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ABSTRACT (Word count: 276) 

OBJECTIVE: To examine whether the association between dopamine-related genotype 

and gait speed differs according to frailty status or race.   

DESIGN: Cross-sectional population-based study (Cardiovascular Health Study) 

SETTING Multi-center study, 4 US sites. 

PARTICIPANTS:  Volunteer community-dwelling adults aged 65 and older, without 

evidence of Parkinson’s Disease (N= 3,744, 71 years, 82% white, 39% male). 

MEASUREMENTS:  Gait speed (usual pace, m/sec), physical frailty (Fried definition), 

and genetic polymorphism of Catechol-O-methyltransferase (COMT, rs4680), an 

enzyme regulating tonic brain dopamine levels, were assessed. Interaction of COMT by 

frailty and by race predicting gait speed were tested, and, if significant, analyses were 

stratified. Multivariable regression models of COMT predicting gait speed were adjusted 

for demographics and locomotor risk factors. Sensitivity analyses were repeated 

stratified by clinical cut-offs of gait speed (0.6 and 1.0m/sec) instead of frailty status.     

RESULTS. The interaction of COMT by frailty and COMT by race were p=0.02 and 

p=0.01, respectively. Compared to Met/Met (higher dopaminergic signaling), the Val/Val 

group (lower dopaminergic signaling) walked marginally more slowly in the full cohort 

(0.87 vs 0.89 m/sec, p=0.2). Gait speed differences were significant for frail (n=220, 0.55 

vs 0.63 m/sec, p=0.03), but not for pre-frail (n=1691, 0.81 vs 0.81 m/sec, p=0.9), or non-

frail (n=1833, 0.98 vs 0.97 m/sec, p=0.7); results were similar in fully adjusted models 
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Among frail, associations were similar for whites and blacks, with statistical significance 

for whites only. Associations stratified by clinical cut-offs of gait speed were not 

significant.  

CONCLUSION. The association of dopamine-related genotype with gait speed is 

stronger among adults with frailty compared to those without. The potential effects of 

dopaminergic signaling on preserving physical function in biracial cohorts of frail adults 

should be further examined. 

Keywords: Frailty, genetics, dopamine, gait speed 

(Manuscript word count: 2930)  

(3 Tables, 2 Figures, 2 Supplementary Tables) 
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Introduction 

Slower gait is a common and disabling condition in older age, increasing falls’ 

risk, reducing independence, and accelerating conversion to dementia and disability1.  

While age-related changes in peripheral nervous and musculoskeletal systems are well-

known contributors of gait slowing,2 recent evidence suggests an important role for the 

central nervous system, 3–6 and in particular for dopaminergic signaling 6–9.  

The Val(158)Met polymorphism of Catechol-o-methyltransferase (COMT) 

regulates tonic release of dopamine in the prefrontal cortex with changes in phasic 

dopamine in subcortical regions.10  The Met/Met genotype yields the highest dopamine 

levels, followed by the heterozygous genotype Val/Met, with the lowest levels among 

Val/Val carriers. Given the importance of dopamine on control of gait functions, it would 

be expected that those with Met/Met genotype would have faster gait compared to 

those with the Val/Val genotype. In work done by us,11–14 and others,15,16 the association 

between the COMT genotype and gait speed in older adults without other neurological 

diseases are of variable strength, with some studies reporting positive associations for 

the heterozygous genotype, but not for Met/Met. This discrepancy suggests other 

factors influence the relationship between COMT genotype and gait speed, with some 

people being more vulnerable than others to the effects of COMT polymorphism on gait 

speed.  
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Frailty, a common condition of older age,17 could be one such factor. Frailty is 

considered a state of ‘decreased resistance to stressors and increased vulnerability to 

adverse outcomes’.18,19 Very recent studies suggest a frailty-related heightened 

vulnerability to stressors acting on the central nervous system. For example, individuals 

with frailty appear more vulnerable to amyloid accumulation, with cognitive impairment 

manifesting for lower burden of neuropathology.20 A role for frailty-related vulnerability  

