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Abstract: Travel time estimation plays an important role in freeway performance assessment and reliability management.
Conventional estimation methods based on speed information do not consider the level of congestion during modelling, leading
to unreliable estimations under congested conditions. This study presents a freeway travel time estimation method based on the
general motors (GM) model, where the concept ‘virtual vehicle’ was proposed to apply macroscopic traffic flow data to the
microscopic GM model. First, a GM-based travel time estimation (GMTTE) model was developed to estimate link travel time.
Three sets of parameters l, m and α were separately used under free-flowing, congestion and transition conditions. Next, two
corridor estimation models, namely GMTTE time-slice-based (GMTTE-TSB) model and GMTTE continuous-speed (GMTTE-CS)
model, were proposed. To calibrate the three parameters, a genetic algorithm framework was developed. The proposed method
was calibrated and evaluated using traffic data collected from seven freeway segments in the greater St. Louis, Missouri region.
Results show that (i) the GMTTE-CS model outperformed the GMTTE-TSB model; (ii) the optimal parameters of the GMTTE-CS
model under free-flowing and congested conditions are l = 1.1, m = 2.0, α = 8.0  and l = 1, m = 0.1, α = 8.0 , respectively; (iii)
the GMTTE-CS model outperformed the instantaneous and time-slice models under congested conditions, while showing
similar accuracies with the two models under free-flowing and status-transition conditions; and (iv) the optimal time interval was
found to be 9–10 min for free-flowing conditions and 6–7 min for congested conditions.

1 Introduction
Travel time is a key measure for freeway performance assessment
and reliability management. Local agencies are often required to
report travel time information to higher-level transportation
agencies [1, 2]. Travel time information can also help the public
make reasonable travel choices, and serves as one of the
fundamental indicators in transportation planning and facility
accessibility evaluation [3, 4]. Accurate and reliable travel time
estimation benefits both the public and transportation agencies.

Many manual strategies have been developed to directly collect
freeway travel times, including GPS-based probe vehicles, test
vehicles, vehicle signature matching and so on [5]. Besides, the use
of Intelligent Transportation System (ITS) data to indirectly
estimate travel time is becoming more popular, owing to two major
facts. First, most state-level departments of transportation have
installed ITS sensors on major freeways. The nationwide network
of the ITS sensors (e.g. microwave radar sensors and passive
infrared sensors) ensures the availability of a large amount of ITS
data. Second, numerous mathematical models have been presented
to quantify freeway traffic conditions. These models relieve traffic
engineers and practitioners from labour-intensive manual travel
time collection work.

The most fundamental definition for travel time on a freeway
link is travel time equals the link length divided by speed. Various
models define the speed in different ways. For example, the
Instantaneous model considers the speed as the average of
upstream and downstream speeds at vehicle departure times. The
time-slice model improves the instantaneous model by using the
travel time on the ith link to adjust the departure time for the
i + 1 th link. The calculated speed then becomes the average of

upstream and downstream speeds at the adjusted departure times.
The dynamic time-slice model [6] is an advanced version of the
time-slice model that recursively estimates the travel time on the

ith link and adjusts the departure time for the i + 1 th link. A
common assumption of the three models is that speed is constant
within a link. As this is not always the case, Van Lint and Zijpp [7]
refined the above models by using a linear transformation to
estimate the changing speeds within links. Also, the piecewise
truncated quadratic functions were employed by Sun et al. [8] to
calculate speeds within freeway links. Similarly, Ni and Wang [9]
constructed speed surfaces to reconstruct vehicle trajectories for
travel time estimation. The models mentioned above are easy to
understand and popular in practical applications, and can be
deemed as trajectory-based travel time estimation models [10].

Some other categories of methods based on speed information
were also explored by researchers, including vehicle
reidentification methods, traffic-flow-theory based methods and
data-driven based methods. Most of the vehicle reidentification
methods require the time-consuming examinations of electronic
signatures collected from ITS sensors, while the data-driven based
methods need a large amount of high-quality data for model
training and validation [10]. The traffic-flow-theory based methods
are built on classical traffic flow models. For instance, Coifman
[11] used a two-regime traffic flow model to reconstruct vehicle
trajectories, and further inferred freeway travel times. Numerical
results show the estimated travel times are consistent with the
ground truth travel times under uninterrupted traffic conditions.
However, the model fails to deal with the cases where a queue
partially covers a link. The traffic-flow-theory based methods have
been shown the advantages in terms of estimation accuracy,
especially under congested conditions.

Gazis et al. [12] and Herman et al. [13] proposed a microscopic
model called the general motors (GM) model to mathematically
describe the responses of the following vehicles to leading
vehicles. Meanwhile, the relationship between the GM model and
macroscopic traffic flow models has also been established [12–14].
For instance, the well-known Greenshield's and Greenberg's traffic
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flow models can be derived from the GM model. The study by
Coifman [11] shows that travel time estimation models can be built
based on macroscopic traffic flow models. Fig. 1 depicts the
relationship between the microscopic model and macroscopic
traffic flow models, as well as the relationship between the
macroscopic traffic flow models and travel time estimation models.

Li et al. [15] compared the estimation results of the
instantaneous, time-slice, dynamic time-slice and linear
transformation models [7] with the ground truth travel times,
concluding that ‘the level of error declines with increasing level of
congestion’. The conclusion demonstrates the accuracy of travel
time estimation methods is closely associated with the level of
congestion. In other words, the performance of the estimation
methods can be further improved if the level of congestion is
properly considered during modelling.

