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Abstract: Charging stations not only provide charging service to electric vehicles (EVs), but also integrate distributed energy
sources. This integration requires an appropriate planning to achieve the future sustainable distribution network. Real EV
charging demand is stochastic and affected by many uncertainties, which pose challenges to the planning of a charging station.
This study presents a stochastic planning model of the EV charging station with photovoltaic (PV), battery and transformer,
mainly considering the uncertainties from charging demand and PV power generation. Firstly, a comprehensive EV charging
demand model is established through reflecting the coupling among the EV stochastic charging behaviour, charger
specifications and EV charging assignment model. Then, the planning model is formulated to minimise the total cost of the
charging station, where the uncertainties arising from EV charging are addressed in various constraints. Using this model, the
optimal sizing of the charging station is determined, together with the associated optimal operation strategy. Finally, the
effectiveness of the proposed model is validated by multiple case studies.

1 Introduction
Electric vehicles (EVs) are now being widely considered to be a
promising solution for energy saving and emission reduction in the
transportation sector, and they interact with the power grid via EV
charging stations [1, 2]. However, the potential mass penetration of
EVs places a heavy burden on the current power system and may
require to expand the thermal plant capacity to accommodate the
growing charging demand. Renewable energy sources and energy
storage devices could be deployed in today's power grid to reduce
the dependence on fossil fuel and promote sustainable charging
stations. Appropriate planning of charging stations is important for
the widespread use of EVs and environmentally friendly power
grid.

Recently, there have been many literatures on the planning and
operation of a charging station. These studies proposed different
planning models. For instance, Zhang et al. [3] considered various
types of charging facilities in an urban area in its planning model to
reduce the social cost of the entire charging system. Yao et al. [4]
established a two-objective collective planning model to describe
the coupling of EV charging infrastructure and power distribution
network. The purpose was to not only minimise the charging
station investment cost and energy loss but also to maximise the
captured traffic flow by the charging station. Sun et al. [5]
presented a state-of-charge (SOC) characterisation-based
hierarchical planning to address the trade-off among the number of
EV charging stations, charging demands, and economic profit.

At the same time, the aforementioned work only took the power
grid as a single energy source in the charging station network,
without involving distributed renewable energy and energy storage
devices. It is worth noting that this straightforward energy network
configuration may not be sustainable considering a huge energy
demand from EVs in future. The introduction of renewable energy
and energy storage devices inevitably complicates the system
configuration and the charging station planning problem. In [6], the
planning of the charging station was investigated based on given
power dispatch strategy. The coupling between the current and
subsequent schedules and the coupling between energy
management and planning were not addressed, which may lead to
sub-optimal solutions. In [7], a bi-level planning for an islanded
microgrid with compress air energy storage was proposed to

determine the optimal capacities of each component based on an
existing energy demand curve. Guo et al. [8], with a fixed EV
usage pattern and deterministic solar irradiation, developed a
levelised energy storage (LES)-sizing method in a PV-aided EV
charging station to minimise the system daily cost. Meanwhile, in
real scenarios, the EV charging profile is not deterministic. It is
affected by many factors, start charging time, start charging SOC,
EV battery capacity, [9–12] etc. Shojaabadi et al. [9] took the
initial charging SOC and the arrival time into account. These two
factors were represented by probabilistic functions in the proposed
model. And stochastic EV arrival and charging time were
considered in [10]. Negarestani et al. [11] modelled the stochastic
EV charging factors to obtain charging demand, and then optimised
the size of energy storage system. The number of charger and EV
charging assignment were not addressed. Zhang et al. [12]
discussed the charging demand optimisation, which involves the
EV start charging time and initial charging SOC. Shu et al. [13]
also included the above two stochastic variables in the EV charging
demand profile, in which the on-board battery capacities and
renewable energy sources were not reflected.

Although the aforementioned literatures introduced the
stochastic factors into their developed models, further
improvements are still needed and important. Major stochastic EV
charging behaviour factors have not been synergetically included in
a unified framework, which might not truly reflect the practical
charging demands. The number of EVs has been usually assumed
to be fixed, but it contradicts with the actual scenarios. In addition,
the constraints of the number of chargers and EV charging
assignment have been seldom discussed, especially with the other
stochastic charging factors. The limited number of available
chargers is an important factor that significantly impacts the
serving capacity of a charging station and thus the EV charging
demands. Besides, it is practically expected that sizes of energy
storage, PV panels, and transformers should be optimised together
during the charging station planning, instead of being separately
discussed.

