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Abstract

Clinical trials studying treatments for rare diseases are challenging to design and

conduct due to the limited number of patients eligible for the trial. One design used to

address this challenge is the small n, sequential, multiple assignment, randomized trial

(snSMART). We propose a new snSMART design that investigates the response rates

of a drug tested at a low and high dose compared to placebo. Patients are randomized

to an initial treatment (stage 1). In stage 2, patients are re-randomized, depending on

their initial treatment and their response to that treatment in stage 1, to either the

same or a different dose of treatment. Data from both stages are used to determine the
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efficacy of the active treatment. We present a Bayesian approach where information

is borrowed between stage 1 and stage 2. We compare our approach to standard

methods using only stage 1 data and a log-linear Poisson model that uses data from

both stages where parameters are estimated using generalized estimating equations.

We observe that the Bayesian method has smaller root-mean-square-error and 95%

credible interval widths than standard methods in the tested scenarios. We conclude

that it is advantageous to utilize data from both stages for a primary efficacy analysis

and that the specific snSMART design shown here can be used in the registration of a

drug for the treatment of rare diseases.

Keywords: adaptive randomization, clinical trial, repeated measures

1 Introduction

A rare disease is defined as a disease that affects fewer than 200,000 people in the United

States1. Taken together, there are more than 8,000 rare diseases that affect over 30 million

people in the United States2. Unfortunately, only 289 (4%) of these rare diseases have an

approved drug, leaving 96% of rare diseases without an approved treatment and considerable

unmet need for many patients3. Because of the limited number of individuals affected by

rare diseases, it is difficult to find effective treatments for these conditions4. Approval of

any drug is based on the same requirements for evidence of effectiveness, regardless of the

size of the diseased population. While randomized clinical trials (RCTs) are utilized to

demonstrate the strongest scientific evidence of an effective treatment, these trials are often

difficult or impossible in rare disease settings because they require a large number of subjects.

As a result, many RCTs involving rare diseases often have reduced power when compared

to studies of diseases that are not rare5. To combat these issues, Tamura et al.6 previously

proposed a small n, sequential, multiple assignment, randomized trial (snSMART) design to
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investigate three active treatments for a rare disease. Here, we propose a variation of the

snSMART design that focuses on a single drug and placebo.

In many situations, there is only a single, novel drug of interest and the objective of a

clinical trial is to determine efficacy of that drug. As an example, the Vasculitis Clinical

Research Consortium was recently interested in testing a novel drug for patients suffering

from granulomatosis with polyangitis (GPA) or microscopic polyangitis (MPA), forms of

vasculitis characterized by inflammation of the blood vessels. The binary endpoint of the

study was remission after three weeks of therapy. It was assumed, however, that an effective

drug would have to be taken for longer than three weeks in practice. The trial needed

to be placebo controlled and the investigators were interested in novel designs that could

potentially increase the power of detecting a drug effect. Given that vasculitis is a rare

disease, it was also necessary that the trial design was appropriate for small sample sizes.

An snSMART is a variation of a SMART design7,8 that is specifically intended for small

samples. In a SMART, patients are randomized to at least two sequential interventions in

such a way that the second intervention assignment depends on the patient’s response to

the first intervention. The goal of a SMART is often to develop effective dynamic treatment

regimens (DTRs) that specify an initial treatment for a patient followed by subsequent

treatment, that is tailored by response to the initial treatment9,10. In contrast, the stages in

an snSMART are used to garner more information from a smaller set of subjects rather than

to identify sequences of treatments tailored to an individual. In other words, snSMARTs are

not designed with the goal of developing or estimating the effects of DTRs. Instead, the goal

of an snSMART is to efficiently use data across the two stages of the trial to find a single

superior treatment or dose of treatment in a small sample of individuals.

Indeed, there have been previous examples of repurposing well-developed trial designs

to address novel goals. For example, randomized discontinuation trials have been studied
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as an alternative phase II design in oncology11. In addition, randomized discontinuation

trials have been modified using SMART designs in order to answer a wider variety of clin-

ical questions12. Researchers have also considered some enhanced crossover designs in the

rare diseases spectrum to address the concerns about the unnecessary exposure to placebo

or treatment of high toxicity. For example, Makubate and Senn13 and Nason and Foll-

mann14 both discussed designs that allow for discontinuation from the study according to

the absorbed binary endpoints after a subject receives the first treatment. Honkanen et al.15

introduced an alternative design that consists of an initial randomized placebo-controlled

stage, a randomized withdrawal stage for subjects who responded, and a third randomized

stage for placebo non-responders who subsequently respond to treatment.

In the snSMART design of Tamura et al. (2016), three unique, active experimental

treatments were compared. We propose extending this design to a three-arm trial comparing

placebo to low and high doses of one experimental treatment (Figure 1). In such a trial,

patients are initially randomized at stage 1 to either receive placebo, low dose, or high dose

with equal likelihood. Patients receive this treatment for a pre-specified amount of time, at

which time their binary response status is ascertained. In stage 2, patients are re-randomized

to either the same or a different dose of treatment depending on their initial treatment and

their response to that treatment. Specifically, patients who received placebo at stage 1 are

re-randomized to receive either low dose or high dose at stage 2, regardless of their stage 1

response. This is advantageous for patients because it means that everyone enrolled in the

trial will receive an active treatment by stage 2, even if they were initially randomized to

placebo. All patients who initially received low dose, regardless of their response status, are

re-randomized to either low dose or high dose. In the case of patients who responded to

low dose, this re-randomization is appropriate because it allows patients to either receive a

higher dose of the drug that is already effective for them or to continue receiving low dose.
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Receiving low dose again is advantageous for patients because they continue receiving a drug

they respond to and advantageous for the trial because we gain more information about the

response rate to low dose in stage 2 of the study. All patients who did not respond to high

dose receive high dose again in stage 2, whereas patients who initially responded to high dose

are re-randomized to receive either high dose again or low dose. In this design, the primary

objective is to estimate the difference in the probability of response to treatment between

low dose and placebo and between high dose and placebo.

Compared to other rare diseases and clinical trial designs, this snSMART design is advan-

tageous for three reasons. First, this design allows for the comparison of treatment against

placebo, which is necessary to demonstrate efficacy of an experimental treatment. Second,

this design allows for the comparison of more than one dosage level of a drug, so that a lower,

less toxic dose may be shown to be efficacious as opposed to investigating only a high dose.

Third, individuals who respond to treatment in stage 1 may continue their original dose or

may increase or decrease dose. All participants receive an active treatment at some point in

the trial. In addition, those who receive a low dose or high dose of the drug will continue to

receive the drug at some level in both stages because there are no participants randomized to

placebo in stage 2. These factors may improve patient engagement and recruitment, which

is a challenge in the study of rare diseases. Wei et al.16 demonstrated efficiency gains of the

previous snSMART design compared to a one stage design, but such advantages have not

yet been confirmed for this setting.

In Section 2, we propose Bayesian and frequentist methods to analyze data for the pri-

mary efficacy analysis of the proposed snSMART design by borrowing information across

patients and between trial stages. In the Bayesian model, we incorporate expert opinion

and experience by using mildly informative prior distributions that are more flexible than

those considered in Wei et al. (2018). In Section 3, we assess the influence of the prior
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distributions through simulation. We compare the Bayesian model to a frequentist model

that also jointly models the response rates across the two stages of the snSMART. Both

models are compared to models using only stage 1 data to illustrate the potential efficiency

gain of the two-stage design. In Section 4, we complete our manuscript with a discussion.

2 Methods

2.1 Bayesian Joint Stage Model

For each subject i = 1, . . . , N , stage of the snSMART j = 1, 2 and treatment k = P, L, H,

where N denotes the sample size, P denotes placebo, L denotes low dose, and H denotes high

dose, let Yijk be the observed binary response outcome where 1 corresponds to “response”

and 0 corresponds to “no response” to treatment. The stage 1 outcome and the stage 2

outcome given the stage 1 outcome are each modeled as Bernoulli random variables. The

stage 1 response rate for treatment k is denoted as πk. The stage 2 response rate for stage

1 responders to treatment k who receive treatment k′ in stage 2 is equal to β1kπk′ . For

non-responders to treatment k in stage 1 who receive treatment k* in stage 2, the stage

2 response rate is equal to β0kπk∗ . Thus we have six unique linkage parameters that link

stage 1 response to stage 2 response. Our proposed Bayesian joint stage model (BJSM) is

as follows:

Yi1k|πk ∼ Bernoulli(πk) (1)

Yi2k′ |πk, β1k, Yi1k = 1 ∼ Bernoulli(β1kπk′) (2)

Yi2k∗|πk, β0k, Yi1k = 0 ∼ Bernoulli(β0kπk∗) (3)

Assumptions and prior distributions for the parameters are based on clinician input.
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Here, we incorporate prior knowledge about disease and current treatments and assume that

an ineffective treatment has a response rate of 15% and thus use an informative prior Beta(3,

17) for πP . It is a setting similar to the GPA/MPA example mentioned in the Introduction.

For the effect of low and high dose, we allow for a weak tendency for the drug response

rates to be greater than the effect of placebo and assume that the logarithm of treatment

effect ratio follows a Gaussian prior distribution N(µ, σ2), i.e., log(πL/πP ) ∼ N(0.2, 100)

and log(πH/πP ) ∼ N(0.2, 100). Note that E(πL/πP ) = e0.2 ≈ 1.2 under the proposed prior

setting.

Wei et al. (2018) assumed that the linkage parameters (i) did not depend on the initial

treatment and that, (ii) β0 ≤ 1 and (iii) β1 > 1. Here, since both responders and non-

responders are re-randomized and we are testing for a potential dose-response relationship

between treatment arms, these previous assumptions are not appropriate. In our simulations,

instead of assuming the Beta and Pareto priors used by Wei et al. (2018), we consider Gamma

priors so that the linkage parameters can span the positive real line.

2.2 Log-linear Poisson Joint Stage Model

The log-linear Poisson joint stage model (LPJSM) presented in Wei et al. (2018) is slightly

adjusted for our design. The LPJSM jointly models the stage 1 and stage 2 outcomes with

a log link for interpretability. The LPJSM is shown below where there is a one-to-one

correspondence to the parameters in the Bayesian model in Equations (1) - (3). Let Yij be

the response of subject i in stage j (j = 1, 2), where I(kij = k) is the indicator function for
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treatment k = P, L, H for subject i in stage j, then the LPJSM is as follows:

log(P (Yi1)) =α1I(ki1 = P ) + α2I(ki1 = L) + α3I(ki1 = H)

log(P (Yi2)) =α1I(ki2 = P ) + α2I(ki2 = L) + α3I(ki2 = H) + α4I(ki1 = P, Yi1 = 0)+

α5I(ki1 = P, Yi1 = 1) + α6I(ki1 = L, Yi1 = 0) + α7I(ki1 = L, Yi1 = 1)+

α8I(ki1 = H,Yi1 = 0) + α9I(ki1 = H,Yi1 = 1)

Here we have nine estimated coefficients where α1, α2 and α3 represent the log response

rates of placebo, low and high dose. Coefficients α4 - α9 correspond to the six linkage

parameters in the Bayesian model. The Poisson family is used to model the variance of the

outcome to overcome convergence problems with log-binomial models in small samples17.

The parameters are estimated via generalized estimating equations assuming an independent

correlation structure. The variance of the LPJSM is corrected through robust sandwich

estimators.

3 Simulations

In our simulations, we first assume that our drug of interest is ineffective and consider trials

in the null scenario, i.e., the response rate of placebo, low dose and high dose are all equal

(Scenario 1, P = L = H). Under the assumption that the drug of interest is effective, we

consider three additional scenarios. In scenario 2, a dose-response relationship occurs, i.e.

higher dose relates to higher treatment effect (response rates such that P < L < H). In

scenario 3, no dose response occurs between low and high dose, so that the response rate of

P < L = H. Lastly, we consider an unlikely, but possible setting in scenario 4 where no dose

response occurs and low dose is effective but high dose is not, so that the response rate of

P = H < L. We selected the Gamma(2, 2) prior for all linkage parameters, understanding
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this allows for positive probability for β1kπk′ and β0kπk∗ to be greater than 1. We chose

Gamma(2,2) as the prior for all β1kπk′ and β0kπk∗ for three reasons: (i) simplicity, (ii) the

distribution ranges from 0 to 3 for most of the random draws, which serves as a restriction

to the prior distributions of the linkage parameters, and (iii) the distribution is centered

at 1 with variance equal to 0.5, which allows for flexibility of the prior distribution of the

linkage parameters to be below or above 1. This third property allows stage 1 responders the

possibility to worsen in the second stage if they decrease dose and stage 1 non-responders

the possibility to respond if they increase dose. See Table 1 for the scenarios and priors we

used in simulations.

In the data generating process, we simulated 2,000 realizations per scenario under the

four settings in Table 1. For each realization, N/3 subjects were assigned to each treatment

arm in stage 1, with a total sample size N . Responses to stage 1 were computed as ran-

dom Bernoulli variables with the proposed response rates under different scenarios (Table 1,

column 3-6). Subjects were then re-randomized equally to their stage 2 treatment based on

their stage 1 treatment and stage 1 response. Stage 2 responses were computed using for-

mulae (2) and (3) under the different scenarios. We compared bias, root mean-square error

(rMSE), coverage rates and widths of the 95% credible/confidence intervals (CIs) between

the proposed BJSM, LPJSM, a Bayesian method using only the first stage data (BFSM),

and a maximum likelihood method (FSMLE) using only the first stage data.

