
Cummings Peter (Orcid ID: 0000-0002-9766-2216) 
Jankowski Eric (Orcid ID: 0000-0002-3267-1410) 
Palmer Jeremy (Orcid ID: 0000-0003-0856-4743) 
Siepmann Ilja (Orcid ID: 0000-0003-2534-4507) 
Matsumoto Ray (Orcid ID: 0000-0002-9124-3512) 
 
 

Open-Source Molecular Modeling Software in Chemical Engineering 

Focusing on the Molecular Simulation Design Framework 
 

Authors: 

Peter T. Cummings1, Clare McCabe1,2, Christopher R. Iacovella1, Akos Ledeczi3, Eric Jankowski4, 

Arthi Jayaraman5, Jeremy C. Palmer6, Edward J. Maginn7, Sharon C. Glotzer8, Joshua A. 

Anderson8, J. Ilja Siepmann9,10, Jeffrey Potoff11, Raymond A. Matsumoto1, Justin B. Gilmer12, 

Ryan S. DeFever7, Ramanish Singh9,10, Brad Crawford11  

 

Affiliations 

1. Department of Chemical and Biomolecular Engineering and Multiscale Modeling and 

Simulation Center, Vanderbilt University, Nashville, TN  

2. Department of Chemistry, Vanderbilt University, Nashville, TN  

3. Department of Electrical Engineering and Computer Science and Institute for Software 

Integrated Systems, Vanderbilt University, Nashville, TN 

4. Micron School of Materials Science and Engineering, Boise State University, Boise, ID 

5. Departments of Chemical and Biomolecular Engineering and of Materials Science and 

Engineering, University of Delaware, Newark, DE 

6. Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 

7. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre 

Dame, IN 

8. Departments of Chemical Engineering, of Materials Science, and of Physics, University of 

Michigan, Ann Arbor, MI 

9. Department of Chemistry and Chemical Theory Center, University of Minnesota 

10. Department of Chemical Engineering and Materials Science, University of Minnesota, MN 

11. Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 

MI 

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as doi:
10.1002/aic.17206

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0002-9766-2216
http://orcid.org/0000-0002-3267-1410
http://orcid.org/0000-0003-0856-4743
http://orcid.org/0000-0003-2534-4507
http://orcid.org/0000-0002-9124-3512
http://dx.doi.org/10.1002/aic.17206
http://dx.doi.org/10.1002/aic.17206


12. Interdisciplinary Graduate Program in Materials Science and Multiscale Modeling and 

Simulation Center, Vanderbilt University, Nashville, TN  

 

1. Background  

Molecular simulation has emerged as an important sub-field of chemical engineering, due in no 

small part to the leadership of Keith Gubbins. A characteristic of the chemical engineering 

molecular simulation community is the commitment to freely share simulation codes and other 

key software components required to perform a molecular simulation under open-source licenses 

and distribution on public repositories such as GitHub. Here we provide an overview of open-

source molecular modeling software in Chemical Engineering, with focus on the Molecular 

Simulation Design Framework (MoSDeF). MoSDeF is an open-source Python software stack that 

enables facile use of multiple open-source molecular simulation engines, while at the same time 

ensuring maximum reproducibility. 

 

Molecular simulation is a methodology for predicting the collective (in particular, thermodynamic 

and transport) properties of systems from information about how the molecules in the system 

interact with each other. That “information” can be obtained on-the-fly from quantum mechanics 

but, in most molecular simulations, it is encoded in a mathematical function, called a force field, 

that attempts to include all the intermolecular interactions between molecules (electrostatic 

interactions, van der Waals repulsive and attractive interactions) as well as intramolecular 

interactions (e.g., bond stretching, bond angle bending, and torsional interactions). More 

specifically, a force field is a representation of the total potential energy associated with 

interactions of all the atoms in the system (obtained by summing over all the molecules), which 



can be differentiated with respect to the position of an atom to obtain the force exerted on that 

atom. Force fields can be derived from first principles calculations (e.g., quantum chemistry 

calculations) and/or experimental data; thus, generally force fields are semi-empirical. For 

inhomogenous systems (e.g., a fluid adsorbed on a surface or into a pore), the force field includes 

models for how the molecules interact with atoms in the surfaces or with an external field. 

Assuming that the molecular simulation runs long enough to attain equilibrium, and that the system 

is large enough or configured to eliminate unwanted surface effects (through so-called periodic 

boundary conditions), for a given force field, molecular simulation can provide essentially exact 

information about the properties of the system, obtained by averaging over the configurations 

generated in the simulation. Two major types of molecular simulations are routinely performed: 

molecular dynamics (MD), in which Newton’s equations, or a convenient variation thereof, are 

solved for the dynamics of each atom in the system, and Monte Carlo (MC) simulation, in which 

configurations of the system are generated via a Markov chain process that asymptotically are 

distributed according to the appropriate equilibrium ensemble probability (e.g., for systems at 

constant molecule number 𝑁𝑁, volume 𝑉𝑉, and temperature 𝑇𝑇, the Boltzmann distribution, in which 

configurations have probability ∝ 𝑒𝑒−𝐸𝐸/𝑘𝑘𝐵𝐵𝑇𝑇, where 𝐸𝐸 is the energy of the system and 𝑘𝑘𝐵𝐵 is 

Boltzmann’s constant). In either case, the raw output of the simulation is configurations of the 

system (known as a trajectory) that can then be analyzed to compute properties. From an MD 

simulation, the trajectory will consist of positions and velocities for all atoms in the system over 

the course of the simulation; a typical MD simulation will employ a time step of 10−15s, so that a 

10-100 ns trajectory covers 107 − 108 steps.  For a 100,000-atom simulation (a typical system 

size with current computational resources), a trajectory file can be of the order of terabytes, so that 

statistical analysis of such files can be thought of as a particular kind of “big data” problem.  



 

Molecular simulation began in the 1950s with simple systems such as hard spheres (MC1 and 

MD2,3) and in the 1960s with the Lennard-Jones fluid (MC4 and MD5). For such monatomic 

systems, the force field is very simple, specifying the interaction energy between spherically 

symmetric molecules.  Beginning in the 1970s, molecular simulation was introduced to the field 

of chemical engineering primarily by Keith Gubbins, the honoree of this Founders issue of AIChE 

Journal. Keith is known and admired internationally and across many disciplines not only for his 

contributions in molecular theory (which have been seminal, such as Gray-Gubbins perturbation 

theory and the statistical associating fluid theory, or SAFT, equation of state) but also for his 

research in molecular simulation. One of the earliest Gubbins simulation papers6 from 1979 has 

been cited almost 1000 times. [As an aside, his postdoctoral trainee co-author on this paper, 

Dominic Tildesley, was for many years a successful academic in the UK before joining Unilever, 

where he established one of the world’s premier industrial molecular modeling groups, eventually 

rising to Vice President of Discovery Platforms; Tildesley also co-authored one of the seminal text 

books on molecular simulation7.] Keith’s influence on the field of chemical engineering in relation 

to molecular simulation can be measured in programming at AIChE Annual Meetings (which in 

the early 1980s had no sessions on molecular simulation in contrast to today when a whole 

programming area – the Computational Molecular Science and Engineering Forum, Area 21 – is 

largely focused on molecular simulation) and in papers presented at Properties and Phase 

Equilibria for Process and Product Design conference series established in 1977 (in which the first 

molecular simulation paper was presented in 1980, and by 2007 more than half the presentations 

involved molecular simulation and/or molecular theory). Since its early days, molecular simulation 

has become a workhorse in science and industry. The promise of being able to predict collective 



properties from molecular interactions, and the attendant insight gained, have made molecular 

simulation (both MD and MC) an ideal and indispensable capability in materials science, biology, 

medicine (specifically, drug discovery) and engineering. There are commercial entities that market 

molecular simulation software (e.g., BIOVIA and Schrödinger). A 2002 international comparative 

study on molecular modeling (of which molecular simulation constitutes a major component) 

documented the widespread use of molecular modeling in industry, including many chemical, 

drug, and personal care product companies8. 

 

The authors of this Perspective article are all beneficiaries of the trail-blazing efforts of Keith 

Gubbins in establishing molecular simulation as an accepted and respected subfield of chemical 

engineering. Today, molecular simulation is taught in most chemical engineering departments in 

the U.S. at the graduate level, and is increasingly available as an elective at the undergraduate level 

or even offered as a first-year seminar to incoming undergraduate students.  It has become one of 

the major focuses of the educational foundation, CAChE (Computer Aids for Chemical 

Engineering Education, cache.org), which established a molecular modeling task force in 1998. 

CACHE runs a highly successful technical conference, Foundations of Molecular Modeling and 

Simulation (fomms.org, held every three years since 2000) that has produced many educational 

resources to enable chemical engineers to teach and utilize molecular simulation in the classroom. 

In 2012, Keith Gubbins was awarded the FOMMS Medal for his numerous and long-standing 

contributions to the molecular simulation community. In addition to prodigious research 

contributions, he has authored seminal textbooks9, including the two-volume definitive treatise on 

the theory of molecular fluids10,11 that is an essential part of the library of any serious statistical 

mechanician interested in molecular fluids.   



 

2. Development of molecular simulation tools in the chemical engineering community 

Although molecular simulation (MD and MC) transcends disciplinary boundaries as noted above, 

chemical engineers have been particularly active in developing algorithms that compute properties 

of strong interest to the chemical engineering community (ChEC). One example is vapor-liquid 

phase equilibria, which is of enduring interest to the ChEC due to separation processes. Thus, a 

molecular simulation methodology for computing phase equilibrium directly and efficiently, the 

Gibbs ensemble MC (GEMC) algorithm, was  developed in 1987 within the ChEC by 

Panagiotopoulos12. Phase equilibria can involve differences in densities between phases of several 

orders of magnitude; likewise, in chemical manufacturing there can be wide ranges of state 

conditions.  Hence, along with the development of algorithms, the ChEC has also been at the 

forefront of developing force fields that are accurate over wide ranges of state conditions, such as 

the TraPPE family of force fields optimized for vapor-liquid equilibrium (see the extensive 

resources at http://trappe.oit.umn.edu)  and the Gaussian charge polarizable model (GCPM) for 

water13 that correctly predicts water’s phase equilibria, thermodynamic, transport and dielectric 

properties over wide ranges of temperature and pressure. By contrast, much of the molecular 

simulation community in other disciplines is focused on properties at or near ambient conditions 

(including ambient conditions for biological systems).  

--------------------- 

Table 1 here 

--------------------- 

Table 1. Examples of open-source molecular simulation codes and related supporting utilities 

developed within the chemical engineering molecular modeling community. Website links 

http://trappe.oit.umn.edu/


are to home pages of the codes or to code repositories. In addition, several other open-source 

codes emerging from the chemical engineering community are highlighted. 

 

In this regard, the molecular simulation community in chemical engineering is particularly noted 

for sharing methods and capabilities by making software developed within the community freely 

available under open-source licenses, as described in a recent review article30. A recent, more 

general review of open-source molecular modeling software is provided by Pirhadi et al.31 Table 

1 provides examples of open-source molecular simulation tools developed within the ChEC, 

divided into simulation codes and other utilities.   Similar to GEMC, many of these algorithms 

developed are primarily implemented within MC and hence it is not surprising that the bulk of 

open-source simulation engines developed within the ChEC (see Table 1) are for performing MC 

simulations. The need for community-developed simulation engines, whether they are MD or MC, 

stems from the fact that such codes have become increasingly difficult to develop, extend, and 

maintain for a single individual or single research group. This is due not only to an ever growing 

set of features and algorithms, but also due to changes in computing hardware utilized in a research 

environment: we have been through the era of vector architectures (e.g., Cray, Hitachi), parallel 

vector computers (a small number of coupled vector processors, such as Cray YMP), massively 

parallel shared memory computers (MPP, such as the Intel Paragon, in which a large number of 

the same commodity central processor units – CPUs – used  in deskside computers are linked 

together and communicate over a communication network), multicore processors (such as Intel 

Xeon that has gone from 6 cores to more than 50) both stand alone and as part of an MPP, and 

more recently the inclusion of massively multicore graphical processing units (GPUs, which have 

migrated from the gaming industry into scientific computing and data manipulation). A modern 



supercomputer typically consists of nodes, connected via an interconnect (from vendors such as 

Mellanox and Intel)ab, where each node houses multiple commodity multicore CPUs and GPUs. 

This is the dominant architecture of the supercomputers on the top 500 list of the fastest computers 

in the world32, with the top 5 supercomputers having between 1.5 and in excess of 10.5 million 

total computing cores at the time of writing; designing and maintaining simulation codes that 

perform efficiently on these rapidly evolving computer architectures is a significant challenge.  

Beyond community developed simulation engines, we have also seen the rise of other community 

developed utilities to support simulation, e.g., in the form of general analysis packages as well as 

software that makes it easier to accurately and reproducibility initialize configurations, apply force 

fields to molecules, and create input files for a variety of simulation engines.  

 

--------------------- 

Figure 1 here 

--------------------- 

Figure 1. Typical steps involved in performing a molecular simulation. If all steps are scriptable, the entire process can be encased 

in a loop over hundreds or thousands of chemistry, composition, and/or state conditions combinations to enable screen for desirable 

properties.  Background colors refer to: initialization steps (blue), simulation run time steps (red), and system analysis steps 

(yellow). 