has also been suggested for Parkinson’s disease and depression.21,22  

We propose the COMT polymorphism, specifically the Val/Val genotype 

predisposing to lower dopamine, may act as a risk factor for gait slowing, especially 

among those with frailty. Our primary hypothesis is that the association between COMT 

polymorphism and gait speed differs by frailty status, with associations stronger for 

those with frailty as compared to those without frailty. Our secondary hypothesis is that 

race may also modify these associations, due to its relation to both frailty24 and COMT 

genotype23.  Given the high prevalence of frailty in older age, especially among 

Blacks,24 and the serious clinical implications of slow gait, understanding the 

contributors of gait slowing among at-risk older adults is very important. 

 

Methods 

Participants and sampling 
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  The Cardiovascular Health Study (CHS) is a prospective population-based cohort 

study of adults > 65, sampled randomly within age strata using Medicare eligibility lists 

from Forsyth County, North Carolina; Sacramento County, California; Washington 

County, Maryland; and Pittsburgh, Pennsylvania.25 After enrolling 5,201 participants in 

1989-1990, an additional 687 Black participants were recruited using identical methods 

in 1992-1993.26 Eligibility criteria included: being in the designated sampling frame or 

living in the same household as someone who was sampled; >65 years at the time of 

examination; non-institutionalized; expected to remain in the area for the next three 

years; and able to give informed consent without a proxy.25 Fifty seven percent of the 

eligible persons contacted enrolled in the study.27 

 

Data collection 

Baseline characteristics obtained from phone contact and in–person 

examinations28 included a brief physical examination, cognitive function measures, 

electrocardiograms, respiratory measures, and blood samples.25 Participants were 

followed by annual clinic visits and semi-annual phone contacts through the year 

1999.25 For this analysis, baseline measurements were used. DNA was collected from 

blood samples from most participants and thousands of single nucleotide 

polymorphisms (SNPs) for candidate gene regions have been genotyped. 
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Analytic Sample 

Of 5888 CHS participants, 4043 participants had complete data for COMT gene 

and walk time.  From these we excluded those with: missing data on frailty (n=291) or 

on medications for Parkinson’s disease (n=5); participants having Parkinson’s disease 

at baseline (n=2) or taking a Parkinson medication (n=1).  Selection criteria for data 

collection did not differ by race status. See Figure 1 for details. 

Measurements 

Blood samples were drawn from participants at their baseline examination. 

Genotyping was performed at the General Clinical Research Center’s 

Phenotyping/Genotyping Laboratory at Cedars-Sinai for participants who consented to 

genetic testing and had DNA available using the Illumina 370CNV BeadChip system (for 

European ancestry participants, in 2007) or the Illumina HumanOmni1-Quad_v1 

BeadChip system (for Black participants, in 2010). All Black participants were 

genotyped; European ancestry participants were excluded from the GWAS study 

sample is they had coronary heart disease, congestive heart failure, peripheral vascular 

disease, valvular heart disease, stroke or transient ischemic attack. Beyond laboratory 

genotyping failures, participants were excluded if they had a call rate<=95% or if their 

genotype was discordant with known sex or prior genotyping (to identify possible 

sample swaps). After quality control, genotyping was successful for 3,268 European 

ancestry and 823 African-American participants. Genome-wide genotyping contributed 
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SNPs of the COMT Val158Met (rs4680). The following exclusions were applied to 

identify a final set of 306,655 autosomal SNPs: call rate < 97%, HWE P < 10-5, > 2 

duplicate errors or Mendelian inconsistencies (for reference CEPH trios), heterozygote 

frequency = 0, SNP not found in HapMap. These SNPs served as the basis for 

imputation to the Haplotype Reference Consortium (r1.1 2016) panel, which was 

performed on the University of Michigan’s imputation server. The two primary races 

identified in the CHS cohort, White and Black, tend to have different frequencies of the 

COMT genotype;23 as such, interactions by race were tested and models were repeated 

stratified by race. 