The 95% CI for BJSM and BFSM are the narrowest intervals that include 95% of the

posterior distribution of πk, while the 95% CI for LPJSM and FSMLE are the asymptotic,

normal-approximation 95% confidence intervals. The R package rjags was used to generate

the posterior distributions of πk, β1k, and β0k, and the R package gee was used to estimate

the parameters defined in LPJSM.
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3.1 Results

In this section, we present simulation results for the snSMART design in Figure 1 with

sample sizes of N=90. Results for N=300 and N=45 can be found in the Appendix.

For all scenarios, Table 2 gives the bias and rMSE for estimators of the stage 1 response

rates for placebo, low dose, and high dose. In the null scenario (scenario 1, P = L = H), we

note that BJSM, BFSM, and FSMLE provide estimators of the difference in response rates

and of individual response rates with small bias. While the estimators for the difference in

response rates in LPJSM is comparable to the other methods, we see that the bias in the

point estimates of πP , πL, and πH is much larger than the other methods. This is likely

because there are few patients that respond to treatment in the trial. We also note that

BJSM estimators have the smallest rMSEs out of all methods.

For scenario 2 (P < L < H), there is, on average, low to no bias for the response rate

estimators for each dose level. Looking specifically at the estimation of the placebo response

rate, we see that there is no bias, on average, for BJSM, BFSM, and FSMLE. In the LPJSM

method, the smallest bias is in the estimator of πH . This is likely due to the large number

of participants in the trial that receive high dose. The estimators of πP and πL likely have

higher bias in the LPJSM because there are fewer patients that receive placebo and low dose

in the trial. The estimator of πH , however, has the largest bias in the Bayesian methods

(BJSM and BFSM). The bias of the high dose response rate estimate is likely large because

the true value of πH in scenario 2 is 0.35, which is relatively far from the prior mean (0.183)

for stage 1 response rates. In comparison, in BJSM and BFSM the estimator of πL has less

bias than that of πH , presumably because the true value of πL is 0.25, which is closer to 0.183.

Looking at rMSE, we observe that the BJSM method estimators of πP , πL, and πH have the

lowest rMSE out of the estimators we compared. While the FSMLE approach has very low

bias, it tends to have the largest rMSE out of the compared methods because it only models
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first-stage outcomes. When we consider the estimators for the difference between placebo

and low and high dose response rates, we see that all methods provide estimators with small

bias. The estimators for the difference in response rates for placebo vs. low and high dose

of the BJSM have the smallest rMSEs out of all methods.

In scenario 3 (P < L = H), we see small bias for the response rate estimators, specifically

for the LPJSM and FSMLE methods. Looking at the BJSM and BFSM results, we see that

the bias is negligible for the estimators of πP , but slightly larger for estimators of πL and

πH . In contrast, the LPJSM estimators of πL and πH have negligible bias, but the estimator

of πP is slightly higher. As in scenario 2, the bias in the Bayesian methods is due to the

difference between the true value of the parameters (0.40) and the prior mean (0.183). We

expect to see larger bias in the estimation of πP from the LPJSM because few patients are

randomized to placebo. The BJSM provides response rate estimators for placebo, low dose,

and high dose with the smallest rMSEs out of all methods. Again, we see that BFSM and

FSMLE have larger rMSE than the joint stage modeling procedures. The results of scenario

3 for the bias and rMSE of the estimators of response rate differences are similar to that of

scenario 2.

In scenario 4 (P = H< L), we once again see similar patterns in bias and rMSE of response

rate estimators to scenarios 2 and 3. Again, estimators for the difference in response rate

estimators generally have small bias, and the BJSM estimators have the smallest rMSE out

of all methods.

It should be noted that across all four scenarios, the efficiency gain observed using joint

stage modeling approaches, compared to BFSM and FSMLE, is not large for the estimators

of πP . We see little efficiency gain using joint stage approaches because no one is randomized

to placebo treatment in stage 2 of the design. As such, first stage methods are comparable to

joint stage methods in estimating πP . We do, however, see modest efficiency gains using joint
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stage modeling approaches for the estimators of πL - πP and πH - πP . Since the estimation of

πL - πP and πH - πP is typically of greater interest than the estimation of πP , the efficiency

gains we observe represent an advantage of using BJSM procedures.

Across all scenarios, we see that the bias of LPJSM estimators of πP is large compared

to the other LPJSM response rate estimators, and compared to the estimators of πP for

other methods. This increased bias likely stems from the low number of patients receiving

placebo. Since there are few people in the placebo treatment arm, and none in stage 2 of

the study, there is less information to estimate πP , leading to more bias. In larger samples

(see Appendix), we see negligible bias for the LPJSM estimator of πP , which supports our

explanation that the bias observed in Table 2 is due to a low sample size.

Table 3 presents the 95% CI width and coverage rates (CR). Here, we see that the BJSM

methods has smaller average 95% CI width than the LPJSM, BFSM, and FSMLE methods.

In addition, the CR is around the target 95% for the BJSM in all tested scenarios.

When a sample size of N = 300 is used, we see similar results (Appendix). Overall,

we observe smaller bias across all settings when N = 100 in each arm. Interestingly, there

is still an efficiency gain when using BJSM methods in larger sample sizes, as the BJSM

response rate estimators have smaller rMSEs than the response rate estimators from the

LPJSM approach. In addition, for small samples, N = 45, under the null setting where

we assume a spontaneous response rate of 30% or 40% for placebo, low and high doses

of the experimental therapy, we again observe efficiency gains when using BJSM methods

(Appendix). The BJSM response rate estimators also have smaller bias than the LPJSM

and BFSM methods.
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3.2 Sensitivity to Priors

In addition to the prior setting presented in Section 3.1, we also explored other prior set-

tings to evaluate the robustness of the BJSM method. First, we adjusted the mean of the

prior distribution for log(πL/πP ) and log(πH/πP ). While we settled on a mean of 0.2 to

be conservative, we also tested mean values of 0.3, 0.4, and 0.5, and found that our results

were largely unchanged in the null and dose-response scenarios (see Appendix). Second, we

adjusted the center of the prior distribution for πP . In our presented results, the mean of

the prior distribution for πP was equal to the true value of πP in all scenarios. We present

simulations for the null and dose-response scenarios with prior distributions of Beta(2, 18)

and Beta(4, 16), and means of 0.10 and 0.20, respectively, for πP . While in these simula-

tions, we did find that our estimates of the placebo response rate were more biased than

in the results in Section 3.1, our estimation of response rates for low and high doses were

unchanged. Coverage rate and credible interval width estimates were also unchanged in

our sensitivity analyses (data not shown). Additionally, even when the mean of our prior

distribution for the placebo response rate did not match the true value of πP , BJSM was

still more efficient than the LPJSM and first-stage methods (see Appendix). Based on these

additional analyses, we conclude that our method is generally robust to the choice of mean

for all prior distributions of πP , log(πL/πP ), and log(πH/πP ). We drew the same conclusions

after adjusting the priors for scenarios 3 and 4 (data not shown).

4 Discussion

In this paper, we adapted the Baysian method (BJSM) for use in a different snSMART design

where low and high doses of a single experimental therapy are compared to placebo. Due

to dose comparison and the stage 2 re-randomization strategy, our design required novel
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methods that use six linkage parameters to share information on the response rates from

both stages of the trial. In this setting, the BJSM yields accurate estimators that are easy to

interpret in a clinical setting. Our proposed method was compared to three other methods

via simulation. Through simulation, we demonstrated that BJSM estimators are the most

efficient of the methods presented.

An advantage of the BJSM method, is that it provides estimates of πP , πL, and πH , even

when the true response rates were low. In our simulation scenarios, we noted convergence

issues for the LPJSM method, specifically under scenario 1, where all treatments have true

response rates of 0.15. In this scenario, there were instances where no response outcomes

were observed for a given stage 1 treatment. Thus, there would be no responders to re-

randomize in stage 2; all stage 2 re-randomization would occur through the non-responder

arm of that treatment. This low probability of response caused failures in convergence for

the LPJSM method, but good estimation with low bias was still possible using the BJSM.

Interestingly, in simulations with large true response rates or large sample size, LPJSM

performs better than BFSM (smaller rMSE) in terms of the estimation of each individual

response rate. However, LPJSM performs worse than BFSM in many scenarios in terms of

the difference between the response rates of different dosage levels. This is likely due to our

assumption of a prior distribution on the ratio of response rates in the Bayesian methods,

which implicitly places correlation among response rates. No such correlation structure is

assumed with LPJSM.

Another strength of the BJSM method is its robustness under different prior settings.

As discussed in Section 3.2, the BJSM method remained efficient regardless of the center of

the response rate estimator prior distributions. Additionally, the bias of the response rate

estimators for low and high dose remained low in all tested scenarios for the BJSM, even

when the mean of the prior distribution for πP no longer matched the true mean in the
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simulation scenarios. This robustness is particularly important for trials investigating drugs

in rare diseases, as there may be little previous data to guide prior distribution selection.

Our first formulation of the BJSM model had eleven, rather than six, linkage parameters.

These parameters corresponded to the eleven unique paths through which a participant could

follow in the trial. We found that, while this model still produced response rate estimators

with small bias and with increased efficiency compared to other tested methods, these ad-

vantages were not substantial. By limiting the model to only six linkage parameters, we were

able to retain small bias and gains in efficiency, while using a simpler model. These efficiency

gains were present for estimators of πL - πP and πH - πP . These difference estimators are

generally of greater interest than individual response rates in clinical trials. As such, the

efficiency gains we observe represent an advantage of using Bayesian joint stage modeling

procedures. This model could be expanded if investigators wanted a different bias-variance

trade-off than shown here.

The efficiency gains of the BJSM are still relevant for clinical trials with larger sample

sizes (Appendix). A trial design that reduces rMSE would also reduce the total number of

patients that need to enroll in the trial, and therefore results in a shorter duration of the trial.

As such, this snSMART design may be appropriate not just in rare disease research, but also

in time-sensitive research like emerging infectious diseases. Similarly, efficiency gains of the

BJSM remain for clinical trials with even smaller sample size. Simulations with only N = 45

patients (N = 15 per arm) showed that the BJSM remains efficient and estimates response

rates with low bias, even as sample size decreases (Appendix).

A limitation that results from the proposed prior distribution settings and model as-

sumptions is that the posterior distributions for the linkage parameters and πk allow for

β1kπk′ > 1. However, we did not draw any samples where β1kπk′ > 1 in our simulations.

Thus, it is unlikely that this limitation would be a problem in clinical settings, unless the
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treatment under consideration has a high response rate. Another limitation of our design is

we assume there are no carryover effects of the stage 1 treatment in stage 2 of the study. We

note, however, that our trial design allows for investigators to implement a washout period

between stage 1 and stage 2 of the study if there was concern with carryover effects. Our

future work will include modifications to our method to account for carryover effects.

Future directions for this work include adapting the BJSM to continuous outcomes. We

are also examining models with fewer unique linkage parameters to see if we can improve

efficiency of the BJSM method without much increased bias. In addition, future work can

construct sample size calculations based on the BJSM for snSMART designs. These sample

size calculations will aid in the extension of snSMART designs for primary efficacy analysis

when more than two dose levels of a drug are compared. We note that our study design

allows for a customizable randomization scheme in stage 2. While balanced re-randomization

was applied in our simulations, future work could consider unbalanced or/and stratified

randomization in stage 2 within responders and non-responders.
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Figure 1: Study design of the proposed snSMART. Participants are randomized (R) to one
of the first stage treatment arms, placebo, low dose or high dose equally (1:1:1). At the
end of stage 1, patients are re-randomized to their second stage treatment based on their
response status. Outcomes are collected at the end of stage 1 and stage 2.
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Table 1: Scenarios and priors for the simulation settings. πk is the first stage response rate
for treatment k, k = P,L,H, where P=placebo, L=low dose, H=high dose. β1k is the linkage
parameter for first stage responders who receive treatment k in stage 1. β0k is the linkage
parameter for first stage non-responders who receive treatment k in stage 1. Simulations are
done under 4 scenarios: (i) P=L=H (low and high dose are both as effective as placebo), (ii)
P<L<H (placebo is less effective than low dose, and low dose is less effective than high dose),
(iii) P<L=H (low dose and high dose are equally effective, and they are more effective than
placebo), and (iv) P=H<L (low dose is effective but high dose is not). BJSM prior setting
(column 1) is where we use Gamma(2, 2) for all linkage parameters to relax the restriction
of priors.

