Supplementary Information

A recently isolated human commensal *Escherichia coli* ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage derived IncY plasmid

running title: characterization of an E. coli K-12 clade member

Shady Mansour Kamal^{1,2}, Annika Cimdins-Ahne³, Changhan Lee^{1,*}, Fengyang Li¹, Alberto J. Martin-Rodriguez¹, Zaira Seferbekova^{4,5}, Robert Afasizhev⁴, Haleluya Tesfaye Wami³,

Panagiotis Katikaridis⁶, Lena Meins⁶, Heinrich Lünsdorf⁷, Ulrich Dobrindt³, Axel Mogk⁶, Ute Römling¹

¹Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden

²Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt

³Institute of Hygiene, University of Münster, Münster, Germany

⁴Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia

⁵Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia

⁶Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany

⁷Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany

^{*}Current address: Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, US

Table of content - Supplementary Information

Supplementary figures

FIGURE S1 Phylogenetic analysis, gene synteny and sequence homology of E.	coli Fec10 and
pFec10.	Page 3
FIGURE S2 Biofilm phenotype of <i>E. coli</i> Fec10.	Page 5
FIGURE S3 Genetic map of TLPQC in E. coli Fec6 and Fec10 strains.	Page 7
FIGURE S4 Heat shock tolerance of <i>E. coli</i> fecal isolates and derivatives.	Page 8
FIGURE S5 Phylogenetic analysis of $ClpG_{GI}$ proteins.	Page 9
FIGURE S6 Sequence variations within ClpG _{GI} proteins.	Page 10
FIGURE S7 Purification of ClpG _{GI-Fec10} .	Page 12
FIGURE S8 ClpG _{GI-Fec10} disaggregase restores activity of heat-treated MDH	independent of
accessory chaperons.	Page 13
FIGURE S9 Secondary structure analysis and melting temperature curves for Cl	pB _{K-12} , ClpG _{GI-}
SG17M and ClpG _{GI-Fec10} .	Page 14
FIGURE S10 Ability of overexpressed $ClpG_{GI-SG17M}$ and $ClpG_{GI-Fec10}$ to complement of the comp	nent $clpG_{GI}$ and
dna - $shsp20_{GI}$ - $clpG_{GI}$ mutants of E. coli Fec10 upon exposure to lethal heat.	Page 16

Supplementary tables

TABLE S1 Coding sequences on plasmid pFec10	Page 17
TABLE S2 Identified IS elements on pFec10	Page 26
TABLE S3 Primers used in this study	Page 27

Supplementary experimental procedures

Genome characterization and bioinformatic analyses	Page 29
Transmission electron microscopy	Page 30

REFERENCES	Page 31
	U

Figure S1 Phylogenetic analysis, gene synteny and sequence homology of E. coli Fec10 and pFec10. A) Phylogenetic relationship of the genomes of selected closely related E. coli strains based on single nucleotide polymorphism (SNP) variant calling on 77.44% (3.269 Mbp) of the E. coli MG1655 core genome. In red=E. coli Fec10, sequence type ST10; orange=E. coli Fec6, sequence type ST399; blue=ancient E. coli reference strains. ECOR=E. coli strains from the E. coli reference collection. All strains are ST10, besides a=ST1721; b=ST93; c=ST3021; d=phylogroup B1, ST1079. Green=reference strain E. coli K-12 MG1655; outgroup E. coli Tob1 (phylogroup B2, ST2650). Bootstrap value=1, if not indicated otherwise. Tree visualized with iTOL https://itol.embl.de/ (Letunic and Bork 2016). B) Gene synteny of the E. coli Fec10 chromosome compared with E. coli K-12 MG1655 and E. coli NCTC86. Figure has been created with Easyfig (Sullivan, Petty and Beatson 2011). C) Homologous regions between pFec10 and most closely related phages P1 and SJ46. pFec10 has been normalized to the origin of replication. The graphical display of the nucleotide sequences aligned with tBLASTx using standard parameters was drawn with Circoletto (Darzentas 2010). D) Homologous regions between pFec10 and plasmid pSEE of Salmonella enterica subsp. enterica serovar Senftenberg ATCC43845. The graphical display of the nucleotide sequences aligned with tBLASTx using standard parameters was drawn with Circoletto (Darzentas 2010).

Figure S2 Biofilm phenotype of *E. coli* Fec10. (A-D) Transmission electron microscopy of sections of Fec10 rdar morphotype colonies. (A, B) Arrangement and extracellular matrix of bacterial cells that grow at the colony rim (bars: 2 μ m). (C) Detailed view of bacterial cells, which are situated less peripheral, near the colony-air interface (bar: 500 nm). (D) Bacterial cells, less peripheral, at the colony-agar interface (bar: 2 μ m). Extracellular matrix (#) is present around the bacterial cells. Dilated periplasmic space (*) is mainly visible with cells of colony 'non-rim' areas. Arrows indicate electron translucent inclusions of roughly 60 nm in diameter that may represent polyhydroxybutyrate storage granules. (E) Rdar biofilm morphotype of *E. coli* Fec10 (Cimdins et al. 2017) compared to the semi-constitutive rdar morphotype of *E. coli* Tob1 and the smooth and white (saw) morphotype of *E. coli* Fec75 on Congo red and Calcoflour white agar plates at 28 °C and 37 °C.

Figure S3 Genetic map of TLPQC in *E. coli* Fec6 and Fec10 strains. TLPQC genetic maps from *E. coli* and Fec6 strains are described in comparison with other strains from *E. coli* and other genera (Lee et al. 2016, Nguyen et al. 2017). Dna, MerR-like transcriptional regulator; sHsp20, small heat shock protein; ClpG/K, disaggregating chaperone; Cls, cardiolipid synthase; FtsH, metalloprotease; sHsp, small heat shock protein, YfdX1, 2, acid, osmotic stress responsive protein; HdeD, transmembrane protein involved in acid tolerance; MscS, small conductance mechanosensitive channel; RpoE, sigma E factor responding to heat shock and membrane stress; Trx, thioredoxin; KefC, glutathionine-dependent potassium-efflux system and methylglyoxal detoxification; GGDEF, diguanylate cyclase to synthesize cyclic di-GMP; PsiE, putative phosphate starvation-inducible protein; HtpX, inner-membrane associated peptidase; DegP, periplasmic protein with chaperone and protease activity.

Figure S4 Heat shock tolerance of *E. coli* fecal isolates and derivatives. (A) Screening of a panel of *E. coli* fecal isolates for heat shock tolerance at 55 °C. (B) Selected fecal isolates and respective *clpB* and *clpG_{GI}* mutants were subjected to treatment with the extreme lethal heat of 65 °C. The elevated temperature was subjected for the indicated time and, subsequently, 10-fold serial dilutions were spotted on LB agar plates and incubated for 16 h. Laboratory strain MC4100 and mutant MC4100 $\Delta clpB$ were included as references.

Figure S5 Phylogenetic analysis of $ClpG_{GI}$ proteins. $ClpG_{GI}$ protein sequences from various strains of diverse genera were analyzed together with other class I Clp family members (ClpA, B, C, D, E, L and V). Protein sequences were aligned with ClustalW using standard parameters and a maximum-likelihood tree was built using MEGA X. Branch lengths correspond to substitutions per site and branch support values are indicated in %. The robustness of the phylogenetic tree topologies was evaluated by bootstrap analysis with 500 replications in MEGA X.