Inspired by the studies by Coifman [11] and Li et al. [15], this
paper presents a freeway travel time estimation method based on
the GM car-following model. Unlike the conventional models
based on speed information, e.g. instantaneous model, time-slice
model and dynamic time-slice model, the proposed method
considers the level of congestion by incorporating three
representative parameters, i.e. distance headway exponent l, speed
exponent m, and sensitivity coefficients α, into the modelling
process. The combined use of the three parameters can characterise
and reflect various traffic conditions on freeways, and can thus be
utilised to improve travel time estimation models. To the best
knowledge of the authors, little research has been conducted to
estimate travel time using the GM model. Therefore, the travel
time estimation method proposed in the study is developed by the
GM model to complete the relationships shown in Fig. 1. A
previous study conducted by Yang et al. [16] demonstrates the
feasibility and effectiveness of the GM-based method. However,
the model parameters were empirically determined. In this study,
we focus on (i) proposing innovative freeway travel time
estimation models based on a car-following model with three
parameters built-in; (ii) extending the previously proposed method
by using a different speed initialisation strategy for the start of
freeway links; (iii) proposing an evolutionary algorithm to calibrate
the three parameters in the proposed travel time estimation model;
and (iv) determining an optimal aggregation time interval for
freeway travel time estimation.

To avoid the ambiguity regarding the concept of travel time
estimation, three notes are listed below:

• No travel time prediction efforts are being made in this study.
Travel time estimation and travel time prediction were
sometimes interchangeably used in previous studies [10]. This
study aims to use past speed data to estimate travel time.

• Similar to the instantaneous and time-slice models, the proposed
models intend to estimate freeway travel time as a general
indicator of traffic conditions, e.g. level of service, rather than
evaluating individual trip travel time [10]. The estimated travel

times are commonly used by Advanced Traveller Information
Systems (ATISs) and Advanced Traffic Management Systems
(ATMSs) and displayed by Dynamic Message Signs (DMSs) on
freeway roadsides.

• Although car-following models are widely used for traffic
simulation, they were originally presented for modelling the
driving behaviours of leader and follower vehicles. Therefore,
no simulation steps are required by the proposed travel time
estimation method. Meanwhile, the selected car-following
model (i.e. the GM model) is a deterministic car-following
model, meaning the results of travel time estimation would not
be changed after the three parameters are determined.

The remaining of the paper is organised as follows. Section 2
provides the methodology of the proposed method, where the
concept of ‘virtual vehicle’ is presented and the link and corridor
travel time estimation models based on the GM model are
developed. A genetic algorithm (GA) calibration framework is
proposed to optimally determine the parameters of the proposed
models. In Section 3, the study freeway corridors and collected
data are described, while the experimental studies in Section 4 are
conducted to evaluate the proposed method. Conclusions and
future work remain in Section 5.

2 Methodology
2.1 Link travel time estimation based on the GM model

The GM model is a microscope car-following model, which is
typically used to measure kinetic responses between two
consecutive travelling vehicles on roadways. Three parameters, i.e.
distance headway exponent l, speed exponent m, and sensitivity
coefficients α, were defined to characterise car-following
behaviours [12, 13]. Equations (1)–(3) describe the mathematical
form of the GM model.

vn
t = vn

t − ΔT + an
t − ΔT ∗ ΔT , (1)

xn
t = xn

t − ΔT + vn
t − ΔT ∗ ΔT + 1

2an
t − ΔTΔT2, (2)

an + 1
t = αl, m vn + 1

t m

xn
t − ΔT − xn + 1

t − ΔT l ∗ vn
t − ΔT − vn + 1

t − ΔT , (3)

where vn
t  is the instantaneous speed of the nth vehicle at time t, an

t  is
the instantaneous acceleration rate of the nth vehicle at time t, ΔT
is the time interval, xn

t  is the travelling distance of the nth vehicle at
time t, l is the distance headway exponent between [−1, 4], m is the
speed exponent between [−2, 2], and αl, m is the sensitivity
coefficient.

Equations (1) and (2) are based on classical kinematic equations
and used to estimate the nth vehicle's (leading vehicle)
instantaneous speed and travelled distance. One important kinetic
response measure is the acceleration rate. Gazis et al. [12] and
Herman et al. [13] summarised previous studies and proposed the
generalised form (3) to estimate the acceleration rate of the
n + 1 th vehicle (following vehicle). The generalised form is

associated with the current kinetic statuses of both of the leading
and following vehicles. By using (1)–(3) iteratively, vehicle kinetic
statuses, as well as travel distance and time, can be calculated
simultaneously. However, the inputs of the GM model require
detailed vehicle movement data, e.g. instantaneous speed and
acceleration rate at each time interval. To establish the GM model
using the ITS traffic sensor data which is usually aggregated over a
relatively long duration (typically 20 or 30 s), the concept of
‘virtual vehicle’ is proposed.