BJSM Prior Response Rates/ Scenarios
for All Scenarios Linkage Parameters P=L=H P<L<H P< L=H P=H<L

Beta(3,17) πP 0.15 0.15 0.15 0.15
log(πL/πP ) ∼ N(0.2, 100) πL 0.15 0.25 0.4 0.4
log(πH/πP ) ∼ N(0.2, 100) πH 0.15 0.35 0.4 0.15

Gamma(2,2) β0P 0.9 0.9 0.9 0.9
Gamma(2,2) β1P 1.3 1.3 1.3 1.3
Gamma(2,2) β0L 0.8 0.8 0.8 0.8
Gamma(2,2) β1L 1.2 1.2 1.2 1.2
Gamma(2,2) β0H 0.7 0.7 0.7 0.7
Gamma(2,2) β1H 1.1 1.1 1.1 1.1
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Table 2: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk is
the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 0.018 0.063 -0.001 0.039 -0.001 0.065
πL -0.003 0.048 0.022 0.062 -0.005 0.062 0.000 0.064
πH -0.007 0.043 0.020 0.062 -0.005 0.062 0.000 0.064
πL - πP -0.003 0.062 0.004 0.081 -0.005 0.073 0.001 0.091
πH - πP -0.006 0.058 0.002 0.087 -0.005 0.073 0.000 0.091

(2) P < L < H πP 0.000 0.039 0.009 0.063 0.000 0.039 0.000 0.065
πL -0.005 0.057 0.014 0.068 -0.011 0.078 -0.003 0.080
πH -0.013 0.064 -0.001 0.075 -0.013 0.084 -0.001 0.860
πL - πP -0.005 0.070 0.004 0.092 -0.011 0.087 -0.003 0.102
πH - πP -0.013 0.074 0.011 0.101 -0.012 0.093 -0.001 0.108

(3) P < L = H πP 0.000 0.040 0.007 0.064 0.000 0.040 -0.001 0.067
πL -0.009 0.066 0.000 0.076 -0.013 0.087 0.000 0.089
πH -0.012 0.065 0.000 0.074 -0.015 0.087 -0.003 0.089
πL - πP -0.009 0.077 -0.006 0.097 -0.013 0.096 0.001 0.112
πH - πP -0.012 0.076 -0.006 0.099 -0.015 0.096 -0.002 0.111

(4) P = H < L πP -0.001 0.039 0.014 0.063 -0.001 0.039 -0.001 0.065
πL -0.011 0.068 -0.023 0.081 -0.011 0.086 0.002 0.088
πH -0.003 0.044 0.030 0.060 -0.004 0.063 0.001 0.065
πL - πP -0.010 0.078 -0.037 0.104 -0.010 0.094 0.002 0.109
πH - πP -0.003 0.059 0.016 0.083 -0.003 0.075 0.002 0.093
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Table 3: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the true
stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.98 0.187 0.97 0.261 0.99 0.187 0.94 0.245
πL 0.93 0.183 0.95 0.229 0.87 0.221 0.95 0.246
πH 0.93 0.171 0.95 0.228 0.87 0.221 0.95 0.246

(2) P < L < H πP 0.98 0.187 0.96 0.254 0.99 0.187 0.94 0.246
πL 0.94 0.225 0.94 0.263 0.88 0.280 0.94 0.304
πH 0.94 0.256 0.94 0.298 0.92 0.317 0.91 0.335

(3) P < L = H πP 0.98 0.186 0.96 0.252 0.98 0.187 0.94 0.245
πL 0.95 0.267 0.94 0.296 0.94 0.327 0.93 0.346
πH 0.94 0.261 0.95 0.296 0.94 0.327 0.94 0.344

(4) P = H < L πP 0.99 0.187 0.98 0.258 0.99 0.187 0.94 0.245
πL 0.96 0.282 0.92 0.301 0.94 0.328 0.94 0.336
πH 0.93 0.169 0.96 0.213 0.88 0.222 0.94 0.247
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APPENDIX

Simulation results with N=300

Table A1: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk
is the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP 0.000 0.030 0.001 0.035 0.000 0.030 0.000 0.035
πL 0.000 0.028 0.002 0.030 0.000 0.035 0.001 0.036
πH -0.002 0.026 0.001 0.031 -0.002 0.034 0.000 0.035
πL - πP 0.000 0.041 0.001 0.045 0.000 0.046 0.002 0.051
πH - πP -0.002 0.040 0.000 0.046 -0.002 0.045 0.000 0.049

(2) P < L < H πP 0.000 0.031 0.000 0.360 0.001 0.030 0.001 0.037
πL -0.001 0.033 0.007 0.038 -0.002 0.042 0.000 0.042
πH -0.004 0.039 -0.007 0.043 -0.005 0.048 -0.001 0.048
πL - πP -0.002 0.046 0.008 0.051 -0.003 0.053 0.000 0.057
πH - πP -0.005 0.049 -0.007 0.056 -0.005 0.056 -0.002 0.059

(3) P < L = H πP 0.000 0.030 0.000 0.036 0.000 0.300 0.000 0.036
πL -0.002 0.040 0.000 0.042 -0.003 0.049 0.001 0.050
πH -0.004 0.040 0.000 0.042 -0.005 0.050 -0.001 0.050
πL - πP -0.002 0.050 0.000 0.054 -0.003 0.058 0.001 0.062
πH - πP -0.004 0.051 0.001 0.055 -0.005 0.059 -0.001 0.062

(4) P = H < L πP 0.001 0.030 0.000 0.035 0.001 0.030 0.001 0.036
πL -0.002 0.043 -0.026 0.049 -0.003 0.050 0.001 0.050
πH -0.002 0.026 0.026 0.039 -0.002 0.036 0.000 0.036
πL - πP -0.003 0.053 -0.026 0.060 -0.004 0.058 0.000 0.062
πH - πP -0.003 0.040 0.026 0.052 -0.003 0.047 -0.001 0.051
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Table A2: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the
true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.96 0.124 0.94 0.139 0.96 0.124 0.93 0.138
πL 0.94 0.112 0.95 0.121 0.93 0.135 0.93 0.139
πH 0.95 0.108 0.95 0.121 0.94 0.134 0.94 0.138

(2) P < L < H πP 0.95 0.125 0.94 0.138 0.95 0.125 0.93 0.139
πL 0.95 0.133 0.95 0.144 0.95 0.165 0.95 0.170
πH 0.95 0.156 0.93 0.164 0.95 0.182 0.94 0.186

(3) P < L = H πP 0.96 0.124 0.94 0.138 0.96 0.124 0.94 0.139
πL 0.95 0.157 0.94 0.163 0.94 0.188 0.94 0.191
πH 0.95 0.156 0.94 0.163 0.93 0.188 0.94 0.191

(4) P = H < L πP 0.96 0.125 0.94 0.139 0.96 0.125 0.93 0.139
πL 0.95 0.170 0.90 0.166 0.94 0.188 0.93 0.186
πH 0.94 0.101 0.90 0.117 0.93 0.134 0.93 0.138
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Simulation results with N=45

Table A3: Simulated bias and root-mean-square error (rMSE) for the estimators of πk under
null scenarios with different spontaneous response rate. πk is the true stage 1 response rate
for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H = high dose.
Under null scenario, we assume πP = πL = πH = π. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 15.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.002 0.047 0.012 0.116 -0.084 0.098 0.001 0.120
π = 0.3 πL -0.010 0.086 0.031 0.108 -0.021 0.110 0.003 0.121

πH -0.015 0.075 0.018 0.100 -0.018 0.111 0.002 0.120
πL - πP -0.008 0.098 0.019 0.157 0.062 0.135 0.002 0.175
πH - πP -0.012 0.085 0.006 0.152 0.066 0.138 0.002 0.168

(2) P = L = H πP 0.000 0.053 0.007 0.123 -0.141 0.151 0.004 0.128
π = 0.4 πL -0.015 0.087 0.012 0.107 -0.027 0.119 -0.003 0.130

πH -0.018 0.084 0.006 0.105 -0.023 0.120 -0.001 0.124
πL - πP -0.015 0.100 0.005 0.162 0.114 0.172 -0.007 0.182
πH - πP -0.018 0.100 -0.001 0.158 0.118 0.176 -0.005 0.175
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Simulation results with different prior settings

Table A4: Simulated bias and root-mean-square error (rMSE) under the null scenario for
the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.3 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(3) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.4 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(4) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.5 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073
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Table A5: Simulated bias and root-mean-square error (rMSE) under the null scenario
for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
E(πP ) = 0.15 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.021 0.044 -0.021 0.044
E(πP ) = 0.1 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP 0.017 0.064 0.015 0.075
πH - πP 0.014 0.059 0.015 0.075

(3) P = L = H πP 0.019 0.043 0.019 0.043
E(πP ) = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.023 0.066 -0.025 0.077
πH - πP -0.026 0.063 -0.025 0.077
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Table A6: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ),
i.e. E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.3 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(3) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.4 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(4) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.5 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093
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Table A7: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
E(πP ) = 0.15 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP -0.020 0.044 -0.020 0.044
E(πP ) = 0.1 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP 0.015 0.071 0.009 0.087
πH - πP 0.007 0.073 0.008 0.092

(3) P < L < H πP 0.020 0.044 0.020 0.044
E(πP ) = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.025 0.074 -0.031 0.091
πH - πP -0.033 0.080 -0.032 0.098
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Abstract

Clinical trials studying treatments for rare diseases are challenging to design and

conduct due to the limited number of patients eligible for the trial. One design used to

address this challenge is the small n, sequential, multiple assignment, randomized trial

(snSMART). We propose a new snSMART design that investigates the response rates

of a drug tested at a low and high dose compared to placebo. Patients are randomized

to an initial treatment (stage 1). In stage 2, patients are re-randomized, depending on

their initial treatment and their response to that treatment in stage 1, to either the

same or a different dose of treatment. Data from both stages are used to determine the
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efficacy of the active treatment. We present a Bayesian approach where information

is borrowed between stage 1 and stage 2. We compare our approach to standard

methods using only stage 1 data and a log-linear Poisson model that uses data from

both stages where parameters are estimated using generalized estimating equations.

We observe that the Bayesian method has smaller root-mean-square-error and 95%

credible interval widths than standard methods in the tested scenarios. We conclude

that it is advantageous to utilize data from both stages for a primary efficacy analysis

and that the specific snSMART design shown here can be used in the registration of a

drug for the treatment of rare diseases.

Keywords: adaptive randomization, clinical trial, repeated measures

1 Introduction

A rare disease is defined as a disease that affects fewer than 200,000 people in the United

States1. Taken together, there are more than 8,000 rare diseases that affect over 30 million

people in the United States2. Unfortunately, only 289 (4%) of these rare diseases have an

approved drug, leaving 96% of rare diseases without an approved treatment and considerable

unmet need for many patients3. Because of the limited number of individuals affected by

rare diseases, it is difficult to find effective treatments for these conditions4. Approval of

any drug is based on the same requirements for evidence of effectiveness, regardless of the

size of the diseased population. While randomized clinical trials (RCTs) are utilized to

demonstrate the strongest scientific evidence of an effective treatment, these trials are often

difficult or impossible in rare disease settings because they require a large number of subjects.

As a result, many RCTs involving rare diseases often have reduced power when compared

to studies of diseases that are not rare5. To combat these issues, Tamura et al.6 previously

proposed a small n, sequential, multiple assignment, randomized trial (snSMART) design to
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investigate three active treatments for a rare disease. Here, we propose a variation of the

snSMART design that focuses on a single drug and placebo.

In many situations, there is only a single, novel drug of interest and the objective of a

clinical trial is to determine efficacy of that drug. As an example, the Vasculitis Clinical

Research Consortium was recently interested in testing a novel drug for patients suffering

from granulomatosis with polyangitis (GPA) or microscopic polyangitis (MPA), forms of

vasculitis characterized by inflammation of the blood vessels. The binary endpoint of the

study was remission after three weeks of therapy. It was assumed, however, that an effective

drug would have to be taken for longer than three weeks in practice. The trial needed

to be placebo controlled and the investigators were interested in novel designs that could

potentially increase the power of detecting a drug effect. Given that vasculitis is a rare

disease, it was also necessary that the trial design was appropriate for small sample sizes.

An snSMART is a variation of a SMART design7,8 that is specifically intended for small

samples. In a SMART, patients are randomized to at least two sequential interventions in

such a way that the second intervention assignment depends on the patient’s response to

the first intervention. The goal of a SMART is often to develop effective dynamic treatment

regimens (DTRs) that specify an initial treatment for a patient followed by subsequent

treatment, that is tailored by response to the initial treatment9,10. In contrast, the stages in

an snSMART are used to garner more information from a smaller set of subjects rather than

to identify sequences of treatments tailored to an individual. In other words, snSMARTs are

not designed with the goal of developing or estimating the effects of DTRs. Instead, the goal

of an snSMART is to efficiently use data across the two stages of the trial to find a single

superior treatment or dose of treatment in a small sample of individuals.

Indeed, there have been previous examples of repurposing well-developed trial designs

to address novel goals. For example, randomized discontinuation trials have been studied
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as an alternative phase II design in oncology11. In addition, randomized discontinuation

trials have been modified using SMART designs in order to answer a wider variety of clin-

ical questions12. Researchers have also considered some enhanced crossover designs in the

rare diseases spectrum to address the concerns about the unnecessary exposure to placebo

or treatment of high toxicity. For example, Makubate and Senn13 and Nason and Foll-

mann14 both discussed designs that allow for discontinuation from the study according to

the absorbed binary endpoints after a subject receives the first treatment. Honkanen et al.15

introduced an alternative design that consists of an initial randomized placebo-controlled

stage, a randomized withdrawal stage for subjects who responded, and a third randomized

stage for placebo non-responders who subsequently respond to treatment.