Participants were grouped as frail based on the Fried physical frailty phenotype18 

if they had >3 of the following:  dominant hand grip strength (lowest 20% at baseline), 

self-reported exhaustion, self-reported unintentional weight loss of 10 pounds or greater 

in one-year, gait speed (slowest 20% at baseline), and physical activity (lowest quintile). 

Those with 1-2 signs were classified as intermediate frail and those with none were non-

frail.   

 Gait speed (m/sec) was measured while walking a 15-foot course at a usual pace 

starting from standing still. Grip strength was measured three times on dominant and 

non-dominant hands, and the average computed. The Minnesota Leisure Time 

Activities and Paffenbarger questionnaires assessed physical activity (kcals).29,30 

Exhaustion and unintentional weight change were by self-report.  
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In addition to age, sex and race, other baseline variables were: education 

(converted from year reached in school to high school diploma, GED, or higher 

education versus not finishing high school); BMI (height and weight); ankle-arm index 

(supine blood pressures from the right arm and both ankles); depression (Center for 

Epidemiologic Studies Depression Scale);31 cognitive function (Mini-Mental State 

Examination32 , with scores >27 classified as normal.33 Presence of vision problems, 

diabetes, arthritis, chronic lung disease, cerebrovascular and cardiovascular diseases 

were self-reported measures with adjudication by clinicians after consultation of medical 

history and medications. 

 

Analysis 

Mean and standard deviation or median and inter-quartile range were computed 

for continuous variables, depending on normality of the distribution. Differences in frailty 

status, gait speed, and population characteristics by COMT genotypes were tested 

using two sample t-tests (or Mann-Whitney-U tests in case of skewed distribution) and 

Pearson Chi-square (or Fisher’s exact values for N>5) as appropriate (Table 1). Similar 

approaches were used to compare population characteristics by frailty status 

(Supplemental Table 1). Each variable’s correlation with gait speed was computed for 

the full cohort and stratified by frailty status using Pearson for continuous variables and 

Spearman for categorical variables (Supplemental Table 2).  
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Multivariable linear regression analyses tested the association of COMT 

genotype (with Met/Met as the reference group) with gait speed, with interaction terms 

by race and frailty status in separate models. Models were adjusted for demographics 

first and then for variables that were bivariately associated with the COMT genotype at 

p<0.05. Additional potential covariates were considered for adjustment if they were 

significantly associated with gait speed at p<0.05.  Associations of COMT with frailty 

were also tested in logistic regression models; odds ratios are reported for COMT 

predicting being frail vs. pre-frail, as well as predicting frail vs. non-frail, and pre-frail vs. 

non-frail. Given the association between frailty and gait speed (slow gait is also one of 

the Fried criteria to classify frailty), it is possible that that a variation of the association 

between COMT and gait speed by frailty status could be driven by differences in gait 

speed in each frail group; in other words, the association could be strongest among frail 

due to gait being slowest in this group, not because of frailty being a status that 

heightens vulnerability to stressors. To address this possibility, sensitivity analyses 

modeled COMT predicting gait speed In groups stratified by gait speed, using clinically 

meaningful cut-offs1 of <0.6m/sec (n=384), 0.6-1.0m/sec (n=2565), and > 1.0 m/sec 

(n=838).  

 

Results 
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Genotype distributions were consistent with Hardy-Weinberg Equilibrium in the 

full sample (p=0.10) as well as in the Black (p=0.06) and White (p=0.69) participants’ 

races.  In the full cohort, 7% of those with Val/Val genotype (indicating lower dopamine) 

also had frailty (Table1); gait speed differences between Val/Val and Met/Met were 

marginally significant (Table 1). Compared to Val/Met and Met/Met, Val/Val were more 

likely to be black, to have lower physical activity, higher BMI, higher proportion having 

diabetes, cerebrovascular disease, cardiovascular disease, and abnormal cognitive 

functioning (all p<0.05, Table 1).  Difference in age, gender or education were not 

statistically significant (Table1).  

 As expected, the frail group had a worse profile on all variables examined, 

compared to the non-frail or pre-frail group (Supplemental table 1). The unadjusted 

mean gait speed for the frail group was about 30% slower, compared to those in the 

pre- or non-frail group. In the total cohort, the factors predicting slower gait were 

consistent with what we and others have previously shown: older age, female gender, 

lower education, lower grip strength, and generally worse health (Supplemental Table 

2).   Results were similar in the frail group, but less strong in the pre-frail or non-frail 

groups; all variables except weight loss, chronic lung disease, and cerebrovascular 

disease were significantly correlated with gait speed at p<0.05 and in the expected 

direction (Supplemental Table 2).  
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In multivariable logistic regression models predicting frailty, the association 

between COMT and frailty became not significant after adjustment for demographics 

(p>0.23).   

In multivariable linear regression models of COMT predicting gait speed, the 

association of COMT with gait speed significantly differed by frailty status (interaction 

between COMT and frailty p=0.03) and by race (interaction between COMT and race 

p=0.02). The three-way interaction of COMT by frailty and by race was not significant 

(p>0.1).  

In models stratified by frailty status (Table 2), the association of COMT with gait 

speed was significant among those with frailty, but not for pre-frail (p> 0.81) or non-frail 

(p>0.2). Among frail participants, Met homozygotes walked approximately 13% faster 

compared to those with Val homozygous status, with a between group difference of 

about 0.10 m/sec (Table 2). Results were similar after further adjustment for factors 

associated with gait speed, specifically depression and vision  (Supplemental Table 2).   

 In models stratified by race (Table 3), gait speed differences between Val/Val 

and Met/Met were statistically significant in Whites but not in Blacks, albeit similar in 

size in both groups; standardized betas were between 0.05 and 0.06, corresponding to 

about 0.01 m/sec or 1% difference between Val/Val and Met/Met. Among frail 

participants, gait speed differences between Val/Val and Met/Met were much larger 

than in the full group; these differences were statistically significant for white, but not for 
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black participants, albeit similar in size; standardized betas were between 0.17 to 0.24, 

corresponding to about 0.07 m/sec or a 10% difference between Val/Val and Met/Met, 

for both white and black participants. Mean differences in gait speed by frailty and by 

frailty and race are illustrated in Figure 2.   

In sensitivity analyses stratified by clinical cut-offs of gait speed instead of frailty 

status, the associations of COMT with gait speed were not significant for any of the 

groups (not shown). 

 

Discussion 

 In this study of community-dwelling older adults, frailty status and race modified 

the associations of COMT polymorphism, an indicator for dopaminergic signaling, with 

gait speed. Associations were significant among adults with frailty, but not for pre- or 

non-frail; and for Whites but not Blacks.  Results were robust to adjustment for health-

related factors and known locomotor risk factors; sensitivity analysis indicate results are 

not driven by extreme gait slowing among frail.   

If confirmed in other studies, our results may have implications for future lines of 

inquiry. First, our findings contribute to the emerging conceptualization of gait slowing 

due to poorer dopaminergic signaling, especially among adults with the frailty 

phenotype. Second, our findings support the notion that frailty may increase 

vulnerability to stressors; specifically, frail adults may be more vulnerable to the effects 
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of lower dopaminergic signaling on gait slowing.  Although our analyses were not 

designed to identify the reasons of this heightened vulnerability, a few explanations 

could be discussed. Emerging evidence suggests subclinical neurovascular changes, 

including small vessel disease, and/or neurodegenerative processes, such as Lewy 

body disorders, are common among frail adults36; these processes are known to reduce 

brain reserve and lower tolerance to stressors 20. In these participants, a prodromal 

neurodegenerative profile underlying frailty might have lowered the symptomatic 

threshold of dopaminergic levels needed to cause slow gait. Another explanation is that 

frailty itself is due to lower dopaminergic signaling. Lower dopamine can impair 

signaling and functioning of sensorimotor, reward, and executive control networks,10,21 

which in turn can lead to slower gait as well as to other signs of frailty: weaker muscle 

strength,  exhaustion, reduced movement (physical activity), and appetite (thus weight 

loss). If this were the case, individuals with both frailty and the COMT val/val genotype 

would have the lowest levels of dopamine; our findings that this group also had slow 

gait would further support the relevance of dopamine in gait control. Unfortunately, 

neurobiological studies of frailty are very sparse; although frailty and Parkinson’s 

disease co-occur, the overlap between dopaminergic signaling and frailty has not been 

tested directly. In our study, only 7% of those with val/val had frailty, and the association 

between COMT and frailty was not significant after adjustment for demographics. 

Neurobiological studies of frailty using neuromolecular and neuroimaging methods, 
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should assess whether the frailty phenotype reflects lower dopaminergic signaling 

and/or is a marker of failed compensatory processes.  

Associations of COMT with gait speed among the non-frail and intermediate 

groups were not statistically significant. This could be due to a lack of variation in gait 

speed in these subgroups; there are differences in the distribution of gait speed values 

across groups, with larger variations among frails compared to non or intermediate frail, 

with standard errors comparatively narrow in the non-frail cohort. Indeed, in sensitivity 

analyses stratified by gait speed cut-offs yielding smaller ranges of gait speed in each 

group, associations of COMT with gait speed were not significant.  

Our findings potentially explain the discrepancies in other studies that did not 

account for frailty. Our results of an association between COMT and gait speed differ 

from a previous cross-sectional study on COMT and gait speed, where Val/Met was the 

fastest genotype and Val/Val and Met/Met did not have significant differences in speed 

when compared to each other.16 This could be due to our stratification by frailty status, 

but also that the study’s total cohort had a mean age about 7 years older than our total 

cohort hence having a relatively larger prevalence of frailty. Our results of a lack of 

association for the non-frail group are consistent with a recent cross-sectional study.12 

Our results should be interpreted cautiously.  A major limitation is that we 

assessed the effects of one gene on gait speed. A recent genome-wide meta-analysis, 

which included the CHS cohort, found SNPs relating to 69 genes with suggestive 
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associations with gait speed but found insignificant results for the COMT 

polymorphism.35 Our analysis indicates that a well-characterized candidate gene may 

have a more pronounced prominent influence on frail adults due to their increased 

vulnerability to stressors; studying other genes in this population may be valuable. Such 

studies should account for other causes of gait slowing in older age, 34 as a single or 

even multiple genes polymorphism is unlikely to completely explain the variance of gait 

speed among adults who also have complex multi-system impairments of varying 

severity.  A simultaneous study of the dopaminergic and multi-system contribution to 

slowing gait among frail adults can help better understand its causes and help design 

multi-modal interventions to ameliorate gait slowing. 

COMT is important for the metabolism of norepinephrine and epinephrine, in 

addition to dopamine; thus, it cannot be excluded that these effects may be due to other 

catecholamines.37 Other limitations of this study include the cross-sectional design. 

Differential effects of COMT genotypes on gait slowing over time have been shown, 

indicating that a single cross-section may not adequately demonstrate the relationship 

between gait speed and the COMT genotype. Further studies on COMT and gait speed 

specifically in frail populations using longitudinal designs may be helpful. Another 

limitation was the small sample size of our population, especially when separated by 

frailty and by race. Although the regression coefficients were similar in both races, 

associations did not reach statistical significance among Blacks. It is also possible that 
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the influence of COMT on gait speed among Blacks was confounded (e.g. reduced) by 

the higher burden of cardiovascular diseases compared to Whites. The influence of 

residual confounding and whether associations are significant among Blacks should be 

examined in larger samples. 

Conclusions 

This study suggests a robust relationship between COMT polymorphism and gait 

speed in older adults with frailty. Our findings may inform studies of the dopaminergic 

contribution to gait slowing and frailty. If our results are confirmed in future studies, 

COMT genotyping may be used for risk stratification and to better understand the 

causes of gait slowing.  
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Figure 1: Flowchart illustrating the participants included in the analysis. 

 

Figure 2: Means and Standard Errors of Gait Speed Stratified by Frailty (A), and by Frailty and 

Race (B). Black: Val/Val; Gray: Val/Met; White: Met/Met. Asterisks: significantly different from 

Met/Met at p<0.05 

 

Supplemental Table 1: Baseline characteristics of participants in the full cohort and 
stratified by frailty status. 

 

Supplemental Table 2: Correlations of population characteristics with gait speed, for the 
full cohort and stratified by frailty status. 
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Table 1. Baseline characteristics stratified by COMT genotype. Numbers (%) are reported, unless 
otherwise specified   
 Val/Vala 

(n=1053) 
Val/Metb 
(n=1818) 

Met/Metc 
(n=873) 

P-
values 
a vs b 

P-values 
b vs c 

P-values 
a vs c 

Frailty measures       
Frail (severe vs. moderate 
or none), present 

77 (7.3) 107 (5.9) 36 (4.1) 0.13 0.056 0.003 

Gait speed (m/sec)                   
(mean(SD)) 

0.87 (0.22) 0.88 (0.21) 0.89 (0.2) 0.55 0.10 0.051** 

Grip strength (kg)                    
(mean (SD)) 

28.8 (10.9) 28.2 (10.2) 28.1 (9.9) 0.21 0.81 0.20** 

Physical activity (total 
kcals) (median (IQR)) 

893.8 
(1702.5) 

1215 
(1950) 

1207 
(2155.5) 

<0.001 0.38 <0.001‡‡ 

Exhaustion, present 312 (29.6) 573 (31.5) 273 
(31.3) 

0.29 0.89 0.44 

Unintentional weight loss 
≥ 10 lbs, present 

111 (10.5) 210 (11.6) 80 (9.2) 0.49 0.09 0.32 

Demographics       
Age   (median (IQR)) 71 (8) 71 (7) 71 (8) 0.36 0.82 0.57‡‡ 
Gender, Male 423 (40.2) 716 (39.4) 325 

(37.2) 
0.68 0.28 0.19 

Race, Black 326 (31) 278 (15.3) 81 (9.3) <0.001 <0.001 <0.001 
Education >high school  740(70.3) 1335 (73.4) 635 

(72.7) 
0.08 0.74 0.24 

Health Related Factors     
BMI  (kg/m2), mean (SD)                 27 (4.7) 26.6 (4.7) 26.5 (4.7) 0.02 0.71 0.02** 
Ankle-arm index (%),             
mean (SD) 

1.1 (0.2) 1.1 (0.2) 1.1 (0.1) 0.40 0.90 0.53** 

Depression score (CES-
D) (median (IQR)) 

3 (5) 3 (5) 3 (5) 0.52 0.87 0.69‡‡ 

Impaired Vision, present 53 (5) 105 (6) 46 (5) 0.41 0.68 0.75 
Arthritis, present 517 (49) 905 (50) 442 (51) 0.79 0.61 0.49 
Diabetes, present 124 (12) 181 (10) 72 (8) 0.13 0.16 0.01 
Chronic lung disease, 
present 

4 (0) 4 (0) 1 (0) 0.19 0.22 0.09+ 

Cerebrovascular disease, 
present 

28 (3) 28 (2) 10 (1) 0.04 0.42 0.02 

Cardiovascular disease, 
present 

156 (15) 177 (10) 86 (10) <0.001 0.93 0.001 
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Normal cognitive function, 
present 

790 (75) 1471(82) 705(81) <0.001 0.78 0.003 

P values are from Chi-square test unless otherwise specified; **Two sample t-test; ‡ Kruskal-Wallis 
test;  ‡‡ Mann-Whitney U Test; +Fischer’s exact test.  Prevalence: rounded to nearest decimal 
point. 

Normal cognitive function based on assessment with 30-point Mini-Mental State Examination> 27 
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Table 2. Multivariable linear regression of genotype predicting average gait speed (m/s), for 
the full cohort and stratified by frailty status.   

 All Cohort 
 (n=3744) 

Frailty  
(n=220) 

Moderate Frailty  
(n=1691) 

No Frailty 
 (n= 1833)  

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

 β 

(95%CI)* 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%CI) 

p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

Val/Va
l 

-.031 

 (-
.03,.006

) 

p=.19 

-.030 

 (-
.03,.007

) 

p=.23 

-.201 
(-.13, -

.01)  
p=.03 

-.198 
(-.13, -

.01)  
p=.03 

.001 

 (-
.03,.03) 
p=.99 

-.002 

 (-.03, 
.03) 

p=.94 

.012 

 (-
.02,.03) 
p=.71 

.013 

 (-
.02,.03) 
p=.68 

Val/Me
t 

-.027 
 (-.03, 
.004) 

p=0.14 

-.028 
 (-

.03,.003

) 
p=.23 

-.079 
 (-

.09,.03) 

p=.31 

-.068 
 (-

.09,.03) 

p=.35 

.007 
 (-

.21,.03) 

p=.81 

.004 
 (-.22, 
.03) 

p=.88 

-.035 
 (-

.31,.006

) 
p=.18 

-.037 
 (-

.31,.005

) 
p=.16 

* Standardized beta coefficient (95% confidence interval), referent group= Met/Met 
Model 1:  adjusted for age, gender, education, race 
Model 2: further adjusted for variables bivariately associated with COMT genotype: body 

mass index, diabetes, cerebrovascular diseases, cardiovascular diseases, cognitive status. 
Bold text indicates statistically significant results (p<0.05). 
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Table 3. Multivariable linear regression of genotype predicting average gait speed (m/s), 
stratified by race for the full cohort and among frail subgroup  

 White, All cohort 
(n=3059) 

Black, All cohort 
(n=685) 

White, Frail 
(n=177) 

Black, Frail (n=87) 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

 β 

(95%CI)* 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%CI) 

p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

β(95%C

I) 
p-value 

Val/Va
l 

-.06 
 (-.04, -
.003) 

p=.02 

-.05 
 (-.04, -
.003) 
p=.02 

-.06 

 (-.02, 
.09) 

p=.17 

-.06 

 (-.02, 
.09) 

p=.17 

-.23 
 (-.14, -
.006) 
p=.03 

-.24 
 (-.14, -
.004) 
p=.04 

-.18 

 (-.20, 
.05) 

p=.23 

-.17 

 (-.20, 
.06) 

p=.26 

Val/Me
t 

-.03 
 (-.03, 
.004) 

p=0.13 

-.03 
 (-

.03,.003
) 

p=.11 

-.005 
 (-

.05,.06) 
p=.91 

-.000 
 (-.05, 
.05) 

p=.99 

-.04 
 (-.08, 
.05) 

p=0.68 

-.03 
 (-

.08,.06) 
p=.75 

-.14 
 (-.18, 
.06) 

p=.32 

-.11 
 (-.17, 
.07) 

p=.41 

* standardized beta coefficient (95% confidence interval) , referent group= Met/Met  

Model 1:  adjusted for age, gender, education, race 
Model 2: further adjusted for variables bivariately associated with COMT genotype: body 
mass index, diabetes, cerebrovascular diseases, cardiovascular diseases, cognitive status. 
Bold text indicates statistically significant results (p<0.05). 
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Table 1. Baseline characteristics stratified by COMT genotype. Numbers (%) are reported, unless 
otherwise specified   
 Val/Vala 

(n=1053) 
Val/Metb 
(n=1818) 

Met/Metc 
(n=873) 

P-values 
a vs b 

P-values 
b vs c 

P-values 
a vs c 

Frailty measures       
Frail (severe vs. moderate 
or none), present 

77 (7.3) 107 (5.9) 36 (4.1) 0.13 0.056 0.003 

Gait speed (m/sec)                   
(mean(SD)) 

0.87 (0.22) 0.88 (0.21) 0.89 (0.2) 0.55 0.10 0.051** 

Grip strength (kg)                    
(mean (SD)) 

28.8 (10.9) 28.2 (10.2) 28.1 (9.9) 0.21 0.81 0.20** 

Physical activity (total 
kcals) (median (IQR)) 

893.8 
(1702.5) 

1215 (1950) 1207 
(2155.5) 

<0.001 0.38 <0.001‡‡ 

Exhaustion, present 312 (29.6) 573 (31.5) 273 (31.3) 0.29 0.89 0.44 
Unintentional weight loss ≥ 
10 lbs, present 

111 (10.5) 210 (11.6) 80 (9.2) 0.49 0.09 0.32 

Demographics       
Age   (median (IQR)) 71 (8) 71 (7) 71 (8) 0.36 0.82 0.57‡‡ 
Gender, Male 423 (40.2) 716 (39.4) 325 (37.2) 0.68 0.28 0.19 
Race, Black 326 (31) 278 (15.3) 81 (9.3) <0.001 <0.001 <0.001 
Education >high school  740(70.3) 1335 (73.4) 635 (72.7) 0.08 0.74 0.24 
Health Related Factors     
BMI  (kg/m2), mean (SD)                 27 (4.7) 26.6 (4.7) 26.5 (4.7) 0.02 0.71 0.02** 
Ankle-arm index (%),             
mean (SD) 

1.1 (0.2) 1.1 (0.2) 1.1 (0.1) 0.40 0.90 0.53** 

Depression score (CES-D) 
(median (IQR)) 

3 (5) 3 (5) 3 (5) 0.52 0.87 0.69‡‡ 

Impaired Vision, present 53 (5) 105 (6) 46 (5) 0.41 0.68 0.75 
Arthritis, present 517 (49) 905 (50) 442 (51) 0.79 0.61 0.49 
Diabetes, present 124 (12) 181 (10) 72 (8) 0.13 0.16 0.01 
Chronic lung disease, 
present 

4 (0) 4 (0) 1 (0) 0.19 0.22 0.09+ 

Cerebrovascular disease, 
present 

28 (3) 28 (2) 10 (1) 0.04 0.42 0.02 

Cardiovascular disease, 
present 

156 (15) 177 (10) 86 (10) <0.001 0.93 0.001 

Normal cognitive function, 
present 

790 (75) 1471(82) 705(81) <0.001 0.78 0.003 

P values are from Chi-square test unless otherwise specified; **Two sample t-test; ‡ Kruskal-Wallis 
test;  ‡‡ Mann-Whitney U Test; +Fischer’s exact test.  Prevalence: rounded to nearest decimal point. 

Normal cognitive function based on assessment with 30-point Mini-Mental State Examination> 27 
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Table 2. Multivariable linear regression of genotype predicting average gait speed (m/s), for the full cohort and stratified by frailty 
status.   

 All Cohort 
 (n=3744) 

Frailty  
(n=220) 

Moderate Frailty  
(n=1691) 

No Frailty 
 (n= 1833)  

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

 β (95%CI)* 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

β(95%CI) 

p-value 

Val/Val -.031 
 (-.03,.006) 

p=.19 

-.030 
 (-.03,.007) 

p=.23 

-.201 
(-.13, -.01)  

p=.03 

-.198 
(-.13, -.01)  

p=.03 

.001 
 (-.03,.03) 

p=.99 

-.002 
 (-.03, .03) 

p=.94 

.012 
 (-.02,.03) 

p=.71 

.013 
 (-.02,.03) 

p=.68 
Val/Met -.027 

 (-.03, .004) 

p=0.14 

-.028 
 (-.03,.003) 

p=.23 

-.079 
 (-.09,.03) 

p=.31 

-.068 
 (-.09,.03) 

p=.35 

.007 
 (-.21,.03) 

p=.81 

.004 
 (-.22, .03) 

p=.88 

-.035 
 (-.31,.006) 

p=.18 

-.037 
 (-.31,.005) 

p=.16 
* Standardized beta coefficient (95% confidence interval), referent group= Met/Met 

Model 1:  adjusted for age, gender, education, race 
Model 2: further adjusted for variables bivariately associated with COMT genotype: body mass index, diabetes, cerebrovascular 
diseases, cardiovascular diseases, cognitive status. 
Bold text indicates statistically significant results (p<0.05). 
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Table 3. Multivariable linear regression of genotype predicting average gait speed (m/s), stratified by race for the full cohort and 
among frail subgroup  

 White, All cohort (n=3059) Black, All cohort (n=685) White, