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40 Abstract

41 Disentangling the drivers of diversity gradients can be challenging. The Measurement of 

42 Biodiversity (MoB) framework decomposes scale-dependent changes in species diversity into 

43 three components of community structure: the species abundance distribution (SAD), the total 

44 community abundance, and the within-species spatial aggregation. Here we extend MoB from 

45 categorical treatment comparisons to quantify variation along continuous geographic or 

46 environmental gradients. Our approach requires sites along a gradient, each consisting of 

47 georeferenced plots of abundance-based species composition data. We demonstrate our method 

48 using a case study of ants sampled along an elevational gradient of 28 sites in a mixed deciduous 

49 forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed that decreases 

50 in ant species richness along the elevational gradient were associated with decreasing evenness 

51 and total number of species which counteracted the modest increase in richness associated with 

52 decreasing spatial aggregation along the gradient. Total community abundance had a negligible 

53 effect on richness at all but the finest spatial grains, SAD effects increased in importance with 

54 sampling effort, while the aggregation effect had the strongest effect at coarser spatial grains.  

55 These results do not support the more-individuals hypothesis, but they are consistent with a 

56 hypothesis of stronger environmental filtering at coarser spatial grains. Our extension of MoB has 

57 the potential to elucidate how components of community structure contribute to changes in 

58 diversity along environmental gradients and should be useful for a variety of assemblage-level 

59 data collected along gradients.
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60 Keywords: scaling, species-abundance distribution, more-individuals hypothesis, patchiness, beta 

61 diversity, biodiversity change

62 Introduction

63 A critical limitation of most studies examining patterns of biodiversity along ecological or 

64 biogeographic gradients is that the most common measure of biodiversity--species richness--is 

65 limited in its utility for differentiating between several competing hypotheses that contribute to 

66 spatial variation in biodiversity. This limitation arises for two related reasons: (1) species richness 

67 is sensitive to the relative abundances of different species, the absolute numbers of individuals in 

68 a community, as well as their spatial distribution; (2) species richness depends on spatial scale in 

69 a non-linear way (Rahbek, 2005; Chase et al., 2018; McGlinn et al., 2019). 

70 Examining variation in the total and relative abundance, as well as the spatial distribution 

71 of species along environmental gradients provides information that allows for distinguishing 

72 among drivers of biodiversity. For example, species richness is typically a positive function of the 

73 amount of energy that enters an ecosystem. One prominent hypothesis for this relationship is that 

74 the energy input into an ecosystem leads to increases in the numbers of individuals, which in turn 

75 supports higher species richness (Wright 1983, Evans et al. 2008). Under this ‘more-individuals 

76 hypothesis’ (Srivastava and Lawton 1998) changes in species richness would be expected to be 

77 closely linked to changes in total numbers of individuals but not changes in species relative 

78 abundances or their spatial distributions if only sampling effects are operating (Storch et al. 

79 2018). In contrast, if higher energy decreased competitive exclusion then changes in richness 

80 could be linked to changes in the relative abundance of species rather than the total number of all 

81 individuals (Evans et al. 2005, Hurlbert and Jetz 2010). Additionally, if energy changes the spatial 

82 pattern or relevance of environmental heterogeneity then species spatial structure would be 

83 expected to change. As a result, data and analyses that explicitly incorporate abundances of 

84 species and their spatial distribution across scales, rather than just a single scale-agnostic measure, 

85 can provide deeper insights into the potential underlying causes of variation in biodiversity. 

86 The Measurement of Biodiversity (MoB) framework (Chase et al., 2018; McGlinn et al., 

87 2019) was developed to explicitly dissect the abundance and distribution patterns that underlie 

88 changes in species richness. Specifically, MoB decomposes variation in richness into the 

89 contributions from three components of community structure: 
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90 1. species abundance distribution (SAD) (including evenness and the size of the species pool). 

91 Communities that are sampled from species pools with higher evenness and/or more total 

92 species will have higher richness all else being equal. 

93 2. the community-level density of individuals (N); simply by sampling more individuals from a 

94 species pool, more species will be found; 

95 3. Within-species spatial aggregation (aggregation). When individuals of particular species are 

96 clustered (clumped) in the community, local species richness will typically be lower compared 

97 to a community in which individuals are randomly or over-dispersed on the landscape. 

98 These three components are largely sufficient for predicting many macroecological patterns of 

99 species richness (McGill 2010) and thus provide an important starting point for deciphering 

100 biodiversity patterns (see also He and Legendre 2002, Chase and Knight 2013). If species 

101 richness differs from one site to another, it does so because the SAD, N, and/or aggregation of 

102 species changes between those sites. It is important to note that directionality of causality between 

103 richness and these community components cannot necessarily be assumed a priori however 

104 (Storch et al. 2018). 

105 As it was originally developed (Chase et al. 2018, McGlinn et al. 2019), MoB consists of 

106 two complementary analyses for examining if a discrete explanatory variable (e.g., an 

107 experimental treatment like the presence or absence of a top predator) influences biodiversity: the 

108 two-scale, multimetric analysis and the multiscale, richness analysis. However, discrete variables 

109 are not the only variables that influence variation in species richness. Species richness often varies 

110 along continuous gradients as well, such as gradients in temperature, latitude, or elevation. It is 

111 straightforward to extend the two-scale, multimetric MoB which uses a collection of traditional 

112 diversity metrics to gradients using regression analyses (Blowes et al. 2017). However, these 

113 discrete-scale, multimetric MoB analyses ignore potentially complex patterns of scale 

114 dependence, and they do not provide a direct quantitative decomposition of component 

115 contributions to changes in species richness. Moreover, interpreting a collection of metrics is 

116 challenging even when those metrics are carefully chosen to reflect different components of 

117 community structure (Chase et al. 2018).  In contrast, multiscale MoB provides a framework for 

118 uncovering complex patterns of scale dependence in species richness by using a range of scales 

119 rather than just two. These scale-dependent changes can be related to specific components of 

120 community structure by considering what information about the community is used in the 
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121 definition of a specific rarefaction curve. Lastly, the interpretation of multiscale MoB analysis is 

122 more straightforward because the relative magnitude of the relationships between the different 

123 components of richness can be compared since they have the same units (number of species).

124 Here, we outline an extension of multiscale MoB for decomposing species richness along 

125 continuous geographical or environmental gradients. We provide a conceptual overview and 

126 exposition within the mobr v2.0.0 R package (McGlinn et al. 2020) to dissect the influence of the 

127 components of species richness (N, SAD, and aggregation) across ecological gradients. We apply 

128 the approach to a case study on spatial variation in ant diversity along an elevational gradient in 

129 the southern Appalachian mountains (USA)(from Sanders et al., 2007). We demonstrate that the 

130 application of multiscale MoB quantifies how changes in the SAD, N, and aggregation contribute 

131 to the multiscale pattern of richness change along gradients. 

132 Methods

133 To illustrate the motivation and the method of extending the multiscale MoB framework, it is 

134 helpful to consider three simple scenarios (Fig. 1) where a single component of community 

135 structure is responsible for variation in species richness along a gradient. For example, richness 

136 may decline along a gradient due to a decrease in evenness (Fig. 1A, referred to as the SAD 

137 effect), a decrease in the number of individuals (Fig. 1B, N effect), or increased aggregation (Fig. 

138 1C, aggregation effect). In reality, changes in species richness along a gradient is likely caused by 

139 changes in more than one of these components of community structure. Nevertheless, this simple 

140 example illustrates three key points: 1) species richness can change at one scale (plot scale) but 

141 not another (site scale), 2) species richness can change in apparently similar ways due to very 

142 different changes in the underlying components, and 3) a more direct focus on changes in these 

143 components across scales can elucidate their underlying contributions to changes in species 

144 richness.

145 Each of our simple scenarios show a decrease in plot-scale species richness along the 

146 gradient, and next we show how our extension of the multiscale MoB framework can quantify 

147 how each  component of community structure contributes to changes in S across scales (Fig. 2). 

148 We define scale as the number of samples (i.e., “plots”) or the number of individuals accumulated 

149 (McGill 2011). Multiscale MoB takes advantage of the unique information captured by three 

150 different types of rarefaction curves (Fig. 2): 
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151 ● Spatial, sample-based rarefaction (sSBR) is the accumulation of species by collecting the 

152 closest plots first. All possible focal samples are considered and the resulting curves are 

153 averaged over (Fig. 2). The sSBR reflects information on aggregation, N, and the SAD, 

154 and it can be thought of as a nested species-area relationship over a contiguous or non-

155 contiguous area.

156 ● Non-spatial, sample-based rarefaction (nsSBR) is the number of species given k plots in 

157 which all N individuals are randomly re-assigned to plots while maintaining observed 

158 individual density (Fig. 2). The nsSBR reflects variation in both N and the SAD.

159 ● Individual-based rarefaction (IBR) is the number of species given a random sample of n 

160 individuals out of N total individuals (Fig. 2). The IBR only reflects variation in the SAD.

161 Combining these curves allows us to dissect out the contribution of each component to changes in 

162 the S across a range of scales less than the maximum spatial grain considered (Fig. 2). The 

163 difference between the sSBR and the nsSBR quantifies how changes in aggregation contribute to 

164 changes in S (i.e., the aggregation effect); the difference between the nsSBR and the IBR reflects 

165 how changes in N contribute to changes in S (i.e., the N effect); and by eliminating N and 

166 aggregation effects, the IBR shows how changes to the SAD covary with S (Fig. 2). 

167 In the simple scenario in which only the SAD changes along the gradient (Fig. 1A), the 

168 IBRs diverge as sampling effort increases (Fig. 3A, gradient location represented by dark blue to 

169 light blue line colors, as in Fig. 1). Because the IBRs diverge, the strength of the detected SAD 

170 effect increases with effort (Fig. 3B). We can estimate the relationship between the gradient and 

171 the SAD effect on S using linear models (or non-linear if more appropriate; Fig. 3B, only three 

172 scales shown for clarity) that allow us to quantify whether the strength of this relationship shows 

173 scale-dependence (Fig. 3C). The scale-dependence of the SAD effect may be particularly strong if 

174 the IBR curves from different points along the gradient intersect. In such cases the SAD effect 

175 may shift from positive at small scales to negative at large scales, for example, which would 

176 indicate changes in both evenness and species pool size. Alternatively, the SAD may not change 

177 along the gradient. In this case, the IBR curves for different points along the gradient would lie on 

178 top of each other: the SAD effect would be zero everywhere, have no relationship to the gradient 

179 and make no contribution to any changes to richness observed along the gradient.

180 If only N changes across the gradient (e.g., decreasing N in the illustrated scenario, Fig. 

181 1B), the nsSBRs vary along the gradient (Fig. 3D), but not the IBR and the sSBR curves (not 
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182 shown). As with the SAD effects, we can model the relationship between the N effect (i.e., the 

183 difference between the nsSBR and IBR, Fig. 2) and the gradient across spatial grains (Fig. 3E). 

184 The net result on S is shown in Fig. 3F, where the decrease in N along the gradient is captured as a 

185 negative slope. 

186 Finally, if only species aggregation changes along the gradient, the sSBRs will vary along 

187 the gradient (Fig. 3G), but not the other two rarefaction curves (IBR and nsSBR not shown). In 

188 the simple scenario we considered plot scale S decreases along the gradient as spatial clustering 

189 increases (Fig. 1C). Spatial clustering causes fewer species to be accumulated than expected 

190 under a random spatial distribution (i.e., a negative aggregation effect, Fig. 3H). In this scenario, 

191 the strength of aggregation is most negative at fine spatial scales indicating that species clustering 

192 primarily influences local scale richness (Fig. 3I). Note that regardless of the specific scenario 

193 considered in a balanced experimental design (i.e., same number of subplots at each site along the 

194 gradient), the effect of aggregation must converge on zero at the maximum sampling effort (i.e., 

195 all plots collected) because at this scale the sSBR must be identical to the nsSBR (McGlinn et al. 

196 2019). 

197 In summary, we have extended the multiscale MoB comparisons between categorical 

198 treatments to continuous gradients. This can be thought of as extending MoB from a t-test to a 

199 regression analysis. We have released a new version of the mobr R package (McGlinn et al. 2020) 

200 to carry out the following steps of the gradient analysis we described above:

201 1. Compute three rarefaction curves that capture different information on the influence of N, 

202 the SAD and aggregation for each set of samples (i.e., a site) along the gradient of interest: 

203 IBR, nsSBR, and sSBR (Fig. 3A, D, G respectively).

204 2. Compute the differences between rarefaction curves at each site along the gradient.  N 

205 effect =  nsSBR - IBR (Fig. 3E); aggregation effect =  sSBR - nsSBR (Fig. 3H). Note that 

206 the SAD effect is calculated directly from the IBR, i.e., it is equal to S for a given 

207 sampling effort at a given point along the gradient (Fig. 3A and B). 

208 3. Model the relationship between the gradient and the estimates of the SAD, N, and 

209 aggregation effects (Fig. 3B, E, H).

210 4. Examine how the rate of change in the gradient and the effect (i.e., slope of model) vary 

211 with sampling effort. (Fig. 3C, F, I).
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212 5. Compare the observed results to randomization-based null models (described in McGlinn 

213 et al. 2019) for each component of community structure (i.e., SAD, N, and aggregation; 

214 Fig. 3C, F, I) to examine if the effects and their relationship to the gradient are different 

215 than expected from a null expectation. 

216 In our simple example, S decreases monotonically along the gradient, as it often does along 

217 environmental gradients. And using the MoB approach, we estimate how each component of 

218 community structure - N, SAD, and aggregation – is associated with the richness gradient. 

219 Although our simple examples only showed richness gradients corresponding to changes in a 

220 single component of community structure, it is likely that more than one component will change 

221 along richness gradients in real communities. A sensitivity analysis suggested that the multiscale 

222 MoB approach can reliably detect the signature of simultaneous changes in multiple components 

223 of community structure on S (McGlinn et al. 2019). 

224 Data requirements

225 The cartoon in Fig. 1 illustrates the basic data requirements to use MoB to explore variation in S 

226 along gradients. Obviously, sampling sites must be distributed along an environmental gradient. 

227 At each sampling site, there must be a collection of several (≥5) geo-referenced samples that 

228 contain data on the abundances and identities of each species in a sample. It is not necessary for 

229 the sampling design to have the same number of samples at each site along the gradient, but the 

230 sSBR should be truncated to the smallest common number of samples per site across the gradient 

231 (to minimize any influence of spatial extent). Similarly, the IBR and the nsSBR should be 

232 truncated to the smallest number of individuals observed and therefore sites (not necessarily 

233 samples) should have enough individuals so that rarefaction results are meaningful - differences 

234 in rarefaction curves are constrained to be small at low sample sizes. It is also important that the 

235 spatial grain and spatial arrangement of plots is consistent along the gradient. Otherwise the 

236 investigator runs the risk that the variation in sampling design is responsible for changes in the 

237 components of community structure. If a given sampling design is not consistent among sites 

238 along a gradient, then it may be necessary to subset the samples so that sites along the gradient 

239 have comparable spatial extents. It is more important to ensure a constant extent across sites than 

240 a balanced design when using rarefaction curves to compare biodiversity. Although there may be 

241 slight differences in their numbers and spatial arrangement, it is more important that samples are 

242 standardised across all sites so they relate to a constant unit of effort (e.g., area). 
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243 Case study 

244 To demonstrate our new methods we use data from Sanders et al (2007) who examined 

245 spatial variation in richness along an elevational gradient (379–1742 m) in the Great Smoky 

246 Mountains National Park, USA. Sanders et al. (2007) collected ant samples from each site along 

247 the elevational gradient by visiting each site once between June–August in 2004-2006 when ants 

248 in the national park are typically most active (Dunn et al., 2007b). All sites were located in mixed 

249 hardwood forests and away from any area of recent human disturbance. We removed one site (site 

250 code = “NODI”) which only contained 6 individuals across the 16 samples, resulting in a dataset 

251 of 28 sites. 

252 At each site, data come from a randomly placed 50 × 50 m plot, from which 16 1-m2 

253 quadrats were arranged in a nested design: 10 x 10 m subplots were placed in the corners of each 

254 50 x 50 m plot, and 1-m2 quadrats were placed in the corners of each 10 x 10 m subplot, for a 

255 total of 16 1-m2 quadrats per site. Ants were sampled by collecting all leaflitter within each 

256 quadrat and sifting through it with a coarse mesh screen (1-cm grid) to remove the largest 

257 fragments and concentrate the fine litter. Concentrated litter from each quadrat was then put in its 

258 own mini-Winkler sack for 2 days in the lab. Winkler samplers are common and efficient for 

259 quantifying ant abundance and diversity (Fisher 2005). After 2 days, all worker ants were 

260 extracted and enumerated. The data for this reanalysis was published to Dryad (Sanders et al. 

261 2020). The code and data are also available as an online supplement (DataS1.zip, as described in 

262 MetadataS1.pdf).  

263 Here we will primarily focus on the insights gained from the multiscale MoB analysis. 

264 However, to clarify the added insights gained with our new method, we first discuss the results of 

265 a multimetric MoB analysis, which uses a collection of traditional diversity metrics (Appendix 

266 S1). Multimetric MoB reveals that at the site scale species richness and total number of 

267 individuals decreases with elevation (these effects were not as strong at the quadrat scale, 

268 Appendix S1: Fig. S1, S2A). However, rarefied richness which controls for site specific 

269 differences in number of individuals also decreases with elevation (Appendix S1: Fig. S2B), 

270 which indicates that although density effects cannot be ruled out, they do not provide a complete 

271 explanation for why richness is lower at higher elevations. A metric of evenness decreases with 

272 elevation (Appendix S1: Fig. S2C), while a metric of beta-diversity thought to reflect spatial 

273 aggregation did not change along the elevational gradient (Appendix S1: Fig. S2F). The 
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274 multimetric analysis suggests that at higher elevations richness is lower, and that it may be related 

275 to the lower density of individuals (N effects) and lower evenness (SAD effects), but it is not due 

276 to increased spatial clustering (aggregation effects). This analysis also suggests that diversity 

277 displays scale dependent responses to elevation because several of the trends with elevation were 

278 weaker at the quadrat scale than at the site scale. Next we demonstrate that the multiscale MoB 

279 analysis provides a more direct, quantitative multiscale decomposition of changes in richness with 

280 elevation that implicates different components of community structure.

281 We deployed the full multiscale MoB analysis using mobr (Fig. 4). The sSBRs show a 

282 general trend of higher S at lower elevations (Fig. 4A, darker curves), but the shape of these 

283 curves varied with spatial scale (x-axis). Note that many of the sSBRs cross at intermediate scales 

284 indicating that the ranking of site diversity across elevations depends on scale. The nsSBR curves, 

285 from which spatial aggregation has been removed, also tend to show that the lower elevation sites 

286 have higher S (Fig. 4B). Again, many of these nsSBR curves cross at intermediate scales (Fig. 

287 4B) indicating scale-dependence. Finally, the IBRs showed qualitatively similar patterns to the 

288 nsSBRs.

289 The aggregation effects were predominantly negative because species richness was lower 

290 than expected due to spatial clustering across the gradient (Fig. 4D). Additionally, aggregation 

291 effects display a positive relationship with elevation (Fig. 4D), which indicates that spatial 

292 clustering was weaker at higher elevations. The relationship between the aggregation effect on 

293 richness and elevation was strongest at coarser spatial grains but indistinguishable from the null 

294 model at the largest spatial grains (Fig. 4G). Although the effect of aggregation on richness was 

295 statistically significant it was relatively modest. The magnitude of the largest aggregation slope 

296 was 0.0007 species per meter, which equates to a gain of half a species associated with decreased 

297 spatial clustering across the approximately 1000 meters of elevation covered by the gradient. 

298 The N effects were also predominantly negative. This indicates that richness was lower at 

299 most sites than would be expected if the total number of individuals was uniform across the 

300 gradient (Fig. 4E). This effect was negatively correlated with elevation indicating that higher 

301 elevation sites had lower richness due to having fewer individuals (Fig. 4E, Appendix S1: Fig. 

302 S1), but this was only true at the finest spatial scale (Fig. 4H). This means that when we consider 

303 the multiscale nature of the N effect, it is clear that low elevation sites were not more species rich 

304 simply because they have more individuals. Lastly, richness values from random sub-sampling of 
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305 the observed SADs (i.e., the SAD effects) were lower at high elevations because these sites had 

306 lower evenness and/or fewer total number of species (Fig. 4F).  The strength of this negative 

307 relationship increased as coarser sampling scales were considered (Fig. 4I), where for a 1000 m 

308 change in elevation, an average of 3 fewer species occurred in quadrats at high elevation sites. 

309 Using the multiscale MoB analysis we found that the Smokies ant elevational diversity 

310 gradient is largely associated with changes in the SAD and aggregation effects across elevation.  

311 Interestingly, these two components of community structure change in counteracting ways along 

312 the gradient. However, there are more species lost with elevation as a result of the change in 

313 evenness and species pool size than gained through the change in spatial structure, especially at 

314 larger scales. Consequently, we find a scale-dependent net decline of species richness with 

315 elevation (see Appendix S1). 

316 Discussion

317 Diversity gradients are rich testing grounds for ecological theory. However, the most 

318 common metric of diversity, species richness, may respond similarly to different processes and 

319 thus cannot provide unambiguous tests. Our extension of the MoB analysis to continuous 

320 explanatory variables allows us to decompose diversity gradients into the effects of the different 

321 components--evenness, density or spatial aggregation--changing along the gradient. By 

322 quantifying the contribution of changes in these components to changes in richness, we can 

323 provide more powerful tests of ecological hypotheses. 

324 An example is the dataset on ants that we described above. One major feature that varies 

325 along elevational gradients is the amount of energy available to species. In species-energy theory, 

326 the more-individuals hypothesis (Wright 1983, Srivastava and Lawton 1998, Storch et al. 2018) 

327 proposes that richness should be linked to N effects. In the ant dataset we examined, however, we 

328 found little support for this hypothesis. Although there was a decrease at the site scale in total ant 

329 abundance with increasing elevation (Appendix S1: Fig. S1), this reduction in N was not 

330 associated with decreases in species richness across at all but the finest spatial scale (Fig. 4H). 

331 Instead, we found that declines in richness at higher elevations were primarily associated with 

332 decreases in evenness and total number of species, and to a lesser degree with decreases in spatial 

333 clustering. Many hypotheses can be linked to shifts in the SAD and spatial aggregation we 

334 observed (e.g., changes in competitive dominance, dispersal limitation, and/or environmental 

335 filtering) and information beyond what our analysis considers would be necessary to more fully 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://www.zotero.org/google-docs/?GwGxxh


This article is protected by copyright. All rights reserved

336 differentiate these hypotheses. For the same dataset, Machac et al. (2011) found that ant species in 

337 higher elevations were more closely related than expected by chance, which they interpreted as a 

338 signal of stronger environmental filtering due to low temperatures at high elevations. Our analysis 

339 using multiscale MoB is consistent with this hypothesis. If only a few cold tolerant species exist 

340 in high elevations then this could explain why the SADs of the high elevation sites had fewer total 

341 species and lower evenness. It also seems reasonable that this mechanism could be responsible for 

342 the decrease in spatial clustering at high elevations (species may be less spatially clustered in 

343 environments in which they are competitively superior). However, without data on microhabitat 

344 features and species traits we are unable to rule out the possibility that higher elevations simply 

345 have less subsite environmental heterogeneity or that the cold tolerant species have evolved 

346 different foraging or social behaviors that result in less clumped spatial distributions. 

347 More generally, decomposing richness into its components along ecological gradients may 

348 help provide resolution to apparently discordant empirical patterns of richness. For example, little 

349 consistency has emerged from some of the most well-studied ecological gradients of species 

350 richness, such as those along disturbance gradients (Mackey and Currie 2001, Svensson et al. 

351 2012) and productivity gradients (e.g., Mittelbach et al. 2001, Adler et al. 2011). Some of the 

352 variation observed along these gradients is most certainly due to differences in the scales in which 

353 observations are taken (e.g., Rahbek 2005, Chase et al. 2018), but much of the variation could be 

354 due to the differential influence of these gradients on the components of species richness, such as 

355 on the density of individuals, the SAD or aggregation. By examining how these components 

356 change along gradients in a more consistent way, we can begin to achieve greater synthesis than is 

357 currently possible with information only on species richness.

358 The multiscale version of MoB that we have extended here has important advantages over 

359 traditional analyses of collections of diversity metrics along gradients (e.g., multimetric MoB). 

360 For example, the results of the multimetric MoB (Appendix S1) largely reflected a 

361 complementary subset of the multiscale MoB findings with some important exceptions: 1) 

362 multimetric MoB found no evidence of aggregation effects whereas multiscale MoB did; 2) 

363 multimetric MoB could not rule out N effects completely, while multiscale MoB demonstrated 

364 this depended on scale; 3) multimetric MoB provided a collection of trends in different metrics, 

365 whereas multiscale MoB related all trends back to change in species richness, arguably the most 

366 intuitive and popular metric of biodiversity. 
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367 While the gradient version of multi-scale MoB provides an important advance over the 

368 previous version that was only able to compare among categorical variables, there are many more 

369 directions in which the framework could be extended further. For example, both MoB analyses 

370 examine spatial scaling of subplots but cannot, in their current form, address scaling patterns 

371 between sites (i.e., sets of subplots). MoB also relies on species abundance data so that 

372 rarefactions can be performed. Often such data are unavailable, though presence-absence data are 

373 available. For such cases, it should be straightforward to apply MoB to presence-absence data 

374 with a goal to partition changes in richness due to occupancy and spatial aggregation (see e.g., 

375 Tjorve et al., 2008 for a similar approach using presence-absence data). Additionally, for some 

376 taxa, separation into individuals is difficult if not impossible, and relative abundance data are 

377 instead available as estimates of visual cover or biomass. It is less clear how to interpret MoB 

378 metrics when using cover or biomass, which in many communities may not be correlated with 

379 numbers of individuals. Finally, although we applied our approach using linear models of 

380 diversity change along a single explanatory variable (e.g., elevation), a logical next step would be 

381 to consider a multiple regression framework in which the partial effects of several variables are 

382 considered simultaneously, as well as to include the potential for non-linear effects. 
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448 Figures Captions

449 Figure 1. Cartoon communities from three sites arranged along a gradient (color gradient from 

450 dark blue to light blue) in three simple scenarios in which only the A) SAD, B) N, or C) 

451 aggregation shifts along the gradient. The large boxes represent sites, the small boxes represent 

452 plots, and the different symbols represent individuals of different species. 

453

454 Figure 2. The three rarefaction curves compared at one site along a gradient in which this 

455 particular site has lower individual density than an average site on the gradient (i.e., a negative N 

456 effect is illustrated here). The individual-based rarefaction (IBR) is a direct expression of the SAD 

457 (yellow line). The non-spatial, sample-based rarefaction (nsSBR) reflects both the SAD and 

458 variation in N, thus the difference between the nsSBR and the IBR provides an estimate of the N 
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459 effect (light green area). The spatial, sample-based rarefaction (sSBR) also takes spatial position 

460 into consideration, thus the effect of spatial aggregation is the difference between the sSBR and 

461 the nsSBR (light blue area). Note that the nsSBR must eventually intersect the IBR and sSBR at 

462 this site (i.e., all curves converge to the same total S once enough effort is considered).

463

464 Figure 3. The three sets of hypothetical results illustrating the MoB multiscale approach using the 

465 cartoon communities considered in Fig. 1. Panels A, D, G display three types of rarefaction 

466 curves which detect different components of community structure (for clarity only the relevant 

467 rarefaction curves are shown to detect the component of community structure known to have 

468 shifted). IBR = individual-based rarefaction, nsSBR = non-spatial, sample-based rarefaction, and 

469 sSBR = spatial, sample-based rarefaction. For each type of rarefaction curve three curves are 

470 computed at each site along the gradient (colored dark blue to light blue as in Fig. 1). Three 

471 sampling efforts (orange vertical lines in panels A, C, D, F, G, I and points in B, E, H) are 

472 highlighted to emphasize that the variation in the curves (i.e., effect sizes) change with scale. 

473 Panels B, E, H display the strength of the SAD, N, and aggregation effects (in units of species) 

474 respectively on S plotted against the gradient. Regression lines are fit to the relationship between 

475 effect size and the gradient, and the strength (the estimated regression slope) of those fits are 

476 plotted in panels C, F, I as a function of sampling effort. The dashed line denotes zero effect (B, 

477 E, H) or slope (C, F, I, the null expectation).

478

479 Figure 4. Multiscale analysis for the ant communities. A) The spatial, sample-based rarefaction 

480 (sSBR), B) the non-spatial, sample-based rarefaction (nsSBR), and C) the individual-based 

481 rarefaction (IBR) all expressed against number of individuals where each curve was constructed 

482 from a different site along the elevational gradient (black to blue lines). Panels D-F, show the 

483 regression lines of the linear model of ΔS ~ elevation (m) at each sampling scale (light orange to 

484 dark orange lines) due to D) aggregation (agg), E) density (N), and F) species abundance 

485 distribution (SAD) effects. Note that the sampling effort color gradient is log transformed. Panels 

486 G-I, show how the OLS slope for each component of community structure changes across 

487 sampling efforts (range varies across panels) relative to null model expectations (grey polygon is 

488 the 95% quantile of the null model). 

489  
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