Fig. 2 shows a freeway link bounded by upstream and
downstream ITS sensors Su and Sd. Assume two virtual vehicles, a
virtual leading (VL) vehicle and a virtual following (VF) vehicle,
travel on the freeway link. The initial headway of the two virtual
vehicles at the starting time t0 is set as the link length. The speeds

Fig. 1  Relationships among microscopic, macroscopic and travel time
estimation models
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of the VL and VF vehicles at t0 are initialised as the downstream
and upstream speeds collected at the time t0, denoted as vSd

t0  and vSu
t0 ,

respectively. After t0, the speed of the VL vehicle is still
determined by the downstream sensor Sd, whereas the speed of the
VF vehicle is calculated based on the GM model in response to the
kinetic changes of the VL vehicle. As mentioned above, the roles
of the upstream sensors Su are (i) to contribute to the initial speed
of VF vehicles and (ii) to serve as a location/position reference for
VF vehicles. Based on the above iterative process, the time–space
diagram of the VF vehicle can be generated and, accordingly, its
link travel time can be derived. The link travel time is finally
determined as the VF vehicle's link travel time. The link travel time
is defined as the travel time between two consecutive points on
freeways. In the study, the consecutive points are selected to be the
locations of traffic sensors. Note that the aforementioned kinetic
mechanism of the virtual vehicles could be just one of possible
ways to build the microscopic car-following models with
aggregated ITS data. The other mechanisms can also be introduced,
but will not discuss in this study. 

It should be indicated that traffic sensors usually report
aggregated speed at a certain time interval (e.g. 20 s, 30 s or 1 
min). In this study, the used speed data is aggregated every 30 s.
An interpolation algorithm is required to estimate the instantaneous
speed of the VL vehicle at the time t. Equation (4) shows the
mathematical form of the adopted interpolation algorithm

vVL
t =

vSd
Ti + 1 − vSd

Ti

Ti + 1 − Ti
∗ t − Ti + vSd

Ti Ti ≤ t ≤ Ti + 1 , (4)

where vVL
t  is the instantaneous speed of the VL vehicle at the time

t, Ti is the timestamp of the collected ITS sensor data, and vSd
Ti is the

speed collected from Sd at the time Ti.
Based on (1)–(4) and the concept of ‘virtual vehicle’, a freeway

link travel time estimation model, namely GM-based travel time
estimating (GMTTE) model, is proposed. The mathematical form
of the GMTTE model can be simply denoted as

TTi, vTTi = GMTTE l, m, α, vSd, vSu , (5)

where l, m, and α are the parameters to be calibrated, and vSd and
vSu are the input aggregated speed data at downstream and upstream
ITS sensors, respectively. The outputs of (5) consist of the travel
time on the ith link, TTi, and the instantaneous speed of the VF
vehicle at the end of the ith link, vTTi.

2.2 Corridor travel time estimation

Two corridor travel time estimation models based on the GMTTE
model, are proposed in the following two subsections. Assume a

corridor is composed of n + 1  links, denoted as ith link, i + 1 th
link, i + 2 th link, …, i + n th link, respectively. The corridor
travel time is defined as the sum of the travel time on consecutive
freeway links. The first model is similar to the time-slice model
(which improves the instantaneous model by using the travel time
on the ith link to adjust the departure time for the i + 1 th link),
named GMTTE time-slice-based (GMTTE-TSB) model. The
model resets the speed at the beginning of the ith link to be the
speed of downstream sensors at entering the ith link. The second
model is different from the first model. The speed of the VF
vehicle at the end of ith link is used as the initial speed at the
beginning of the i + 1 th link. Therefore, the speed profile of the
VF vehicle is continuous. The second model is then named
GMTTE continuous-speed (GMTTE-CS). The main distinction
between the two models lies in the different initial speeds of the VF
vehicles at the beginning of each link. The GMTTE-TSB model
uses the time-slice model's strategy to initialise the starting speed,
while the GMTTE-CS model uses the speed at the end of the ith
link, vTTi, to initialise the starting speed at the beginning of the
i + 1 th link.

2.2.1 GMTTE-TSB model: The GMTTE-TSB model uses the
following steps to estimate corridor travel time:

Step 1: Initialise i = 0.
Step 2: Use the link model GMTTE l, m, α, vSdi

, vSui
 to estimate

the travel time on the ith link, TTi.
Step 3: Adjust the departure time for the i + 1 th link based on
TTi.
Step 4: Estimate the travel time TTi + 1 using the speed data at the
adjusted departure time.
Step 5: Let i = i + 1 and repeat Steps 2–4 to estimate travel time on
each link.
Step 6: Sum all link travel times to obtain the corridor travel time.

2.2.2 GMTTE-CS model: The following five steps are included
in the GMTTE-CS model to estimate corridor travel time:

Step 1: Initialise i = 0.
Step 2: Use the link model GMTTE l, m, α, vSdi

, vSui
 to estimate

TTi and vTTi.
Step 3: Initialise the starting speed on the i + 1 th link with vTTi.

Step 4: Use GMTTE l, m, α, vSdi + 1
, vTTi  to estimate the i + 1 th

link travel time.
Step 5: Let i = i + 1 and repeat Steps 2–4 to estimate travel time on
each link.
Step 6: Sum all link travel times to obtain the corridor travel time.

2.3 GA calibration framework

To determine the optimal parameter set l, m, α  for the proposed
models, a GA calibration framework is proposed. Two
performance measures, i.e. mean absolute error (MAE) and mean
absolute percentage error (MAPE), are used to design the fitness
function of the GA.

2.3.1 Performance measures: The MAE and MAPE measures
are defined as follows:

MAE = 1
n ∑

i = 1

n
yi − y^i , (6)

MAPE = 1
n ∑

i = 1

n yi − y^i
yi

, (7)

where yi is the true value of the ith data sample, y^i is the estimated
value of the ith data sample, and n is the number of data samples.