Based on the above review of the existing work, a
comprehensive stochastic planning model of the EV charging
station is proposed and developed. The main contributions of this
paper are summarised as follows:
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i. The planning of the charging station considers two major
sources of uncertainties in EV charging demands and
intermittent PV power generation. Especially, the start
charging time, initial charging SOC, battery capacity, and
number of charging EVs are fully reflected when establishing
the charging demand model.

ii. The impact of limited number of chargers and their rated
charging powers are investigated and demonstrated.

iii. The capacities of PV panel, battery energy storage, and
transformer are optimised at the same time to achieve an
economic solution.

iv. With the following relaxation of constraints, the proposed
planning problem of the EV charging station is formulated as a
convex programming problem and thus can be efficiently
solved.

Based on the above discussions, this paper is organised as
follows. Stochastic EV charging model and PV power generation
model are separately established in Sections 2 and 3. Then, the
stochastic planning model is developed in Section 4, and multiple
case studies are provided in Section 5. Finally, conclusions are
drawn in Section 6.

2 Stochastic modelling of EV charging demand
Fig. 1 shows the configuration of the PV and battery integrated EV
charging station. The PV, battery, and transformer are the main
energy sources and charging station interacts with EVs through
chargers. In the system, there exist two aspects of uncertainties:
intermittent PV power generation and random EV charging
demand, which directly affect the size optimisation of the charging
station. Therefore, it is necessary to model them firstly. As the
charging service provider, the EV charging station will serve a
large amount of EVs every day. Thus, corresponding EV charging
demand certainly has a great impact on the planing of the charging
station. In addition, the reality is the charging demand in each day
is different, thus the fixed constant charging demand profile is not
suitable for the planning of the charging station. In order to build a
stochastic charging demand model, EV charging behaviour related
factors, including EVs start charging time, energy required for
charging, initial charging SOC, daily number of EVs are all
modelled in the following. As explained above, the charging
demand of charging station is actually the combined result of both
EVs charging and specification of chargers, therefore, the final
stochastic EV charging demand model is obtained by
accommodating them.

2.1 Stochastic EV charging behaviour

In this study, three stochastic variables are considered for
modelling the EV charging behaviour: start charging time, start
charging SOC, and daily served a number of EVs. And following
assumptions are made:

i. EV drivers charge their EVs immediately when they arrive at
the charging station.

ii. The SOC of the batteries of EVs are assumed to be charged to
0.8.

Such a charging end condition is acceptable because the main
purpose of the public charging station is to satisfy the EV charging
in short time while people much prefer full charging at home
overnight. Since EV charging behaviour is highly random, the
useful method of modelling uncertainty variable is using statistics
and probability method [11]. Lognormal distribution is suitable for
modelling the distribution of the start charging SOC of the EV
battery [9], which is defined by the average (μsocini

) and standard
deviation (σsocini

) of the logarithm of the SOC variable. Here
assume that the start charging SOC of EV varies from 0.2 to 0.5.
Fig. 2 shows the simulated lognormal distribution of SOC

f (SOCini) =
1

sociniσsocini
2π

e−((lnSOCini − μsocini)
2/2σsocini

2 ) . (1)

Another stochastic variable is the EV start charging time, which
depends on when the drivers arrive at the charging station, and in
the study assume that the EV is charged immediately upon arrival. 
In addition, the start charging time is associated with a drivers'
travel pattern. The authors of [11, 12] show a charging load profile
that mainly concentrates in the period from 6 am to 22 pm, in
which there are two peaks at around 8 am and 6 pm. Respect this
characteristic, the EV starting charging time is modelled by
following, and the effect of different travel pattern on the optimal
sizing will be discussed in Section 5.

f (tini) =

1

σtini
2π

e−((tini − μtini)
2/2σt

2), μtini
= 8 am,

6 am ≤ tini ≤ 11 am

1

σtini
2π

e−((tini − μtini)
2/2σt

2), μtini
= 6 pm,

2 pm ≤ tini ≤ 10 pm

(2)

where tini is the start charging time, μtini
 and σtini

 are the average
arrival time and the standard variance, respectively, and the setting
of such parameters refers to [14].