Emil, Tyra (197-19) Shipita, sameti: Ha0 Shipita, sameti: Ha0 Emil, Yang, QuoOstri, Ha0 Standard,					μου μου μου 1 Α. Μ.		Image: Control of the contro	175 176 176 176 176 176 176 176 176 176 176
Exact J., Fee 107-149 Staylard, annuel 150 494 S., and heat in 150 494 S., and heat in 150 494 Exact J. ANT: 151-98 Exact J. ANT: 151-98 Exact J. ANT: 151-98 Exact J. ANT: 151-98 Constanting, and		VPOFENT LISLATESSA VPOFENT LISLATESSA		9 04.4 TP INTER LOWING IN 1998 10 10 10 10 10 10 10 10 10 10 10 10 10				350 350 350 350 350 350 350 350 350 350
Bool, Type 107-049 Shipela, amoni 1-800 Bool, Feel, Op OCHY-A99 Jona The Res, Op OCHY-A99 Bool, Typela, Op OCHY-A99 Bool, Develage and State a		B U + T V + A C G S E G + C + C + C + C + C + C + C + C + C +	ANULY FINAL REELN. LEANT. IN TYO ANULY FINAL REELN. LEANT. IN TYO			100.1 AAAEL DOW'T AAFLED DW'T AAFLED AFLED WYT AAFLED AFLED AF		525 525 525 525 525 525 525 525 525 525
Exall_Fars101-849 Exall_Fars102-849 Exall_Fars1_Called_pic2C_Qall_S1-849 Exall_Fars1_Called_pic2C_Qall_S1-849 Exall_Fars1_S48 Exall_Fars1_548 Exall_Fars1_548 Exall_Fars1_548 Exall_Fars1								700 700 700 700 700 700 700 700 700 700
Emil: // xe1 (20-34) Emil: // xe1 (20-34) Emil: // xe1 (20-36) Emil: // xe1 (2					THE TABLE TO THE TABLE T		TOTIL TOTIL <td< td=""><td>872 872 872 872 872 872 872 872 872 872</td></td<>	872 872 872 872 872 872 872 872 872 872
Emil , Fee 101-849 Digital, annuel 1-800 Suil, Jane, G., Diror, Janes, Janes, Capolio 201-849 Emil, Janes, G., Diror, Janes, Janes, Capolio 201-849 Emil, Janes, Janes, J., Capoli, J., Santa, J.,			UD UD UD UD A A KA T T FF 0 D A A KA T T FF 100 D A 0 KA K KA T T FF 100 D A 0 KA K KA T T FF 0 D A 0 KA A A KA T T FF 0 D A K KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA A KA T T FF 0 D A K KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA A KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA V K KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA K KA T FF 0 D A 0 KA V K KA T T FF 0 D A 0 KA K KA T T FF 0 D A 0 KA K KA T FF 0 D A 0 KA A KA KA FF FF 0 T K KA T FF 0 D A 0 KA K KA T FF 0 D A 0 KA A KA A FF 0 KA K KA T FF 0 D A 0 KA K KA D 0 KA A KA A A FF 0 KA K KA T FF 0 D A 0 KA K KA D 0 KA A KA A A FF 0 KA K KA A 0 KA K KA D 0 KA K KA D 0 KA A KA A A FF 0 KA K KA A 0 KA K KA D 0 KA K KA D 0 KA A KA A A FF 0 KA K KA A 0 KA K KA D 0 KA K KA A 0 KA A KA A A FF 0 KA K KA A A 0 KA K KA A 0 KA K KA A 0 KA A KA A A 0 KA K KA A 0 KA K KA A 0 KA K KA A 0 KA A KA A	BIO BIO STRK KKICA2DAS ATRK KKICAADAS ATRK KKICAADAS				949 949 949 949 952 949 952 949 949 949 949 950 931 949 953 949 949 949 949 949 949 949 949 949 94

Figure S6 Sequence variations within $ClpG_{GI}$ proteins. (A) Alignment of $ClpG_{GI}$ sequences. Residues on a dark blue background indicate 100% conservation and light blue background indicates 66% conservation. Sequences were aligned with ClustalW using default settings (Chenna et al. 2003) and displayed in JalView (Waterhouse et al. 2009). (B) Amino acid sequence variation in the N1-domain and ClpG specific C-terminal sequence between $ClpG_{GI-}$ Fec10 and $ClpG_{GI-SG17M}$ indicated in red. Variant amino acids in other domains as indicated. Domain designation as in (Lee et al. 2018) with the N1 domain consisting of the ClpG-specific N2 domain and the ClpB N-terminal domain, the AAA+ ATPase domain, M (middle) domain and CTD-D2 (C-terminal domain D2 of ClpB).

Figure S7 Purification of $ClpG_{GI-Fec10}$. (A) SDS-PAGE gel showing the purification intermediates of $ClpG_{GI-Fec10}$, where -ve is total lysate of *E. coli* TOP10 pJN105 control, T is total lysate of *E. coli* TOP10 pJN105 *clpG_{GI-Fec10}* expressing $ClpG_{GI-Fec10}$, CL is clear lysate, FT is flow through and E is elution. (B) SDS-PAGE showing elution volumes of $ClpG_{GI-Fec10}$ after Superdex 200 10/300 size exclusion chromatography. (C) SDS-PAGE gel showing $ClpG_{GI-Fec10}$ after consolidation from the size exclusion column and overnight dialysis.

Figure S8 ClpG_{GI-Fec10} disaggregase restores activity of heat-treated MDH independent of accessory chaperons. (A) Refolding of aggregated MDH was monitored over 120 min. The activity of the native MDH was set to 100%. One representative experiment of three independent biological experiments with three technical replicates each is shown. (B) Recovery of MDH after 120 min incubation with the indicated disaggregase. The mean value was calculated from three independent experiments with three technical replicates each. Error bars indicate SD (****P<0.0001).

Figure S9 Secondary structure analysis and melting temperature curves for $ClpB_{K-12}$, $ClpG_{GI-SG17M}$ and $ClpG_{GI-Fec10}$. (A) A reference signature spectrum for alpha and beta helices and random coils obtained from (Wei, Thyparambil and Latour 2014) with permission. Circular Dichroism Spectra (B, D) and melting temperature curves recorded at 222 nm (C, E) were recorded in the absence (B, C) and presence (D, E) of $Mg^{2+}/ATP\gamma S$. The difference in curve

shape of $ClpG_{GI-Fec10}$ (C) is explained by a lower starting mean residue ellipticity value. This does not impact T_m calculation.