In the snSMART design of Tamura et al. (2016), three unique, active experimental

treatments were compared. We propose extending this design to a three-arm trial comparing

placebo to low and high doses of one experimental treatment (Figure 1). In such a trial,

patients are initially randomized at stage 1 to either receive placebo, low dose, or high dose

with equal likelihood. Patients receive this treatment for a pre-specified amount of time, at

which time their binary response status is ascertained. In stage 2, patients are re-randomized

to either the same or a different dose of treatment depending on their initial treatment and

their response to that treatment. Specifically, patients who received placebo at stage 1 are

re-randomized to receive either low dose or high dose at stage 2, regardless of their stage 1

response. This is advantageous for patients because it means that everyone enrolled in the

trial will receive an active treatment by stage 2, even if they were initially randomized to

placebo. All patients who initially received low dose, regardless of their response status, are

re-randomized to either low dose or high dose. In the case of patients who responded to

low dose, this re-randomization is appropriate because it allows patients to either receive a

higher dose of the drug that is already effective for them or to continue receiving low dose.
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Receiving low dose again is advantageous for patients because they continue receiving a drug

they respond to and advantageous for the trial because we gain more information about the

response rate to low dose in stage 2 of the study. All patients who did not respond to high

dose receive high dose again in stage 2, whereas patients who initially responded to high dose

are re-randomized to receive either high dose again or low dose. In this design, the primary

objective is to estimate the difference in the probability of response to treatment between

low dose and placebo and between high dose and placebo.

Compared to other rare diseases and clinical trial designs, this snSMART design is advan-

tageous for three reasons. First, this design allows for the comparison of treatment against

placebo, which is necessary to demonstrate efficacy of an experimental treatment. Second,

this design allows for the comparison of more than one dosage level of a drug, so that a lower,

less toxic dose may be shown to be efficacious as opposed to investigating only a high dose.

Third, individuals who respond to treatment in stage 1 may continue their original dose or

may increase or decrease dose. All participants receive an active treatment at some point in

the trial. In addition, those who receive a low dose or high dose of the drug will continue to

receive the drug at some level in both stages because there are no participants randomized to

placebo in stage 2. These factors may improve patient engagement and recruitment, which

is a challenge in the study of rare diseases. Wei et al.16 demonstrated efficiency gains of the

previous snSMART design compared to a one stage design, but such advantages have not

yet been confirmed for this setting.

In Section 2, we propose Bayesian and frequentist methods to analyze data for the pri-

mary efficacy analysis of the proposed snSMART design by borrowing information across

patients and between trial stages. In the Bayesian model, we incorporate expert opinion

and experience by using mildly informative prior distributions that are more flexible than

those considered in Wei et al. (2018). In Section 3, we assess the influence of the prior
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distributions through simulation. We compare the Bayesian model to a frequentist model

that also jointly models the response rates across the two stages of the snSMART. Both

models are compared to models using only stage 1 data to illustrate the potential efficiency

gain of the two-stage design. In Section 4, we complete our manuscript with a discussion.

2 Methods

2.1 Bayesian Joint Stage Model

For each subject i = 1, . . . , N , stage of the snSMART j = 1, 2 and treatment k = P, L, H,

where N denotes the sample size, P denotes placebo, L denotes low dose, and H denotes high

dose, let Yijk be the observed binary response outcome where 1 corresponds to “response”

and 0 corresponds to “no response” to treatment. The stage 1 outcome and the stage 2

outcome given the stage 1 outcome are each modeled as Bernoulli random variables. The

stage 1 response rate for treatment k is denoted as πk. The stage 2 response rate for stage

1 responders to treatment k who receive treatment k′ in stage 2 is equal to β1kπk′ . For

non-responders to treatment k in stage 1 who receive treatment k* in stage 2, the stage

2 response rate is equal to β0kπk∗ . Thus we have six unique linkage parameters that link

stage 1 response to stage 2 response. Our proposed Bayesian joint stage model (BJSM) is

as follows:

Yi1k|πk ∼ Bernoulli(πk) (1)

Yi2k′ |πk, β1k, Yi1k = 1 ∼ Bernoulli(β1kπk′) (2)

Yi2k∗|πk, β0k, Yi1k = 0 ∼ Bernoulli(β0kπk∗) (3)

Assumptions and prior distributions for the parameters are based on clinician input.
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Here, we incorporate prior knowledge about disease and current treatments and assume that

an ineffective treatment has a response rate of 15% and thus use an informative prior Beta(3,

17) for πP . It is a setting similar to the GPA/MPA example mentioned in the Introduction.

For the effect of low and high dose, we allow for a weak tendency for the drug response

rates to be greater than the effect of placebo and assume that the logarithm of treatment

effect ratio follows a Gaussian prior distribution N(µ, σ2), i.e., log(πL/πP ) ∼ N(0.2, 100)

and log(πH/πP ) ∼ N(0.2, 100). Note that E(πL/πP ) = e0.2 ≈ 1.2 under the proposed prior

setting.

Wei et al. (2018) assumed that the linkage parameters (i) did not depend on the initial

treatment and that, (ii) β0 ≤ 1 and (iii) β1 > 1. Here, since both responders and non-

responders are re-randomized and we are testing for a potential dose-response relationship

between treatment arms, these previous assumptions are not appropriate. In our simulations,

instead of assuming the Beta and Pareto priors used by Wei et al. (2018), we consider Gamma

priors so that the linkage parameters can span the positive real line.

2.2 Log-linear Poisson Joint Stage Model

The log-linear Poisson joint stage model (LPJSM) presented in Wei et al. (2018) is slightly

adjusted for our design. The LPJSM jointly models the stage 1 and stage 2 outcomes with

a log link for interpretability. The LPJSM is shown below where there is a one-to-one

correspondence to the parameters in the Bayesian model in Equations (1) - (3). Let Yij be

the response of subject i in stage j (j = 1, 2), where I(kij = k) is the indicator function for
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treatment k = P, L, H for subject i in stage j, then the LPJSM is as follows:

log(P (Yi1)) =α1I(ki1 = P ) + α2I(ki1 = L) + α3I(ki1 = H)

log(P (Yi2)) =α1I(ki2 = P ) + α2I(ki2 = L) + α3I(ki2 = H) + α4I(ki1 = P, Yi1 = 0)+

α5I(ki1 = P, Yi1 = 1) + α6I(ki1 = L, Yi1 = 0) + α7I(ki1 = L, Yi1 = 1)+

α8I(ki1 = H,Yi1 = 0) + α9I(ki1 = H,Yi1 = 1)

Here we have nine estimated coefficients where α1, α2 and α3 represent the log response

rates of placebo, low and high dose. Coefficients α4 - α9 correspond to the six linkage

parameters in the Bayesian model. The Poisson family is used to model the variance of the

outcome to overcome convergence problems with log-binomial models in small samples17.

The parameters are estimated via generalized estimating equations assuming an independent

correlation structure. The variance of the LPJSM is corrected through robust sandwich

estimators.

3 Simulations

In our simulations, we first assume that our drug of interest is ineffective and consider trials

in the null scenario, i.e., the response rate of placebo, low dose and high dose are all equal

(Scenario 1, P = L = H). Under the assumption that the drug of interest is effective, we

consider three additional scenarios. In scenario 2, a dose-response relationship occurs, i.e.

higher dose relates to higher treatment effect (response rates such that P < L < H). In

scenario 3, no dose response occurs between low and high dose, so that the response rate of

P < L = H. Lastly, we consider an unlikely, but possible setting in scenario 4 where no dose

response occurs and low dose is effective but high dose is not, so that the response rate of

P = H < L. We selected the Gamma(2, 2) prior for all linkage parameters, understanding
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this allows for positive probability for β1kπk′ and β0kπk∗ to be greater than 1. We chose

Gamma(2,2) as the prior for all β1kπk′ and β0kπk∗ for three reasons: (i) simplicity, (ii) the

distribution ranges from 0 to 3 for most of the random draws, which serves as a restriction

to the prior distributions of the linkage parameters, and (iii) the distribution is centered

at 1 with variance equal to 0.5, which allows for flexibility of the prior distribution of the

linkage parameters to be below or above 1. This third property allows stage 1 responders the

possibility to worsen in the second stage if they decrease dose and stage 1 non-responders

the possibility to respond if they increase dose. See Table 1 for the scenarios and priors we

used in simulations.

In the data generating process, we simulated 2,000 realizations per scenario under the

four settings in Table 1. For each realization, N/3 subjects were assigned to each treatment

arm in stage 1, with a total sample size N . Responses to stage 1 were computed as ran-

dom Bernoulli variables with the proposed response rates under different scenarios (Table 1,

column 3-6). Subjects were then re-randomized equally to their stage 2 treatment based on

their stage 1 treatment and stage 1 response. Stage 2 responses were computed using for-

mulae (2) and (3) under the different scenarios. We compared bias, root mean-square error

(rMSE), coverage rates and widths of the 95% credible/confidence intervals (CIs) between

the proposed BJSM, LPJSM, a Bayesian method using only the first stage data (BFSM),

and a maximum likelihood method (FSMLE) using only the first stage data.

The 95% CI for BJSM and BFSM are the narrowest intervals that include 95% of the

posterior distribution of πk, while the 95% CI for LPJSM and FSMLE are the asymptotic,

normal-approximation 95% confidence intervals. The R package rjags was used to generate

the posterior distributions of πk, β1k, and β0k, and the R package gee was used to estimate

the parameters defined in LPJSM.
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3.1 Results

In this section, we present simulation results for the snSMART design in Figure 1 with

sample sizes of N=90. Results for N=300 and N=45 can be found in the Appendix.

For all scenarios, Table 2 gives the bias and rMSE for estimators of the stage 1 response

rates for placebo, low dose, and high dose. In the null scenario (scenario 1, P = L = H), we

note that BJSM, BFSM, and FSMLE provide estimators of the difference in response rates

and of individual response rates with small bias. While the estimators for the difference in

response rates in LPJSM is comparable to the other methods, we see that the bias in the

point estimates of πP , πL, and πH is much larger than the other methods. This is likely

because there are few patients that respond to treatment in the trial. We also note that

BJSM estimators have the smallest rMSEs out of all methods.

For scenario 2 (P < L < H), there is, on average, low to no bias for the response rate

estimators for each dose level. Looking specifically at the estimation of the placebo response

rate, we see that there is no bias, on average, for BJSM, BFSM, and FSMLE. In the LPJSM

method, the smallest bias is in the estimator of πH . This is likely due to the large number

of participants in the trial that receive high dose. The estimators of πP and πL likely have

higher bias in the LPJSM because there are fewer patients that receive placebo and low dose

in the trial. The estimator of πH , however, has the largest bias in the Bayesian methods

(BJSM and BFSM). The bias of the high dose response rate estimate is likely large because

the true value of πH in scenario 2 is 0.35, which is relatively far from the prior mean (0.183)

for stage 1 response rates. In comparison, in BJSM and BFSM the estimator of πL has less

bias than that of πH , presumably because the true value of πL is 0.25, which is closer to 0.183.

Looking at rMSE, we observe that the BJSM method estimators of πP , πL, and πH have the

lowest rMSE out of the estimators we compared. While the FSMLE approach has very low

bias, it tends to have the largest rMSE out of the compared methods because it only models
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first-stage outcomes. When we consider the estimators for the difference between placebo

and low and high dose response rates, we see that all methods provide estimators with small

bias. The estimators for the difference in response rates for placebo vs. low and high dose

of the BJSM have the smallest rMSEs out of all methods.

In scenario 3 (P < L = H), we see small bias for the response rate estimators, specifically

for the LPJSM and FSMLE methods. Looking at the BJSM and BFSM results, we see that

the bias is negligible for the estimators of πP , but slightly larger for estimators of πL and

πH . In contrast, the LPJSM estimators of πL and πH have negligible bias, but the estimator

of πP is slightly higher. As in scenario 2, the bias in the Bayesian methods is due to the

difference between the true value of the parameters (0.40) and the prior mean (0.183). We

expect to see larger bias in the estimation of πP from the LPJSM because few patients are

randomized to placebo. The BJSM provides response rate estimators for placebo, low dose,

and high dose with the smallest rMSEs out of all methods. Again, we see that BFSM and

FSMLE have larger rMSE than the joint stage modeling procedures. The results of scenario

3 for the bias and rMSE of the estimators of response rate differences are similar to that of

scenario 2.

In scenario 4 (P = H< L), we once again see similar patterns in bias and rMSE of response

rate estimators to scenarios 2 and 3. Again, estimators for the difference in response rate

estimators generally have small bias, and the BJSM estimators have the smallest rMSE out

of all methods.

It should be noted that across all four scenarios, the efficiency gain observed using joint

stage modeling approaches, compared to BFSM and FSMLE, is not large for the estimators

of πP . We see little efficiency gain using joint stage approaches because no one is randomized

to placebo treatment in stage 2 of the design. As such, first stage methods are comparable to

joint stage methods in estimating πP . We do, however, see modest efficiency gains using joint
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stage modeling approaches for the estimators of πL - πP and πH - πP . Since the estimation of

πL - πP and πH - πP is typically of greater interest than the estimation of πP , the efficiency

gains we observe represent an advantage of using BJSM procedures.

Across all scenarios, we see that the bias of LPJSM estimators of πP is large compared

to the other LPJSM response rate estimators, and compared to the estimators of πP for

other methods. This increased bias likely stems from the low number of patients receiving

placebo. Since there are few people in the placebo treatment arm, and none in stage 2 of

the study, there is less information to estimate πP , leading to more bias. In larger samples

(see Appendix), we see negligible bias for the LPJSM estimator of πP , which supports our

explanation that the bias observed in Table 2 is due to a low sample size.