Fig. 2  Virtual vehicle illustration
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2.3.2 GA design: Because the ITS sensor data was reported every
30 s and the ground truth travel times were collected at vehicle
level (2–5 individual vehicle travel times were collected within a
minute), the estimated and ground truth travel times were both
aggregated into a certain time interval before calibrating the
proposed models. Aggregation over the same time interval enable
the calculation of MAEs and MAPEs and hence the evaluation the
proposed estimation models. The objective of the GA is to solve
the following optimisation problem:

f l, m, α = arg min
l, m, α

MA j l, m, α , (8)

where MA j represents the model accuracy associated with the time
interval j, and could be either MAE j or MAPE j in this study.

To solve the above problem effectively, a proper fitness
function is required by the GA, so that new generations can evolve
towards the best solution. As potential fitness functions could
include MA j with any value of j, a reasonable guess would be that
the selection of j can affect the calibration results. For example, a
set of l, m, α  can minimise a fitness function when MA5 is used,
whereas it may not be able to minimise a fitness function with a
10-min aggregation interval. Furthermore, another reasonable
guess may be raised: the value of j could affect the accuracy of the
aggregated travel time due to the trade-off between traffic
dynamics and travel time estimation noises. For instance, if j is set
to be a small value (e.g. 1 or 2 min), the aggregated travel time
would vary significantly and noises might be introduced; on the
other hand, if j is set as a relatively large value (e.g. 15 or 20 min),
the aggregated travel time would vary less and fail to capture travel
time dynamics. Therefore, proper j needs to be determined
carefully. However, a few guidelines are available to assist in
selecting the optimal j. Given this, a fitness function with weighted
accuracies is introduced, as shown in the following equation:

Fitness l, m, α = ∑ j = 2
K W j ∗ MAj

∑ j = 2
K W j

, (9)

where W j is the weight of MA j, and K is the upper bound of j. The
lower bound is selected as 2 because the ground truth travel times
are difficult to collect within time intervals less than 2 min.

Fig. 3 depicts the proposed GA calibration framework. As the
figure shows, an initial population is composed of a set of
chromosomes (solutions) and produced by generating random
numbers within the ranges of the parameters to be solved. Starting
with the initial population, the GA carries out a process of fitness-
based selection, crossover and mutation, to produce a successor
population. The selection operation is to select a group of candidate
solutions to breed a new generation while the crossover operation
produces offspring by exchanging the selected chromosomes
among genes (a gene is a unit code of a chromosome). The

mutation operation changes the value of some chromosomes at
random and allows the GA to jump out of a local optimum by
occasionally exploring other regions. As the above process is
iterated, a sequence of generations evolves, and the average fitness
of the chromosomes tends to increase until the termination criterion
is reached. With such a searching strategy, the GA is capable of
evolving the best solution for the calibrated models. In the study,
the crossover probability and mutation probability were set as 0.1
and 0.01, respectively, and the ranking selection mechanism [17]
was adopted to select the prospective offspring. 

2.3.3 Weight updating using Metropolis–Hastings
algorithm: The parameter W j defined in (9) follows a probability
distribution on a time interval i, denoted as p i = Wi. Various
traffic conditions could result in different optimal j and weights. To
this end, two prior distributions of j are used to characterise
different traffic conditions.

For the free-flowing conditions, a uniform distribution is
adopted, assuming each j could be optimal and its associated MA j
is evenly contributed to the fitness function. The distribution is
formulated as follows:

p j =
1

σ2 − σ1
σ1 ≤ j ≤ σ2

0 j < σ1 or j > σ2

, (10)

where σ1 and σ2 are 2 and 15 min, respectively. Any j greater than
15 min is considered inadequate to capture travel time dynamics.

For the congested conditions, a log-normal distribution is used
as the prior distribution, taking the form

p j = 1
jσ 2π

exp − ln j − μ 2

2σl
2 , (11)

where μ = 3 and σl = 1 in the study. The distribution indicates that
a smaller j is more likely to be the optimal j and thus given more
weights.

It is possible that the two prior distributions may not thoroughly
represent the distributions on j, an updating mechanism is
introduced to update the distributions by incorporating the best i.
The best i is set as the time interval with the lowest MA j, and
considered as the optimal candidate jcan. Each population in the
GA produces an optimal candidate. Let jcan

M  be the optimal
candidate in the Mth iteration. The updating mechanism allows the
fitness function to evolve by incorporating jcan

M  after the Mth
iteration. Updating the two prior distributions with jcan

M  provides
two posterior distributions for the optimal j. The maximum a
posteriori (MAP) method and Metropolis–Hasting algorithm [18]
have been widely applied to update prior distributions with new
observations. However, the MAP method is limited to the prior
distribution selection and requires the used prior and posteriori
distributions are conjugated. Since the uniform and log-normal
distributions have no corresponding conjugate distributions and no
closed mathematical expressions can be derived to update the
distributions, the Metropolis–Hasting algorithm is employed in this
study. The algorithm samples from unknown distributions with a
ratio of likelihoods r. The following two steps describe the
calculation process of a posterior distribution.

