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The latest version of this supplementary information can be found on the mosdef_slitpore
GitHub repository. The url is: https://github.com/mosdef-hub/mosdef_slitpore/blob/
master/supplementary_info/si_latest.pdf.
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1 Introduction

One goal of the Molecular Simulation Design Framework (MoSDeF)1,2 is to integrate with
numerous open-source molecular simulation engines to provide more seamless interconver-
sion between the different input formats required by each. The GROMACS3–5 molecular
dynamics (MD) software has been tightly integrated with MoSDeF since the early develop-
ment of the project, leveraging ParmEd6,7 to write the necessary input files to disk. MoSDeF
has since enabled screening studies of diverse soft matter systems8,9 that would have been
otherwise difficult. LAMMPS10, another open-source MD simulation engine, has also been
supported since early development with custom readers and writers implemented in mBuild.
Recently efforts have yielded tight integration with Cassandra11, an open-source Monte
Carlo (MC) code developed by the Maginn Group of Notre Dame. MoSDeF-Cassandra12 is
a python wrapper for Cassandra that utilizes MoSDeF for system setup and force field ap-
plication and calls Cassandra to run MC simulations. Ongoing development efforts include
the integration of GPU-Optimized Monte Carlo (GOMC)13 and the CP2K quantum chemistry
package14.

Integrating numerous simulation engines with MoSDeF enables comparisons of simulation
results from different codes in a reproducible fashion. As an example, we replicate portions
of the calculations of water in carbon slitpores performed by Keith Gubbins and colleagues15
with five modern simulation software packages. Using in-house code, Striolo et al. reported
grand canonical Monte Carlo (GCMC) simulations of SPC/E water in carbon slitpores of
various widths and reported water adsorption isotherms and the water structure within
the pores. Here, we calculate the water adsorption isotherms with GCMC in GOMC and
Cassandra. Once we determined the equilibrium number of water molecules in the pores at
prescribed external pressures, the structure of water inside the pores was calculated using
the following: MC simulations in the canonical (NVT ) ensemble with GOMC and Cassandra,
force-field-based NVT MD simulations with GROMACS and LAMMPS, and first-principles NVT
MD simulations with CP2K.

2 Methods

Systems were generated with mBuild16 and foyer17,18. The details of each system are
provided in Table 1 and snapshots of each system are provided in Fig. 1. The slit pores
were defined by layers of graphene with interlayer spacings of 0.335 nm with a carbon–
carbon distance of 0.142 nm. All carbon atoms were fixed during the simulations. Periodic
boundary conditions were applied in all three spatial dimensions. Vacuum space was added
in the direction normal to the pore. Simulation details specific to each simulation package are
detailed in the subsequent sections. Thorough installation and simulation instructions are
provided at the end of this document. All the files required to run the simulations reported
can be downloaded from the mosdef_slitpore GitHub repository19.

3



Table 1: Systems evaluated in this study. Dimensions are provided in nm.

System Pore width Box dimensions Cutoff NGraphene Nwater NVT

large-1.0 1.0 2.947× 2.978× 6.0a 0.9 6 -
large-1.6 1.6 2.947× 2.978× 6.0a 0.9 6 -
large-2.0 2.0 2.947× 2.978× 6.0a 0.9 6 485
small-1.0 1.0 0.982× 1.063× 2.0 0.49 2 24
small-1.0 1.0 0.982× 1.063× 2.0 0.49 2 1
a GOMC dimensions differed in z-direction. See section 2.2 for details.

2.1 Force-field-based simulation details

Water was described by the SPC/E20 model. The carbon–carbon Lennard–Jones (LJ) pa-
rameters were taken from Table 1 of Striolo et al., and Lorentz-Berthelot21,22 combining
rules were used to define the carbon–water LJ interactions. LJ and Coulomb interactions
were truncated at 0.9 nm (unless otherwise noted in Table 1), with long-range Coulomb
interactions computed via an Ewald summation or grid-based counterpart.1 No analytical
tail corrections were applied to the Lennard-Jones potential. There are technical details that
differ between the original simulations of Striolo et al. and the work repeated here. Thus,
our goal is less to reproduce the original work of Striolo et al., and instead demonstrate the
power of MoSDeF to show consistency between different simulation engines (GROMACS
and LAMMPS for MD, Cassandra and GOMC for MC) and different simulation approaches
(MD vs. MC).

2.2 GOMC

All simulations were performed using GOMC version 2.60. The long-range electrostatic
interactions were calculated using Ewald summations, utilizing an energy tolerance of 10−5.
The simulation methods, sampling techniques, and the number of steps differed for each
simulation type. Quintuplicate simulations were conducted for production runs used in the
data analysis. The saturation pressure and vapor pressure simulations employed short-range
Coulombic cutoffs extended to at least 12.0 nm in the vapor phase box to optimize the
simulation time.

The Molecular exchange Monte Carlo type 2 (MEMC-2) move was used during the adsorption
and desorption simulations.23–25 The MEMC-2 move utilized 3 to 6 molecules of fake water in
the simulation, with all the other water molecules being defined by the standard SPC/E force
field.23–25 The impure water (i.e., surrogate water) is defined as having the partial charges
reduced by 2, and the epsilon for the Lennard-Jones parameter reduced by 4, while keeping

1Striolo et al. appears to have used no long-range electrostatics solver, likely in conjunction with a group-
based cutoff scheme. We have chosen to proceed with long-range electrostatics since this is now the de-facto
standard and many modern codes do not support group-based cutoff schemes.
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(a) (b) (c) (d) (e)

Figure 1: Snapshots of systems simulated in this work (the numbers refer to the pore width
in nm): (a) small-1.0, (b) large-1.0, (c) large-1.6, (d) large-2.0, and (e) large-2.0 after pore
filling. Carbon, oxygen, and hydrogen are shown as gray, red, and white spheres. Periodic
boundaries are indicated by the blue lines.
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the other parameters the same, all of which are compared to standard SPC/E forcefield.23–25
The MEMC-2 move with impure water greatly enhances the system’s sampling. All the
other simulations only consisted of the standard water molecule.

Gibbs ensemble Monte Carlo NVT (GEMC-NVT ) was used to determine the water satu-
ration pressure, which were conducted for 60 million steps and used the volume adjustment
(1%), multi-particle (2%), displacement (17%), rotation (20%), regrowth (20%), intra-swap
(20%), inter-swap (20%) moves. The water vapor pressure as a function of chemical poten-
tial was determined by running GCMC-NVT simulations for 100 million steps and utilizing
displacement (15%), rotation (15%), regrowth (10%), and inter-swap (60%) moves. The
adsorption and desorption simulations were also performed via GCMC simulations, but the
employed moves ratios and the number of steps depended on the preferred end phase of the
system. However, if it was at a difficult transition point, the liquid phase moves were utilized,
including the MEMC-2 move. The adsorption and desorption simulations that included the
MEMC-2 move were run for at least 50 million steps, and other adsorption and desorption
simulations were conducted for 150 million steps. The MEMC-2 move was not employed
for systems that stayed in or quickly transitioned to the vapor phase, which leveraged the
displacement (15%), rotation (15%), regrowth (20%), and inter-swap (50%) moves. The
systems that maintained, ended, or were difficult to transition to the liquid or vapor phase
utilized the (15%), rotation (15%), regrowth (10%), inter-MEMC-2 (20%), inter-swap (40%)
moves. The water structure at the graphene surface of the small-1.0 nm pore utilized the
displacement (24%), rotation (24%), regrowth (51%), and multi-particle (1%) moves. The
large-2.0 nm pore’s water structure at the graphene surface was determined using the dis-
placement (24%), rotation (24%), regrowth (50%), and multi-particle (2%) moves (see Table
1 for system sizes). The small-1.0 nm and large-2.0 nm slit pores were simulated for 400
million and 40 million steps, respectively.

The systems used for GOMC during the adsorption and desorption simulation were adjusted
to remove the vacuum space on the exterior of the pore. This was necessary as GOMC does
not allow molecule insertions to be restricted to a sub-domain of the simulation box. In
these GOMC simulations, utilizing the vacuum space using the GCMC ensemble would
insert water in the vacuum space, an undesirable outcome. The final dimensions for the
large-1.0 nm and large-1.6 nm systems for the adsorption and desorption calculations were
2.947 × 2.978 × 2.675 and 2.947 × 2.978 × 3.275, respectively. Note that the vacuum space
was present for all GOMC simulations in the NVT ensemble.

2.3 Cassandra

Triplicate simulations of 300 million MC steps each were performed all state points. For
GCMC simulations, the “restricted insertions” feature of Cassandra was used to confine
molecule insertions to the region between the pore walls. GCMC simulations used insertion
(25%), deletion (25%), translation (25%) and rotation (25%) moves. NVT simulations used
translation (50%) and rotation (50%) moves. The translation and rotation move sizes were
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selected to achieve 50% acceptance. Long range electrostatics were treated with an Ewald
summation with a energy tolerance of 10−5. Simulations were performed with MoSDeF
Cassandra version 0.2.2 and Cassandra version 1.2.5.

2.4 GROMACS

The equations of motion were integrated with the leap-frog algorithm for 50 ns (200 ns for
the small-1.0 nm/1 water system) using a time step of 1 fs. Water bonds and angles were
constrained via LINCS26 and the carbons atoms were held in place with freezegrps. Long
range electrostatics were handled through the Fast Smooth Particle-Mesh Ewald method27,
with the ewald-rtol parameter set to 10−5. Note that long-range electrostatics were turned
off for the small-1.0 nm slit pore containing 1 water molecule. The number of k-space vectors
in the large-2.0 system was set by a Fourier spacing of 0.12 nm, and was directly set to 16,
27, and 18 in cartesian coordinates for the small-1.0 nm systems. The water molecules were
thermostatted to 298 K with the Bussi thermostat28 and a time constant of 1 ps. Simulations
were performed with the 2020 version of GROMACS. Other than the small-1.0 nm/1 water
molecule system, analysis is performed on the last 45 ns of each simulation trajectory.

2.5 LAMMPS

The equations of motion were solved with the equations of Shinoda et al. for 20 ns using a 1 fs
time step.29 The carbon atoms were excluded from the MD integration, rendering them fixed.
Water bonds and angles were constrained with SHAKE.30. Long range electrostatics were
handled through the particle-particle-particle-mesh solver31 with the relative force tolerance
set to 10−5. Temperature was controlled with the Nosé–Hoover chain thermostat at 298 K
with the time constant set to 1 ps and chain length set to 3. Simulations were performed
with the June 5, 2019 version of LAMMPS. Analysis is performed on the last 18 ns of the
simulation trajectories for the small-1.0 nm system and the last 15 ns for the large-2.0 nm
system.

2.6 CP2K

NVT ensemble first-principles molecular dynamics (FPMD) simulations were performed in
the CP2K software version 7.0. The Gaussian plane wave method14 was used to solve the
Kohn–Sham formulation of density functional theory (KS-DFT). The Becke-Lee-Yang-Parr
(BLYP) exchange-correlation functional32,33 with the third generation Grimme dispersion
correction34 was used along with the MOLOPT–DZVP–SR–GTH basis set and Goedecker–
Teter–Hutter (GTH) pseudopotentials35,36. Short test simulations indicated that a plane
wave cutoff of 650 Ry yields a satisfactory balance of accuracy and computational efficiency.
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For the FPMD trajectories, a time step of 0.5 fs was used and the system was maintained
at 298 K using a Nosé–Hoover chain thermostat37–39 with a time constant of 1 ps and chain
length of 5. Each system was equilibrated for 30 ps, and the production trajectory was
sampled for 120 ps.

3 Results

3.1 Water Adsorption

Adsorption and desorption isotherms were computed for 1.0 nm and 1.6 nm slit pores with
GCMC (large-1.0 nm and large-1.6 nm slit pore systems run with both GOMC and Cassan-
dra, small-1.0 nm system run with Cassandra to determine number of water molecules for
Section 3.2 below). Adsorption simulations were initialized with an empty pore. Desorption
simulations were initialized with a pre-filled pore, where the number of water molecules in
the pore at the start of the simulation corresponded to the pore loading at high pressure as
determined from the GCMC adsorption simulations.

3.1.1 Relating µ to P/Psat

Prior to completing the adsorption and desorption calculations a series of gas-phase simu-
lations of SPC/E water were performed to establish a mapping between chemical potential
and pressure. The ideal gas law was used to select the simulation box sizes such that there
were a minimum ∼ 30–60 water molecules present. A comparison of GOMC and Cassandra
results is shown in Fig. 2. Note that the two software packages employ a different definition
of the chemical potential. In the case of SPC/E water the conversion from GOMC to Cas-
sandra is µ′ = µGOMC + 3kBT ln(Λ), where µ′ is the Cassandra chemical potential, kB is the
Boltzmann constant, T is the temperature, and Λ is the thermal de Broglie wavelength in
units of angstroms.

The saturation pressure (P sat) of water using the SPC/E water model was computed at
298 K with Gibbs ensemble Monte Carlo (GEMC-NVT ) in GOMC. Water’s saturation
pressure was employed to create a baseline in many of the analyses in this study (i.e.,
pressure divided by the saturation pressure or P/P sat). This type of baseline, (P/P sat),
allows the simulation data to estimate the real-world pressure by merely plugging in the
experimental saturation pressure. Grand Canonical Monte Carlo (GCMC-NVT ) simulations
are transferable to experimental conditions via the chemical potential (µ′) and simulation
pressure (P ), which can be easily be determined in these simulations. The relationship
between µ′ and log(P ) is approximately linear up to P/P sat = 10, a linear fit between µ′ and
log(P ) was used to relate a given chemical potential, µ′ to P/P sat.
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Figure 2: Computed pressure as a function of chemical potential (µ′) for SPC/E water with
Cassandra and GOMC.

3.1.2 Comparison with Striolo et al.

An equation of state method was used to relate the activity (ζ = Λ−3 exp(µ/kBT )) to P/P sat

in Ref. 15. P/P sat was given by:

P

P0

=
2ζζ20 + (ρ0 − ζ0)ζ2

(ρ0 + ζ0)ζ20
(1)

The method40 requires the activity at saturation (ζ0) and vapor density at saturation (ρ0).
Neither the values themselves nor method used to compute them were explicitly provided in
Ref. 15, and the resulting P/P0 is extremely sensitive to these values. A future publication41

from the same authors indicate that their procedure was most likely as follows: perform
GCMC of water vapor in a box with a 3.0 nm side length and gradually increase the chemical
potential until the system condenses to the liquid phase, then take ρ0 and ζ0 as the values
just prior to condensation. In order to compare our results to Ref. 15, we repeated this same
procedure to estimate the values used for ρ0 and ζ0. Our calculations yielded ζ0 = 2.15×10−6

Å−3 and ρ0 = 2.58× 10−6 Å−3. The figures from Ref. 15 were digitized and equation 1 was
used to estimate the activities at which the original simulations were performed. We caution
the reader that our comparison of the adsorption/desorption isotherms are imperfect and
that a rigorous quantitative comparison between our results and Ref. 15 is not our objective.
As already noted we chose to proceed with long range electrostatics solvers that were absent
in the original work, and our simulations contain other small differences (e.g., carbon–carbon
distances, 2D vs. 3D periodic boundary conditions, etc). Nevertheless, as shown below, it
appears that we are able to achieve semi-quantitative agreement between the results of Ref.
15 and the simulations performed here.
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3.1.3 Adsorption and desorption isotherms

Adsorption and desorption simulations were performed at a range of µ′ that corresponded to
10−3 < P/P sat < 101. The results are reported in Fig. 3, where the amount of water in the
pore is reported as the number of water molecules per unit of pore surface area. The results
from Cassandra and GOMC show good agreement with regards to the loading of the pore
at different pressures. There is satisfactory agreement for the adsorption and desorption
pressure. We suspect the slight discrepancies between Cassandra and GOMC may have two
possible causes: (1) the use of the MEMC-2 move and surrogate water molecules in GOMC
(see section 2.2) and (2) the use of restricted insertion volume in Cassandra (see section 2.3).
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Figure 3: Adsorption and desorption isotherms for Cassandra, GOMC and the Striolo et
al. data.15 The Psat value was obtained from GEMC-NVT water simulations. The Striolo et
al. data was re-scaled as described in the text to match the P/P sat definition in this work.15

3.2 Structure of Water

3.2.1 Calculation of Number Density and Order Parameter S

The number of water molecules inside of the pores were selected based upon the water ad-
sorption results calculated from GCMC. All simulations used to compute the water structure
in the pores were performed in the NVT ensemble. Fig. 4a and Fig. 4b report the number
density profiles in the large-2.0 nm slit pore with 485 water molecules (P/P sat = 1.6). The
results from Cassandra, GOMC, GROMACS, and LAMMPS show nearly perfect agreement
in terms of both oxygen and hydrogen number density inside of the slit pore, showing two
fluid layers near each graphene wall. Additionally, all number density profiles are in good
agreement with Fig. 9b from Ref. 15.
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Figure 4: a) Oxygen-atom and b) Hydrogen-atom number density profiles, and c) S order
parameter across the large-2.0 nm slit pore with 485 water molecules (P/P sat = 1.6). z
denotes the direction normal to pore walls, where z = 0 is set to the center of the pore.
Uncertainties in the number density are on less than or equal to the line width.

The orientational S order parameter used in Ref. 15 is defined as:

S =
3〈cos2θ〉 − 1

2
(2)

where θ is the angle between the vector normal to the graphene walls and the vector drawn
from the midpoint of the hydrogen atoms through center of the the oxygen atom (i.e. along
the dipole). The S order parameter was calculated for the large-2.0 nm slit pore and is
presented in Fig. 4c. Near the pore wall, the dipoles of the water molecules have a tendency
to orient in a parallel fashion as indicated by the negative S order parameter. The water
molecules near the middle of the pore are more bulk-like as shown by the random orientations.
Overall, the results between the simulation engines are in good agreement with one other,
and with Fig. 10b in Ref. 15.

Figure 5: a) Oxygen-atom and b) hydrogen-atom number density profiles, and c) S order
parameter across the small-1.0 nm slit pore with 24 water molecules (P/P sat = 1.6). z
denotes the direction normal to pore walls, where z = 0 is set to the center of the pore.
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The number density profiles for the small-1.0 nm slit pore are displayed in Fig. 5a and
Fig. 5b. This system contains 24 water molecules and has been constructed to be smaller
than the large-2.0 nm slit pore system to allow for a direct comparison with first-principles
simulations. The number density profiles computed from all four simulation codes using
the SPC/E-water/LJ-graphene model (Cassandra, GOMC, GROMACS, LAMMPS) are in
agreement with each other as well as with the result in Fig. 11 of Ref. 15. The oxygen
atoms are arranged in a distinct layer near each pore wall. The hydrogen atoms also form
a distinct layer neat each pore wall along with a small layer in the middle of the pore. The
results from the FPMD performed in CP2K show some differences. The hydrogen number
density peaks computed from CP2K are lower and broader when compared with the force
field-based simulations. The oxygen number density profiles also display subtle differences
that become more pronounced at low loading (see below).

The S order parameter for the small-1.0 nm slit pore is displayed in Fig. 5c. The error bars
in the middle of the pore are larger as a result of the small system size and small probability
of finding a water molecule in that region (see Fig. 5a). Similar to the large-2.0 nm pore, the
water molecules near the walls are oriented parallel to the walls. Towards the middle of the
pore, the water molecules are once again more randomly ordered. Simulations performed
with the SPC/E-water/LJ-graphene model yield near perfect agreement for S across four
simulation engines (Cassandra, GOMC, GROMACS, LAMMPS). The results reported here
also show good agreement with Fig. 11b of Ref. 15.

To further investigate the differences in the density and orientational profiles observed be-
tween the SPC/E-water/LJ-graphene model and the KS-DFT description, both types of sim-
ulations were conducted for the small-1.0 nm slit pore system with just one water molecule.
The symmetrized number density profile, the symmetrized S order parameter profile, and
the normalized distribution of the angle θ for the one-molecule system are shown in Fig. 6.
θ is again defined as the angle between the dipole moment vector of the water molecule and
the surface normal vector (Note that for the angle distribution profiles, the surface normal
vector is chosen based on nearest proximity to a given water molecule). For the FPMD sim-
ulation, a peak in the hydrogen number density is observed at |z| = 0.24 nm, i.e., a distance
of 0.26 nm from the graphene surface. The θ distribution exhibits a peak at θ = 0 degrees
with a relatively extended tail. These two observations suggest a favorable electrostatic
interaction of the water dipole with the π-electrons of the graphene sheet. This favorable
electrostatic interaction also leads to a strong localization of the oxygen atom about 0.32 nm
away from the graphene sheet with negligible density in the central region of the pore. In the
force-field-based simulations, however, no peak is observed in the hydrogen number density
near the graphene surface. Such a behavior of the hydrogen number density is expected
as the water–graphene surface interactions only comprise of Lennard-Jones interactions be-
tween the water oxygen and the graphene carbon atoms, and partial charges are not used
to represent the charge distribution of the graphene sheet. As a result, the water–graphene
interactions are inherently isotropic and a uniform distribution is observed for θ. Therefore,
the strength of interactions between water molecules and graphene surface is different be-
tween force-field-based and first-principles simulations which causes the differences in the
density and S profiles for the two types of simulations. As an aside, it should be noted that
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Figure 6: a) Oxygen-atom and b) hydrogen-atom number density profiles, c) S order
parameter across the absolute value of a small-1.0 nm slit pore with a single water molecule,
d) θ distribution across the pore. z denotes the direction normal to pore walls, where z = 0
is set to the center of the pore and θ is the angle between the dipole moment vector of the
water molecule and the graphene surface normal vector.

S = 0 can reflect either a uniform orientation or a strong preference for the magic angle of
54.74◦ that is roughly half of the H-O-H angle of water. However, the θ distribution does
not indicate a propensity for ‘hydrogen-bonded’ configurations in which one of the hydrogen
atoms of a water molecule is perpendicular with the graphene surface.
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4 Conclusions

Portions of the water in carbon slitpores calculations conducted by Striolo et al.15 have
been replicated using five modern open-source simulation engines in which input files were
generated through the use of MoSDeF. GCMC was performed with Cassandra and GOMC
to calculate the adsorption and desorption isotherms for water in carbon slitpores. Our re-
sults show reasonably good agreement with the previous calculations performed by Striolo
et al. Simulations were then performed in the canonical ensemble with Cassandra, GOMC,
GROMACS, LAMMPS, and CP2K to characterize the structure of water inside the car-
bon slitpores. A comparison of number density profiles and S order parameters shows good
agreement between the force-field-based MC and MD simulations. The FPMD simulations
show differences in the oxygen and hydrogen atom distributions and the water orientations
in the pore. These differences were further investigated through the study of a single water
molecule inside the carbon slitpores. In contrast to the force-field-based simulations, a peak
in the hydrogen density near the wall and a strong orientational preference are observed in
the FPMD simulations suggesting that KS-DFT with the BLYP functional predicts stronger
water–graphene interactions than the SPC/E-water/LJ-graphene model. Overall this exer-
cise demonstrates how MoSDeF enables the comparison of simulation results across multiple
simulation codes and methods in a reproducible and user-friendly manner.

5 Installation and Simulation Instructions

In an effort to make our work reproducible, all steps to run and analyze the graphene slit pore
simulations are included. To install all packages manually, detailed instructions are shown
below to install of the required software packages. For the packages that are installed from
source or through PIP, we recommend installing in a single directory on your machine. For
this example we will use the directory, software, as the location for the packages installed
from source.

5.1 Installation of the conda Package Manager

The conda package manager can be installed by running the following commands in your
shell session:

The $ denotes a line in your terminal emulator and is not part of the command.

For MacOS:

$ cd ${HOME}
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
$ /bin/bash Miniconda3-latest-MacOSX-x86_64.sh
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For GNU/Linux:

$ cd ${HOME}
$ curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ /bin/bash Miniconda3-latest-Linux-x86_64.sh

A series of prompts will install the package based on your preferences. The default location,
your home directory, can be expected to work. Please refer to the documentation (https://
conda.io/projects/conda/en/latest/user-guide/index.html) for any additional help
or if your installation is on a computing cluster. You may also have to close your current
terminal window and open a new one to execute conda commands.

5.2 Creating the conda Environment

Once conda has been installed, you can proceed to install the software packages and libraries
required to run and analyze the simulations described herein. Start by creating a new
conda environment with Python 3.7 as the base Python interpreter. A conda environment
is a directory that contains all of the packages and libraries based on your installation
instructions. Multiple environments can be created on a single machine that contain different
packages and/or different versions of Python. The environments are independent of each
other, meaning modifications of one specific environment will not affect packages in another
environment. Environments can easily be swapped by deactivating out of an environment
and activating another environment. To simplify the process, an environment.yml file has
been included in the mosdef_slitpore repository. This file contains all the information
required for conda to install the required packages in the slitpore37 environment. Note
that some packages cannot be installed via conda, and instructions to install such packages
are outlined below. All simulation and analysis steps should be run within the slitpore37
environment. To create the slitpore37 environment:

# change into `software` directory
$ cd ~/software
# clone mosdef_slitpore
$ git clone https://github.com/mosdef-hub/mosdef_slitpore.git
$ cd mosdef_slitpore
# create the `slitpore37` environment
$ conda env create -f environment.yml
# activate the `slitpore37` environment
$ conda activate slitpore37

Follow the series of command prompts to install all of the packages and their dependencies.
A list of all packages installed in your current conda environment can be viewed by running:

$ conda list
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5.2.1 Installation of mosdef_slitpore

All of the Python code necessary to initialize, run, and analyze the MC and MD simulations
are contained within the mosdef_slitpore repository on GitHub. Once the slitpore37
conda environment has been installed and activated,the following steps should be taken to
install this repository.

# install mosdef_slitpore
$ pip install -e .

5.3 Installation of Pore-Builder

The design of mBuild encourages the development of recipes, which are external packages
that utilize mBuild to initialize specific chemical systems. Please see the mBuild GitHub
landing page for more information on recipes: (https://github.com/mosdef-hub/mbuild).
Here, we use the Pore-Builder42 recipe to initialize the carbon slitpores for each simulation.
To install this package, run the the following commands. Please note that if you followed
the instructions to this point, the package requirements for Pore-Builder should already be
installed in the slitpore37 environment.

# change into `software` directory
$ cd ~/software
# clone Pore-Builder
$ git clone https://github.com/rmatsum836/Pore-Builder.git
$ cd Pore-Builder
$ pip install -e .

Recipes have been designed to be imported through mBuild. To test that Pore-Builder has
been correctly installed, run the following commands.

Below, the >>> indicates these commands are to be executed within the python interpreter.

# run Python and import Pore-Builder recipe
$ python
>>> import mbuild
>>> mbuild.recipes.GraphenePore()
>>> exit()

5.4 Installation of GOMC

GOMC (https://github.com/GOMC-WSU/GOMC.git) is one of the two MC engines utilized
in this study. Installation of GOMC requires a working c/c++ compiler; please consult the
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user manual for detailed information: (https://gomc-wsu.github.io/Manual/software_
requirements.html).

The GOMC source code will be cloned from GitHub. The commands are listed below.

# GOMC requires cmake for compilation, which should already be installed in this setup.
However, it is not, add it with the following commands via conda:↪→

$ conda activate slitpore37
$ conda install -c conda-forge cmake

# change into `software` directory
$ cd ~/software
# clone GOMC
$ git clone https://github.com/GOMC-WSU/GOMC.git
$ cd GOMC
$ chmod u+x metamake.sh
$ ./metamake.sh
# once compiled, the executable should be located in the bin directory
$ ls ./bin
# add the GOMC bin folder to our path, so we can find the executable no matter
# the directory (i.e., the GOMC_CPU_GCMC, GOMC_CPU_GEMC, GOMC_CPU_NVT, etc., files)
# note: the below would need to be completed every time you open a new terminal window.
$ LOC_GOMC="$(pwd)/bin"

The section provided above is one method to have access to the compiled GOMC executables
that were just created. The section with "LOC_GOMC" will need to be repeated if the
terminal session is closed.

The next codeblock is another way to access the GOMC executables if you want to reference
the full path to said binaries. This does not require the "LOC_GOMC" steps above. This
assumes you are currently located in the GOMC folder: "~/software/GOMC".

$ export PATH="${LOC_GOMC}:$PATH"

# obtaining the explicit path, "full_path_to_GOMC_bin_folder", to the GOMC executable
using the 'pwd' command, assuming you are already in the GOMC directory.↪→

$ cd bin
$ pwd
# Example 1 (GCMC executable path with executable file):

"full_path_to_GOMC_bin_folder"/GOMC_CPU_GCMC ;↪→

# Example 2 (general GOMC executable path with executable file) :
"full_path_to_GOMC_bin_folder"/GOMC_XXX_aaaa↪→

# Example 3 (terminal code to run GOMC with Y cores from the directory containing the
in.conf file) : "full_path_to_GOMC_bin_folder"/GOMC_XXX_aaaa +pY in.conf > out.dat↪→

The full path is now listed in the terminal. This path plus the GOMC executable is required
to run GOMC without setting up the PATH every time the user opens a new terminal
window. Therefore, entering the explicit path to the GOMC bin folder with the GOMC

17

https://gomc-wsu.github.io/Manual/software_requirements.html
https://gomc-wsu.github.io/Manual/software_requirements.html


executable file is a means to run the GOMC software directly. Some examples are provided
to show this method for directly running the GOMC software. Note: the in.conf is the
existing configuration file, out.dat is the name of the output file, and the items in quotation
marks ("") are user-specific paths obtained by the entering ’pwd’ command in the above
step (i.e., "full_path_to_GOMC_bin_folder").

5.5 Installation of CP2K

CP2K (https://www.cp2k.org/) software is used for the first-principles molecular dynamics
simulations in this study. CP2K can either be installed using a package manager or directly
from the source (https://github.com/cp2k/cp2k). For testing the simulations on your local
machine, we recommend installing through the use of a package manager (apt or brew). For
running simulations on a HPC system, we recommend installing from conda or from source.
Please see https://www.cp2k.org/howto for instructions to install from source.

5.5.1 Installation using a package manager

On Linux machines, CP2K can be installed using the following command:

$ sudo apt install cp2k

On MacOS, CP2K can be installed using the Homebrew package manager (https://brew.sh).
The following commands will install homebrew (if you haven’t already done so) and cp2k:

# install homebrew
$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"
# install cp2k
$ brew install cp2k

5.5.2 Installation from conda

The easiest way to install CP2K on a HPC system is through conda. This can be done by
running the following command:

# conda install in `slitpore37` environment
$ conda install -c conda-forge cp2k

For installation from source, please see https://www.cp2k.org/howto for installation in-
structions from source.
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5.5.3 cp2kmdpy installation

Input files for CP2K will automatically be generated through the use of cp2kmdpy
(https://cp2kmdpy.readthedocs.io). Activate your slitpore37 environment and make
sure that Pore-builder is installed (section 5.3). After that follow these steps to install the
package:

# change into `software` directory
$ cd ~/software
# copy the `cp2kmdpy` package
$ git clone https://github.com/ramanishsingh/cp2kmdpy.git
$ cd cp2kmdpy

Within the home directory of cp2kmdpy, lines 4 and 11 of runners.py or lines 7 and 17
(shown below) runners_mpi.py should be modified according to how CP2K is called on your
machine (the default method is cp2k.popt). For example, if called using cp2k.sopt, then
all instances of cp2k.popt should be replaced with cp2k.sopt.

# lines 4 and 11 of `runners.py`
call("cp2k.popt -i {} -o {}".format(input_filename, output_filename), shell=True)

# lines 7 and 17 of `runners_mpi.py`
process = Popen("mpirun -n {} cp2k.popt -i {} -o {}".format(np, input_filename, output_filename),

shell=True,
universal_newlines=True,
stdin=PIPE,
stdout=PIPE,
stderr=PIPE )

Once these files have been appropriately modified, the package can be installing through the
following steps:

# install package through pip
$ pip install -e .
# change into `software` directory
$ cd ~/software
$ git clone https://github.com/ramanishsingh/mosdef_cp2k_writer.git
$ cd mosdef_cp2k_writer
$ pip install -e .
# Finally we need to install the ele package
$ pip install ele

5.6 Instructions to Run Molecular Simulations

Below are detailed instructions to run all molecular simulation and analysis steps contained
with mosdef_slitpore. Please note that small differences in the final results may exist due
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to different compute architectures, parallelization schemes, and random seeds used to run
the simulations. Also note that analysis for signac projects may not successfully run until
all jobs have been completed.

5.6.1 Running GOMC Simulations

The GOMC molecular coordinates (pdb), connectivity (psf), and force field files (inp) are
constructed using the MoSDeF framework and located in their appropriate directories.
GOMC’s configuration files are created by running the simbuild.py python file for each set,
or are already present in the directory (i.e., the ".conf" files already exist). The simbuild.py
python files are employed to generate up to five duplicate data sets for each system. If there
are multiple simulations per set, the simulation chemical potentials or other variables are
changed for each simulation. The directions for running each type of simulation are pro-
vided in the README files, located in the GitHub repository. The README files include the
specific order to run the simulations if the user wants to recreate all the simulations. All
the simulation’s starting points are all provided so that the user can recreate a particular
part of any simulation. The GOMC engine simulates the saturation pressure of water, vapor
pressure of water at specific chemical potentials, water adsorption in the graphene slitpore,
water desorption from the graphene slitpore, and the condensed water structure due to the
pore’s interactions with the graphene surface. An example of building the molecular system
and running the small-1.0 nm system with GOMC on a desktop computer is provided below.

# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change into `NVT_build` directory
$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/gomc/NVT_build
# run python script to build input files
$ python NVT_build_pore_1x1.0nm_1-layer.py
# change into `set1` directory
$ cd ../set1
# Run python script to build configuration files
$ python simbuild.py
# change into `1r1` directory
$ cd 1r1
# run simulation
# see section 5.4 for instructions to get path to GOMC executable
$ "full_path_to_GOMC_bin_folder"/GOMC_CPU_NVT +p2 in.conf > out.dat

Once the simulation is complete, the analysis scripts can be run with the commands below.
Note that all five simulation runs are needed to successfully run these analysis scripts. If
you wish to analyze a single run, the "filepath_list" variable in the scripts can be edited.

# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change into analysis directory
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$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/gomc/analysis
# run number density script
$ python Get_No_density_for_all_runs.py
# run order parameter s script
$ python Get_order_parameter_s_for_all_runs_test.py

5.6.2 Running Cassandra Simulations

The Cassandra simulations are initialized, run, and managed using the signac framework
which is installed as part of the slitpore37 environment. For more information on signac
please consult the user documentation for detailed information (https://docs.signac.
io/en/latest/). Each directory in mosdef_slitpore containing Cassandra simulations
contains a separate signac project. Each signac project contains multiple jobs that have
unique statepoints, or conditions at which the simulation is run. For example, each job in
the adsorption signac projects has a unique chemical potential statepoint. Each signac
project can be initialized by running the following lines below. Specifically, the small-1.0 nm
signac project will be demonstrated.

# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change into a cassandra signac project directory
$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/cassandra
# initialize signac project
$ python init.py
# check for the `workspace` directory
$ ls

The project can be verified to be initialized by checking for the workspace directory, which
contains a directory for each job in your project. Once initialized, the next step is to perform
operations on each job. The project operations are contained in project.py and can be run
from the root directory of your project:

# run `run_adsorption` operation for a single job
$ python project.py run -o run_simulation -n 1

Due to the length of the Cassandra simulations, it is highly advised that these operations are
run on a high performance computing (HPC) system, which is supported with signac-flow.
For more details and a list of HPC environments supported out of the box, please consult the
documentation (https://docs.signac.io/projects/flow/en/latest/). Job operations
can be submitted to an HPC system by running:

# submit a `run_adsorption` operation to a HPC system
$ python project.py submit -o run_simulation -n 1

21

https://docs.signac.io/en/latest/
https://docs.signac.io/en/latest/
https://docs.signac.io/projects/flow/en/latest/


Once the simulation operations are complete, analysis can be performed by running the
Python scripts contained within the analysis directory contained in each project. The
functions defining each simulation type (adsorption, desorption, and NVT ) are contained in
mosdef_slitpore/utils/cassandra_runners.py.

5.6.3 Running GROMACS Simulations

Similar to Cassandra, the GROMACS simulations are initialized, run, and managed with the
signac framework. All projects are contained within the nvt-pore directory in mosdef_slitpore.
A walkthrough of initializing and running the GROMACS simulations for the small-1.0 nm
slitpore system is shown below. To initialize the signac project run the following:

# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change to project directory from root directory of `mosdef_slitpore`
$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/gromacs
# initialize the signac project
$ python init.py

Once the project is initialized the signac job operations may be performed. Again, it is
highly advised to submit the simulation operations to a HPC system.

# run the `initialize` operation for a single job
$ python project.py run -o initialize -n 1
# run the energy minimization operation for a single job
$ python project.py run -o run_em -n 1
# submit the NVT MD simulation to a HPC system
$ python project.py submit -o run_nvt -n 1

To analyze the NVT simulation trajectories, run the following python script:

# calculate the number density profile and s order-parameter
$ python analysis.py

5.6.4 Running LAMMPS Simulations

The LAMMPS simulations are run similarly to the signac workflow of GROMACS. A
walkthrough of initializing and running the LAMMPS simulations for the small-1.0 nm
slitpore is shown below.
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# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change to project directory from root directory of `mosdef_slitpore`
$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/lammps
# initialize the signac project
$ python init.py

Once the project is initialized the signac job operations may be performed. Again, it is
highly advised to submit the simulation operations to a HPC system.

# run the `initialize` operation for a single job
$ python project.py run -o initialize -n 1
# submit the NVT MD simulation to a HPC system
$ python project.py submit -o run_nvt -n 1

To analyze the NVT simulation trajectories, run the following python script:

# calculate the number density profile and s order-parameter
$ python analysis.py

5.6.5 Running CP2K Simulations

CP2K simulations are also initialized, run, and managed with the signac framework. CP2K
projects are contained within the nvt-pore directory in mosdef_slitpore directory. The
following assumes that the instructions for installing CP2K in Section 5.5 have been com-
pleted.

5.6.6 Running CP2K simulations using signac

# change into `mosdef_slitpore` directory
$ cd mosdef_slitpore
# change to cp2k directory from root directory of `mosdef_slitpore`
$ cd simulations/nvt-pore/1x1x1.0nm_1-layer/cp2k/
#initialize the signac project
$ python init.py

CP2K simulations are computationally expensive and therefore cluster submission of the jobs
is advised. If desired, simulations can be run on a local system.

On a local machine, the simulations can be run using the following command:
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# copy the setter
$ python project.py run -o copy_setter -n 1
# create MD input files
$ python project.py run -o md_files -n 1
# run MD simulation
$ python project.py run -o run_md -n 1

For submission to the cluster, modify the templates/script.sh file to load all modules (used
during CP2K installation) and the slitpore37 conda environment. A sample
templates/script.sh file is provided. Use the following commands to submit jobs to the
cluster:

# submit the jobs
$ python project.py submit
# This step will make sure that required files are present in the workspace. Now

molecular dynamics simulations can be laucnhed↪→

$ python project.py submit -o run_md

Simulations can be restarted using the following command:

# restart MD
$ python project.py submit -o restart_md

For analyzing the trajectories and obtaining the order parameter plot and the number density
profiles execute the following command:

# Analyze trajectories
$ python analysis.py

This command will create a directory named data which will contain the plots and data for
number density and order parameter.

5.7 Removing the conda Environment

If you are finished running the simulations and would like to remove the conda environment
and all relevant files, the following command can be run:

# Remove `slitpore37` environment
$ conda remove --name slitpore37 --all
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