Table 3 presents the 95% CI width and coverage rates (CR). Here, we see that the BJSM

methods has smaller average 95% CI width than the LPJSM, BFSM, and FSMLE methods.

In addition, the CR is around the target 95% for the BJSM in all tested scenarios.

When a sample size of N = 300 is used, we see similar results (Appendix). Overall,

we observe smaller bias across all settings when N = 100 in each arm. Interestingly, there

is still an efficiency gain when using BJSM methods in larger sample sizes, as the BJSM

response rate estimators have smaller rMSEs than the response rate estimators from the

LPJSM approach. In addition, for small samples, N = 45, under the null setting where

we assume a spontaneous response rate of 30% or 40% for placebo, low and high doses

of the experimental therapy, we again observe efficiency gains when using BJSM methods

(Appendix). The BJSM response rate estimators also have smaller bias than the LPJSM

and BFSM methods.
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3.2 Sensitivity to Priors

In addition to the prior setting presented in Section 3.1, we also explored other prior set-

tings to evaluate the robustness of the BJSM method. First, we adjusted the mean of the

prior distribution for log(πL/πP ) and log(πH/πP ). While we settled on a mean of 0.2 to

be conservative, we also tested mean values of 0.3, 0.4, and 0.5, and found that our results

were largely unchanged in the null and dose-response scenarios (see Appendix). Second, we

adjusted the center of the prior distribution for πP . In our presented results, the mean of

the prior distribution for πP was equal to the true value of πP in all scenarios. We present

simulations for the null and dose-response scenarios with prior distributions of Beta(2, 18)

and Beta(4, 16), and means of 0.10 and 0.20, respectively, for πP . While in these simula-

tions, we did find that our estimates of the placebo response rate were more biased than

in the results in Section 3.1, our estimation of response rates for low and high doses were

unchanged. Coverage rate and credible interval width estimates were also unchanged in

our sensitivity analyses (data not shown). Additionally, even when the mean of our prior

distribution for the placebo response rate did not match the true value of πP , BJSM was

still more efficient than the LPJSM and first-stage methods (see Appendix). Based on these

additional analyses, we conclude that our method is generally robust to the choice of mean

for all prior distributions of πP , log(πL/πP ), and log(πH/πP ). We drew the same conclusions

after adjusting the priors for scenarios 3 and 4 (data not shown).

4 Discussion

In this paper, we adapted the Baysian method (BJSM) for use in a different snSMART design

where low and high doses of a single experimental therapy are compared to placebo. Due

to dose comparison and the stage 2 re-randomization strategy, our design required novel
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methods that use six linkage parameters to share information on the response rates from

both stages of the trial. In this setting, the BJSM yields accurate estimators that are easy to

interpret in a clinical setting. Our proposed method was compared to three other methods

via simulation. Through simulation, we demonstrated that BJSM estimators are the most

efficient of the methods presented.

An advantage of the BJSM method, is that it provides estimates of πP , πL, and πH , even

when the true response rates were low. In our simulation scenarios, we noted convergence

issues for the LPJSM method, specifically under scenario 1, where all treatments have true

response rates of 0.15. In this scenario, there were instances where no response outcomes

were observed for a given stage 1 treatment. Thus, there would be no responders to re-

randomize in stage 2; all stage 2 re-randomization would occur through the non-responder

arm of that treatment. This low probability of response caused failures in convergence for

the LPJSM method, but good estimation with low bias was still possible using the BJSM.

Interestingly, in simulations with large true response rates or large sample size, LPJSM

performs better than BFSM (smaller rMSE) in terms of the estimation of each individual

response rate. However, LPJSM performs worse than BFSM in many scenarios in terms of

the difference between the response rates of different dosage levels. This is likely due to our

assumption of a prior distribution on the ratio of response rates in the Bayesian methods,

which implicitly places correlation among response rates. No such correlation structure is

assumed with LPJSM.

Another strength of the BJSM method is its robustness under different prior settings.

As discussed in Section 3.2, the BJSM method remained efficient regardless of the center of

the response rate estimator prior distributions. Additionally, the bias of the response rate

estimators for low and high dose remained low in all tested scenarios for the BJSM, even

when the mean of the prior distribution for πP no longer matched the true mean in the
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simulation scenarios. This robustness is particularly important for trials investigating drugs

in rare diseases, as there may be little previous data to guide prior distribution selection.

Our first formulation of the BJSM model had eleven, rather than six, linkage parameters.

These parameters corresponded to the eleven unique paths through which a participant could

follow in the trial. We found that, while this model still produced response rate estimators

with small bias and with increased efficiency compared to other tested methods, these ad-

vantages were not substantial. By limiting the model to only six linkage parameters, we were

able to retain small bias and gains in efficiency, while using a simpler model. These efficiency

gains were present for estimators of πL - πP and πH - πP . These difference estimators are

generally of greater interest than individual response rates in clinical trials. As such, the

efficiency gains we observe represent an advantage of using Bayesian joint stage modeling

procedures. This model could be expanded if investigators wanted a different bias-variance

trade-off than shown here.

The efficiency gains of the BJSM are still relevant for clinical trials with larger sample

sizes (Appendix). A trial design that reduces rMSE would also reduce the total number of

patients that need to enroll in the trial, and therefore results in a shorter duration of the trial.

As such, this snSMART design may be appropriate not just in rare disease research, but also

in time-sensitive research like emerging infectious diseases. Similarly, efficiency gains of the

BJSM remain for clinical trials with even smaller sample size. Simulations with only N = 45

patients (N = 15 per arm) showed that the BJSM remains efficient and estimates response

rates with low bias, even as sample size decreases (Appendix).

A limitation that results from the proposed prior distribution settings and model as-

sumptions is that the posterior distributions for the linkage parameters and πk allow for

β1kπk′ > 1. However, we did not draw any samples where β1kπk′ > 1 in our simulations.

Thus, it is unlikely that this limitation would be a problem in clinical settings, unless the
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treatment under consideration has a high response rate. Another limitation of our design is

we assume there are no carryover effects of the stage 1 treatment in stage 2 of the study. We

note, however, that our trial design allows for investigators to implement a washout period

between stage 1 and stage 2 of the study if there was concern with carryover effects. Our

future work will include modifications to our method to account for carryover effects.

Future directions for this work include adapting the BJSM to continuous outcomes. We

are also examining models with fewer unique linkage parameters to see if we can improve

efficiency of the BJSM method without much increased bias. In addition, future work can

construct sample size calculations based on the BJSM for snSMART designs. These sample

size calculations will aid in the extension of snSMART designs for primary efficacy analysis

when more than two dose levels of a drug are compared. We note that our study design

allows for a customizable randomization scheme in stage 2. While balanced re-randomization

was applied in our simulations, future work could consider unbalanced or/and stratified

randomization in stage 2 within responders and non-responders.
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Figure 1: Study design of the proposed snSMART. Participants are randomized (R) to one
of the first stage treatment arms, placebo, low dose or high dose equally (1:1:1). At the
end of stage 1, patients are re-randomized to their second stage treatment based on their
response status. Outcomes are collected at the end of stage 1 and stage 2.
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Table 1: Scenarios and priors for the simulation settings. πk is the first stage response rate
for treatment k, k = P,L,H, where P=placebo, L=low dose, H=high dose. β1k is the linkage
parameter for first stage responders who receive treatment k in stage 1. β0k is the linkage
parameter for first stage non-responders who receive treatment k in stage 1. Simulations are
done under 4 scenarios: (i) P=L=H (low and high dose are both as effective as placebo), (ii)
P<L<H (placebo is less effective than low dose, and low dose is less effective than high dose),
(iii) P<L=H (low dose and high dose are equally effective, and they are more effective than
placebo), and (iv) P=H<L (low dose is effective but high dose is not). BJSM prior setting
(column 1) is where we use Gamma(2, 2) for all linkage parameters to relax the restriction
of priors.

BJSM Prior Response Rates/ Scenarios
for All Scenarios Linkage Parameters P=L=H P<L<H P< L=H P=H<L

Beta(3,17) πP 0.15 0.15 0.15 0.15
log(πL/πP ) ∼ N(0.2, 100) πL 0.15 0.25 0.4 0.4
log(πH/πP ) ∼ N(0.2, 100) πH 0.15 0.35 0.4 0.15

Gamma(2,2) β0P 0.9 0.9 0.9 0.9
Gamma(2,2) β1P 1.3 1.3 1.3 1.3
Gamma(2,2) β0L 0.8 0.8 0.8 0.8
Gamma(2,2) β1L 1.2 1.2 1.2 1.2
Gamma(2,2) β0H 0.7 0.7 0.7 0.7
Gamma(2,2) β1H 1.1 1.1 1.1 1.1
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Table 2: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk is
the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 0.018 0.063 -0.001 0.039 -0.001 0.065
πL -0.003 0.048 0.022 0.062 -0.005 0.062 0.000 0.064
πH -0.007 0.043 0.020 0.062 -0.005 0.062 0.000 0.064
πL - πP -0.003 0.062 0.004 0.081 -0.005 0.073 0.001 0.091
πH - πP -0.006 0.058 0.002 0.087 -0.005 0.073 0.000 0.091

(2) P < L < H πP 0.000 0.039 0.009 0.063 0.000 0.039 0.000 0.065
πL -0.005 0.057 0.014 0.068 -0.011 0.078 -0.003 0.080
πH -0.013 0.064 -0.001 0.075 -0.013 0.084 -0.001 0.860
πL - πP -0.005 0.070 0.004 0.092 -0.011 0.087 -0.003 0.102
πH - πP -0.013 0.074 0.011 0.101 -0.012 0.093 -0.001 0.108

(3) P < L = H πP 0.000 0.040 0.007 0.064 0.000 0.040 -0.001 0.067
πL -0.009 0.066 0.000 0.076 -0.013 0.087 0.000 0.089
πH -0.012 0.065 0.000 0.074 -0.015 0.087 -0.003 0.089
πL - πP -0.009 0.077 -0.006 0.097 -0.013 0.096 0.001 0.112
πH - πP -0.012 0.076 -0.006 0.099 -0.015 0.096 -0.002 0.111

(4) P = H < L πP -0.001 0.039 0.014 0.063 -0.001 0.039 -0.001 0.065
πL -0.011 0.068 -0.023 0.081 -0.011 0.086 0.002 0.088
πH -0.003 0.044 0.030 0.060 -0.004 0.063 0.001 0.065
πL - πP -0.010 0.078 -0.037 0.104 -0.010 0.094 0.002 0.109
πH - πP -0.003 0.059 0.016 0.083 -0.003 0.075 0.002 0.093
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Table 3: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the true
stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.98 0.187 0.97 0.261 0.99 0.187 0.94 0.245
πL 0.93 0.183 0.95 0.229 0.87 0.221 0.95 0.246
πH 0.93 0.171 0.95 0.228 0.87 0.221 0.95 0.246

(2) P < L < H πP 0.98 0.187 0.96 0.254 0.99 0.187 0.94 0.246
πL 0.94 0.225 0.94 0.263 0.88 0.280 0.94 0.304
πH 0.94 0.256 0.94 0.298 0.92 0.317 0.91 0.335

(3) P < L = H πP 0.98 0.186 0.96 0.252 0.98 0.187 0.94 0.245
πL 0.95 0.267 0.94 0.296 0.94 0.327 0.93 0.346
πH 0.94 0.261 0.95 0.296 0.94 0.327 0.94 0.344

(4) P = H < L πP 0.99 0.187 0.98 0.258 0.99 0.187 0.94 0.245
πL 0.96 0.282 0.92 0.301 0.94 0.328 0.94 0.336
πH 0.93 0.169 0.96 0.213 0.88 0.222 0.94 0.247
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APPENDIX

Simulation results with N=300

Table A1: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk
is the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP 0.000 0.030 0.001 0.035 0.000 0.030 0.000 0.035
πL 0.000 0.028 0.002 0.030 0.000 0.035 0.001 0.036
πH -0.002 0.026 0.001 0.031 -0.002 0.034 0.000 0.035
πL - πP 0.000 0.041 0.001 0.045 0.000 0.046 0.002 0.051
πH - πP -0.002 0.040 0.000 0.046 -0.002 0.045 0.000 0.049

(2) P < L < H πP 0.000 0.031 0.000 0.360 0.001 0.030 0.001 0.037
πL -0.001 0.033 0.007 0.038 -0.002 0.042 0.000 0.042
πH -0.004 0.039 -0.007 0.043 -0.005 0.048 -0.001 0.048
πL - πP -0.002 0.046 0.008 0.051 -0.003 0.053 0.000 0.057
πH - πP -0.005 0.049 -0.007 0.056 -0.005 0.056 -0.002 0.059

(3) P < L = H πP 0.000 0.030 0.000 0.036 0.000 0.300 0.000 0.036
πL -0.002 0.040 0.000 0.042 -0.003 0.049 0.001 0.050
πH -0.004 0.040 0.000 0.042 -0.005 0.050 -0.001 0.050
πL - πP -0.002 0.050 0.000 0.054 -0.003 0.058 0.001 0.062
πH - πP -0.004 0.051 0.001 0.055 -0.005 0.059 -0.001 0.062