Figure S10 Ability of overexpressed $ClpG_{GI-SG17M}$ and $ClpG_{GI-Fec10}$ to complement $clpG_{GI}$ and $dna-shsp20_{GI}-clpG_{GI}$ mutants of *E. coli* Fec10 upon exposure to lethal heat. (A) Assessment of heat shock tolerance of the *E. coli* Fec10 deletion mutant $clpG_{GI-Fec10}$ and $dhc_{GI-Fec10}$ exposed to 60 °C for 7.5 and 15 min upon complementation with $clpG_{GI-Fec10}$ and $clpG_{GI-SG17M}$. (B) Assessment of heat shock tolerance of the *E. coli* Fec10 deletion mutant $clpG_{GI-Fec10}$ and $clpG_{GI-SG17M}$. (B) Assessment of heat shock tolerance of the *E. coli* Fec10 deletion mutant $clpG_{GI-Fec10}$ exposed to 55 °C for 45 and 90 min upon complementation with $clpG_{GI-Fec10}$ and $clpG_{GI-SG17M}$. p=plasmid pBAD30; $pclpG_{GI-Fec10} = clpG_{GI-Fec10}$ cloned in plasmid pBAD30; $pclpG_{GI-SG17M} = clpG_{GI-SG17M}$ cloned in plasmid pBAD30.

Supplementary Tables Table S1 Coding sequences on plasmid pFec10								
Locus tag	Туре	Start	Stop	Protein ID	Protein function	general functionality		
BFS32_023620	CDS	155792	792	<u>NVB22357.1</u>	RepFIB family plasmid replication initiator protein			
BFS32_023625	CDS	1192	2397	<u>NVB22358.1</u>	ParA family protein	phage proteins		
BFS32_023630	CDS	2394	3359	<u>NVB22359.1</u>	ParB/RepB/Spo0J family partition protein			
BFS32_023635 PSEUDOGENE	CDS	3615	4808		phage related protein			
]	REPEAT	4802	5576		repeat region			
BFS32_023640	CDS	5200	4823		IS1 family transposas protein InsB	IS1A element 1		
	CDS	5520	5245		protein InsA			
BFS32_023645	CDS	5705	6034	NVB22360.1	holin			
BFS32_023650	CDS	6031	6474	NVB22361.1	lysis protein LydB			
BFS32_023655	CDS	6461	7063	NVB22362.1	OdaE			
BFS32_023660 PSEUDOGENE DES22_022665	CDS	7065	8087		internal head protein	phage proteins		
PSEUDOGENE	CDS	8084	9481		helicase			
BFS32_023670	CDS	9515	9955	NVB22363.1	peptide-binding protein			
BFS32_023675	CDS	9952	10200	NVB22364.1	modulator protein			
BFS32_023680	CDS	10283	11263	<u>NVB22365.1</u>	DUF2971 domain- containing protein			
]	REPEAT	11258	12026		repeat region			
BFS32_023685	CDS	11314	11589		IS1 protein InsA	IS1A element 2		
	CDS	11634	12011		IS1 protein InsB			
BFS32_023690 PSEUDOGENE	CDS	12026	12340		sigma-70 family RNA polymerase sigma factor	cargo		
BFS32_023695	CDS	13198	12392	<u>NVB22366.1</u>	encapsulating protein for peroxidase			
BFS32_023700	CDS	14255	13200	<u>NVB22367.1</u>	DyPc-type peroxidase	cargo: detoxification		
BFS32_023705	CDS	15182	14349	<u>NVB22368.1</u>	NAD-dependent formate dehydrogenase			
]	REPEAT	15209	15980		repeat region	1010		
BFS32_023710	CDS	15265	15540		IS1 protein InsA	ISIS element 3		
		15567	15962		IS1 protein InsB	••••••••		
BFS32_023715 PSEUDOGENE	CDS	15974	16357		methionine ABC transporter substrate- binding protein	cargo		
BFS32_023720	CDS	19517	16452	<u>NVB22369.1</u>	Tetrathionate reductase subunit TtrA			
BFS32_023725	CDS	20532	19510	NVB22370.1	Tetrathionate reductase subunit TtrC			

BFS32_023730	CDS	21285	20533	<u>NVB22371.1</u>	Tetrathionate reductase subunit TtrB	cargo: tetrathionate reduction
BFS32_023735 BFS32_023740	CDS CDS	21495 23203	23228 23787	<u>NVB22372.1</u> <u>NVB22373.1</u>	PhnD/SsuA/transferrin family substrate-binding protein TtrS two-component system response regulator TtrR	
BFS32 023745	CDS	23880	24083	NVB22374.1	Fumarate hydratase FumD	cargo
BFS32_023750	REPEAT CDS CDS	24139 24995 25172	25010 24192 25038		repeat region Transposase InsH for insertion sequence element IS5 Transposase InsH for insertion sequence element	IS5 element 4
					IS5	
BFS32_023755	CDS	25590	25213	NVB22375.1	Mat domain protein	phage protein
	REPEAT	25335	26164		repeat region	repeat
BFS32_023760	CDS	25839	25624	<u>NVB22376.1</u>	Mat domain protein	phage proteins
BFS32_023765	CDS	26267	26028		Recombination enhancement function protein	
	REPEAT	26430	26541		repeat region	
BFS32_023770 PSEUDOGENE	CDS	26486	26560		hypothetical protein	
BFS32_023775 PSEUDOGENE	CDS	26880	26533		transposase	transposases/r epeat region
	REPEAT REPEAT	27069 27519	27186 27837		repeat region repeat region	
BFS32_023780 PSEUDOGENE	CDS	27188	27502		transposase	
BFS32_023785 PSEUDOGENE	CDS	27519	27827		DDE-type integrase/transposase/reco mbinase	
BFS32_023790	CDS	29810	28257	<u>NVB22378.1</u>	L-lactate permease LctP	
BFS32_023795	CDS	30246	31943	<u>NVB22379.1</u>	D-lactate dehydrogenase Dld	
BFS32_023800	CDS	32018	32737	<u>NVB22380.1</u>	predicted L-lactate dehydrogenase YkgE, (Fe- S)-binding protein predicted L lactate	cargo: lactate utilization
BFS32_023805	CDS	32748	34175	<u>NVB22381.1</u>	dehydroogenase YkgF, (Fe- S) cluster-binding protein	
BFS32_023810	CDS	34168	34863	<u>NVB22382.1</u>	dehydrogenase YkgG, lactate utilization protein C	
BFS32_023815 PSEUDOGENE	CDS	35293	34913		gluconate permease	
BFS32_023820	CDS	35504	35815	<u>NVB22383.1</u>	type II toxin-antitoxin system HigB family toxin	cargo
BFS32_023825	CDS	35812	36231	<u>NVB22384.1</u>	helix-turn-helix domain- containing protein	

BFS32_023830	CDS	37470	36268	<u>NVB22385.1</u>	phage tail protein	
BFS32_023835	CDS	37792	37463	<u>NVB22386.1</u>	baseplate protein	phage proteins
BFS32_023840	CDS	38448	37789	<u>NVB22387.1</u>	maturation control protein Ref	P
BFS32_023845	CDS	38872	39465	<u>NVB22388.1</u>	recombinase	
BFS32_023850	CDS	39781	40134	<u>NVB22389.1</u>	As(III)-sensing metalloregulatory transcriptional repressor ArsR	
BFS32_023855	CDS	40182	40544	<u>NVB22390.1</u>	arsenite efflux transporter metallochaperone ArsD	arsenite resistence
BFS32_023860 PSEUDOGENE	CDS	40562	41185		arsenite efflux transporter ATPase subunit ArsA	
	REPEAT	41185	41954		repeat region	
BFS32_023865 PSEUDOGENE	CDS	41897	41200		IS1 family transposase	IS1A element 5
BFS32_023870 PSEUDOGENE	CDS	41953	42171		VRR-NUC domain- containing protein	
BFS32_023875	CDS	42238	42393	<u>NVB22391.1</u>	norphogenetic protein	
BFS32_023880	CDS	42895	43521	<u>NVB22392.1</u>	norphogenetic protein	phage proteins
BFS32_023885	CDS	43518	44195	NVB22393.1	metallophosphoesterase	1
BFS32_023890	CDS	44192	44893	<u>NVB22394.1</u>	hypothetical protein	
BFS32_023895	CDS	45403	45909	<u>NVB22395.1</u>	3'-phosphatase	
BFS32_023900	CDS	49290	46174	<u>NVB22396.1</u>	specific deoxyribonuclease	
BFS32_023905	CDS	50647	49412	<u>NVB22397.1</u>	restriction endonuclease subunit S	restriction- modification
BFS32_023910	CDS	52200	50644	<u>NVB22398.1</u>	type I restriction- modification system subunit M	
BFS32_023915	CDS	52383	52604	<u>NVB22399.1</u>	type II toxin-antitoxin system Phd/YefM family antitoxin	
BFS32_023920	CDS	52604	52984	<u>NVB22400.1</u>	type II toxin-antitoxin system death-on-curing family toxin	
BFS32_023925	CDS	52989	53168	<u>NVB22401.1</u>	PdcA protein	
BFS32_023930	CDS	53196	54239	<u>NVB22402.1</u>	DUF968 domain- containing protein	phage proteins
BFS32_023935	CDS	54642	54959	NVB22403.1	Terminase A protein	protonis
	REPEAT	55057	56372		repeat region	IS1414 element 6
BFS32_023940	CDS	56299	55091		IS256 family transposase	
BFS32_023945	CDS	57911	56683	NVB22405.1	IS3 family transposase, programmed frameshift	IS2 element 7
BFS32_023950	CDS	57975	59102	NVB22406.1	terminase	
BFS32_023955	CDS	59324	59443	NVB22407.1	ash family protein	
BFS32_023960	CDS	59462	59683	<u>NVB22408.1</u>	host cell division inhibitor Icd-like protein	

BFS32_023965	CDS	59680	60798	<u>NVB22409.1</u>	phage antirepressor Ant	
BFS32_023970	CDS	61682	60831	<u>NVB22410.1</u>	hypothetical protein	phage proteins
BFS32_023975	CDS	62002	61793	<u>NVB22411.1</u>	C1 repressor inactivator	-
BFS32_023980	CDS	62607	62828	NVB22412.1	creatininase	
BFS32_023985	CDS	62836	63867	<u>NVB22413.1</u>	tyrosine-type recombinase/integrase	
BFS32_023990	CDS	62019	64220	<u>NVB22414.1</u>	lysogeny establishment	
BES32 023995	CDS	64477	65037	NVB22415-1	Ref family protein	
DI 552_025775	REPEAT	64901	66924	<u>IVVD22413.1</u>	repeat region	
BFS32 024000		(500)	6672		1 in the second se	ISKpn26
PSEUDOGENE	CDS	65226	65729		maturation control protein	element 8
BFS32_024005	CDS	65797	66777	<u>NVB22416.1</u>	IS5-like element ISKpn26 family transposase	
BFS32_024010	CDS	66942	67523	<u>NVB22417.1</u>	NAD(P)H:quinone oxidoreductase WrbA	cargo
F	REPEAT	66942	69191		repeat region	repeat
BFS32_024015	CDS	67544	67771	<u>NVB22418.1</u>	hypothetical protein	cargo
BFS32_024020	CDS	69050	67809	<u>NVB22419.1</u>	bifunctional glucose-1- phosphatase/inositol phosphatase Agp	
F	REPEAT	69192	70708		repeat region	
BFS32_024025 PSEUDOGENE	CDS	69208	69465		transposase	IS30 element 9
BFS32_024030	CDS	70629	69478	<u>NVB22420.1</u>	IS30-like element IS30 family transposase	
BFS32_024035 PSEUDOGENE	CDS	70999	70697		transposase	
BFS32_02404	CDS	72365	71343	<u>NVB22421.1</u>	IS110 family transposase	transposases
BFS32_024045	CDS	75427	72389	NVB22422.1	Tn3 family transposase	
BFS32_024050	CDS	75595	76236	<u>NVB22423.1</u>	recombinase family protein	
BFS32_024055	CDS	77416	76493	NVB22424.1	cation transporter	cargo
BFS32_024060	CDS	78188	77616	<u>NVB22425.1</u>	cytochrome b/b6 domain- containing protein	
BFS32_024065	CDS	79902	78664	NVB22426.1	IS110 family transposase	ISEsa2 element 10
BFS32 024070	CDS	81196	80201	NVB22427.1	IS110 family transposase	cicilient 10
BFS32 024075	CDC	01407	01016	- <u></u>	(
PSEUDOGENE	CDS	81427	81816		transposase	transposase
BFS32_024080	CDS	83192	82041	<u>NVB22428.1</u>	trypsin-like peptidase domain-containing protein DegP-GI	
BFS32_024085	CDS	84182	83217	<u>NVB22429.1</u>	M48 family metalloprotease HtpX-GI	
BFS32_024090	CDS	84657	84160	<u>NVB22430.1</u>	heat resistance protein PsiE-GI	
BFS32_024095	CDS	86369	84654	<u>NVB22431.1</u>	heat resistance system K+/H+ antiporter KefC-GI	
BFS32_024100	CDS	86813	86373	<u>NVB22432.1</u>	heat resistance system thioredoxin Trx-GI	
BFS32_024105	CDS	87948	86803	NVB22433.1	hypothetical protein	

BFS32_024110	CDS	88639	88028	<u>NVB22434.1</u>	heat resistance membrane protein HdeD-GI	
BFS32_024115	CDS	89623	88736	<u>NVB22435.1</u>	heat resistance protein YfdX2	
BFS32_024120	CDS	90640	89726	<u>NVB22436.1</u>	heat resistance protein YfdX1	cargo: TLPQC locus
BFS32_024125	CDS	91121	90663	<u>NVB22437.1</u>	small heat shock protein sHSP20-GI	
BFS32_024130	CDS	91349	91209	<u>NVB22438.1</u>	hypothetical protein	
BFS32_024135 PSEUDOGENE	CDS	92035	91300		A I P-dependent metallopeptidase FtsH/Yme1/Tma family protein EtsH-GI	
BFS32_024140	CDS	92287	92096	<u>NVB22439.1</u>	hypothetical protein	
BFS32_024145	CDS	95136	92287	<u>NVB22440.1</u>	heat shock survival AAA family ATPase ClpG-GI	
BFS32_024150	CDS	95811	95242	<u>NVB22441.1</u>	small heat shock protein sHSP20-GI	
BFS32_024155	CDS	96127	95846	<u>NVB22442.1</u>	helix-turn-helix domain- containing protein Dna	
BFS32_024160 PSEUDOGENE	CDS	96181	96092	_	DNA-binding protein	
BFS32_024165	CDS	96584	96321	<u>NVB22443.1</u>	hypothetical protein	
F	REPEAT	96712	96829		repeat region	repeat
BFS32_024170 PSEUDOGENE	CDS	96744	96980		transposase	
BFS32_024175	CDS	97736	97032	<u>NVB22444.1</u>	IS6-like element IS26 family transposase	IS26 element 11
BFS32_024180 PSEUDOGENE	CDS	97799	98343		IS5 family transposase	
F	REPEAT	97800	98494		repeat region	ISKpn26 element 12
BFS32_024185	CDS	98620	98907	<u>NVB22445.1</u>	hypothetical protein	
BFS32_024190	CDS	98907	99164	<u>NVB22446.1</u>	DNA polymerase III subunit theta	cargo
BFS32_024195	CDS	99205	102144	<u>NVB22447.1</u>	AAA family ATPase	
BFS32_024200	CDS	102141	103565	<u>NVB22448.1</u>	tetratricopeptide repeat protein	
F	REPEAT	103561	103748		repeat region	
BFS32_024205 PSEUDOGENE	CDS	103747	103571		IS3 family transposase	transposases
BFS32_0242010 PSEUDOGENE	CDS	104058	103801		DDE-type integrase/transposase/reco mbinase	
F	REPEAT	104040	106476		repeat region	ISEc78 element 13
BFS32_024215	CDS	104123	104506	<u>NVB22449.1</u>	IS66 family insertion sequence hypothetical protein IS66 family insertion	
BFS32_024220	CDS	104503	104850	<u>NVB22450.1</u>	sequence element accessory protein TnpB	

BFS32_024225 BFS32_024230	CDS	104900	106435	<u>NVB22451.1</u>	IS66 family transposase IS6-like element IS26	IS15
PSEUDOGENE	CDS	106950	106477		family transposase	element 14
BFS32_024235	CDS	107185	107583	NVB22452.1	ester cyclase	
BFS32_024240	CDS	107603	108556	<u>NVB22453.1</u>	helix-turn-helix domain- containing protein	cargo
BFS32_024245	CDS	108627	109403	<u>NVB22454.1</u>	MBL fold metallo- hydrolase	
	REPE AT	109471	110473		repeat region	
BFS32_024250 PSEUDOGENE	CDS	109543	109701		IS5/IS1182 family transposase	IS1A element 15
BFS32_024255	CDS	110095	109718		IS1 protein InsB	
	CDS	110415	110140		IS1 protein InsA	
	REPEAT	110569	112176		repeat region	repeat
BFS32_024260	CDS	111519	110569	<u>NVB22455.1</u>	magnesium/cobalt transporter CorA	cargo
BFS32_024265	CDS REPEAT	111889 112176	112203 113925	<u>NVB22456.1</u>	hypothetical protein repeat region	
BFS32_024270	CDS	112232	112507		IS1 protein InsA	IS1A element 16
	CDS	112552	112929		IS1 protein InsB	
BFS32_024275 PSEUDOGENE	CDS	112950	113774		IS5-like element ISKpn26 family transposase	ISKpn26 element 17
BFS32_024280	CDS	113984	115981	<u>NVB22457.1</u>	choline BCCT transporter BetT	cargo
BFS32_024285	CDS	116045	117322	<u>NVB22458.1</u>	DUF2254 domain- containing protein	
BFS32_024290 PSEUDOGENE	CDS	117579	117764		Tn3 family transposase	transposases
BFS32_024295 PSEUDOGENE	CDS	118045	117764		IS6-like element IS26 family transposase	
BFS32_024300 PSEUDOGENE	CDS	118109	118363		helix-turn-helix domain- containing protein	cargo
BFS32_024305	CDS	118372	118776	<u>NVB22459.1</u>	arsenical pump-driving ATPase ArsA	
BFS32_024310	CDS	119232	118807	<u>NVB22460.1</u>	glutaredoxin-dependent arsenate reductase ArsC	arsenite resistence
BFS32_024315	CDS	120534	119245	<u>NVB22461.1</u>	arsenite efflux transporter membrane subunit ArsF	
BFS32_024320 PSEUDOGENE	CDS	121719	120583		arsenite efflux transporter ATPase subunit ArsA	
	REPEAT	121719	122488		repeat region	IS1A
BFS32_024325 PSEUDOGENE	CDS	121775	122472		IS1 family transposase	element 18
BFS32_024330	CDS	122905	122720	<u>NVB22462.1</u>	hypothetical protein	phage protein X (fragment)
	REPEAT	123004	123220		repeat region	repeat
	REPEAT	123329	124100		repeat region	IS1X2 element 19
BFS32_024335 PSEUDOGENE	CDS	124043	123346		IS1 family transposase	

BFS32_024340	CDS	125118	124606	NVB22463.1	hypothetical protein	
BFS32_024345	CDS	125651	125121	NVB22464.1	hypothetical protein	
BFS32_024350	CDS	126679	127164	NVB22465.1	plasmid transfer protein	cargo
BFS32_024355	CDS	127277	127882	NVB22466.1	hypothetical protein	
BFS32_024360 PSEUDOGENE	CDS	127893	129359		TraI domain-containing protein	
F	REPEAT	129587	130786		repeat region	ISKpn26
BFS32_024365	CDS	129655	130635	<u>NVB22467.1</u>	IS5-like element ISKpn26 family transposase	element 20
BFS32_024370 PSEUDOGENE	CDS	131074	130784		Tn3 family transposase	transposase
BFS32_024375	CDS	133585	131453	<u>NVB22468.1</u>	HlyD family efflux transporter periplasmic adaptor subunit HlyD family efflux	
BFS32_024380	CDS	134936	133587	<u>NVB22469.1</u>	transporter periplasmic adaptor subunit	cargo: multi- drug efflux
BFS32_024385	CDS	135814	134933	<u>NVB22470.1</u>	efflux RND transporter periplasmic adaptor subunit	
BFS32_024390	CDS	137748	135829	NVB22471.1	TolC family protein	
BFS32_024395	CDS	149410	137825	NVB22472.1	tandem-95 repeat protein	phage protein
R	REPEAT	149859	152308		repeat region	
BFS32_024400	CDS	149932	150912	<u>NVB22473.1</u>	IS5-like element ISKpn26 family transposase	IS30 element 21
BFS32_024405 PSEUDOGENE	CDS	151967	151061		IS30-like element IS30 family transposase	
BFS32_024410 PSEUDOGENE	CDS	152292	152035		transposase	transposase
BFS32_024415 PSEUDOGENE	CDS	152915	152361		recombination-associated protein RdgC	
BFS32_024420	CDS	153192	152908	NVB22474.1	hypothetical protein	
BFS32_024425	CDS	153654	154442	<u>NVB22475.1</u>	hypothetical protein	phage proteins
BFS32_024430	CDS	154482	154904	NVB22476.1	endopeptidase PpfA	
BFS32_024435	CDS	155082	155474	NVB22477.1	hypothetical protein	

Blue underlined=phage SJ46 derived genes; grey=IS elements as identified with ISfinder; light grey=other transposases/recombinases; dark orange=cargo genes mentioned in the text; light orange=other cargo genes; green=analyzed cargo genes; plum=phage P1 genes; dark plum=phage P1 genes mentioned in text.

IS-element		% identity	alignment length	bp star	t bp stop	bit score	
1	IS1A	99.4	768	4808	5575	1483	
2	IS1A	99.0	768	11259	12026	1459	
3	IS1S	98.6	768	15210	15977	1435	
4	IS5	99.4	1195	24046	25240	2313	
5	IS1A	97.1	768	41185	41952	1348	
6	IS1414	98.4	1315	55057	56371	2432	
7	IS2	97.7	1331	56672	58002	2393	
8	ISKpn26	99.4	1196	65729	66924	2315	
9	IS30	99.8	1221	69471	70691	2397	
10	ISEsa2	99.8	1493	78636	80128	2936	
11	IS26	99.8	820	96980	97799	1610	
12	ISKpn26	98.6	692	97800	98490	1285	
13	ISEc78	99.2	2437	104040	106476	4680	
14	IS15	99.8	538	106476	107013	1059	
15	IS1A	99.4	768	109703	110470	1483	
16	IS1A	99.9	768	112177	112944	1515	
17	ISKpn26	99.7	977	112945	113921	1913	
18	IS1A	97.1	768	121720	122487	1348	
19	IS1X2	97.0	768	123331	124098	1340	
20	ISKpn26	99.6	1196	129587	130782	2331	
21	IS30	99.7	970	151060	152029	1891	

 Table S2 Identified IS elements on pFec10

Table S3 Primers used in this study

Primer name	Sequence [†] (5'-3')	Purpose	Source	
del_clpG _{GI} _Fec10_F	TCGTCGCCTCAACCTTTTCAACCTTCTAAGGAGCAT	construction of $\Delta clpG_{Gl}$ in Fec10.		
	CAGCGTGTAGGCTGGAGCTGCTTC	forward primer composed of 40 bp upstream of $clpG_{GI}$ start codon and		
		complementary sequence to amplify the chloramphenicol cassette from		
		pKD3 (in bold)		
del_dhc _{Gl} _Fec10_F	TTGGCCGGAACCGCAAAGCGACGCGATTGGAGAGGG	construction of Δdhc_{GI} in Fec10.	This study	
	TGAG GTGTAGGCTGGAGCTGCTTC	forward primer composed of 40 bp upstream of the dhc_{Gl} start codon		
		and complementary sequence to amplify the chloramphenicol cassette		
		from pKD3 (in bold).		
del_ <i>clpG_{GI}/dhc_{GI}</i> _Fec10_R	GCCAGGCCCTTGGGGTCGGACACGGCAGCCTCGCCC	construction of $\Delta clpG_{Gl}$ and Δdhc_{Gl} in Fec10.	This study	
	GCCACATATGAATATCCTCCTTAGT	reverse primer composed of 40 bp downstream of the $clpG_{Gl}$ or dhc_{Gl}		
		stop codon and complementary sequence to amplify the		
		chloramphenicol cassette from pKD3 (in bold).		
Check_del_ <i>clpG</i> _{GI} _Fec10_F	ACGCTCGATCCCGATCAACGGCT	forward control primer for $\Delta clpG_{Gl}$ in Fec10	This study	
Charle dal dha Faa10 F		forward control primer for Adha in Facto	This study	
$Check_del_anc_{GI}_Fecto_F$		forward control primer for Δanc_{GI} in Fecto		
Check_del_clpGgi/ancgi_Fec10_R		reverse control primer for $\Delta clp G_{Gl}$ and Δanc_{Gl} in Fecto	This study	
Lambda_ttr_sensor-r		construction of Δ sensor in Fecto.	This study	
		forward primer composed of 49 bp upstream of <i>ttrSk</i> start codon and		
	electic	complementary sequence to amplify the chloramphenicol cassette from		
Lough de the concern D	СТСТБАББАТТТАБАСААААТТСААТБАААА ТСАААТАААТБТАТСАТТС АТАТБААТАТ С	pKD3 (in bold)	This stude	
Lambda_ttr_sensor-K		construction of Asensor in Fecto.	This study	
	CTCCTTAG			
		codon and complementary sequence to amplify the chloramphenicol cassette from pKD3 (in bold)		
Lambda_ttr-F	TCAATTGTCCCTGTCAATTATGTTGTTTTAGA TCAACAACAAGCCGGGT GTGTAGGCTGGAG	construction of Δ ttr in Fec10	This study	
		forward primer composed of 49 bp upstream of small ORF-ttrBCA		
	eldente	operon and complementary sequence to amplify the chloramphenicol		
		cassette from pKD3 (in bold)		
Lambda_ttr-R	TGTCCTGTAGGCCGGGTAAAACGCGTTCGCG	construction of Δ ttr in Fec10	This study	
	ATGCCATGCGGCACCAGAGCATATGAATATC	reverse primer composed of 49 bp downstram of small ORF-ttrBCA		
	citeriad	operon and complementary sequence to amplify the chloramphenicol		
		cassette from pKD3 (in bold)		
Check_ <i>ttrSR</i> -F	TGATTTACAGTGTAAAAATCGTGACG	forward control primer for $\Delta ttrSR$ in Fec10	This study	
Check ttrSD-D	CTCGTCGTCTTTCGTCTGAT	reverse control primer for AttrSP in Fac10	This study	
GHECK_UI SN-N			This study	
Check_ <i>ttrBCA</i> -F	ACTTAGCATCCACAGCGACG	forward control primer for $\Delta ttrBCA$ in Fec10	This study	
Check_ <i>ttrBCA</i> -R	ACTGGATCCGTACTAAATATAAAGGTG	reverse control primer for $\Delta ttrBCA$ in Fec10	This study	
chGa, Fec10 Nhel nIN F	CGCGCTAGCACCTTCTAAGGAGCATCAGCATG	forward cloning primer for <i>clnGues</i> so with 6xHis-tag at the C-terminus	This study	
cipu ₆ /_recto_mici_pjiv_r		in pIN105 for purification	This study	
dnC., Foc10 YhoI nIN His P	CCCTCT & C & TC & CTC & TC & TC & TC &	reverse cloning primer for <i>dnC</i> and a whith 6xHis tag at the C terminus in	This study	
cipu ₆ /_rec10_xba1_pjiv_iiis_K		niN105 for purification	This study	
chiCar Eacto EcoPI pRAD30 E		forward cloning primer for <i>claCove</i> , sowith 6vHis-tog at the C-terminus	This study	
		in nBAD30 for complementation	This study	
dhear Facto FeoRI nBAD30 F	666666 A ATTC66TCT A AT ATT A C A A A CT ATT66 A A	forward cloning primer for <i>dbc</i> , with 6xHis-tag at the C-terminus in	This study	
	GG	nRAD30 for complementation	This study	
clnGer/dhcer Fec10 Sall nBAD30 His R	GCGGTCGACTCAGTGATGATGATG	reverse cloning primer for <i>cloce</i> rate and <i>dbce</i> with 6vHis-tag at the C-	This study	
epson anon_recro_san_pbrbs0_ms_K	ATGATGAGATGCGTCGCTCGCCCACTT	terminus in nBAD30 for complementation	i nis study	
dh Fec10 W1		confirmatory primer for the OREs of dh_{cat}	This study	
dh Fec10 W2	AACAGGAGAAGAAGGAAGGTG	confirmatory primer for the ORFs of dhc_{α}	This study	
clnGcr Fec10 W1	GATCAAGGTCGATGACCTCAAG	confirmatory primer for the ORFs of dh_{Cal}	This study	
$clnG_{cl}$ Fec10 W2	TGTGGGCAAGACCGCCAT	confirmatory primer for the ORFs of dhc_{α}	This study	
			· ···· Study	

clpG _{GI} _Fec10_W3	ACAAGGTCAGCATCTCCGAGG	confirmatory primer for the ORFs of <i>dhc</i> _{Gl}	This study
clpG _{GI} _Fec10_W4	AAGGCAGCAAACCGGTGGCTA	confirmatory primer for the ORFs of <i>dhc</i> _{Gl}	This study
clpG _{GI} _Fec10_W5	GTGACGCTCACTTTCGATCAGA	confirmatory primer for the ORFs of <i>dhc</i> _{Gl}	This study
pJN105_pBAD F	CCATAGCATTTTTATCCATAAG	forward confirmatory primer for cloning into pJN105 vector	This study
pJN105_MCS R	AAACGACGGCCAGTGAGC	reverse confirmatory primer for cloning into pJN105 vector	This study
pBAD30_MCS_F	GTCTATAATCACGGCAGAAAAGTCCAC	forward confirmatory primer for cloning into pBAD30 vector	This study
pBAD30_MCS_R	CTGTTTTATCAGACCGCTTCTGC	reverse confirmatory primer for cloning into pBAD30 vector	This study
FEC10_PLASMID CHECK_F	GCTACAGCCTCAATGCGGCTTTG	confirmatory primer for pFec10	This study
FEC10_PLASMID CHECK_R	GTTCAGGGCTGATGTCTGTTAG	confirmatory primer for pFec10	This study
FEC10_PLASMID_WALK1_F	CAATACCTTTGATGGTGGCG	confirmatory primer for pFec10	This study
FEC10_PLASMID_WALK2_F	GATGTCACGCTGAAAATGCC	confirmatory primer for pFec10	This study
ClpGgi_Fec10_BamHI	GGCCAT <u>GGATCC</u> ATGGCCAGAAAACAATGCCAGGTC TGCGG	forward cloning primer for $clpG_{Gl}$ in pUHE21 for complementation	This study
ClpGgi_Fec10_XbaI	GGCCAT <u>TCTAGA</u> TCAAGATGCGTCGCTCGCCGACTT CTTCT	reverse cloning primer for $clpG_{Gi}$ in pUHE21 for complementation	This study
paClpGgi_EcoRI_pBAD30_F	GCGCG <u>GAATTC</u> CTTTACAGGAGCATCAGCATG	forward cloning primer for $clpG_{GL-SG17M}$ with 6xHis-tag at the C-terminus	This study
			m1 · · · 1
PaClpGgi_Sall_pBAD30_His_K	GCG <u>GTCGAC</u> TCAGTGATGATGATG ATGATGAGATTCGCCGCCGCCGCTGACTTC	reverse cloning primer for <i>clpG</i> _{GI-SG17M} with 6xHis-tag at the C-terminus in pBAD30 for complementation	This study
sHsp20_F	GAAACGCCGATCGGTGAT	forward primer to test presence of <i>shsp20_{GI}</i>	This study
sHsp20_R	TTCATATCGATACCGAAACGC	reverse primer to test presence of <i>shsp20</i> _{Gl}	This study

†restriction site is underlined

Supplementary experimental procedures Genome characterization and bioinformatic analyses

ResFinder 3.2 (https://cge.cbs.dtu.dk/services/ResFinder/; (Zankari et al. 2012)) was used to identify antibiotic resistance genes. VirulenceFinder (Joensen et al. 2014) was applied to check for encoded virulence factors. Alternatively assessment of strain relationships was done with core genome multilocus sequence typing (cgMLST) using Ridom SeqSphere+ software (Junemann et al. 2013). Target genes were defined using E. coli K-12 MG1655 as seed. Missing values were an own category. SNP calling was performed with CSIPhylogeny1.4 (https://cge.cbs.dtu.dk/services/CSIPhylogeny/) and phylogeny was inferred by calculation of approximately-maximum-likelihood using an implemented modified version of FastTree2 (Kaas et al. 2014). Genome sequences were retrieved from NCBI, accession numbers were: E. coli K-12 MG1655 NC_000913.3; Fec10 MDLJ00000000.1, E. coli NCTC86 NZ LT601384.1; E. coli B str. REL606 NC 012967.1; E. coli C NZ CP020543.1; E. coli ATCC 8739 (Crooks) NC 010468.1; E. coli W (ATCC 9637) NC 017635.1; ECOR01 LYBJ00000000; ECOR03 LYBH0000000; ECOR05 LYBF0000000; ECOR07 LYBD0000000; ECOR08 ECOR11 LYBC0000000; ECOR09 LYBB0000000; LYAZ0000000; ECOR12 LYAY00000000; ECOR14 LYAW00000000; ECOR25 LYAL00000000; E. coli 26561 NZ CP027118.1; E. coli RR1 NZ CP011113.2; E. coli TO6 NZ LS992166.1; E. coli TO73 NZ LS992171.1; E. coli MDS42 NC 020518.1; E. coli NCTC9102 NZ LR134227.1; E. coli NCTC 9040 NZ LR134247.1; E. coli UMNF18 NZ AGTD01000001; E. coli F2 63 FZIJ0000000.1; E. coli Tob1 MIIH0000000.1.

To construct the unrooted phylogenetic tree, orthologous groups, amino acid sequences of all protein-coding genes were determined using ProteinOrtho V5.13 (Lechner et al. 2011) with parameters cov=67 (min. coverage of best BLAST alignments in per cent) and identity=50 (min. per cent identity of best BLAST alignments). The orthologous proteins from 521 complete and annotated genomes of *E. coli* available in GenBank in April 2019 (Coordinators 2018) and *E. coli* Fec10 and Fec6 were subsequently aligned. 238 common single-copied groups of orthologous group were aligned using MAFFT (Katoh and Standley 2013) in the linsi mode. Subsequently, RAxML (Stamatakis 2014) with the GTR+Gamma model with 100 bootstrap replicates for the concatenated gene alignment was used. Finally, the tree was visualised using the online tool iTOL (Letunic and Bork 2016).

Conserved gene clusters (synteny groups) were searched for with bi-directional best hits or a BLASTP alignment threshold with an identity >35% on >80% protein length with a gap parameter of five against sequenced *E. coli* genomes including *E. coli* K-12 MG1655 (Vallenet et al. 2020). Variable and strain specific coding sequences were compared to *E. coli* K-12 strains (K-12, DH10B, BW2952, J53 and DH5 α) defined as >80% amino acid identity over >80% coverage. Core genome and variable CDSs compared to 1080 strains of *E. coli* population was determined by PPanGGOLiN 0.1.4 using standard parameters (Vallenet et al. 2020). To estimate the fraction of vertically inherited genomes of closely related strains were aligned using PG-explorer (http://mouse.belozersky.msu.ru/tools/npge.html) (Nagaev 2015). For each pair of strains aligned regions were cut into windows of 1 bb to calculate the number of mismatches. The obtained histogram was decomposed into a weighted sum of the Poisson and Erlang distributions, the former reflecting vertical inheritance, and the latter, regions acquired by lateral transfer via homologous recombination with distantly related strains. The weight of the Poisson distribution in this decomposition equals the proportion of vertically inherited regions in the common fraction of two genomes.

Transmission electron microscopy

E. coli Fec10 cells, grown as in situ colonies on agar-plates, were fixed in the gas-phase from a filter paper inlay, soaked with 2% glutaraldehyde - 20 mM Hepes buffer (pH 7.2) - sticking to the top dish - at ambient temperature for 48 h. Colonies were layered with 2 % (w/v) low melting agarose at 30 °C and were washed twice at room temperature for 5 min with 100 mM cacodylate buffer, pH 7.2. Cells were postfixed in 1% (w/v) osmiumtetroxide - 80 mM cacodylate, pH 7.2 fixative overnight at 30 °C, followed by washing for 5 min at ambient temperature in 100 mM cacodylate buffer, pH 7.2. Dehydration started with an aqueous ethanol series (10 % (v/v), 20 min on ice; 30 % (v/v), 20 min on ice; 50 % (v/v), 20 min on ice; 1% (w/v) uranyl acetate, pH 4.5 in 60 % (v/v), 60 min at ambient temperature; 90 % (v/v), 20 min at ambient temperature; 100 % ethanol, 30 min at ambient temperature; 100 % acetone, 30 min at ambient temperature). Infiltration with a Spurr's epoxy resin (hard)/acetone mixture (1 part + 1part) over night at ambient temperature, followed by resin (hard)/acetone mixture (2 parts + 1 part) over night at ambient temperature, and finally twice pure resin overnight and 7 h at ambient temperature. Sections of 3 x 2 mm of a colony's periphery were flat-embedded in a silicon mould by polymerisation at 75 °C for 16 h. 90 nm ultrathin sections were cut with a diamond knife (RMC, W. Reichert, Labtec, Wolfratshausen, Germany) and a Reichert ultramicrotome (Reichert Ultracut S, Reichert-Jung, Vienna, Austria) and were picked up with 300 mesh Cu-grids. Mounted sections were post-stained with aqueous 4% (w/v) uranyl-acetate, pH 4.0 followed by 0.2xPb-Citrate (Ultrostain 2, Leica, Wetzlar, Germany), were blotted and air-dried.

Samples were analyzed with an energy-filtered transmission electron microscope (EF-TEM) (Libra 120 plus, Zeiss, Oberkochen, Germany). Electron micrographs were recorded with a bottom-mount, cooled 2048x2048 CCD frame transfer camera (SharpEye; Tröndle, Wiesenmoor, Germany) at close to low dose conditions in the elastic bright field mode as Zeroloss images (slit width: 10 eV; 0.5 mrad illumination aperture, 60 μ m objective aperture, beam current: 1 μ A), close to the Scherzer focus.

REFERENCES

- Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins & J. D. Thompson (2003) Multiple sequence alignment with the Clustal series of programs. *Nucleic Acids Res*, 31, 3497-500.
- Cimdins, A., R. Simm, F. Li, P. Lüthje, K. Thorell, A. Sjöling, A. Brauner & U. Römling (2017) Alterations of c-di-GMP turnover proteins modulate semi-constitutive rdar biofilm formation in commensal and uropathogenic *Escherichia coli*. *Microbiologyopen*, 6.
- Coordinators, N. R. (2018) Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res*, 46, D8-D13.
- Darzentas, N. (2010) Circoletto: visualizing sequence similarity with Circos. *Bioinformatics*, 26, 2620-1.
- Joensen, K. G., F. Scheutz, O. Lund, H. Hasman, R. S. Kaas, E. M. Nielsen & F. M. Aarestrup (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic *Escherichia coli*. J Clin Microbiol, 52, 1501-10.
- Junemann, S., F. J. Sedlazeck, K. Prior, A. Albersmeier, U. John, J. Kalinowski, A. Mellmann, A. Goesmann, A. von Haeseler, J. Stoye & D. Harmsen (2013) Updating benchtop sequencing performance comparison. *Nat Biotechnol*, 31, 294-6.
- Kaas, R. S., P. Leekitcharoenphon, F. M. Aarestrup & O. Lund (2014) Solving the problem of comparing whole bacterial genomes across different sequencing platforms. *PLoS One*, 9, e104984.
- Katoh, K. & D. M. Standley (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol*, 30, 772-80.
- Lechner, M., S. Findeiss, L. Steiner, M. Marz, P. F. Stadler & S. J. Prohaska (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. *BMC Bioinformatics*, 12, 124.
- Lee, C., K. B. Franke, S. M. Kamal, H. Kim, H. Lünsdorf, J. Jager, M. Nimtz, J. Trcek, L. Jansch, B. Bukau, A. Mogk & U. Römling (2018) Stand-alone ClpG disaggregase confers superior heat tolerance to bacteria. *Proc Natl Acad Sci U S A*, 115, E273-E282.
- Lee, C., E. Wigren, H. Lünsdorf & U. Römling (2016) Protein homeostasis-more than resisting a hot bath. *Curr Opin Microbiol*, 30, 147-54.
- Letunic, I. & P. Bork (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res*, 44, W242-5.
- Nagaev, B., Nikolaev, M., Alexeevski, A. 2015. NPG-explorer: a new tool for nucleotide pangenome construction and closely related prokaryotic genomes analysis; <u>http://mccmb.belozersky.msu.ru/2015/proceedings/abstracts/197.pdf</u>. In *Proceedings 7th International Moscow Conference on Computational Molecular Biology MCCMB-2015* Moscow.
- Nguyen, S. V., G. P. Harhay, J. L. Bono, T. P. Smith & D. M. Harhay (2017) Genome sequence of the thermotolerant foodborne pathogen *Salmonella enterica* Serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding increased protein quality control mechanisms. *mSystems*, 2:e00190-16.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, 30, 1312-3.
- Sullivan, M. J., N. K. Petty & S. A. Beatson (2011) Easyfig: a genome comparison visualizer. *Bioinformatics*, 27, 1009-10.
- Vallenet, D., A. Calteau, M. Dubois, P. Amours, A. Bazin, M. Beuvin, L. Burlot, X. Bussell, S. Fouteau, G. Gautreau, A. Lajus, J. Langlois, R. Planel, D. Roche, J. Rollin, Z. Rouy, V. Sabatet & C. Medigue (2020) MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. *Nucleic Acids Res*, 48, D579-D589.

- Waterhouse, A. M., J. B. Procter, D. M. Martin, M. Clamp & G. J. Barton (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics*, 25, 1189-91.
- Wei, Y., A. A. Thyparambil & R. A. Latour (2014) Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. *Biochim Biophys Acta*, 1844, 2331-7.
- Zankari, E., H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup
 & M. V. Larsen (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother, 67, 2640-4.