Step 1: Propose a new j. The probabilistic relationship between
the known optimal jold and newly proposed optimal jnew is
described with a Gaussian distribution N jold, σr . This proposal
step is known as a random walk process. If jnew is accepted, jold is
set to be jnew; otherwise, jold remains unchanged. The initial jold
can be any non-negative number and was set as 10 in the study.
Equation (12) shows the established relationship between jold and
jnew:

p jnew jold = N jold, σr , (12)

Fig. 3  Flowchart of designed GA
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r = p jnew Likelihood( jcan jnew)
p jold Likelihood( jcan jold) (13)

runiform =
1

σ2 − σ1
∗ ∏m

M N( jcan
m jnew, σa)

1
σ2 − σ1

∗ ∏m
M N( jcan

m jold, σa)
(14)

(see (15)) , where σr is the walk size, and was set as 5 in the study.
Step 2: Accept or reject the proposed optimal j based on

jcan
1 , jcan

2 , …, jcan
M . A ratio of likelihoods r is used to determine

acceptance or rejection, as shown in (13). The Likelihood jcan jnew
is defined as the multiplication of the Gaussian distributions
N jcan jnew, σa . Equations (14) and (15) show the derived r using
the two prior distributions defined in (10) and (11). If r is greater
than 1, or r is greater than a random number between [0, 1] when r
is less than 1, the proposed optimal jnew is accepted.

After repeating the two steps N times (2000 in the study), the
two posterior distributions are updated after the Mth iteration.
Since the two posterior distributions of the time interval j are
obtained, the probability at j (i.e. the weight of the time interval j)
can be calculated. Then, the newly calculated weight of j W j
replaces the old weight and cycles into the next iteration until
convergence. It is worth noting that σr in (12) only affects the
acceptance rate. The posterior distributions, as well as the
corresponding statistics (e.g. mean, mode and standard deviation),
are not affected. Similarly, σa in (14) and (15) only affects the
acceptance rate as well. Fig. 4 illustrates the weight updating
process. 

3 Data collection and description
The traffic data collected from seven freeway segments in the
greater St. Louis, Missouri region was used for both model
calibration and evaluation. Two freeway corridors located on I-270
were selected for model calibration. Corridor 1 is an 11.59 km (7.2
miles) segment of I-270 Southbound, which has little recurrent
congestion on Fridays. Given this, Corridor 1 on Friday mornings
was used for a free-flowing scenario. Corridor 2 is a 5.95 km (3.7
miles) segment of I-270 Northbound, which consistently suffers
from traffic congestion on weekdays. Accordingly, Corridor 2 on
Tuesday mornings was used for a congested scenario. Two other
freeway corridors, namely Corridor 3 and Corridor 4, were selected
for the model evaluation of the free-flowing scenarios. No efforts
have been made to collect ground truth data because travellers and
traffic engineers are more interested in acquiring travel time
information under congestion scenarios. However, relative
comparisons for models will be performed under free-flowing
scenarios. These two corridors were located on different freeway
segments. Corridor 3 is a 4.35 km (2.7 miles) segment of I-270
Southbound, while Corridor 4 is a 5.79 km (3.6 miles) segment of
I-64 Westbound. Also, two more freeway corridors, Corridors 5
and 6, were selected for evaluating the congested scenarios. The
‘stop-and-go’ traffic conditions were often observed on entire
Corridors 5 and 6. The last corridor, Corridor 7, is an 8.85 km (5.5
miles) segment (4 links) of I-270 Southbound. Traffic congestions
were observed on the first three links but mitigated on the fourth
link. Corridor 7 was thus selected to evaluate the models when the
traffic goes through the transition state.

Table 1 shows the detailed information of the seven corridors.
Two types of data were collected, including ITS sensor data and
actual travel times. The ITS sensor data was used to estimate travel
time using the proposed models. In addition to the ITS sensors,
surveillance cameras were installed on I-270. The vehicle matching

approach proposed by Schroeder et al. [5] was implemented to
collect the ground truth travel times. Note that the ground truth
travel times are not available for the two free-flowing verification
scenarios (i.e. Corridors 3 and 4). Similar to the work by Ni and
Wang [9], comparative analyses with other estimation models were
also conducted. 

4 Model calibration and evaluation
4.1 Model calibration

The GA framework presented in Section 2.3 was carried out to
calibrate the proposed GMTTE-TSB and GMTTE-CS models
based on the MAE and MAPE measures. As each model was
calibrated by using two measures on two study corridors, a total of
eight calibration scenarios can be created, including:

Scenario 1a: GMTTE-TSB model using MAPE on Corridor 1.
Scenario 1b: GMTTE-TSB model using MAPE on Corridor 2.
Scenario 2a: GMTTE-TSB model using MAE on Corridor 1.
Scenario 2b: GMTTE-TSB model using MAE on Corridor 2.
Scenario 3a: GMTTE-CS model using MAPE on Corridor 1.
Scenario 3b: GMTTE-CS model using MAPE on Corridor 2.
Scenario 4a: GMTTE-CS model using MAE on Corridor 1.
Scenario 4b: GMTTE-CS model using MAE on Corridor 2.