(4) P = H < L πP 0.001 0.030 0.000 0.035 0.001 0.030 0.001 0.036
πL -0.002 0.043 -0.026 0.049 -0.003 0.050 0.001 0.050
πH -0.002 0.026 0.026 0.039 -0.002 0.036 0.000 0.036
πL - πP -0.003 0.053 -0.026 0.060 -0.004 0.058 0.000 0.062
πH - πP -0.003 0.040 0.026 0.052 -0.003 0.047 -0.001 0.051
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Table A2: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the
true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.96 0.124 0.94 0.139 0.96 0.124 0.93 0.138
πL 0.94 0.112 0.95 0.121 0.93 0.135 0.93 0.139
πH 0.95 0.108 0.95 0.121 0.94 0.134 0.94 0.138

(2) P < L < H πP 0.95 0.125 0.94 0.138 0.95 0.125 0.93 0.139
πL 0.95 0.133 0.95 0.144 0.95 0.165 0.95 0.170
πH 0.95 0.156 0.93 0.164 0.95 0.182 0.94 0.186

(3) P < L = H πP 0.96 0.124 0.94 0.138 0.96 0.124 0.94 0.139
πL 0.95 0.157 0.94 0.163 0.94 0.188 0.94 0.191
πH 0.95 0.156 0.94 0.163 0.93 0.188 0.94 0.191

(4) P = H < L πP 0.96 0.125 0.94 0.139 0.96 0.125 0.93 0.139
πL 0.95 0.170 0.90 0.166 0.94 0.188 0.93 0.186
πH 0.94 0.101 0.90 0.117 0.93 0.134 0.93 0.138
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Simulation results with N=45

Table A3: Simulated bias and root-mean-square error (rMSE) for the estimators of πk under
null scenarios with different spontaneous response rate. πk is the true stage 1 response rate
for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H = high dose.
Under null scenario, we assume πP = πL = πH = π. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 15.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.002 0.047 0.012 0.116 -0.084 0.098 0.001 0.120
π = 0.3 πL -0.010 0.086 0.031 0.108 -0.021 0.110 0.003 0.121

πH -0.015 0.075 0.018 0.100 -0.018 0.111 0.002 0.120
πL - πP -0.008 0.098 0.019 0.157 0.062 0.135 0.002 0.175
πH - πP -0.012 0.085 0.006 0.152 0.066 0.138 0.002 0.168

(2) P = L = H πP 0.000 0.053 0.007 0.123 -0.141 0.151 0.004 0.128
π = 0.4 πL -0.015 0.087 0.012 0.107 -0.027 0.119 -0.003 0.130

πH -0.018 0.084 0.006 0.105 -0.023 0.120 -0.001 0.124
πL - πP -0.015 0.100 0.005 0.162 0.114 0.172 -0.007 0.182
πH - πP -0.018 0.100 -0.001 0.158 0.118 0.176 -0.005 0.175

25

This article is protected by copyright. All rights reserved.



Simulation results with different prior settings

Table A4: Simulated bias and root-mean-square error (rMSE) under the null scenario for
the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.3 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(3) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.4 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(4) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.5 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073
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Table A5: Simulated bias and root-mean-square error (rMSE) under the null scenario
for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
E(πP ) = 0.15 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.021 0.044 -0.021 0.044
E(πP ) = 0.1 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP 0.017 0.064 0.015 0.075
πH - πP 0.014 0.059 0.015 0.075

(3) P = L = H πP 0.019 0.043 0.019 0.043
E(πP ) = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.023 0.066 -0.025 0.077
πH - πP -0.026 0.063 -0.025 0.077
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Table A6: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ),
i.e. E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.3 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(3) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.4 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(4) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.5 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093
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Table A7: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
E(πP ) = 0.15 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP -0.020 0.044 -0.020 0.044
E(πP ) = 0.1 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP 0.015 0.071 0.009 0.087
πH - πP 0.007 0.073 0.008 0.092

(3) P < L < H πP 0.020 0.044 0.020 0.044
E(πP ) = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.025 0.074 -0.031 0.091
πH - πP -0.033 0.080 -0.032 0.098
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Abstract

Clinical trials studying treatments for rare diseases are challenging to design and

conduct due to the limited number of patients eligible for the trial. One design used to

address this challenge is the small n, sequential, multiple assignment, randomized trial

(snSMART). We propose a new snSMART design that investigates the response rates

of a drug tested at a low and high dose compared to placebo. Patients are randomized

to an initial treatment (stage 1). In stage 2, patients are re-randomized, depending on

their initial treatment and their response to that treatment in stage 1, to either the

same or a different dose of treatment. Data from both stages are used to determine the
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efficacy of the active treatment. We present a Bayesian approach where information

is borrowed between stage 1 and stage 2. We compare our approach to standard

methods using only stage 1 data and a log-linear Poisson model that uses data from

both stages where parameters are estimated using generalized estimating equations.

We observe that the Bayesian method has smaller root-mean-square-error and 95%

credible interval widths than standard methods in the tested scenarios. We conclude

that it is advantageous to utilize data from both stages for a primary efficacy analysis

and that the specific snSMART design shown here can be used in the registration of a

drug for the treatment of rare diseases.

Keywords: adaptive randomization, clinical trial, repeated measures

1 Introduction

A rare disease is defined as a disease that affects fewer than 200,000 people in the United

States1. Taken together, there are more than 8,000 rare diseases that affect over 30 million

people in the United States2. Unfortunately, only 289 (4%) of these rare diseases have an

approved drug, leaving 96% of rare diseases without an approved treatment and considerable

unmet need for many patients3. Because of the limited number of individuals affected by

rare diseases, it is difficult to find effective treatments for these conditions4. Approval of

any drug is based on the same requirements for evidence of effectiveness, regardless of the

size of the diseased population. While randomized clinical trials (RCTs) are utilized to

demonstrate the strongest scientific evidence of an effective treatment, these trials are often

difficult or impossible in rare disease settings because they require a large number of subjects.

As a result, many RCTs involving rare diseases often have reduced power when compared

to studies of diseases that are not rare5. To combat these issues, Tamura et al.6 previously

proposed a small n, sequential, multiple assignment, randomized trial (snSMART) design to

2

This article is protected by copyright. All rights reserved.



investigate three active treatments for a rare disease. Here, we propose a variation of the

snSMART design that focuses on a single drug and placebo.

In many situations, there is only a single, novel drug of interest and the objective of a

clinical trial is to determine efficacy of that drug. As an example, the Vasculitis Clinical

Research Consortium was recently interested in testing a novel drug for patients suffering

from granulomatosis with polyangitis (GPA) or microscopic polyangitis (MPA), forms of

vasculitis characterized by inflammation of the blood vessels. The binary endpoint of the

study was remission after three weeks of therapy. It was assumed, however, that an effective

drug would have to be taken for longer than three weeks in practice. The trial needed

to be placebo controlled and the investigators were interested in novel designs that could

potentially increase the power of detecting a drug effect. Given that vasculitis is a rare

disease, it was also necessary that the trial design was appropriate for small sample sizes.

An snSMART is a variation of a SMART design7,8 that is specifically intended for small

samples. In a SMART, patients are randomized to at least two sequential interventions in

such a way that the second intervention assignment depends on the patient’s response to

the first intervention. The goal of a SMART is often to develop effective dynamic treatment

regimens (DTRs) that specify an initial treatment for a patient followed by subsequent

treatment, that is tailored by response to the initial treatment9,10. In contrast, the stages in

an snSMART are used to garner more information from a smaller set of subjects rather than

to identify sequences of treatments tailored to an individual. In other words, snSMARTs are

not designed with the goal of developing or estimating the effects of DTRs. Instead, the goal

of an snSMART is to efficiently use data across the two stages of the trial to find a single

superior treatment or dose of treatment in a small sample of individuals.

Indeed, there have been previous examples of repurposing well-developed trial designs

to address novel goals. For example, randomized discontinuation trials have been studied
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as an alternative phase II design in oncology11. In addition, randomized discontinuation

trials have been modified using SMART designs in order to answer a wider variety of clin-

ical questions12. Researchers have also considered some enhanced crossover designs in the

rare diseases spectrum to address the concerns about the unnecessary exposure to placebo

or treatment of high toxicity. For example, Makubate and Senn13 and Nason and Foll-

mann14 both discussed designs that allow for discontinuation from the study according to

the absorbed binary endpoints after a subject receives the first treatment. Honkanen et al.15

introduced an alternative design that consists of an initial randomized placebo-controlled

stage, a randomized withdrawal stage for subjects who responded, and a third randomized

stage for placebo non-responders who subsequently respond to treatment.

In the snSMART design of Tamura et al. (2016), three unique, active experimental

treatments were compared. We propose extending this design to a three-arm trial comparing

placebo to low and high doses of one experimental treatment (Figure 1). In such a trial,

patients are initially randomized at stage 1 to either receive placebo, low dose, or high dose

with equal likelihood. Patients receive this treatment for a pre-specified amount of time, at

which time their binary response status is ascertained. In stage 2, patients are re-randomized

to either the same or a different dose of treatment depending on their initial treatment and

their response to that treatment. Specifically, patients who received placebo at stage 1 are

re-randomized to receive either low dose or high dose at stage 2, regardless of their stage 1

response. This is advantageous for patients because it means that everyone enrolled in the

trial will receive an active treatment by stage 2, even if they were initially randomized to

placebo. All patients who initially received low dose, regardless of their response status, are

re-randomized to either low dose or high dose. In the case of patients who responded to

low dose, this re-randomization is appropriate because it allows patients to either receive a

higher dose of the drug that is already effective for them or to continue receiving low dose.
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Receiving low dose again is advantageous for patients because they continue receiving a drug

they respond to and advantageous for the trial because we gain more information about the

response rate to low dose in stage 2 of the study. All patients who did not respond to high

dose receive high dose again in stage 2, whereas patients who initially responded to high dose

are re-randomized to receive either high dose again or low dose. In this design, the primary

objective is to estimate the difference in the probability of response to treatment between

low dose and placebo and between high dose and placebo.

Compared to other rare diseases and clinical trial designs, this snSMART design is advan-

tageous for three reasons. First, this design allows for the comparison of treatment against

placebo, which is necessary to demonstrate efficacy of an experimental treatment. Second,

this design allows for the comparison of more than one dosage level of a drug, so that a lower,

less toxic dose may be shown to be efficacious as opposed to investigating only a high dose.

Third, individuals who respond to treatment in stage 1 may continue their original dose or

may increase or decrease dose. All participants receive an active treatment at some point in

the trial. In addition, those who receive a low dose or high dose of the drug will continue to

receive the drug at some level in both stages because there are no participants randomized to

placebo in stage 2. These factors may improve patient engagement and recruitment, which

is a challenge in the study of rare diseases. Wei et al.16 demonstrated efficiency gains of the

previous snSMART design compared to a one stage design, but such advantages have not

yet been confirmed for this setting.

In Section 2, we propose Bayesian and frequentist methods to analyze data for the pri-

mary efficacy analysis of the proposed snSMART design by borrowing information across

patients and between trial stages. In the Bayesian model, we incorporate expert opinion

and experience by using mildly informative prior distributions that are more flexible than

those considered in Wei et al. (2018). In Section 3, we assess the influence of the prior
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distributions through simulation. We compare the Bayesian model to a frequentist model

that also jointly models the response rates across the two stages of the snSMART. Both

models are compared to models using only stage 1 data to illustrate the potential efficiency

gain of the two-stage design. In Section 4, we complete our manuscript with a discussion.

2 Methods

2.1 Bayesian Joint Stage Model

For each subject i = 1, . . . , N , stage of the snSMART j = 1, 2 and treatment k = P, L, H,

where N denotes the sample size, P denotes placebo, L denotes low dose, and H denotes high

dose, let Yijk be the observed binary response outcome where 1 corresponds to “response”

and 0 corresponds to “no response” to treatment. The stage 1 outcome and the stage 2

outcome given the stage 1 outcome are each modeled as Bernoulli random variables. The

stage 1 response rate for treatment k is denoted as πk. The stage 2 response rate for stage

1 responders to treatment k who receive treatment k′ in stage 2 is equal to β1kπk′ . For

non-responders to treatment k in stage 1 who receive treatment k* in stage 2, the stage

2 response rate is equal to β0kπk∗ . Thus we have six unique linkage parameters that link

stage 1 response to stage 2 response. Our proposed Bayesian joint stage model (BJSM) is

as follows:

Yi1k|πk ∼ Bernoulli(πk) (1)

Yi2k′ |πk, β1k, Yi1k = 1 ∼ Bernoulli(β1kπk′) (2)

Yi2k∗|πk, β0k, Yi1k = 0 ∼ Bernoulli(β0kπk∗) (3)

Assumptions and prior distributions for the parameters are based on clinician input.
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Here, we incorporate prior knowledge about disease and current treatments and assume that

an ineffective treatment has a response rate of 15% and thus use an informative prior Beta(3,

17) for πP . It is a setting similar to the GPA/MPA example mentioned in the Introduction.

For the effect of low and high dose, we allow for a weak tendency for the drug response

rates to be greater than the effect of placebo and assume that the logarithm of treatment

effect ratio follows a Gaussian prior distribution N(µ, σ2), i.e., log(πL/πP ) ∼ N(0.2, 100)

and log(πH/πP ) ∼ N(0.2, 100). Note that E(πL/πP ) = e0.2 ≈ 1.2 under the proposed prior

setting.

