𝑋𝑡,𝑤,𝑠,ℎ

𝑢

)
𝔖𝑖,𝑘𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)

((
𝜇𝑘 − (1 + 𝑚∗)

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗 ⋅ 𝜎𝑘

)
𝑑𝑢 + 𝜎𝑘𝑑𝐵𝑢

)

+
1

2

𝑑∑
𝑖=1

�̃�𝑥𝑖𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
||||

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝜀𝑚∗
(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)(1+𝑚∗)

(
𝑌2,𝑖 + 𝜎𝑘

)||||
2

𝑑𝑢. (A.29)



BAYRAKTAR et al. 103

Now define

𝑌3
𝑢 = −

𝑑∑
𝑖=1

1

𝜅𝑚−1
|�̃�𝑥𝑖

(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )|𝑚 +

𝑚𝑅

4
|𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 |2
+

𝑑∑
𝑖=1

�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(
(1 + 𝑚∗)(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )2𝑚
∗
𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 + (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚

∗
(𝔖𝜋)𝑖

)
𝑌1,𝑖

𝑢

+
𝑚∗(𝑚∗ + 1)

2

𝑑∑
𝑖=1

�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )(𝔖𝜋)𝑖(𝜀𝑊
𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚

∗ ||||
𝑑∑

𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗
||||
2

+

𝑑∑
𝑖,𝑘=1

(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )𝑚

∗
�̃�𝑥𝑖

(
𝑋𝑡,𝑤,𝑠,ℎ

𝑢

)
𝔖𝑖,𝑘𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(
𝜇𝑘 − (1 + 𝑚∗)

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗 ⋅ 𝜎𝑘

)

+
1

2

𝑑∑
𝑖=1

�̃�𝑥𝑖𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
||||

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

(
𝑌2,𝑖 + 𝜎𝑘

)||||
2

,

𝑌4
𝑢 =

𝑑∑
𝑖=1

�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )

((
(1 + 𝑚∗)(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )𝑚
∗
𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖

𝑢 + (𝔖𝜋)𝑖

)(
𝑌2,𝑖

𝑢

)⊤

+

𝑑∑
𝑘=1

𝔖𝑖,𝑘𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑘
𝑢 𝑆𝑘

𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑘

)
,

so that

𝑑�̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 ) =(𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )−2𝑚∗

(
𝑌3

𝑢 −
𝑚𝑅

4
|𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 |2)𝑑𝑢 + (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )−𝑚∗(

𝑌4
𝑢

)⊤
𝑑𝐵𝑢.

Now, the 𝑌1,𝑖 ’s and the proportion of wealth invested in each asset are bounded on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]]

(see (A.25)), so for some 𝐶 > 0 it holds

|||𝜇𝑘 − (1 + 𝑚∗)

𝑑∑
𝑗=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜎𝑗 ⋅ 𝜎𝑘 + 𝑌1,𝑖
𝑢

||| ⩽ 𝐶. (A.30)

Note that on [[𝑡, 𝜏𝜀]], 𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ is bounded by definition (A.8) of 𝜏𝜀,𝑡,𝑤,𝑠,ℎ, and �̃�𝑥𝑥 is bounded by
Lemma 4.1. Thus, on this interval we have for some 𝐶 > 0,

𝑌3
𝑢 ⩽ −

𝑑∑
𝑖=1

1

𝜅𝑚−1
|�̃�𝑥𝑖

(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )|𝑚 +

𝑚𝑅

4
|𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 |2 (A.31)

+ 𝐶

𝑑∑
𝑖=1

|�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )𝑋𝜀,𝑡,𝑤,𝑠,ℎ,𝑖
𝑢 | + |�̃�𝑥𝑖

(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )| + 𝐶.
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Note that by Lemma 4.3,

sup
𝑖∈{1,…,𝑑},𝑥∈ℝ𝑑

|||||�̃�𝑥𝑖
(𝑥)𝑥𝑖

�̃�(𝑥)

||||| +
|||||�̃�𝑥𝑖

(𝑥)|𝑥| ||||| +
||||||

�̃�𝑥𝑖
(𝑥)

1 + |𝑥| 2

𝑚

|||||| < ∞. (A.32)

Due to (52) (we have assumed that the matrix (Σ𝔖)⊤(Σ𝔖) has positive diagonal terms) and the
convexity of �̃�, it holds that