Table 2 shows the optimal sets of l, m, α  and the optimal j for
Scenarios 1 and 2, while Table 3 shows the corresponding results
for Scenarios 3 and 4. According to Brackstone and McDonald
[14], α could be mathematically cancelled out for calibrating the
GM model, and only the parameters l and m need to be considered.
To examine whether the selection of α has significant impacts on
travel time estimation, the effects of selection of α and the best
fitness are also listed. Detailed findings are summarised below:

(i) The effects of selection of α ranging from 3 to 14 were tested.
The results show α had minor effects on the accuracy of estimated
travel times. For example, the MAEs in Scenario 1a range from
1.54–1.58 s and in Scenario 1b range from 11.57 to 11.69 s.
Therefore, the effects of selection of α for all scenarios can be
ignored. This conclusion is consistent with the previous study [14].

rlognorm =

1
jnew 2π

exp − ln jnew − 3 2

2 ∗ ∏m
M N( jcan

m jnew, σa)

1
jold 2π

exp − ln jold − 3 2

2 ∗ ∏m
M N( jcan

m jold, σa)
(15)

Fig. 4  Flowchart of weight updating using Metropolis–Hastings algorithm
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(ii) Scenarios 1b and 2b have similar results regarding the selection
of an optimal set l = 0.5, m = − 2.0, α = 8.0  for the GMTTE-
TSB model. Although Scenarios 3b and 4b generated two different
optimised sets l = 1, m = 0.1, α = 8.0  and
l = 1, m = 0.1, α = 6.0 , respectively. However, the only

difference is the selection of α. To keep the following validation
steps consistent and easy, the optimal set
l = 1, m = 0.1, α = 8.0  was used for the GMTTE-CS model

because of the minor effect of α.
(iii) The optimal sets of parameters under free-flowing traffic
conditions vary. It was found that the four optimal sets of l, m, α
in Tables 2 and 3 produced low errors. Essentially, any of the four
optimal sets under free-flow conditions can be interchangeably
used to produce travel time with low errors. Therefore, the
parameter set l = 1.1, m = 2.0, α = 8.0  is used hereafter to verify
the models.

The best fitness values in Tables 2 and 3 demonstrate the
positive performance of the two calibrated models. To compare

with other freeway travel time estimation models based on speed
information, two conventional models, i.e. the instantaneous and
time-slice models, were implemented for the same study corridors.
The comparison results are shown in Fig. 5. Several findings are
summarised below:

(i) The four models performed similarly under free-flowing
conditions. The low MAPEs (<3%) and MAEs (<12 s) in Figs. 5a
and b indicate that the performances of the four models are
satisfactory, and all of the models can accurately estimate travel
times under free-flowing conditions.
(ii) Estimating travel time under congested conditions is more
challenging. Figs. 5c and d show the performances of the four
models under congested conditions. The two conventional models
have higher MAPEs (>20%) and MAEs (>90 s). In contrast, lower
MAPEs and MAEs were achieved by the GMTTE-TSB and
GMTTE-CS models. Moreover, it was observed that the GMTTE-
CS model is superior to the GMTTE-TSB model. Therefore, the
GMTTE-CS model with the optimal parameters

Table 1 Study corridors
Corridors Time period Number of ground

truth travel times
Corridor descriptions

Data used for model calibration (training data)
Corridor 1(three lanes)(free-
flowing condition)

7–8 AM, 12 December 2014,
Friday

183 direction: Southbound, length: 11.59 km (7.2 miles),
Dorsett Road & I-270 – Clayton Road & I-270, six links

Corridor 2(four lanes)
(congested condition)

7:50–8:50 AM, 16 December
2014, Tuesday

285 direction: Northbound, length: 5.95 km (3.7 miles), Big
Bend Road & I270 – Clayton Road & I-270, three links

Data used for model verification (test data)
Corridor 3(three lanes)(free-
flowing condition)

7–8 AM, 13 December 2014,
Saturday

NA (relative
comparison)

direction: Southbound, length: 4.35 km (2.7 miles), Dorsett
Road & I270 – Olive Blvd & I270

Corridor 4(four lanes)(free-
flowing condition)

11:30–13:30, 25 September
2014, Thursday

NA (relative
comparison)

direction: Westbound, length: 5.79 km (3.6 miles), Sarah
Street & I270 – McCausland Ave & I270

Corridor 5(four lanes)
(congested condition)

7–8 AM, 17 December 2014,
Friday

163 direction: Northbound, length: 8.85 km (5.5 miles), I44 &
I270 – Clayton Road & I270, four links

Corridor 6(four lanes)
(congested condition)

7–8 AM, 17 December 2014,
Friday

123 direction: Northbound, length: 2.57 km (1.6 miles), I44 &
I270 – Big Bend Road & I270), single link

Corridor 7(four lanes)(state
transition condition)

15:00–15:50, 17 December
2014, Friday

72 direction: Southbound, length: 8.85 km (5.5 miles), Clayton
Road & I270 – I44 & I270, four links

 

Table 2 Calibration results of the GMTTE-TSB model
Corridor 1 Corridor 2

MAPE [Scenario 1a] MAE [Scenario 2a] MAPE [Scenario 1b] MAE [Scenario 2b]
optimal j, min mean 9.94 9.37 6.70 6.58

median 9.95 9.38 6.70 6.58
optimal parameters I 0.5 1.7 0.5 0.5

m 0.7 2.0 −2.0 −2.0
α 8.0 9.0 8.0 8.0

α effect 3 ≤ α ≤ 14 MAPE, % [1.54, 1.58] NA [11.57, 11.69] NA
MAE (seconds) NA [6.42, 6.62] NA [51.36, 52.49]

best fitness MAPE, % 1.54 NA 11.57 NA
MAE, s NA 6.42 NA 51.36

 

Table 3 Calibration results of the GMTTE-CS model
Corridor 1 Corridor 2

MAPE [Scenario 3a] MAE [Scenario 4a] MAPE [Scenario 3b] MAE [Scenario 4b]
optimal j, min mean 9.21 9.38 7.35 6.99

median 9.20 9.38 7.35 6.99
optimal parameters I 1.1 1.7 1.0 1.0

m 2.0 2.0 0.1 0.1
α 8.0 5.0 8.0 6.0

α effect 3 ≤ α ≤ 14 MAPE, % [1.27, 1.29] NA [6.86, 6.94] NA
MAE, s NA [5.94, 6.12] NA [31.51, 32.37]

best fitness MAPE, % 1.27 NA 6.86 NA
MAE, s NA 5.94 NA 31.51
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l = 1, m = 0.1, α = 8.0  is used for model evaluation in later
experiments.

4.2 Optimal aggregation time interval determination

To obtain consistent travel time estimates and capture traffic
dynamic in travel time estimation, a proper aggregation time
interval is required. Fig. 6 shows the posterior distributions based
on the optimal j for the defined four scenarios. All of the posterior
distributions are concentrated, and have small variances, though
the probabilities of different time intervals are not equal. The
higher the probability of a time interval, the more likelihood the
time interval would be optimal j. 

The uniform prior distribution indicates that any time interval
has an identical likelihood to be optimal j under the free-flowing
conditions. However, the corresponding posteriori distributions
suggest that 9–10 min might be a good choice. For the congested
conditions, it was suggested that 6–7 min could be selected as the
optimal aggregation time interval.

4.3 Model evaluation

The GMTTE-CS model with l = 1.1, m = 2.0, α = 8.0  was
applied to the two free-flowing corridors (Corridors 3 and 4).
Meanwhile, the model with l = 1, m = 0.1, α = 8.0  was applied
to the two congested corridors (Corridors 5 and 6) and Corridor 7
with status-transition conditions. Performance comparisons among
the implemented models are shown in Fig. 7 and Table 4,
respectively. The main findings are summarised as follows:

(i) As no ground truth travel time was available on Corridors 3 and
4, the corresponding quantitative comparisons were unavailable.
However, based on Figs. 7a and b, minor differences can be
observed on both corridors, implying the estimated models were
similarly performed. This finding is consistent with the previous
study by Li et al. [15].
(ii) The GMTTE-CS model outperformed the other two
conventional models on both Corridors 5 and 6. The MAPEs of the
two conventional models are ∼20%, while the MAPE is 7% lower
using the GMTTE-CS model. Since Corridor 6 is a single-link
scenario, the two conventional models performed the same, and
their MAPEs are 14.1%. For the GMTTE-CS model, the MAPE is
7.97%. This demonstrates the performance advantage of the
GMTTE-CS model over the conventional models under congested
conditions.

(iii) The three models performed similarly on Corridor 7. They
achieved higher accuracies, where all of the MAPEs are smaller
than 4%.

Note that shorter links, meaning that more traffic sensors along
a fixed freeway segment length, would capture more traffic
dynamics, resulting in more accurate travel time estimates. Sparse
deployment of traffic sensors may fail to capture traffic dynamics
and result in less accurate travel times.

4.4 Statistical tests of model performance

In addition to the quantification of the differences between the
estimation models using MAE and MAPE, statistical tests have
also been conducted to statistically test the performance
differences. Paired T-test is one of the common options to be
applied. However, the T-test has a strong assumption, i.e. data
samples should follow normal distributions. To relax this
assumption, a non-parametric statistical test, namely the Wilcoxon
signed-rank test, is applied in this study. The null and alternative
hypotheses are H0: the difference between the paired travel time
follows a symmetric distribution around zero; H1: the difference
between the paired travel time does not follow a symmetric
distribution around zero. The results of the statistical test are listed
in Table 5. The results indicate that (i) no statistical difference of
the model performances under free-flowing and transition
conditions (i.e. Corridors 3, 4 and 7) is observed; and (ii) the
statistical differences under congestion conditions (i.e. Corridors 5
and 6) are statistically significant. The combined results of MAE/
MAPE and the statistical tests demonstrate that both GMTTE-TSB
and GMTTE-CS outperformed the other two conventional freeway
travel time estimation models under congested conditions. 

5 Conclusion and future work
Freeway travel time estimation is an important topic in freeway
traffic operation and management. The majority of previous studies
developed trajectory-based, vehicle reidentification, traffic-flow-
theory based and data-driven based methods to estimate freeway
travel times. This study proposes a GM based freeway travel time
estimation method with three parameters built-in, where two
corridor travel time models are proposed by using different speed
initialisation strategies on start links, namely GMTTE-TSB and
GMTTE-CS models. Real-world data from seven corridors with
various lengths (1.6–7.2 miles) and various traffic conditions (i.e.
free-flow, congestion, and transition) were used for model

Fig. 5  Model comparisons
(a) MAPE comparisons on Corridor 1, (b) MAE comparisons on Corridor 1, (c) MAPE comparisons on Corridor 2, (d) MAE comparisons on Corridor 2
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calibration and verification. Among them, two corridors were used
to calibrate the proposed models, while the rest of the five
corridors were utilised to verify the calibrated models.

To obtain the optimal set of the three parameters inherited from
the car-following model (i.e. the distance headway exponent l ,
the speed exponent m , and the sensitivity coefficient αl, m ), a GA
calibration framework was developed. The MAPE and MAE
measures were used to design the fitness function of the GA. The
calibration objective is defined to minimise estimation accuracy
over a given aggregation time interval. Since different aggregation
time intervals can lead to various optimal sets of parameters, a
normalised weighted fitness function was designed to balance both
travel time variances and dynamics. An update mechanism based
on the Metropolis–Hastings algorithm was developed to update the
weights of the fitness function.

The major contributions of this study are highlighted as follows:

(i) Two corridor travel time estimation models were proposed, i.e.
GMTTE-TSB and GMTTE-CS, each of which has three
parameters l, m, α . Three optimised sets of the three parameters
were used under different levels of congestion. Experimental
analysis shows the selection of α has minor effects on travel time
estimation, while the selection of l and m can significantly
contribute to estimation accuracy. The calibration results suggest
that the sets l = 1.1, m = 2.0, α = 8.0  and
l = 1, m = 0.1, α = 8.0  are the optimal parameter sets for the

proposed GMTTE-CS models.
(ii) Compared with the instantaneous and time-slice models, the
proposed models show its performance advantage, especially for
congested conditions. Moreover, the GMTTE-CS model is superior
to the GMTTE-TSB model. The reasons could be summarised
below:

• Speed may abruptly change within links using the GMTTE-TSB
model. This abrupt change may lead to vehicle trajectory
discontinuity.

• The vehicle trajectory generated from the GMTTE-CS model is
closer to the actual vehicle movement because the estimated
speed vTT was continuously updated to ensure the speed is
continuous.

(iii) A GA with an evolving fitness function was designed to
optimise the three parameters and determine the best aggregation
time interval. Few studies have explored and accounted for the
effects of the optimal aggregation time interval. This study
suggested that the optimal time intervals are 9–10 min for free-
flowing conditions and 6–7 min for congested conditions. These
time intervals could be further used for publishing traffic
information (e.g. travel time or speed) through dynamic message
signs. For example, agencies can predict travel times on a freeway
segment over the next 9 or 10 min when the traffic is free-flowing
or predict travel time over the next 6 or 7 min when traffic is
congested.

The optimal set of parameters for the GMTTE-CS model was
found to be l = 1, m = 0.1, α = 8.0 . Meanwhile, Greenberg's
macroscopic traffic flow model can be derived from the GM model
when l = 1, m = 0 [14]. The minor difference of the parameters
may inspire researchers to investigate the relationship between the
GM and GMTTE model parameters. If the relationship can be
mathematically established, many benefits would be obtained. For
example, the GM model can be calibrated using aggregated ITS
sensor data instead of detailed vehicle movement data. Future work
could focus on investigating the relationship and discover the
associated benefits. Furthermore, different kinetic mechanisms of
virtual vehicles, traffic measures (e.g. volume and density) as well

Fig. 6  Distributions of optimal aggregation time interval
(a) Scenarios 1a and 1b, (b) Scenarios 2a and 2b, (c) Scenarios 3a and 3b, (d) Scenarios 4a and 4b
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Fig. 7  Evaluation results on five study corridors
(a) Corridor 3, free-flowing condition, (b) Corridor 4, free-flowing condition, (c) Corridor 5, congested condition, (d) Corridor 6, congested condition, (e) Corridor 7, status transition
condition

 
Table 4 Evaluation results of the GMTTE-CS, instantaneous and time-slice models
Study corridors MAPE, % MAE, s

GMTTE-CS Instantaneous Time-slice GMTTE-CS Instantaneous Time-slice
Corridor 5 6.46 19.71 21.55 59.6 153.0 168.4
Corridor 6 7.97 14.1 14.1 25.2 58.9 58.9
Corridor 7 3.58 3.50 3.91 12.86 12.02 11.49
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as the usage of speed information from upstream sensors could be
incorporated and tested to further improve the GM model. Finally,
other car-following models can be explored to generalise the
concept of ‘virtual vehicle’ for both rural and urban environments.
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Table 5 Statistical tests results of the GMTTE-CS, instantaneous and time-slice models
Matrices Comparison Corridor (traffic condition) p-values Statistically significant difference
MAE GMTTE-CS versus instantaneous model Corridor 3 (free-flowing) 0.4881 no

Corridor 4 (free-flowing) 0.9003 no
Corridor 5 (congested) 3.2355 × 10−12 yes

Corridor 6 (congested) 8.4764 × 10−12 yes

Corridor 7 (transition) 0.3601 no
GMTTE-CS versus time-slice model Corridor 3 (free-flowing) 0.3708 no

Corridor 4 (free-flowing) 1.0709 no
Corridor 5 (congested) 6.5309 × 10−13 yes

Corridor 6 (congested) 2.6354 × 10−12 yes

Corridor 7 (transition) 0.2642 no
MAPE GMTTE-TSB versus instantaneous model Corridor 3 (free-flowing) 0.2193 no

Corridor 4 (free-flowing) 0.58179 no
Corridor 5 (congested) 4.2503 × 10−12 yes

Corridor 6 (congested) 5.2942 × 10−12 yes

Corridor 7 (transition) 0.1137 no
GMTTE-TSB versus time-slice model Corridor 3 (free-flowing) 0.3428 no

Corridor 4 (free-flowing) 0.8474 no
Corridor 5 (congested) 6.6534 × 10−12 yes

Corridor 6 (congested) 4.0669 × 10−12 yes

Corridor 7 (transition) 0.1924 no
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