Wei et al. (2018) assumed that the linkage parameters (i) did not depend on the initial

treatment and that, (ii) β0 ≤ 1 and (iii) β1 > 1. Here, since both responders and non-

responders are re-randomized and we are testing for a potential dose-response relationship

between treatment arms, these previous assumptions are not appropriate. In our simulations,

instead of assuming the Beta and Pareto priors used by Wei et al. (2018), we consider Gamma

priors so that the linkage parameters can span the positive real line.

2.2 Log-linear Poisson Joint Stage Model

The log-linear Poisson joint stage model (LPJSM) presented in Wei et al. (2018) is slightly

adjusted for our design. The LPJSM jointly models the stage 1 and stage 2 outcomes with

a log link for interpretability. The LPJSM is shown below where there is a one-to-one

correspondence to the parameters in the Bayesian model in Equations (1) - (3). Let Yij be

the response of subject i in stage j (j = 1, 2), where I(kij = k) is the indicator function for
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treatment k = P, L, H for subject i in stage j, then the LPJSM is as follows:

log(P (Yi1)) =α1I(ki1 = P ) + α2I(ki1 = L) + α3I(ki1 = H)

log(P (Yi2)) =α1I(ki2 = P ) + α2I(ki2 = L) + α3I(ki2 = H) + α4I(ki1 = P, Yi1 = 0)+

α5I(ki1 = P, Yi1 = 1) + α6I(ki1 = L, Yi1 = 0) + α7I(ki1 = L, Yi1 = 1)+

α8I(ki1 = H,Yi1 = 0) + α9I(ki1 = H,Yi1 = 1)

Here we have nine estimated coefficients where α1, α2 and α3 represent the log response

rates of placebo, low and high dose. Coefficients α4 - α9 correspond to the six linkage

parameters in the Bayesian model. The Poisson family is used to model the variance of the

outcome to overcome convergence problems with log-binomial models in small samples17.

The parameters are estimated via generalized estimating equations assuming an independent

correlation structure. The variance of the LPJSM is corrected through robust sandwich

estimators.

3 Simulations

In our simulations, we first assume that our drug of interest is ineffective and consider trials

in the null scenario, i.e., the response rate of placebo, low dose and high dose are all equal

(Scenario 1, P = L = H). Under the assumption that the drug of interest is effective, we

consider three additional scenarios. In scenario 2, a dose-response relationship occurs, i.e.

higher dose relates to higher treatment effect (response rates such that P < L < H). In

scenario 3, no dose response occurs between low and high dose, so that the response rate of

P < L = H. Lastly, we consider an unlikely, but possible setting in scenario 4 where no dose

response occurs and low dose is effective but high dose is not, so that the response rate of

P = H < L. We selected the Gamma(2, 2) prior for all linkage parameters, understanding

8
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this allows for positive probability for β1kπk′ and β0kπk∗ to be greater than 1. We chose

Gamma(2,2) as the prior for all β1kπk′ and β0kπk∗ for three reasons: (i) simplicity, (ii) the

distribution ranges from 0 to 3 for most of the random draws, which serves as a restriction

to the prior distributions of the linkage parameters, and (iii) the distribution is centered

at 1 with variance equal to 0.5, which allows for flexibility of the prior distribution of the

linkage parameters to be below or above 1. This third property allows stage 1 responders the

possibility to worsen in the second stage if they decrease dose and stage 1 non-responders

the possibility to respond if they increase dose. See Table 1 for the scenarios and priors we

used in simulations.

In the data generating process, we simulated 2,000 realizations per scenario under the

four settings in Table 1. For each realization, N/3 subjects were assigned to each treatment

arm in stage 1, with a total sample size N . Responses to stage 1 were computed as ran-

dom Bernoulli variables with the proposed response rates under different scenarios (Table 1,

column 3-6). Subjects were then re-randomized equally to their stage 2 treatment based on

their stage 1 treatment and stage 1 response. Stage 2 responses were computed using for-

mulae (2) and (3) under the different scenarios. We compared bias, root mean-square error

(rMSE), coverage rates and widths of the 95% credible/confidence intervals (CIs) between

the proposed BJSM, LPJSM, a Bayesian method using only the first stage data (BFSM),

and a maximum likelihood method (FSMLE) using only the first stage data.

The 95% CI for BJSM and BFSM are the narrowest intervals that include 95% of the

posterior distribution of πk, while the 95% CI for LPJSM and FSMLE are the asymptotic,

normal-approximation 95% confidence intervals. The R package rjags was used to generate

the posterior distributions of πk, β1k, and β0k, and the R package gee was used to estimate

the parameters defined in LPJSM.
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3.1 Results

In this section, we present simulation results for the snSMART design in Figure 1 with

sample sizes of N=90. Results for N=300 and N=45 can be found in the Appendix.

For all scenarios, Table 2 gives the bias and rMSE for estimators of the stage 1 response

rates for placebo, low dose, and high dose. In the null scenario (scenario 1, P = L = H), we

note that BJSM, BFSM, and FSMLE provide estimators of the difference in response rates

and of individual response rates with small bias. While the estimators for the difference in

response rates in LPJSM is comparable to the other methods, we see that the bias in the

point estimates of πP , πL, and πH is much larger than the other methods. This is likely

because there are few patients that respond to treatment in the trial. We also note that

BJSM estimators have the smallest rMSEs out of all methods.

For scenario 2 (P < L < H), there is, on average, low to no bias for the response rate

estimators for each dose level. Looking specifically at the estimation of the placebo response

rate, we see that there is no bias, on average, for BJSM, BFSM, and FSMLE. In the LPJSM

method, the smallest bias is in the estimator of πH . This is likely due to the large number

of participants in the trial that receive high dose. The estimators of πP and πL likely have

higher bias in the LPJSM because there are fewer patients that receive placebo and low dose

in the trial. The estimator of πH , however, has the largest bias in the Bayesian methods

(BJSM and BFSM). The bias of the high dose response rate estimate is likely large because

the true value of πH in scenario 2 is 0.35, which is relatively far from the prior mean (0.183)

for stage 1 response rates. In comparison, in BJSM and BFSM the estimator of πL has less

bias than that of πH , presumably because the true value of πL is 0.25, which is closer to 0.183.

Looking at rMSE, we observe that the BJSM method estimators of πP , πL, and πH have the

lowest rMSE out of the estimators we compared. While the FSMLE approach has very low

bias, it tends to have the largest rMSE out of the compared methods because it only models
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first-stage outcomes. When we consider the estimators for the difference between placebo

and low and high dose response rates, we see that all methods provide estimators with small

bias. The estimators for the difference in response rates for placebo vs. low and high dose

of the BJSM have the smallest rMSEs out of all methods.

In scenario 3 (P < L = H), we see small bias for the response rate estimators, specifically

for the LPJSM and FSMLE methods. Looking at the BJSM and BFSM results, we see that

the bias is negligible for the estimators of πP , but slightly larger for estimators of πL and

πH . In contrast, the LPJSM estimators of πL and πH have negligible bias, but the estimator

of πP is slightly higher. As in scenario 2, the bias in the Bayesian methods is due to the

difference between the true value of the parameters (0.40) and the prior mean (0.183). We

expect to see larger bias in the estimation of πP from the LPJSM because few patients are

randomized to placebo. The BJSM provides response rate estimators for placebo, low dose,

and high dose with the smallest rMSEs out of all methods. Again, we see that BFSM and

FSMLE have larger rMSE than the joint stage modeling procedures. The results of scenario

3 for the bias and rMSE of the estimators of response rate differences are similar to that of

scenario 2.

In scenario 4 (P = H< L), we once again see similar patterns in bias and rMSE of response

rate estimators to scenarios 2 and 3. Again, estimators for the difference in response rate

estimators generally have small bias, and the BJSM estimators have the smallest rMSE out

of all methods.

It should be noted that across all four scenarios, the efficiency gain observed using joint

stage modeling approaches, compared to BFSM and FSMLE, is not large for the estimators

of πP . We see little efficiency gain using joint stage approaches because no one is randomized

to placebo treatment in stage 2 of the design. As such, first stage methods are comparable to

joint stage methods in estimating πP . We do, however, see modest efficiency gains using joint
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stage modeling approaches for the estimators of πL - πP and πH - πP . Since the estimation of

πL - πP and πH - πP is typically of greater interest than the estimation of πP , the efficiency

gains we observe represent an advantage of using BJSM procedures.

Across all scenarios, we see that the bias of LPJSM estimators of πP is large compared

to the other LPJSM response rate estimators, and compared to the estimators of πP for

other methods. This increased bias likely stems from the low number of patients receiving

placebo. Since there are few people in the placebo treatment arm, and none in stage 2 of

the study, there is less information to estimate πP , leading to more bias. In larger samples

(see Appendix), we see negligible bias for the LPJSM estimator of πP , which supports our

explanation that the bias observed in Table 2 is due to a low sample size.

Table 3 presents the 95% CI width and coverage rates (CR). Here, we see that the BJSM

methods has smaller average 95% CI width than the LPJSM, BFSM, and FSMLE methods.

In addition, the CR is around the target 95% for the BJSM in all tested scenarios.

When a sample size of N = 300 is used, we see similar results (Appendix). Overall,

we observe smaller bias across all settings when N = 100 in each arm. Interestingly, there

is still an efficiency gain when using BJSM methods in larger sample sizes, as the BJSM

response rate estimators have smaller rMSEs than the response rate estimators from the

LPJSM approach. In addition, for small samples, N = 45, under the null setting where

we assume a spontaneous response rate of 30% or 40% for placebo, low and high doses

of the experimental therapy, we again observe efficiency gains when using BJSM methods

(Appendix). The BJSM response rate estimators also have smaller bias than the LPJSM

and BFSM methods.
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3.2 Sensitivity to Priors

In addition to the prior setting presented in Section 3.1, we also explored other prior set-

tings to evaluate the robustness of the BJSM method. First, we adjusted the mean of the

prior distribution for log(πL/πP ) and log(πH/πP ). While we settled on a mean of 0.2 to

be conservative, we also tested mean values of 0.3, 0.4, and 0.5, and found that our results

were largely unchanged in the null and dose-response scenarios (see Appendix). Second, we

adjusted the center of the prior distribution for πP . In our presented results, the mean of

the prior distribution for πP was equal to the true value of πP in all scenarios. We present

simulations for the null and dose-response scenarios with prior distributions of Beta(2, 18)

and Beta(4, 16), and means of 0.10 and 0.20, respectively, for πP . While in these simula-

tions, we did find that our estimates of the placebo response rate were more biased than

in the results in Section 3.1, our estimation of response rates for low and high doses were

unchanged. Coverage rate and credible interval width estimates were also unchanged in

our sensitivity analyses (data not shown). Additionally, even when the mean of our prior

distribution for the placebo response rate did not match the true value of πP , BJSM was

still more efficient than the LPJSM and first-stage methods (see Appendix). Based on these

additional analyses, we conclude that our method is generally robust to the choice of mean

for all prior distributions of πP , log(πL/πP ), and log(πH/πP ). We drew the same conclusions

after adjusting the priors for scenarios 3 and 4 (data not shown).

4 Discussion

In this paper, we adapted the Baysian method (BJSM) for use in a different snSMART design

where low and high doses of a single experimental therapy are compared to placebo. Due

to dose comparison and the stage 2 re-randomization strategy, our design required novel
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methods that use six linkage parameters to share information on the response rates from

both stages of the trial. In this setting, the BJSM yields accurate estimators that are easy to

interpret in a clinical setting. Our proposed method was compared to three other methods

via simulation. Through simulation, we demonstrated that BJSM estimators are the most

efficient of the methods presented.

An advantage of the BJSM method, is that it provides estimates of πP , πL, and πH , even

when the true response rates were low. In our simulation scenarios, we noted convergence

issues for the LPJSM method, specifically under scenario 1, where all treatments have true

response rates of 0.15. In this scenario, there were instances where no response outcomes

were observed for a given stage 1 treatment. Thus, there would be no responders to re-

randomize in stage 2; all stage 2 re-randomization would occur through the non-responder

arm of that treatment. This low probability of response caused failures in convergence for

the LPJSM method, but good estimation with low bias was still possible using the BJSM.

Interestingly, in simulations with large true response rates or large sample size, LPJSM

performs better than BFSM (smaller rMSE) in terms of the estimation of each individual

response rate. However, LPJSM performs worse than BFSM in many scenarios in terms of

the difference between the response rates of different dosage levels. This is likely due to our

assumption of a prior distribution on the ratio of response rates in the Bayesian methods,

which implicitly places correlation among response rates. No such correlation structure is

assumed with LPJSM.

Another strength of the BJSM method is its robustness under different prior settings.

As discussed in Section 3.2, the BJSM method remained efficient regardless of the center of

the response rate estimator prior distributions. Additionally, the bias of the response rate

estimators for low and high dose remained low in all tested scenarios for the BJSM, even

when the mean of the prior distribution for πP no longer matched the true mean in the
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simulation scenarios. This robustness is particularly important for trials investigating drugs

in rare diseases, as there may be little previous data to guide prior distribution selection.

Our first formulation of the BJSM model had eleven, rather than six, linkage parameters.

These parameters corresponded to the eleven unique paths through which a participant could

follow in the trial. We found that, while this model still produced response rate estimators

with small bias and with increased efficiency compared to other tested methods, these ad-

vantages were not substantial. By limiting the model to only six linkage parameters, we were

able to retain small bias and gains in efficiency, while using a simpler model. These efficiency

gains were present for estimators of πL - πP and πH - πP . These difference estimators are

generally of greater interest than individual response rates in clinical trials. As such, the

efficiency gains we observe represent an advantage of using Bayesian joint stage modeling

procedures. This model could be expanded if investigators wanted a different bias-variance

trade-off than shown here.

The efficiency gains of the BJSM are still relevant for clinical trials with larger sample

sizes (Appendix). A trial design that reduces rMSE would also reduce the total number of

patients that need to enroll in the trial, and therefore results in a shorter duration of the trial.

As such, this snSMART design may be appropriate not just in rare disease research, but also

in time-sensitive research like emerging infectious diseases. Similarly, efficiency gains of the

BJSM remain for clinical trials with even smaller sample size. Simulations with only N = 45

patients (N = 15 per arm) showed that the BJSM remains efficient and estimates response

rates with low bias, even as sample size decreases (Appendix).

A limitation that results from the proposed prior distribution settings and model as-

sumptions is that the posterior distributions for the linkage parameters and πk allow for

β1kπk′ > 1. However, we did not draw any samples where β1kπk′ > 1 in our simulations.

Thus, it is unlikely that this limitation would be a problem in clinical settings, unless the

15

This article is protected by copyright. All rights reserved.



treatment under consideration has a high response rate. Another limitation of our design is

we assume there are no carryover effects of the stage 1 treatment in stage 2 of the study. We

note, however, that our trial design allows for investigators to implement a washout period

between stage 1 and stage 2 of the study if there was concern with carryover effects. Our

future work will include modifications to our method to account for carryover effects.

Future directions for this work include adapting the BJSM to continuous outcomes. We

are also examining models with fewer unique linkage parameters to see if we can improve

efficiency of the BJSM method without much increased bias. In addition, future work can

construct sample size calculations based on the BJSM for snSMART designs. These sample

size calculations will aid in the extension of snSMART designs for primary efficacy analysis

when more than two dose levels of a drug are compared. We note that our study design

allows for a customizable randomization scheme in stage 2. While balanced re-randomization

was applied in our simulations, future work could consider unbalanced or/and stratified

randomization in stage 2 within responders and non-responders.
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Figure 1: Study design of the proposed snSMART. Participants are randomized (R) to one
of the first stage treatment arms, placebo, low dose or high dose equally (1:1:1). At the
end of stage 1, patients are re-randomized to their second stage treatment based on their
response status. Outcomes are collected at the end of stage 1 and stage 2.
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Table 1: Scenarios and priors for the simulation settings. πk is the first stage response rate
for treatment k, k = P,L,H, where P=placebo, L=low dose, H=high dose. β1k is the linkage
parameter for first stage responders who receive treatment k in stage 1. β0k is the linkage
parameter for first stage non-responders who receive treatment k in stage 1. Simulations are
done under 4 scenarios: (i) P=L=H (low and high dose are both as effective as placebo), (ii)
P<L<H (placebo is less effective than low dose, and low dose is less effective than high dose),
(iii) P<L=H (low dose and high dose are equally effective, and they are more effective than
placebo), and (iv) P=H<L (low dose is effective but high dose is not). BJSM prior setting
(column 1) is where we use Gamma(2, 2) for all linkage parameters to relax the restriction
of priors.

BJSM Prior Response Rates/ Scenarios
for All Scenarios Linkage Parameters P=L=H P<L<H P< L=H P=H<L

Beta(3,17) πP 0.15 0.15 0.15 0.15
log(πL/πP ) ∼ N(0.2, 100) πL 0.15 0.25 0.4 0.4
log(πH/πP ) ∼ N(0.2, 100) πH 0.15 0.35 0.4 0.15

Gamma(2,2) β0P 0.9 0.9 0.9 0.9
Gamma(2,2) β1P 1.3 1.3 1.3 1.3
Gamma(2,2) β0L 0.8 0.8 0.8 0.8
Gamma(2,2) β1L 1.2 1.2 1.2 1.2
Gamma(2,2) β0H 0.7 0.7 0.7 0.7
Gamma(2,2) β1H 1.1 1.1 1.1 1.1
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Table 2: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk is
the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 0.018 0.063 -0.001 0.039 -0.001 0.065
πL -0.003 0.048 0.022 0.062 -0.005 0.062 0.000 0.064
πH -0.007 0.043 0.020 0.062 -0.005 0.062 0.000 0.064
πL - πP -0.003 0.062 0.004 0.081 -0.005 0.073 0.001 0.091
πH - πP -0.006 0.058 0.002 0.087 -0.005 0.073 0.000 0.091

(2) P < L < H πP 0.000 0.039 0.009 0.063 0.000 0.039 0.000 0.065
πL -0.005 0.057 0.014 0.068 -0.011 0.078 -0.003 0.080
πH -0.013 0.064 -0.001 0.075 -0.013 0.084 -0.001 0.860
πL - πP -0.005 0.070 0.004 0.092 -0.011 0.087 -0.003 0.102
πH - πP -0.013 0.074 0.011 0.101 -0.012 0.093 -0.001 0.108

(3) P < L = H πP 0.000 0.040 0.007 0.064 0.000 0.040 -0.001 0.067
πL -0.009 0.066 0.000 0.076 -0.013 0.087 0.000 0.089
πH -0.012 0.065 0.000 0.074 -0.015 0.087 -0.003 0.089
πL - πP -0.009 0.077 -0.006 0.097 -0.013 0.096 0.001 0.112
πH - πP -0.012 0.076 -0.006 0.099 -0.015 0.096 -0.002 0.111

(4) P = H < L πP -0.001 0.039 0.014 0.063 -0.001 0.039 -0.001 0.065
πL -0.011 0.068 -0.023 0.081 -0.011 0.086 0.002 0.088
πH -0.003 0.044 0.030 0.060 -0.004 0.063 0.001 0.065
πL - πP -0.010 0.078 -0.037 0.104 -0.010 0.094 0.002 0.109
πH - πP -0.003 0.059 0.016 0.083 -0.003 0.075 0.002 0.093
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Table 3: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the true
stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 30.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.98 0.187 0.97 0.261 0.99 0.187 0.94 0.245
πL 0.93 0.183 0.95 0.229 0.87 0.221 0.95 0.246
πH 0.93 0.171 0.95 0.228 0.87 0.221 0.95 0.246

(2) P < L < H πP 0.98 0.187 0.96 0.254 0.99 0.187 0.94 0.246
πL 0.94 0.225 0.94 0.263 0.88 0.280 0.94 0.304
πH 0.94 0.256 0.94 0.298 0.92 0.317 0.91 0.335

(3) P < L = H πP 0.98 0.186 0.96 0.252 0.98 0.187 0.94 0.245
πL 0.95 0.267 0.94 0.296 0.94 0.327 0.93 0.346
πH 0.94 0.261 0.95 0.296 0.94 0.327 0.94 0.344

(4) P = H < L πP 0.99 0.187 0.98 0.258 0.99 0.187 0.94 0.245
πL 0.96 0.282 0.92 0.301 0.94 0.328 0.94 0.336
πH 0.93 0.169 0.96 0.213 0.88 0.222 0.94 0.247
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APPENDIX

Simulation results with N=300

Table A1: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk
is the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP 0.000 0.030 0.001 0.035 0.000 0.030 0.000 0.035
πL 0.000 0.028 0.002 0.030 0.000 0.035 0.001 0.036
πH -0.002 0.026 0.001 0.031 -0.002 0.034 0.000 0.035
πL - πP 0.000 0.041 0.001 0.045 0.000 0.046 0.002 0.051
πH - πP -0.002 0.040 0.000 0.046 -0.002 0.045 0.000 0.049

(2) P < L < H πP 0.000 0.031 0.000 0.360 0.001 0.030 0.001 0.037
πL -0.001 0.033 0.007 0.038 -0.002 0.042 0.000 0.042
πH -0.004 0.039 -0.007 0.043 -0.005 0.048 -0.001 0.048
πL - πP -0.002 0.046 0.008 0.051 -0.003 0.053 0.000 0.057
πH - πP -0.005 0.049 -0.007 0.056 -0.005 0.056 -0.002 0.059

(3) P < L = H πP 0.000 0.030 0.000 0.036 0.000 0.300 0.000 0.036
πL -0.002 0.040 0.000 0.042 -0.003 0.049 0.001 0.050
πH -0.004 0.040 0.000 0.042 -0.005 0.050 -0.001 0.050
πL - πP -0.002 0.050 0.000 0.054 -0.003 0.058 0.001 0.062
πH - πP -0.004 0.051 0.001 0.055 -0.005 0.059 -0.001 0.062

(4) P = H < L πP 0.001 0.030 0.000 0.035 0.001 0.030 0.001 0.036
πL -0.002 0.043 -0.026 0.049 -0.003 0.050 0.001 0.050
πH -0.002 0.026 0.026 0.039 -0.002 0.036 0.000 0.036
πL - πP -0.003 0.053 -0.026 0.060 -0.004 0.058 0.000 0.062
πH - πP -0.003 0.040 0.026 0.052 -0.003 0.047 -0.001 0.051

23

This article is protected by copyright. All rights reserved.



Table A2: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the
true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose,
and H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 100.

BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.96 0.124 0.94 0.139 0.96 0.124 0.93 0.138
πL 0.94 0.112 0.95 0.121 0.93 0.135 0.93 0.139
πH 0.95 0.108 0.95 0.121 0.94 0.134 0.94 0.138

(2) P < L < H πP 0.95 0.125 0.94 0.138 0.95 0.125 0.93 0.139
πL 0.95 0.133 0.95 0.144 0.95 0.165 0.95 0.170
πH 0.95 0.156 0.93 0.164 0.95 0.182 0.94 0.186

(3) P < L = H πP 0.96 0.124 0.94 0.138 0.96 0.124 0.94 0.139
πL 0.95 0.157 0.94 0.163 0.94 0.188 0.94 0.191
πH 0.95 0.156 0.94 0.163 0.93 0.188 0.94 0.191

(4) P = H < L πP 0.96 0.125 0.94 0.139 0.96 0.125 0.93 0.139
πL 0.95 0.170 0.90 0.166 0.94 0.188 0.93 0.186
πH 0.94 0.101 0.90 0.117 0.93 0.134 0.93 0.138
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Simulation results with N=45

Table A3: Simulated bias and root-mean-square error (rMSE) for the estimators of πk under
null scenarios with different spontaneous response rate. πk is the true stage 1 response rate
for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H = high dose.
Under null scenario, we assume πP = πL = πH = π. Four modeling approaches: Bayesian
joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 15.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.002 0.047 0.012 0.116 -0.084 0.098 0.001 0.120
π = 0.3 πL -0.010 0.086 0.031 0.108 -0.021 0.110 0.003 0.121

πH -0.015 0.075 0.018 0.100 -0.018 0.111 0.002 0.120
πL - πP -0.008 0.098 0.019 0.157 0.062 0.135 0.002 0.175
πH - πP -0.012 0.085 0.006 0.152 0.066 0.138 0.002 0.168

(2) P = L = H πP 0.000 0.053 0.007 0.123 -0.141 0.151 0.004 0.128
π = 0.4 πL -0.015 0.087 0.012 0.107 -0.027 0.119 -0.003 0.130

πH -0.018 0.084 0.006 0.105 -0.023 0.120 -0.001 0.124
πL - πP -0.015 0.100 0.005 0.162 0.114 0.172 -0.007 0.182
πH - πP -0.018 0.100 -0.001 0.158 0.118 0.176 -0.005 0.175
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Simulation results with different prior settings

Table A4: Simulated bias and root-mean-square error (rMSE) under the null scenario for
the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.3 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(3) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.4 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(4) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.5 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073
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Table A5: Simulated bias and root-mean-square error (rMSE) under the null scenario
for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
E(πP ) = 0.15 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.021 0.044 -0.021 0.044
E(πP ) = 0.1 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP 0.017 0.064 0.015 0.075
πH - πP 0.014 0.059 0.015 0.075

(3) P = L = H πP 0.019 0.043 0.019 0.043
E(πP ) = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.023 0.066 -0.025 0.077
πH - πP -0.026 0.063 -0.025 0.077
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Table A6: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ),
i.e. E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling
approaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM).
πk is the true stage 1 response rate for the treatment k, k = P,L,H, where P = placebo, L
= low dose, and H = high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.3 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(3) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.4 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(4) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.5 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093
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Table A7: Simulated bias and root-mean-square error (rMSE) under the dose-response sce-
nario for the estimators when assuming different shape and scale parameter values for the
placebo prior distributions. Three different prior settings are presented: πP ∼ Beta(3, 17),
πP ∼ Beta(2, 18) and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) =
(0.15, 0.1, 0.2), respectively. Results are presented for two modeling approaches: Bayesian
joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1
response rate for the treatment k, k = P,L,H, where P = placebo, L = low dose, and H =
high dose. The sample size per treatment arm is 30.

BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
E(πP ) = 0.15 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP -0.020 0.044 -0.020 0.044
E(πP ) = 0.1 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP 0.015 0.071 0.009 0.087
πH - πP 0.007 0.073 0.008 0.092

(3) P < L < H πP 0.020 0.044 0.020 0.044
E(πP ) = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.025 0.074 -0.031 0.091
πH - πP -0.033 0.080 -0.032 0.098
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