 

For several decades, the open-software movement has been making its presence felt in the 

chemical engineering community. Open-source software offers many advantages over proprietary 

                                                 
a These interconnects can vary from standardized ethernet connections to more specialized, proprietary high performance interconnects from various 
vendors.  At the time of writing, the current top 500 list includes numerous systems with propriety interconnects such as Mellanox Infiniband (now 
owned by Nvidia), Intel Omni-Path, Cray Aries, and Fujitsu Tofu along with standard ethernet connections ranging from 10G to 100G. 
 
 



codes. First, they are universally available and do not contain any hidden parameters. This makes 

verification of results published using these codes much more feasible than for proprietary codes. 

Indeed, some scholarly journals have taken the position of considering only manuscripts for 

publication in which molecular modeling calculations were performed using open-source codes or 

source code that is made available to reviewers. Second, open-source codes are available at no 

cost, which means that the codes can be downloaded and used by researchers throughout the world, 

removing barriers for scientific progress. Third, open-source codes typically attract a community 

of users and/or developers, so that bugs are discovered and eliminated quickly, often overnight; in 

the case of proprietary software, bugs are typically only fixed during update cycles, which may be 

months apart, or may even go unnoticed, since the code cannot be inspected by users. The 

downside of open-source software is that, since there is no revenue stream in the usual sense (sale 

of software), the sustainability of an open-source code over decades can be questionable. However, 

codes can reach a level of usage such that the effort to maintain and improve the code is taken on 

by the user community; LAMMPS has arguably reached this position. Also, for some open-source 

codes there is an alternative revenue stream. For example, Red Hat is the biggest contributor and 

supporter of the open-source Linux operating system. It makes money by writing, selling, and 

supporting business-oriented middleware that runs within Linux, as well as selling consulting 

services to companies switching to Linux for their enterprise software. The commercial 

Scienomics MAPS platform for materials and process simulations embeds some of the open-

source MD and MC codes, such as LAMMPS, Cassandra, and MCCCS-Towhee. Enthought, 

Inc. is a software company based in Austin, Texas, that develops and markets scientific and 

analytic computing solutions using primarily the Python programming language; its commercial 

activities underwrite the widely used open-source SciPy (Scientific Python) package. 



 

In the remainder of this Perspective, as an example of ChEC open-source software, we focus our 

discussion on the Molecular Simulation Design Framework (MoSDeF), to which all the authors 

are contributors. MoSDeF is a set of Python tools to facilitate the initialization and 

parameterization of systems, with the goal of enabling transparent and reproducible molecular 

simulation workflows that, at the same time, are user-friendly and extensible. 

 

3. Molecular Simulation Design Framework (MoSDeF) 

As shown in Figure 1, performing a molecular simulation, whether MD or MC, requires multiple 

steps: building an initial configuration of the system, selecting and applying a force field, 

generating a syntactically correct input file (or files) for a target simulation engine, equilibration 

(to relax the system from its initial configuration – e.g., a crystal – to a configuration characteristic 

of equilibrium – e.g., liquid), production run to generate a trajectory, and analysis of the trajectory 

(e.g., averaging over the trajectory to compute thermodynamic and/or structural properties, 

perform visualization, etc.). Often reliability and statistics are improved by running multiple 

independent trajectories using the same workflow. Accomplishing these steps in a way that is both 

accurate and reproducible can be a significant challenge.  For example, the application of a force 

field is a frequent source of error in simulations; for a system composed of moderately complex 

molecules (such as an ionic liquid) the force field can have a hundred or more parameters that must 

be provided, offering multiple opportunities for errors (e.g., use of incompatible units, use of 

parameter values from a publication containing a typographical error, incorrect application of 

parameters due to logic errors or because of ambiguous definition of parameter usage, etc.). While 

the use of a community developed, open-source simulation engine may help to reduce the 



likelihood of fundamental errors in algorithms underlying the simulations, such codes cannot 

necessarily prevent users from providing parameters that are inconsistent with the intended usage.  

 

Typically, many of these steps are performed within a given research group by a single graduate 

student, often making use of ad hoc, in-house software, even if open-source simulation engines 

are used. This approach has several shortcomings that can make simulations more prone to error, 

limit the extensibility, and hamper reproducibility. For example, the various tools used to 

accomplish these steps may only be loosely coupled and require manipulation, editing, and/or 

modification of the tools and/or data by the user.  This manipulation may introduce errors and 

make it difficult to reproducibly capture the exact procedures employed.  The need for human 

manipulation may also limit the ability to use such workflows in applications that require 

automation, such as parameter screening studies or within the context of larger workflows (e.g., to 

predict phase equilibrium within a process simulator). The use of in-house software itself, which 

is typically not open-source or freely available, creates numerous roadblocks as well. Someone 

wishing to reproduce a simulation would be required to write their own software to accomplish 

the same tasks. The development of such software may be time consuming and publications often 

do not provide sufficient detail regarding the procedures used to initialize and parameterize 

simulations.  Furthermore, without access to the original source code, it is not possible to ascertain 

the quality of the software; that is, to know whether it has undergone sufficient validation or if 

there are errors and bugs that ultimately impact the accuracy of the reported results.   

 

The Molecular Simulation Design Framework (MoSDeF)33 is designed to address these issues of 

automation/efficiency, accuracy, and reproducibility in molecular simulation. MoSDeF is an open-



source Python library built upon the scientific Python software stack with three major components: 

mBuild (for constructing initial configurations of systems) and foyer (for applying force 

fields). The third component, GMSO (General Molecular Simulation Object), is currently under 

development and is designed to be a general, flexible way of encapsulating the information 

required to define a simulation topology in a simulation engine in an agnostic manner.   All of the 

capabilities of MoSDeF are scriptable, thus making the tools inherently reproducible, as well as 

suitable for automated calculations (e.g., screening). MoSDeF is implemented as a set of 

composable/modular tools, where each “subpackage” (i.e., module) is designed such that it can be 

used within MoSDeF, or as a standalone package, allowing MoSDeF to more easily integrate with 

other community efforts. This also allows the framework to be more easily modified, tested, 

extended, and have fewer bugs than a monolithic approach. MoSDeF leverages libraries including 

packmol34, parmed35, openmm36,37, and openbabel38 to maximize compatibility with 

simulation engines. The interoperability and integration of mBuild, foyer, and GMSO 

distinguish MoSDeF from other initialization and simulation management packages that are 

tailored for specific engines (e.g., ambertools39, playmol40) and which may also require 

coordination of workflows across multiple languages (e.g., topotools40), complicating data 

provenance. That is, MoSDeF tools enable the initialization, simulation, and analysis workflows 

of entire scientific studies to be defined in python scripts. Performing a simulation using MoSDeF, 

combined with dissemination of simulation scripts on a service such as Github, enables a molecular 

simulation to be published as a TRUE (transparent, reproducible, usable by others, and extensible) 

simulation41.  