The EV battery capacities on the market are various and depend
on vehicle type. According to [15] and market product surveys,
most EVs have battery capacities ranging from 30 to 80 kWh. In
this study, the arrival EV battery capacities are randomly
distributed according to the assumed Gaussian distribution as
follows:

f (c) =
1

σc 2π
e−((c − μc)2/2σc

2) . (3)

where c denotes the battery capacity, and μc and σc are average and
standard deviation of the EV battery capacity, respectively.

Moreover, the number of EVs that are charged daily at the
charging station n is also not constant. In this study, it is
determined by a Gaussian distribution (μn and σn) shown as
follows. The average number μn and σn are 80 and 10, respectively,
which refers to [10, 11].

f (n) =
1

σn 2π
e−((n − μn)2/2σn

2) . (4)

Based on the above-mentioned probabilistic models, Fig. 2
shows an example for the above mentioned random quantities for
90 EVs.

2.2 Charger specification and EV charging assignment
model

Different from stochastic EV charging behaviour, the configuration
of the charger can affect charging demand in indirect way from two
aspects: the number of chargers and the equipped charging level. In

Fig. 1  Configuration of EV charging station
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terms of the charging level, the higher charging level can shorten
the charging duration while increasing the charging load in the
charging station. According to the current EV charging standards
SAE J1772 and IEC 62196, EV charging power level can be
basically classified into three types: (1) AC level 1 at peak power
3.7 kW, (2) AC level 2 at 3.7–22 kW, (3) AC level 3 at 22–43.5 
kW, and DC level 3 at maximum 200 kW. Generally, level 1 is used
for EV onboard charger which normally takes 7–9 h to fully charge
the EV, while level 3 requires a specific charger usually deployed
in the public charging station [16]. Considering the main function
of the charging station is to provide rapid recharging service for
coming EVs, here the chargers of level 3 are used in this study.
Referring to [17], the charging process of the battery can be
simplified to constant power charging from SOC at 0.3 to SOC at
0.8.

Since the number of chargers in the charging station is finite,
when a large amount of EVs come to the charging station for
charging, if the number of upcoming EVs is greater than the
number of unoccupied chargers, this situation will certainly result
in some EVs fail to charge. Therefore, a mechanism needs to be
devised to determine which EV is assigned to which charger and
which EV will be rejected. To solve the problem, a charging
assignment model for the arriving EV is established. In the

assignment model, all arrival EVs are sorted and tagged in order. In
this control mechanism, each time the arriving EV will access the
available charger according to the given charger sorting number
until an unoccupied charger is found. EVs may leave or queue if no
empty charger. Fig. 3 shows the charging assignment model. 

On the one hand, more number of chargers and higher charging
power rating can capture more arrival EVs and bring more benefit.
On the other hand, this could consequently increase the charging
load and raise the investment cost of charging station. Recognising
that the number of chargers and charging level are closely coupled
with the charging demand, multiple candidate sets of different
charging level (22 and 40 kW) and different number of chargers (5,
10, 15, 20, and 25) are summarised and listed in the charger
options Table 1. Obviously, for each candidate charger option,
there would be a corresponding stochastic charging demand profile
which will be obtained in the following section. 

2.3 Final EV charging demand

Once the relevant random quantities: start charging SOC, start
charging time, EV battery capacity, number of arriving EVs, and
charging station configuration: the number of chargers, charger
power and the EV charging assignment model, are all completely
determined, then the total charging demand of the charging station
Pl at each time instant k can be estimated as follows:

Pl(k) = ∑
nchg

Pchg(k), (5)

where nchg is the number of charger and Pchg, c represents the
charging power of the cth charger.

Charging load reflects the EV stochastic charging behaviour. To
obtain the stochastic property of the EV charging demand load
arising from the coupling of the multiple factors mentioned above,
Monte Carlo simulation (MCS) can be applied to repeat sampling
from the assumed probability distributions of these related random
quantities. Nm is the sample times in the MCS. Note that since the
stochastic nature of the charging behaviour, the charging demand
load at the same time t at different simulation time are
consequently different. In order to represent the stochastic property
of the charging demand, the generated charging demand load Pl(k)
in Nm times can be characterised by the Gaussian distribution

Pl(k) ∼ N(Pl(k), σPl

2 (k)), (6)

where Pl(k) is the average value of charging load and σPl
(k) is the

standard deviation at time k, which can be calculated as follows:

Pl(k) =
1

Nm
∑

nm = 1

Nm

Pl
nm(k)

σPl
(k) =

1
Nm

∑
nm = 1

Nm

(Pl
nm(k) − Pl, m(k))2

1/2
(7)

For example, given 15 chargers and 22 kW charging level, the
charging behaviour related uncertainty quantities are randomly
sampled from their respective possibility distributions, as
mentioned above. Through one time MCS, Fig. 4 shows an
example of charging demand at the charging station with the time
interval of 1 min. Then the average charging demand within each
hour can be calculated.

After performing multiple times of MCS, the generated
charging demand data is processed and the uncertain
characterisation is captured by the Gaussian distribution with
(Pl(k), σPl

2 (k)) according to (7). Fig. 5 shows the values of the above
two parameters for each candidate charger option at each hour of
one day, and the values change over time. As shown in the figure,
with a less number of chargers, the charging demand is lower. With
more chargers, the charging demand increases because more EVs
can be captured by the charging station.

Fig. 2  EV charging behaviour random quantities simulation
 

Fig. 3  EV charging assignment model
 

Table 1 Candidate charger options
Number of chargers

Power 5 10 15 20 25
22 kW P22N5 P22N10 P22N15 P22N20 P22N25
40 kW P40N5 P40N10 P40N15 P40N20 P40N25

 

Fig. 4  Example of charging demand with 1 min time interval for charging
station with P22N15
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As the number and rated charging powers of chargers grow, the
charging demand does not proportionally increase, but the
associated investment cost of chargers does. Besides, a larger
charging demand means higher revenue from serving EVs.
However, it requires a higher power supply capacity. Therefore, a
trade-off exists when determining an optimal charger option in
Table 1.

3 Stochastic modelling of PV generation power
The PV output power Ppv can be evaluated by the following
equation [18]:

Ppv = GiApvηpv 1 − cT ∗ (Tenv − TSTC) , (8)

where Gi is the global solar irradiance, Apv is the installed PV
panels surface, η is the conversion efficiency of the PV panels, cT

denotes the temperature coefficient of the PV panels, Tenv and TSTC

are the environmental temperature and standard test condition
(STC) temperature, respectively. The technical parameters of a PV
panel used in this study are listed in Table 2. 

Based on the above mentioned PV panel parameters and annual
data of solar irradiance and temperature [19], the output power of

the PV panel can be estimated and shown in Fig. 6. Overall, it can
be seen that the PV output power is intermittent and varies with the
time of day and a specific season. As shown in Fig. 7, four typical
power profiles are used here to represent the uncertain PV power
output in the four seasons (spring: Mar.–May, summer: Jun.–Aug.,
autumn: Sep.–Nov., winter: Dec., Jan.–Feb.) of a year [19]. In the
following sections, the set of the typical PV power profiles is
represented by symbol Y, and each profile is indexed by y ∈ Y
( Y = 4, y = 1, …, 4).

4 Stochastic planning model of charging station
From the perspective of the charging station owner, the planning of
the charging station aims to minimise the economic cost, which
requires calculation of the investment costs of the charging station,
operation cost, and subtracting the revenue from the serving
charging of EVs. The investment costs include the total cost of PV,
battery, transformer, and chargers, which are measured according
to their sizing. Among them, chargers and transformers are rarely
discussed in literatures. Operation cost primarily includes
electricity purchasing cost from the main grid, which is related to
the operation of the charging station. Therefore, the objective
function of the planning of the charging station is to minimise the
daily cost of the charging station formulated as follows:

min ∑
y ∈ Y

css + cbb + ctsts + cchgnchgPchg

+ ∑
k = 0

N

cg(k)Pg
+(k) + ∑

k = 0

N

cg, fb(k)Pg
−(k)

− ∑
k = 0

N

cev(k)Pl(k) ,

(9)

where cs, cb, cts and cchg represent the unit cost of PV panels in
USD/(kW ⋅ day), the unit cost of battery in USD/(kWh ⋅ day), the
unit cost of transformer in USD/(kW ⋅ day), the charger cost in
USD/(kW ⋅day), respectively. cg(k) represents the electricity price
purchasing from the grid, and cg, fb(k) represents the electricity
price that charging station sells to the grid. Index k is the time slot
index for the time of day from 0 to N = 23, namely one day is
divided into 24 time slots. cev represents the charging price for EV.
In addition, the electric power exchange with power grid is Pg,
which is composed of Pg

+ (charging station buys electricity from the
grid) and Pg

− (charging station sells electricity to the grid). Variables
s, b, ts are PV size, battery size, and transformer size, respectively.
Pl is the charging demand load of EVs, Pchg is the equipped
charging power of the charger, and nchg is the number of chargers to
be installed in the charging station.

In the charging station, power balance should be always
guaranteed at any time expressed by:

Ppv(k) + Pbat(k) + Pg(k) = Pl(k), (10)

where Ppv(k), Pbat(k) and Pg(k) are the generation power of PV, the
discharging or charging power of battery, and the grid power,
respectively.

The battery energy dynamics can be determined by the
following model:

Fig. 5  Charging demand characterisation at each hour under each
candidate charger option
(a) Pl(k), (b) σPl

(k)

 
Table 2 PV panel parameters
Parameter Value Parameter Value
length 1650 mm width 990 mm
conversion efficiency 15.3% maximum power 250 W
temperature coefficient 0.0045
 

Fig. 6  Annualised PV power generation for the specific PV panel
 

Fig. 7  Typical daily PV power generation of four seasons for the specific
PV panel

 

4220 IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 19, pp. 4217-4224
© The Institution of Engineering and Technology 2020



Ebat(k + 1) = Ebat(k) − (Pbat(k) + η Pbat(k) )Δt, (11)

where Ebat(k) is the battery energy level, the battery power Pbat(k)
value can be either negative (i.e. charging) or positive (i.e.
discharging), and η is the lost efficiency of battery, which is very
small since lithium-ion battery is characterised by high efficiency.
Furthermore, a terminal constraint is added

Ebat, 0 = Ebat, N + 1, (12)

which ensures that the energy level of the battery at the end of the
day is equal to the beginning energy level. Such a terminal
constraint in essence guarantees that the operation during this day
does not influence the operation of the subsequent day. In addition,
the battery power Pbat(k) and stored energy Ebat(k) are limited by
the following inequality constraints:

Ebat, min ≤ Ebat(k) ≤ Ebat, max, (13)

Pbat, min ≤ Pbat(k) ≤ Pbat, max, (14)

where Ebat, min and Ebat, max are the minimum and maximum limits of
the stored energy, respectively. They are 10 and 90% of the full
battery energy capacity (i.e. the optimised battery size b),
respectively

Ebat, min = 0.1b, Ebat, max = 0.9b, (15)

Pbat, min and Pbat, max are the permitted charging and discharging
power limits, respectively, which again relate to the battery size b

Pbat, min = − rb, Pbat, max = rb, (16)

where coefficient r represents the maximum allowable C-rate. It
depends on battery specifications and needs of a specific
application, i.e. a user-defined parameter. Since the batteries
deployed at the charging stations are mainly energy type batteries,
a smaller C-rate is generally preferred, such as ±0.5C in this paper.

The grid power cannot exceed the permitted power limits Pg, min

and Pg, max ( i.e. the optimised transformer size ts) of the transformer

−ts ≤ Pg(k) ≤ ts, (17)

In addition, the design variables: PV size s, battery size b and
transformer size ts are subject to following bounds:

smin ≤ s ≤ smax, (18)

bmin ≤ b ≤ bmax, (19)

tsmin ≤ ts ≤ tsmax, (20)

However, it should be noted that in (10), the charging demand load
Pl and the PV power generation Ppv are random variables.
Therefore, the optimisation problem becomes to optimise the
component sizes, while scheduling the system operation power
flow under uncertainties. The random PV power generation is
represented by the four seasonal typical profiles. Once the charging
demand is determined by (6), then the right inequality of constraint
(17), namely the upper bound, can be converted into the follow
chance constraint:

Pr Pl(k) ≤ Pbat(k) + ts + Ppv(k) ≥ α, (21)

where α is a constant parameter meaning confidence level or
reliability. The higher the α value, the higher the reliability that the
system can guarantee. Then the normal cumulative distribution
function can be obtained by converting the chance constraint
shown as follows:

Φ
−Pl(k) + Ppv(k) + Pbat(k) + ts

σPl
(k)

≥ α . (22)

Then the upper bound constraint can be rewritten as

σPl
(k) ≤

1

Φ−1(α)
Ppv(k) + Pbat(k) − Pl(k) + ts . (23)

And the lower bound constraint is rearranged as

σPl
(k) ≤

1

Φ−1(α)
− Ppv(k) − Pbat(k) + Pl(k) + ts . (24)

By far, all of the constraints have been convex except for the
non-affine equality constraint (11), which is also non-linear due to
the existence of the absolute function. In order to solve the problem
efficiently, (11) is relaxed to become convex without qualitatively
altering the original problem as follows [20]:

Ebat(k + 1) ≤ Ebat(k) − (Pbat(k) + η Pbat(k) )Δt . (25)

The advantage of convex problem is that it can guarantee the
solution of the problem is existing and unique. By far, the original
sizing optimisation problem has been transformed into a non-linear
convex programming problem. Then convex optimisation solving
software can be used to efficiently solve the problem, comparing
other heuristic methods used in [13, 21].

5 Case studies and analysis
This section presents the optimal sizing results solved by the
proposed model and analyses the impact of different parameters on
the results. Since the charging demand profile relies on a specific
number of chargers and charger rated power, each of the candidate
charger options listed in Table 1 is applied and compared to finally
determine an optimal charger option with the lowest total cost.
Section 2 explains the uncertainties of the charging demand profile
for each candidate charger option [see Fig. 5]. The uncertainties of
PV power generation also have been addressed in Section 3 which
are shown in Fig. 7. Those uncertainties results are then utilised in
the following case studies. Based on the results of charging
demand and PV power generation, the optimal size of each
component can be solved using the proposed stochastic planning
model. Technical parameters used in the simulation calculation are
summarised in Table 3.

The PG&E dynamic electricity tariff cg(k) is used in the study,
including peak periods, shoulder and off-peak periods [20]. For the
charging station, the operation power flow can be divided into
three directions: the charging station sells electricity to the EVs at
price cev(k), the charging station buys electricity from the grid at
price cg(k), and the charging station sells electricity to the grid at
price cg, fb(k). The relationship between the three prices are set as
follows: the cev(k) is generally greater than cg(k), and cg(k) is much
larger than cg, fb(k). Such setting cg, fb is lower can promote the
charging station to use the local energy resources to charge EVs
instead of selling it to the grid. Fig. 8 shows the specific
information of the three prices.

The optimal cost results for each candidate charger option listed
in Table 1 are shown in Fig. 9. It clearly shows that the charger
option (number of chargers and charger power level) has a large
impact on the economic cost. For the charger power with 40 kW,
the most economical number of installing chargers is 10. For the
charger power with 22 kW, the most economical number of
chargers is 15. And more or less than that optimal number could
result in larger cost. The optimal sizes of each energy device in
each candidate option are summarised in Table 4. As shown, as the
number of chargers increases, the optimal size of each device has
almost the same trend: firstly, it rapidly increases, and then
gradually slows down or remains constant, which means that this
increase is non-linear. Comparing the resulted total cost for the two
charging configurations, the most economical configuration for the
charging station is 15 chargers with charging power 22 kW, PV size
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394.75 kW, battery 907 kWh, and transformer 125 kW. This
optimal case is named as Case 1, which will be compared with
other cases in the following case study discussion. The optimal
results indicate:

i. The appropriate size selection of energy component can
achieve remarkable cost saving for the planning of an EV
charging station.

ii. The number of chargers and the charging level have a great
impact on the objective function. More or less than the number
of chargers will increase the system cost dramatically and the
charging level can also affect the outcome, which is not
explicitly discussed in other studies.

For Case 1, the optimal charging station operation power flow
is obtained associated with the optimal sizing as shown in Fig. 10. 

Due to the four different typical PV power profiles, the
charging station presents different operation strategies. For typical
profiles of spring, summer and autumn, the PV power is relatively
sufficient. The battery is charged between 0 am to 6 am by the
main grid. However, it is worth noting that the battery is not fully
charged (e.g. the SOC is approximate 0.42 at 7 am in Fig. 10a).
This is because that the battery need keep a low SOC level in order
to prepare for storing the excess PV power at noon. At that time,
the battery is charged to its maximum energy level, and thus is
ready to meet the most of charging demand in the evening. During
the whole day, the working period of transformer is quite short. It
concentrates at the off-peak time, which helps save the operation
cost. In contrast, for the winter profile in Fig. 10d which has the
least PV power, the battery is charged to the full SOC level before
7 am. And much more electricity has to be purchased under this
profile, comparing with the results under the other three profiles.
Ultimately, at the end of each day, the energy management strategy
respects the formulated constraint to guarantee the battery SOC to
be as same as its beginning SOC level of a day.

5.1 Comparison with deterministic model

In the charging station planning model, there are two sources of
uncertainties being considered, the charging load and PV power
generation. We define the Case 2 as a deterministic model. In this
model, only the hourly average profile is used, and the deviations
from the average are not reflected. Thus it is relatively ideal
because the uncertainties are inevitable in real scenarios. Since the
charging load and PV power generation are also fixed, the chance
constraints, (23) and (24), in the original problem are eliminated. In
Case 2, the four typical PV power profiles are averaged at each
time point to produce a 24-hour profile. Applying the same charger
option, i.e. P22N15 in Case 1, the calculated sizes of the
components in Case 2 are listed in Table 5. Comparing the results
of Case 1 and Case 2 particularly show that the battery size is
increased in Case 2, while the sizes of PV and transformer are
decreased in the same case. This indicates that the uncertainties
certainly impact the results of the charging station planning.
Although the total cost of the ideal Case 2 is lower, the stochastic
model is still beneficial because it is closer to practical situations.

5.2 Impact of renewable energy source

The authors [11, 25] studied the economic benefits of deploying
energy storage systems in charging station, but their studied
systems lack renewable energy resources. In this study, to show the
benefits from integrating renewable energy resource, the solved
optimisation results of the charging station without installing PV
are shown as Case 3. According to the optimal design results,
lacking of PV generation power, less amount of battery capacity is
used but larger size of transformer is preferred. Compared with
Case 1, this case purchases bulk of electricity from the grid, which
results in higher operation cost. Thus, if PV could be installed, then
PV and battery can provide power together during the EV charging
period, and larger battery size can be used to store the PV power
and then be released at the next charging period, which could
finally reduce the total cost. Therefore, from the perspective of the

Table 3 Parameters in simulation [11, 20, 22–24]
Parameter Value Parameter Value
PV cost 2025 USD/kW battery cost 900 USD/kWh
transformer cost 788 USD/kW charger cost 500 USD/kW
battery size 0–1000 kWh PV size 0–500 kW
transformer size 0–500 kW PV 20 Years
bounds design life
battery 10 Years transformer 20 Years
design life design life
charger 10 Years α 0.9
design life

 

Fig. 8  Hourly prices of electricity for the charging station
 

Fig. 9  Optimal cost comparison in the charging station for different
charger options

 
Table 4 Optimal size of each component in different
charger options

Charger options
Device P22N5 P22N10 P22N15 P22N20 P22N25
PV, kW 215.5 343.75 394.75 447 461.5
battery, kWh 489 813 907 890 883
transformer, kW 90 121 125 125 125
Device P40N5 P40N10 P40N15 P40N20 P40N25
PV, kW 301 409 453 452.25 452.25
battery, kWh 724 922 909 910 910
transformer, kW 106 129 128 128 128
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whole system daily cost, it proves the excellent economy of
introducing renewable energy into the design of the charging
station.

5.3 Comparison with different type of electricity tariff

Since different cities have different electricity tariffs, in order to
study the impact of the electricity tariff type on the design of the
charging station, another two electricity tariffs used in [20] are
introduced, as shown in Fig. 11. From the figure, it can be seen that

the Austin tariff is lower than PG&E, and the other is a customised
fixed electricity tariff. The optimal components sizes and daily
costs of the two selected electricity tariffs are defined as Cases 4
and 5 shown in Table 5.

Case 4: Among the three different tariffs, it has the maximum
transformer capacity, whose capacity is more two times larger than
that of Case 1, and the highest operation cost, while the capacity of
PV and battery are very less. It can be inferred that since the
electricity price of Case 4 is relatively cheap, it is the most
economic way to take the grid as the primary energy source.
Therefore, the local electricity tariff factor should be seriously
considered in the design of charging stations.

Case 5: The results show the daily cost resulting from fixed
price type is in the middle between Cases 1 and 4. The PV and
battery are beneficial for the charging station resulting in that more
PV and battery capacity are needed while transformer capacity is
reduced correspondingly.

5.4 Impact of charging demand pattern

Since the optimisation results of the charging station are based on
the charging demand model, a completely different charging

Fig. 10  Power flow of the charging station with P22N15
(a) Typical spring PV power profile, (b) Typical summer PV power profile, (c) Typical autumn PV power profile, (d) Typical winter PV power profile

 
Table 5 Results of optimal sizing in different cases
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

base determined without lower fixed new 20% 20% 20% 20%
case PV and load PV electricity electricity charging increase of increase of increase of increase of

price price pattern PV cost battery cost transformer charger cost
cost

PV, kW 394.75 346 0 1.75 389.75 500 382.5 396.25 394.75 394.75
battery, kWh 907 986 534 0 504 368 913 834 907 907
transformer, kW 125 81 155 320 144 118 125 125 125 125
PV cost, USD 438.01 383.92 0 1.94 432.46 554.79 509.3 439.67 438.01 438.01
battery cost, USD 894.58 972.49 526.68 0 497.1 362.96 900.49 987.09 894.58 894.58
transformer 53.97 34.97 66.93 138.17 62.18 50.95 53.97 53.97 64.77 53.97
cost, USD
charger cost' USD 180.82 180.82 180.82 180.82 180.82 180.82 180.82 180.82 180.82 216.99
operation cost, USD −2319.23 −2406.78 −726.16 −72.37 −1311.77 −2435.47 −2310.57 −2242.97 −2319.23 −2319.23

energy selling 0 0 0 -3.87 -30.79 0 0 0 0 0
to grid, kWh
total cost, USD −751.85 −834.57 48.28 248.56 −139.21 −1285.95 −665.98 −581.41 −741.06 −715.69

 

Fig. 11  Three types of electricity tariff
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behaviour pattern will result in completely different results. The
previously generated charging demand based on the charging
station has two charging peaks in one day: the peak appears in the
morning and in the afternoon. Here one stochastic factor, the start
charging time, is changed in this case and other factors remain
unchanged, which could generate a new different charging pattern.
It is assumed that the charging demand is mainly concentrated
between 6 am to 10 pm, and the single charging peak appears
around 1 pm, which can be described through following probability
expression:

f (tini) =
1

σtini
2π

e−((tini − μtini)
2/2σtini

2 ) . (26)

This case is defined as Case 6 in which other conditions and
parameters are unchanged. The obtained results are listed in Table
5. In this case more PV are utilised while the size of the battery and
transformer are decreasing, as well as the least total cost. Such
results stem from the shape of charging demand is in line with the
PV power profile.

5.5 Sensitivity of components cost

The cost of components is another key factor affecting optimisation
results. Before conducting the sensitivity analysis of the component
costs, the unit costs value used in Case 1 are firstly considered as
the base values. Then, the unit cost of one-single component is
increased to 120% of its base cost, while the cost of other
components remains at the base value. Cases 7–10 show the results
on changing the unit costs of PV, battery, transformer and charger.
It can be found that once the costs of PV and battery are increasing
their corresponding design sizes are decreased. Comparing the total
cost results, it can be found the most sensitive variable is the
battery cost, which causes the maximum incremental cost, while
the total cost is the least sensitive to the cost of transformer.

6 Conclusion
This paper studied the planing of charging station mainly
considering the system uncertainties from the stochastic EV
charging demand and PV power generation. Particularly, the
charging demand establishment considered many EV charging
behaviour, charger configuration, and charging assignment model,
which made the modelled charging demand of charging station
more realistic. A stochastic planning model for EV charging station
was then proposed to optimise the component sizes by minimising
the capital cost and simultaneously optimise the operation power
flow, which tackled the uncertainties into the technical constraints
and objective function. The effectiveness of the proposed model
was validated by the case study. The optimal charger option, i.e.
the number of chargers and charging level, and the size of PV,
battery, and transformer were found. A set of case studies for
comparison were conducted to examine the major sensitive
parameters affecting the charging station planning.
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