−

𝑑∑
𝑖=1

𝜅1−𝑚|�̃�𝑥𝑖
(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )|𝑚 ⩽ 𝑚𝜆 −
𝑚𝑅

2
|𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 |2. (A.33)

Thus, with (A.31) and (A.33), we obtain

𝑌3
𝑢 ⩽𝑚𝜆 −

𝑚𝑅

4
|𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 |2 + 𝐶

(
�̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ) + |𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 | 2

𝑚 + 1

)
. (A.34)

Similarly due to the growth of𝜛, the function

𝑥 ↦ 𝑚𝜆 −
𝑚𝑅

4
|𝑥|2 + 𝐶

(
�̃�(𝑥) + |𝑥| 2

𝑚 + 1

)
is bounded from above and we obtain that 𝑌3 is bounded from above by a constant. Similarly,

there exists a constant 𝐶 > 0 such that−𝑚𝑅

4
|𝑥|2 ⩽ 𝐶 −

(1+�̃�(𝑥))
2𝑚
𝑚+2

𝐶
. We then obtain the dynamics

of �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ) as

𝑑�̃�
(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)
=

(
𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)−2𝑚∗ ⎛⎜⎜⎝�̃�3
𝑢 −

(1 + 𝜛(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 ))

2𝑚

𝑚+2

𝐶

⎞⎟⎟⎠𝑑𝑢
+ (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )−𝑚∗(
𝑌4

𝑢

)⊤
𝑑𝐵𝑢, (A.35)

for some process �̃�3 uniformly bounded from above and |𝑌4
𝑢| ⩽ 𝐶|�̃�𝑥(𝑋

𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )|.

Part 2: Bound ofℙ(𝜏𝜀 < 𝑇 − 𝜀2𝑚
∗
).When not needed, we drop the superscripts 𝑡, 𝑤, 𝑠, ℎ for nota-

tional simplicity. We denote by 𝑢 ∶= (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(𝑚+2)𝑚∗

𝑚 (1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )) and 𝑇𝜀 ∶= 𝑇 − 𝜀2𝑚

∗

and define for 𝜀 ∈ (0, 1)

𝐴𝜀 ∶=

⎧⎪⎪⎨⎪⎪⎩
sup

𝑟∈[𝑡,𝜏𝜀]
𝑟 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

16𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚
⎫⎪⎪⎬⎪⎪⎭
, 𝐵𝜀 ∶=

{
sup

𝑟∈[𝑡,𝜏𝜀]

|||||𝑊
𝜀
𝑟

𝑊0
𝑟

− 1
||||| ⩾ 𝜋∗

2

}
,

𝐶𝜀 ∶=

⎧⎪⎨⎪⎩ inf
𝑟∈[𝑡,𝜏𝜀]

𝑊0
𝑟 ⩽ 𝜀𝑚

∗ or sup
𝑟∈[𝑡,𝜏𝜀]

𝜀1∕2𝑊0
𝑟 ⩾

2

2 + 𝜋∗

(
1

4𝑐𝑊
∧ 1

) 1

2𝑚∗
⎫⎪⎬⎪⎭.
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We now compute

ℙ
(
𝜏𝜀 < 𝑇 − 𝜀2𝑚

∗)
⩽ℙ(𝐴𝜀 ∪ 𝐵𝜀 ∪ 𝐶𝜀)⩽ℙ(𝐴𝜀 ∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐) + ℙ(𝐵𝜀 ∩ (𝐶𝜀)𝑐) + ℙ(𝐶𝜀).

Note that ℙ(𝐶𝜀) is related to the exit time of Brownian motion and can be easily estimated to any
polynomial order (by Markov’s inequality, for example) and we obtain, for example, that

ℙ(𝐶𝜀) ⩽ 𝐶(𝑤)𝜀3𝑚∗.

We estimate the other terms separately.

Step 1: Estimation of ℙ

⎡⎢⎢⎢⎣sup𝑡∈[0,𝑇𝜀] 𝑡 ⩾
⎛⎜⎜⎝ (𝜆min𝜋

∗)2

16𝐶

2𝑚
𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎠
𝑚+2

2𝑚

∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐

⎤⎥⎥⎥⎦: Denote 𝐾𝜀 and 𝑀𝜀,

respectively, the finite variation and martingale part of  and𝜀 (use (A.27), (A.29), and
Itô’s formula) the set

𝜀 ∶=

⎧⎪⎪⎨⎪⎪⎩
𝜏𝜀 =

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

16𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚

∩ sup
𝑡∈[0,𝑇𝜀]

𝐾𝜀
𝑡 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

32𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚

∩(𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐 ∩ sup
𝑡∈[0,𝑇𝜀]

𝑀𝜀
𝑡 ⩽

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

48𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚
⎫⎪⎪⎬⎪⎪⎭
.

Then we have the following inequalities:

ℙ

⎡⎢⎢⎢⎢⎣
sup

𝑡∈[0,𝑇𝜀]
𝑡 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

16𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚

∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐

⎤⎥⎥⎥⎥⎦
⩽ ℙ

⎡⎢⎢⎢⎢⎣
sup

𝑡∈[0,𝑇𝜀]
𝑀𝜀

𝑡 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

48𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

2𝑚

∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐

⎤⎥⎥⎥⎥⎦
+ ℙ[𝜀].

To find 𝐾𝜀 and𝑀𝜀, we apply Itô’s formula to  , using (A.27) and (A.35) and obtain

𝑑𝑡 = (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(2−𝑚)𝑚∗

𝑚 𝜀−2𝑚∗
⎛⎜⎜⎝�̃�3

𝑢 −
(1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ))
2𝑚

𝑚+2

𝐶

⎞⎟⎟⎠𝑑𝑢
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+

(
𝑌6

𝑢𝑢 + 𝜀−𝑚∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
2𝑚∗

𝑚
(
𝑌4

𝑢

)⊤
𝑌7

𝑢

)
𝑑𝑢

+

(
𝜀−𝑚∗

(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

2𝑚∗

𝑚
(
𝑌4

𝑢

)⊤
+ 𝑢

(
𝑌8

𝑢

)⊤)
𝑑𝐵𝑢,

for 𝑌6 bounded from above, 𝑌7 and 𝑌8 uniformly bounded. Note that the inequality
sup𝑥

|𝑥||�̃�𝑥(𝑥)|
1+�̃�(𝑥)

< ∞ implies that there exist 𝑌9 bounded from above and 𝑌10 uniformly
bounded such that

𝑑𝑡 = (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(2−𝑚)𝑚∗

𝑚 𝜀−2𝑚∗
⎛⎜⎜⎝�̃�3

𝑢 −
(1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ))
2𝑚

𝑚+2

𝐶

⎞⎟⎟⎠𝑑𝑢 + 𝑢(𝑌
9
𝑢𝑑𝑢 + 𝑌10

𝑢 𝑑𝐵𝑢).

(A.36)

Note that

𝐾𝜀
𝑟 = ∫

𝑟

𝑡

(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )

(2−𝑚)𝑚∗

𝑚 𝜀−2𝑚∗
⎛⎜⎜⎝�̃�3

𝑢 −
(1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ))
2𝑚

𝑚+2

𝐶

⎞⎟⎟⎠ + 𝑢𝑌
9
𝑢𝑑𝑢.

Thus, on𝜀, there exists 𝑢 such that

𝜀2𝑚
∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(𝑚−2)𝑚∗

𝑚 𝑢𝑌
9
𝑢 + �̃�3

𝑢 ⩾
(1 + �̃�(𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 ))
2𝑚

𝑚+2

𝐶
= (𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )−2𝑚∗ 
2𝑚

𝑚+2
𝑢

𝐶
.

Define

𝑡𝜀 ∶= sup

⎧⎪⎨⎪⎩𝑢 ∶ 𝜀2𝑚
∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑢 )
(𝑚−2)𝑚∗

𝑚 𝑢𝑌
9
𝑢 + �̃�3

𝑢 ⩾ (𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )−2𝑚∗ 

2𝑚

𝑚+2
𝑢

𝐶

⎫⎪⎬⎪⎭.

Note that on𝜀, 𝜀
𝜏𝜀 =

⎛⎜⎜⎝ (𝜆min𝜋
∗)2

16𝐶

2𝑚
𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎠
𝑚+2

2𝑚

and the processes above are continuous. Thus,

on the event {sup𝑡∈[0,𝑇] 𝜀𝑊
0
𝑡 ⩽1} ⊂ {sup𝑡∈[0,𝑇] 𝜀

1∕2𝑊0
𝑡 ⩽1}wehave 𝑡𝜀 < 𝜏𝜀. Note that at 𝑡𝜀 we

have

𝜀2𝑚
∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑡𝜀
)2𝑚

∗
((𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑡𝜀
)
−(𝑚+2)𝑚∗

𝑚 𝑡𝜀 )𝑌
9
𝑡𝜀

+ �̃�3
𝑡𝜀

⩾

((
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑡𝜀

)−(𝑚+2)𝑚∗

𝑚 𝑡𝜀

) 2𝑚

𝑚+2

𝐶
.

Thus, due to the boundedness of 𝜀2𝑚∗
(𝑊𝜀,𝑡,𝑤,𝑠,ℎ

𝑡𝜀
)2𝑚

∗ , 𝑌9 and the boundedness from above

of �̃�3, ((𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑡𝜀

)
−(𝑚+2)𝑚∗

𝑚 𝑡𝜀 ) is bounded from above by the positive root of the equation
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𝐶𝑦 + 𝐶 = 𝑦
2𝑚

𝑚+2 and

𝑡𝜀 ⩽ 𝐶(𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑡𝜀

)
(𝑚+2)𝑚∗

𝑚 ⩽ 𝐶(𝜀1∕2𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑡𝜀

)
(𝑚+2)𝑚∗

𝑚 𝜀
−(𝑚+2)𝑚∗

2𝑚 ⩽ 𝐶𝜀
−(𝑚+2)𝑚∗

2𝑚 .

Additionally on [[𝑡𝜀, 𝜏𝜀]], 𝐾 is decreasing and we are on the event

sup𝑡∈[0,𝜏𝜀] 𝑀
𝜀
𝑡⩽

⎛⎜⎜⎝ (𝜆min𝜋
∗)2

48𝐶

2𝑚
𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎠
𝑚+2

2𝑚

and 𝜏𝜀 =
⎛⎜⎜⎝ (𝜆min𝜋

∗)2

16𝐶

2𝑚
𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎠
𝑚+2

2𝑚

=
⎛⎜⎜⎝ (𝜆min𝜋

∗)2

16𝐶

2𝑚
𝑚+2
�̃� 𝑑2

⎞⎟⎟⎠
𝑚+2

2𝑚

𝜀
−(𝑚+2)𝑚∗

𝑚 ≫ 𝑡𝜀 . Thus, ℙ(𝜀) = 0 for 𝜀 > 0 small enough. This equality reflects the
fact that a mean reverting process can only become large due to the contribution of its
diffusive part.
Note that

𝑑⟨𝑀𝜀
𝑢⟩

𝑑𝑢
⩽ 𝐶2

𝑢.

By Markov and Burkholder-Davis-Gundy (BDG) inequalities, we have

ℙ

⎡⎢⎢⎢⎢⎣
sup

𝑡∈[0,𝑇𝜀]
(𝑀𝜀

𝑡 )
2 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

48𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

𝑚

∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐

⎤⎥⎥⎥⎥⎦
⩽

⎛⎜⎜⎜⎝
48𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚

∗

(𝜆min𝜋∗)2

⎞⎟⎟⎟⎠
𝑚+2

𝑚

𝔼

[
sup

𝑡∈[0,𝑇𝜀]
(𝑀𝜀

𝑡 )
2

]
⩽ 𝐶𝜀

2𝑚∗ 𝑚+2

𝑚 𝔼

[
∫

𝜏𝜀

𝑡

2
𝑢𝑑𝑢

]
.

We define 𝛼 =
2(𝑚2+3𝑚−2)

𝑚(𝑚+2)
> 2, 𝑝 =

1

2𝑚𝑚∗
> 1. Now, similarly to (A.36) applying Itô’s for-

mula to 𝛼 between 𝑡 and 𝜏𝜀 produces a martingale part and an absolutely continuous
part that can be divided in two elements: a dominating mean-reverting one and a slowly
increasing one. Shifting half of the mean-reverting part to the left-hand side, the other
half is used to bound the rest of the absolutely continuous part by a constant 𝐶 > 0 and
we obtain

𝔼
⎡⎢⎢⎣𝛼

𝜏𝜀 + ∫
𝜏𝜀

𝑡

𝜀−2𝑚∗(
𝑊𝜀,𝑡,𝑤,𝑠,ℎ

)− 1

𝑚
3𝑚2+4𝑚−4

𝑚(𝑚+2)
𝑢 𝑑𝑢

⎤⎥⎥⎦ ⩽ 𝐶(𝛼
𝑡 + 1) ⩽ 𝐶(𝑤)𝜀

−𝑚∗(1+
2

𝑚
)𝛼
.

Note that 3𝑚2+4𝑚−4

𝑚(𝑚+2)
=

1

𝑚𝑚∗
= 2𝑝. Applying the reverse Holder inequality, the bound on

the moments of𝑊 implies that

𝔼

[
∫

𝜏𝜀

𝑡

2
𝑢𝑑𝑢

]𝑝

⩽ 𝐶(𝑤)𝜀2𝑚
∗(1−(1∕2+1∕𝑚)𝛼) = 𝐶(𝑤)𝜀

−
2

𝑚2 .



108 BAYRAKTAR et al.

This finally implies that

ℙ

⎡⎢⎢⎢⎢⎣
sup

𝑡∈[0,𝑇𝜀]
(𝑀𝜀

𝑡 )
2 ⩾

⎛⎜⎜⎜⎝
(𝜆min𝜋

∗)2

48𝐶

2𝑚

𝑚+2
�̃� 𝑑2𝜀2𝑚∗

⎞⎟⎟⎟⎠
𝑚+2

𝑚

∩ (𝐵𝜀)𝑐 ∩ (𝐶𝜀)𝑐

⎤⎥⎥⎥⎥⎦
⩽ 𝐶(𝑤)𝜀

2𝑚∗ 𝑚+2

𝑚 𝜀
−

2𝑚∗

𝑚

= 𝐶(𝑤)𝜀2𝑚
∗
.

Step 2: Bounding ℙ[𝐵𝜀 ∩ (𝐶𝜀)𝑐]: One can compute the dynamics of ratio of the frictional wealth
to the frictionless wealth as (see (3) and (21))

𝑑

(
𝑊𝜀

𝑢

𝑊0
𝑢

)
𝑊0

𝑢

𝑊𝜀
𝑢

=

𝑑∑
𝑗=1

(
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑗

)(
(𝜇𝑗 − 𝑟)𝑑𝑢 + 𝜎𝑗𝑑𝐵𝑢

)

−
𝑊𝜀

𝑢

𝑊0
𝑢

𝑑∑
𝑗,𝑘=1

𝐻
𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

𝜋𝑘𝜎
𝑗 ⋅ 𝜎𝑘

− (𝜀𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢 )2𝑚

∗
𝑑∑

𝑗=1

𝑚 − 1

𝑚𝜅𝑚−1

||||�̃�𝑥𝑗

(
𝑋𝜀,𝑡,𝑤,𝑠,ℎ

𝑢

)||||
𝑚

𝑑𝑢

=

𝑑∑
𝑗=1

(
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑗

)
(𝛼𝑢𝑑𝑢 + 𝛽𝑢𝑑𝐵𝑢),

on [[𝑡, 𝜏𝜀,𝑡,𝑤,𝑠,ℎ]] for some bounded 𝛼 and 𝛽. Then we have using (A.24)

ℙ[𝐵𝜀 ∩ (𝐶𝜀)𝑐] ⩽ ℙ
⎡⎢⎢⎣
(
∫

𝜏𝜀

𝑡

𝑑∑
𝑗=1

||||||
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑗

||||||𝛼𝑡𝑑𝑡

)2

⩾
(𝜋∗)2

16
∩ (𝐶𝜀)𝑐

⎤⎥⎥⎦
+ ℙ

⎡⎢⎢⎣
(

sup
𝑡⩽𝑟⩽𝜏𝜀 ∫

𝑟

𝑡

𝑑∑
𝑗=1

||||||
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑗

||||||𝛽𝑡𝑑𝐵𝑡

)2

⩾
(𝜋∗)2

16
∩ (𝐶𝜀)𝑐

⎤⎥⎥⎦
⩽ 𝐶𝔼

⎡⎢⎢⎣∫
𝜏𝜀

𝑡

𝑑∑
𝑖=1

||||||
𝐻

𝜀,𝑡,𝑤,𝑠,ℎ,𝑗
𝑢 𝑆

𝑗
𝑢

𝑊𝜀,𝑡,𝑤,𝑠,ℎ
𝑢

− 𝜋𝑗

||||||
2

𝑑𝑢𝟏{(𝐶𝜀)𝑐}

⎤⎥⎥⎦ ⩽ 𝐶𝜀2𝑚
∗
𝔼

[
∫

𝜏𝜀

𝑡


2𝑚

𝑚+2
𝑢 𝑑𝑢

]
,

and 𝔼

[
∫ 𝜏𝜀

𝑡


2𝑚

𝑚+2
𝑢 𝑑𝑢

]
can be bounded by an element in 𝔽𝑐𝑜𝑚𝑝.

□
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