 



MoSDeF has its origins in a decade of National Science Foundation (NSF)-supported collaborative 

research at Vanderbilt University involving researchers from chemical engineering and computer 

science42–44, the latter affiliated with the Institute for Software Integrated Systems (ISIS)45. ISIS is 

a leading academic software engineering research center, and is the originator of the concept of 

model-integrated computing (MIC)46. MIC is a systems engineering approach that focuses on the 

creation of domain specific modeling languages to capture the essential features of the individual 

components of a given process, at the level of abstraction that is appropriate for the end users. Due 

to abstraction, processes are described at a meta level that allows tasks to be coupled together to 

execute scientific or engineering workflows. MIC has been deployed in applications as diverse as 

managing auto assembly lines and processing health records. MIC design principles, domain-

specific modeling languages, and the general philosophy of abstraction have shaped the 

development of MoSDeF. In particular, MoSDeF attempts to be simulation-engine-agnostic, 

treating the concept of a molecular simulation at a meta level, above the specifics of the simulation 

engines. The tools within MoSDeF are designed to fully describe a system: implementation relies 

on writers to instantiate syntactically correct input files for specific engines from this information. 

MoSDeF was initially developed to support several commonly used open-source MD codes 

(LAMMPS47, GROMACS48 and HOOMD-blue49) and has since grown to support open-source MC 

simulation engines, namely Cassandra16 and GOMC18. In the Supplementary Information, we 

provide details on how to install MoSDeF through various hosting systems (anaconda, docker, 

from source using github, etc.) on Apple OSX, Linux, and Windows platforms. Below we 

describe each of the three key components. Source code, tutorials, documentation, and related 

publications can be accessed from mosdef.org and/or github.com/mosdef-hub/. 

  



 

 

3.1. mBuild 

As shown in Figure 1, the first step in a simulation workflow typically involves defining the 

configuration of the atoms (or more generally, particles) in the system.  The mBuild Python 

library50,51 has been developed to be a general, customizable tool for constructing arbitrarily 

complex system configurations in a programmatic fashion (i.e., scriptable).  Key to the mBuild 

library is its underlying Compound data structure. A Compound is a general “container” that can 

describe effectively anything: an atom, a collection of atoms, a molecule, a generic point particle, 

a collection of Compounds, operations on the underlying Compounds and/or data, etc. 

Compounds can be duplicated, rotated, translated, scaled, etc. to construct a system.  

Compounds can also contain information regarding connections between the atoms, by defining 

either fixed Bonds within a Compound or by adding  Ports that allow connections to be made 

between separate Compounds. Ports define both location and orientation of a connection; in 

atomistic systems, the number of Ports and their locations are typically representative of the 

underlying chemistry. For example, Figure 2 shows Python code that defines a CH2 moiety with 

two C-H Bonds and two Ports.  In order to create a connection between two Compounds, a 

user simply states which Ports should connect and mBuild automatically performs translations 

and reorientations, creating a new (composite) Compound (see Klein et al.50 for more details). As 

such, this allows complex systems to be built-up from smaller, interchangeable pieces that can be 

connected, through the use of the concept of generative modeling.50  This design approach allows 

for declaratively expressing repetitive structures, such as polymer chains and planar tilings (as 



used in Figure 2) and also allows significant modifications to system structure/chemistry to be 

made with only minimal changes to the initialization routines.    

--------------------- 

Figure 2 here 

--------------------- 

Figure 2: Python script that uses mBuild to define a class for a -CH2- group, create a polymer composed of multiple -CH2- groups, 

and connects copies of this polymer to a surface. Note for simplicity, the terminal -CH3 group is not shown. Additional mBuild tutorials 

and example scripts are available online at https://github.com/mosdef-hub/mbuild_tutorials.  

 

 

3.2. Foyer 

After a system configuration is initialized, the interactions between all constituents must be defined 

before a system can be simulated (as shown in Figure 1), i.e., the force field must be applied to the 

system.  The Foyer library52 has been developed as a general tool for applying force fields to 

molecular systems (i.e., atom-typing), that provides a standardized approach to defining chemical 

context and atom-typing rules22,53.  In Foyer, the forcefield parameters and the rules that dictate 

parameter usage are stored together in a standardized XML file, separate from the code used to 

evaluate them.  Usage rules are encoded by using a combination of a SMARTS-based annotation 

scheme, which defines the chemical context associated with a given parameter, and overrides 

that define rule precedence. SMARTS is a language designed for describing molecular patterns,54 

thus allowing information about the bonded environment of an atom to be efficiently and clearly 

encoded in a format that is both human and machine readable. For example, the chemical context 

of a terminal methyl group (-CH3) in an alkane can be expressed as [C;X4](C)(H)(H)H. In 

this annotation, [C;X4] indicates that the atom of interest is a carbon (C), with 4 total bonds (X4) 



and (C)(H)(H)H provides the identity of those 4 bonds (1 carbon, 3 hydrogens). Figure 3 shows 

a snippet from the Foyer XML forcefield file demonstrating how these usage rules can be encoded, 

using select parameters from OPLS-AA force field (See Klein et al.22 for more details). By 

separating the usage rules and parameters from the software used to evaluate them, the Foyer 

library does not need to change if changes are made to a force field file.  As such, this allows the 

implementation of novel and “custom” force fields without the need to write new software, which 

simplifies the process of disseminating and evolving forcefields, and increases reproducibility of 

work by making it clear not just what force field was used, but how it was applied to the system. 

A complimentary approach not requiring SMARTS and overrides is to make molecule-

specific XML files available (e.g., via webpages such as http://trappe.oit.umn.edu). 

--------------------- 

Figure 3 here 

--------------------- 

Figure 3: Foyer snippet illustrating how three Carbon atom types can be defined, with rules for precedence and chemical context, in 

a human- and computer-readable format. 

 

 

 

3.3. General Molecular Simulation Object (GMSO) 

With a system initialized and parameterized, the information in the system topology must be 

written to a file for a simulation engine. While the information required by different simulation 

engines is, generally speaking, the same, the structure and format of the data file(s) passed to 

simulation engines is typically unique to the engine itself. Generating these files accurately, 

especially for a wide range of unique simulation engines, can be non-trivial.  The current version 

http://trappe.oit.umn.edu/


of MoSDeF relies upon the use open-source utilities parmed35 and OpenMM37,55 to store this 

information; these tools along with native MoSDeF code, include parsers to generate syntactically 

correct data files. In this approach, a single simulation topology can be used to generated input 

files for a variety of simulation engines, allowing different engines and methodologies (e.g., MC 

and MD) to be applied to the same system.   While effective, these backend codes do not have 

general support for the breadth of simulation engines and force fields we aim to include. To this 

end, the General Molecular Simulation Object (GMSO) has been under development with the goal 

of becoming the de facto backend data structure of the MoSDeF.  The goal of GMSO is to serve as 

a general container for all of the relevant system information (e.g., the fully parameterized system), 

stored in a simulation engine agnostic way.   GMSO is designed with interoperability and support 

for various functional forms as a first-class feature. For example, GMSO builds upon the idea of 

Foyer XML data file, shown in Fig. 3, but provides further meta data; this includes encoding the 

functional forms of the potentials in the force field (those that can be expressed in computer 

algebraic inputs) using the sympy Python library. GMSO is also structured to make it easier to add 

data file writers, allowing GMSO support to be extended and customized. Because GMSO supports 

user-defined analytic equations for force field components, it future-proofs GMSO for new 

developments in force fields, such as those being pursued by several of the authors.  

 

3.4. Computational Screening and Automation using MoSDeF 

Since all the functions of MoSDeF are scriptable, when combined with a workflow management 

tool such as signac/signac flow21, it is relatively trivial to perform computational screening 

of the properties of systems by looping over chemistries and/or conditions and calculating relevant 

properties from the simulations. The MoSDeF/signac combination has been used to screen the 



impact on nanolubrication properties of end-group chemistry of self-assembled alkylsilane tethers 

on amorphous silica surfaces23, leading to a machine-learning-derived model connecting end-

group cheminformatic descriptors with tribological properties of interest. In another example56, 

the diffusivities of ions in organic solvents were screened for 22 different solvents, revealing a 

pattern in this large data set (ion diffusivity proportional to solvent diffusivity) that was in contrast 

with previous, primarily experimental findings (ion diffusivity proportional to solvent dipole 

moment). The computational screening finding were confirmed in subsequent experimental 

studies utilizing quasi-elastic neutron scattering57 and NMR58. 

 

3.5  Expanding MoSDeF 

As noted earlier, the genesis of MoSDeF was a series of NSF grants to Vanderbilt PIs Cummings, 

McCabe, Iacovella, and Ledezci42–44. A recent collaborative NSF grant59 has funded groups from 

the universities of Michigan (Glotzer and Anderson), Notre Dame (Maginn), Minnesota 

(Siepmann), Delaware (Jayaraman), Houston (Palmer), Wayne State (Potoff), and Boise State 

(Jankowski) universities to work together to expand MoSDeF’s capabilities, including the 

collaborative design and development of the aforementioned GMSO backend. This collaboration is 

resulting in increasing integration with HOOMD-blue, integration with MC codes Cassandra 

and GOMC, and the first principles MD/MC code CP2K; additionally, MoSDeF has been integrated 

more closely with Michigan’s signac workflow management tools. In the case of Cassandra, 

for example, using MoSDeF existing utilities and adding additional capabilities resulting from the 

Vanderbilt/Notre Dame collaboration, the complexity of setting up a simulation has been reduced 

from 9 steps (including 3 requiring user editing of files) to a single python script using MoSDeF; 

this, in turn, has enabled computational screening with Cassandra. Other groups, including 



Houston, Boise State, and Delaware, are focusing on developing modules to implement complex 

workflows and analyses involved in phase equilibrium calculations and construction of intricate 

molecular models. Building the modules around the MoSDEF framework will enable these 

workflows to be performed in a reproducible fashion with a variety of widely used simulation 

engines.   

 

 

An example of the capabilities enabled by this collaboration is given in the Supplementary 

Information (SI). Inspired by the honoree of this special issue, Keith Gubbins, in the SI we report 

the use of five different simulation codes (the open-source MC codes Cassandra and GOMC, 

the open-source MD codes LAMMPS and GROMACS, and the open -source first principles MD code 

CP2K) to repeat calculations reported by Striolo et al.60 on the adsorption of water into carbon slit 

pores. The latter were groundbreaking simulations for their time and the paper has been cited ~200 

times (Google Scholar). The paper reported adsorption/desorption isotherms, demonstrating the 

hysteresis seen in experiment, as well as density profiles and orientational structure of the adsorbed 

water into carbon slit pores. The Striolo et al. simulations were performed using in-house codes; 

thus, they are almost impossible to reproduce in detail. In the SI, we show that we can reproduce 

the adsorption/desorption isotherms reported by Striolo et al. to within an acceptable degree using 

Cassandra and GOMC; more importantly, we show that by using the MoSDeF tools to create 

the simulations, we can easily test multiple engines, and show we get excellent agreement between 

the two different MC codes. Having used the technique of GEMC in both Cassandra and GOMC, 

we establish the number of water molecules in the pore at a given external pressure. We then 

perform NVT (constant number of molecules, volume and temperature) simulations using multiple 



codes. We find remarkable agreement for the water structure inside the pore between the MC 

engines Cassandra and GOMC and MD engines LAMMPS and GROMACS. The use of MoSDeF 

(mbuild to build the simulation systems and foyer to apply the force fields) is absolutely 

essential to obtaining consistency between these calculations. The first principles MD code CP2K 

with interactions described on-the-fly via Kohn-Sham density functional theory produces similar, 

but not identical, results for water structure, thereby allowing us to identify differences in water-

substrate interactions.  The fact that one can move the simulated system between all of these codes 

fairly effortlessly, thanks to the use of the MoSDeF tools and its meta-level abstraction of the 

concept of molecular simulation, is a very significant step forward for the simulation community. 

Moreover, the SI contains all the instructions needed for the reader to download and run all the 

utilities and codes needed to reproduce the reported calculations exactly, hence qualifying these as 

TRUE simulations.41 

 

3.6  Future Directions and Challenges 

It is clear that the role of modeling and simulation in engineering and scientific research will 

continue to grow as computing power advances and new methods and simulation engines are 

developed. Ironically, the more powerful and capable modeling tools become, the more difficult it 

is to ensure that the results of these simulations can be reproduced by others and that the numerous 

details that go into running the simulations are validated and justified. This can lead to a “crisis in 

confidence” in the accuracy of simulation research. We believe that efforts at developing tools and 

workflows that focus on transparency and accuracy of simulations are therefore essential, and that 

the MoSDeF tools described here are an important step in helping improve the reliability of 

simulations.  



 

Given the backgrounds of the authors, the major focus up to this point has been on classical force 

field-driven Monte Carlo and molecular dynamics simulations, although as demonstrated in this 

Perspective, MoSDeF can also be applied to the ab initio code CP2K. In the future, we would like 

to see the scope of MoSDeF expanded to include other ab initio codes, reactive methods and 

analysis tools. MoSDeF has been developed to be very flexible, so it can be adapted to work with 

additional packages as well as future computer architectures and programming structures. A key 

challenge in realizing this vision is resources, both financial and human. We have been fortunate 

to have support from the National Science Foundation to create MoSDeF. Its expansion and long-

term sustainability will require that the research community see the value in MoSDeF and commit 

to supporting it. There are many examples of the research community supporting open source 

simulation packages, but the key is that users find value in the tool and in extending its capabilities. 

We hope we have demonstrated the value of MoSDeF and that other researchers will become 

involved in its maintenance and growth. 

  

 

4. Summary and Conclusions 

In this Perspective article, we have described our efforts at developing the Molecular Simulation 

Design Framework (MoSDeF), a collection of open source tools that not only make the design and 

execution of molecular simulations easier, but they also help enable the simulations to be "TRUE”: 

transparent, reproducible, usable by others, and extensible. The collection of tools enables system 

setup, atom typing, force field assignment, and job management. MoSDeF is designed to be 

compatible with a wide range of simulation engines and force fields. As an example of MoSDeF’s 



capabilities, we undertook the modeling of the sorption and diffusion of water in a carbon slit pore, 

something Keith Gubbins and co-workers did many years ago. We show that we can seamlessly 

integrate five different simulation packages in the study and that consistent results are obtained 

between the different packages. We hope this article stimulates other researchers to not only adopt 

MoSDeF in their work, but to also contribute to its continued expansion and development. 

  

We dedicate this Perspective to our colleague, mentor, and friend, Keith Gubbins. The authors of 

this article wish to express their deep gratitude to Keith for all he has done for our community. We 

wish him many more years of productive science. 

 

Acknowledgements 

The preparation of this Perspective article has been supported by a National Science Foundation 

grants OAC-1835874 to Vanderbilt University, OAC-1835612 to the University of Michigan, 

OAC-1835630 to the University of Notre Dame, OAC-1835067 to the University of Minnesota, 

OAC-1835613 to the University of Delaware, OAC-1835593 to Boise State University, OAC-

1835713 to Wayne State University, and OAC-1835560 to the University of Houston. 

 

 

 

 

 

 

 



Literature Cited 

 

1.  Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State 

Calculations by Fast Computing Machines. J Chem Phys. 1953;21(6):1087-1092. 

doi:10.1063/1.1699114 

2.  Alder BJ, Wainwright TE. Phase transition for a hard sphere system. J Chem Phys. 

1957;27(5):1208-1209. doi:10.1063/1.1743957 

3.  Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General Method. J Chem Phys. 

1959;31(2):459-466. doi:10.1063/1.1730376 

4.  Wood WW, Parker FR. Monte Carlo Equation of State of Molecules Interacting with the 

Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical 

Temperature. J Chem Phys. 1957;27(3):720-733. doi:10.1063/1.1743822 

5.  Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Phys Rev. 

1964;136(2A):A405-A411. doi:10.1103/PhysRev.136.A405 

6.  Nicolas JJ, Gubbins KE, Streett WB, Tildesley DJ. Equation of state for the lennard-jones 

fluid. Mol Phys. 1979;37(5):1429-1454. doi:10.1080/00268977900101051 

7.  Allen MP, Tildesley DJ. Computer Simulation of Liquids. Vol 1. Second. Oxford University 

Press; 2017. doi:10.1093/oso/9780198803195.001.0001 

8.  Westmoreland PR, Kollman PA, Chaka AM, et al. Applying Molecular and Materials 

Modeling. Dordrecht: Springer Netherlands; 2002. doi:10.1007/978-94-017-0765-7 

9.  Reed TMK, Gubbins KE. Applied Statistical Mechanics: Thermodynamic and Transport 

Properties of Fluids. McGraw-Hill; 1973. 



https://books.google.com/books?id=w_tQAAAAMAAJ. 

10.  Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: I: Fundamentals. OUP Oxford; 

1984. https://books.google.com/books?id=3mz2RcnnMGwC. 

11.  Gray CG, Gubbins KE, Joslin CG. Theory of Molecular Fluids: Volume 2: Applications. OUP 

Oxford; 2011. https://books.google.com/books?id=4xr8jwEACAAJ. 

12.  Panagiotopoulos AZ. Direct determination of phase coexistence properties of fluids by 

monte carlo simulation in a new ensemble. Mol Phys. 1987;61(4):813-826. 

doi:10.1080/00268978700101491 

13.  Paricaud P, Předota M, Chialvo AA, Cummings PT. From dimer to condensed phases at 

extreme conditions: Accurate predictions of the properties of water by a Gaussian charge 

polarizable model. J Chem Phys. 2005;122(24):244511. doi:10.1063/1.1940033 

14.  Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations 

fully implemented on graphics processing units. J Comput Phys. 2008;227(10):5342-5359. 

doi:10.1016/j.jcp.2008.01.047 

15.  Glaser J, Nguyen TD, Anderson JA, et al. Strong scaling of general-purpose molecular 

dynamics simulations on GPUs. Comput Phys Commun. 2015;192:97-107. 

doi:10.1016/j.cpc.2015.02.028 

16.  Shah JK, Marin-Rimoldi E, Mullen RG, et al. Cassandra: An open source Monte Carlo 

package for molecular simulation. J Comput Chem. 2017;38(19):1727-1739. 

doi:10.1002/jcc.24807 

17.  Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for 

adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016;42(2):81-101. 



doi:10.1080/08927022.2015.1010082 

18.  Nejahi Y, Soroush Barhaghi M, Mick J, et al. GOMC: GPU Optimized Monte Carlo for the 

simulation of phase equilibria and physical properties of complex fluids. SoftwareX. 

2019;9:20-27. doi:10.1016/j.softx.2018.11.005 

19.  Schultz AJ, Kofke DA. Etomica : An object-oriented framework for molecular simulation. J 

Comput Chem. 2015;36(8):573-583. doi:10.1002/jcc.23823 

20.  Ramasubramani V, Dice BD, Harper ES, Spellings MP, Anderson JA, Glotzer SC. freud: A 

software suite for high throughput analysis of particle simulation data. Comput Phys 

Commun. 2020;254:107275. doi:10.1016/j.cpc.2020.107275 

21.  Adorf CS, Dodd PM, Ramasubramani V, Glotzer SC. Simple data and workflow management 

with the signac framework. Comput Mater Sci. 2018;146:220-229. 

doi:10.1016/j.commatsci.2018.01.035 

22.  Klein C, Summers AZ, Thompson MW, et al. Formalizing atom-typing and the dissemination 

of force fields with foyer. Comput Mater Sci. 2019;167(May):215-227. 

doi:10.1016/j.commatsci.2019.05.026 

23.  Summers AZ, Gilmer JB, Iacovella CR, Cummings PT, McCabe C. MoSDeF, a Python 

Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to 

Chemistry-Property Relationships in Lubricating Monolayer Films. J Chem Theory Comput. 

2020;16(3):1779-1793. doi:10.1021/acs.jctc.9b01183 

24.  Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular simulations that are 

transparent, reproducible, usable by others, and extensible (TRUE)*. Mol Phys. 

2020;0(0):e1742938. doi:10.1080/00268976.2020.1742938 



25.  Lin ST, Sandler SI. A priori phase equilibrium prediction from a segment contribution 

solvation model. Ind Eng Chem Res. 2002;41(5):899-913. doi:10.1021/ie001047w 

26.  Bell IH, Mickoleit E, Hsieh CM, et al. A Benchmark Open-Source Implementation of 

COSMO-SAC. J Chem Theory Comput. 2020;16(4):2635-2646. 

doi:10.1021/acs.jctc.9b01016 

27.  Fortunato ME, Colina CM. pysimm : A python package for simulation of molecular systems. 

SoftwareX. 2017;6:7-12. doi:10.1016/j.softx.2016.12.002 

28.  Martin TB, Gartner TE, Jones RL, Snyder CR, Jayaraman A. pyPRISM: A Computational Tool 

for Liquid-State Theory Calculations of Macromolecular Materials. Macromolecules. 

2018;51(8):2906-2922. doi:10.1021/acs.macromol.8b00011 

29.  Schweizer KS, Curro JG. Integral-equation theory of the structure of polymer melts. Phys 

Rev Lett. 1987;58(3):246-249. doi:10.1103/PhysRevLett.58.246 

30.  Cummings PT, Gilmer JB. Open-source molecular modeling software in chemical 

engineering. Curr Opin Chem Eng. 2019;23:99-105. doi:10.1016/j.coche.2019.03.008 

31.  Pirhadi S, Sunseri J, Koes DR. Open source molecular modeling. J Mol Graph Model. 

2016;69:127-143. doi:10.1016/j.jmgm.2016.07.008 

32.  The TOP500 project. https://top500.org. 

33.  Molecular Simulation Design Framework (MoSDeF) Homepage. https://mosdef.org. 

34.  Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial 

configurations for molecular dynamics simulations. J Comput Chem. 2009;30(13):2157-

2164. doi:10.1002/jcc.21224 

35.  ParmEd — ParmEd documentation. http://parmed.github.io/ParmEd/html/index.html. 



Published February 18, 2018. Accessed April 18, 2018. 

36.  Eastman P, Swails J, Chodera JD, et al. OpenMM 7: Rapid development of high 

performance algorithms for molecular dynamics. Gentleman R, ed. PLOS Comput Biol. 

2017;13(7):e1005659. doi:10.1371/journal.pcbi.1005659 

37.  Eastman P, Pande VS. OpenMM: A Hardware Independent Framework for Molecular 

Simulations. Comput Sci Eng. 2015;12(4):34-39. doi:10.1109/MCSE.2010.27 

38.  O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: 

An open chemical toolbox. J Cheminform. 2011;3(1):33. doi:10.1186/1758-2946-3-33 

39.  Case DA, Belfon K, Ben-Shalom IY, et al. AMBER 2020. AMBER 2020 Reference Manual. 

40.  Abreu CRA. Playmol. https://github.com/atoms-ufrj/playmol. Published 2018. 

41.  Thompson MW, Gilmer JB, Matsumoto RA, et al. Towards molecular simulations that are 

transparent, reproducible, usable by others, and extensible (TRUE). Mol Phys. 

2020;0(0):e1742938. doi:10.1080/00268976.2020.1742938 

42.  NSF Award # CBET-1028374 Collaborative Research: CDI-Type II: Cyber-Enabled Design of 

Functional Nanomaterials. 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1028374. 

43.  NSF Award # ACI-1047828 - SI2-SSI: Development of an Integrated Molecular Design 

Environment for Lubrication Systems (iMoDELS) (PI: Cummings). 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1047828. 

44.  NSF Award # ACI-1535150 - SI2-SSE: Development of a Software Framework for 

Formalizing Forcefield Atom-Typing for Molecular Simulation (PI: Iacovella). 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1535150. 



45.  Institute for Software Integrated Systems. https://www.isis.vanderbilt.edu/. Accessed 

November 24, 2019. 

46.  Sztipanovits J, Karsai G. Model-integrated computing. Computer (Long Beach Calif). 

1997;30(4):110-111. 

47.  Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys. 

1995;117(1):1-19. doi:10.1006/jcph.1995.1039 

48.  Abraham MJ, Murtola T, Schulz R, et al. Gromacs: High performance molecular simulations 

through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-

25. doi:10.1016/j.softx.2015.06.001 

49.  Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: A Python package for high-performance 

molecular dynamics and hard particle Monte Carlo simulations. Comput Mater Sci. 

2020;173:109363. doi:10.1016/j.commatsci.2019.109363 

50.  Klein C, Sallai J, Jones TJ, Iacovella CR, McCabe C, Cummings PT. A Hierarchical, Component 

Based Approach to Screening Properties of Soft Matter. In: Snurr RQ, Adjiman CS, Kofke 

DA, eds. Foundations of Molecular Modeling and Simulation. Molecular Modeling and 

Simulation (Applications and Perspectives). Springer, Singapore; 2016:79-92. 

doi:10.1007/978-981-10-1128-3_5 

51.  mBuild Github repository. https://github.com/mosdef-hub/mbuild. Accessed August 17, 

2018. 

52.  Foyer Github repository. https://github.com/mosdef-hub/foyer. Accessed August 10, 

2020. 

53.  Iacovella CR, Sallai J, Klein C, Ma T. Idea Paper : Development of a Software Framework for 



Formalizing Forcefield Atom-Typing for Molecular Simulation. In: 4th Workshop on 

Sustainable Software for Science: Practice and Experiences (WSSSPE4). ; 2016. 

54.  Daylight Theory: SMARTS - A Language for Describing Molecular Patterns. 

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Published August 16, 

2017. Accessed April 18, 2018. 

55.  SimTK: OpenMM: Project Home. https://simtk.org/projects/openmm. Published February 

18, 2018. Accessed April 18, 2018. 

56.  Thompson MW, Matsumoto R, Sacci RL, Sanders NC, Cummings PT. Scalable Screening of 

Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. J Phys Chem 

B. 2019;123(6):1340-1347. doi:10.1021/acs.jpcb.8b11527 

57.  Osti NC, Matsumoto RA, Thompson MW, Cummings PT, Tyagi M, Mamontov E. 

Microscopic Dynamics in an Ionic Liquid Augmented with Organic Solvents. J Phys Chem C. 

2019;123(32):19354-19361. doi:10.1021/acs.jpcc.9b05119 

58.  Cui J, Kobayashi T, Sacci RL, Matsumoto RA, Cummings PT, Pruski M. Diffusivity and 

Structure of Room Temperature Ionic Liquid in Various Organic Solvents. J Phys Chem B. 

2020:submitted for publication. 

59.  NSF Award # OAC-1835874 Collaborative Research: NSCI Framework: Software for Building 

a Community-Based Molecular Modeling Capability Around the Molecular Simulation 

Design Framework (MoSDeF). 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1835874. 

60.  Striolo A, Chialvo AA, Cummings PT, Gubbins KE. Water adsorption in carbon-slit 

nanopores. Langmuir. 2003;19(20):8583-8591. doi:10.1021/la0347354 



 



AIC_17206_AIChE-20-23421-accepted-Figure1.tif



AIC_17206_AIChE-20-23421-accepted-Figure2.tif



AIC_17206_AIChE-20-23421-accepted-Figure3.tif



 
Simulation Codes 

Code Description Originator Website 
HOOMD-blue 
(Hierarchical Object 
Oriented MD) 

First MD code specifically written for high 
performance on GPUs. It has evolved into 
a general-purpose MD and MC particle 
simulation toolkit optimized for execution 
on both GPUs and CPUs. 

Joshua Anderson 
and Glotzer 
group14,15 

https://glotzerlab.engin.umich.edu/hoomd-
blue/index.html 

Cassandra MC code with focus on complex molecular 
systems (e.g., ionic liquids) 

Maginn group16 https://cassandra.nd.edu 

RASPA MC/MD code for simulating adsorption 
and diffusion of molecules in flexible 
nanoporous materials 

Snurr, 
Dubbeldam, 
Calero and Vlugt 
groups17 

https://www.iraspa.org/RASPA/ 

GOMC (GPU-
optimized MC)  

GPU-accelerated general purpose MC Potoff group18 http://gomc.eng.wayne.edu 

MCCCS-Towhee 
MCCCS-MN 

MC for complex chemical systems code 
with a focus on phase and adsorption 
equilibria 

Marcus Martin 
Siepmann group 

http://towhee.sourceforge.net  

Etomica Java-based MC/MD for use in education, 
with modules to demonstrate molecular 
basis for many phenomena 

Kofke group19 http://www.etomica.org/app/modules/ 

Other Utilities 
iRASPA GPU-accelerated visualization package Snurr, 

Dubbeldam, 
Calero and Vlugt 
groups17 

https://www.iraspa.org/index.html 

freud Library for analyzing MD/MC simulation 
trajectories for metrics such as the radial 
distribution function and various order 
parameters 

Glotzer group20 https://freud.readthedocs.io/en/stable/ 
 

signac/signac-flow Framework to manage and scale large 
simulation workflows, facilitating data 
reuse, sharing, and reproducibility. 
 

Glotzer group21 https://signac.io, https://docs.signac.io/en/latest/  

MoSDeF (Molecular 
Simulation Design 
Framework) 

Python-based software package for 
building complex molecular systems, 
applying forcefields, and generating input 
files for various simulation engines 

Cummings and 
McCabe groups22–
24 

https://mosdef.org 

COSMO-SAC 
(COnductor-like 
Screening Model-
Segment Activity 
Coefficient) 
 

Package to predict activity coefficients 
from quantum chemistry calculations for 
use in phase equilibria calculations 
relevant to chemical engineering 
separations 

Sandler, Lin and 
Bell groups25,26 

https://github.com/usnistgov/COSMOSAC 
 

pysimm (python 
simulation interface 
for molecular 
modeling) 

Python package for facilitating building of 
amorphous polymer systems and 
application of force fields 

Colina group27 https://pysimm.org, 
https://github.com/polysimtools/pysimm  

pyprism (python-
based Polymer 
Reference 
Interaction Site 
Model (PRISM)) 
 

Python-based, open-source framework 
for conducting PRISM theory calculations, 
with a user-friendly scripting interface for 
setting up and numerically solving the 
PRISM equations 
 

Jayaraman 
group28,29 

https://pyprism.readthedocs.io/en/latest/ 
 

Notable Open-Source Codes Emerging from other Chemical Engineering Communities 
GNU OCTAVE C++-based open-source high-level 

language, primarily intended for numerical 
computations; compatible with MATLAB 

John W. Eaton https://www.gnu.org/software/octave/  

DWSIM5 Mixed code open-source chemical 
process simulator, compatible with the 

Daniel Medeiros 
 

https://github.com/DanWBR/dwsim5 

https://glotzerlab.engin.umich.edu/hoomd-blue/index.html
https://glotzerlab.engin.umich.edu/hoomd-blue/index.html
https://www.iraspa.org/RASPA/
http://gomc.eng.wayne.edu/
http://towhee.sourceforge.net/
https://www.iraspa.org/index.html
https://freud.readthedocs.io/en/stable/
https://signac.io/
https://docs.signac.io/en/latest/
https://mosdef.org/
https://github.com/usnistgov/COSMOSAC
https://pysimm.org/
https://github.com/polysimtools/pysimm
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpyprism.readthedocs.io%2Fen%2Flatest%2F&data=02%7C01%7Cpeter.cummings%40vanderbilt.edu%7C3ae40f251a6d426a9a9008d845ed241b%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C637336232095367747&sdata=PRBG1T2xLfk4FbeaiT0GzOT9i%2FiOEwJDjzyBbcStB5g%3D&reserved=0
https://www.gnu.org/software/octave/


CAPE-OPEN standards for 
interoperability (https://www.colan.org) 
 

 
Table 1. Examples of open-source molecular simulation codes and related supporting utilities 

developed within the chemical engineering molecular modeling community. Website links 
are to home pages of the codes or to code repositories. In addition, several other open-source 
codes emerging from the chemical engineering community are highlighted. 

 



AIC_17206_AIChE-20-23421-accepted-Table of Contents Figure.tif


	1. Background
	2. Development of molecular simulation tools in the chemical engineering community

	3. Molecular Simulation Design Framework (MoSDeF)
	3.1. mBuild
	3.2. Foyer
	3.3. General Molecular Simulation Object (GMSO)
	3.4. Computational Screening and Automation using MoSDeF
	3.5  Expanding MoSDeF
	3.6  Future Directions and Challenges
	4. Summary and Conclusions

	Literature Cited



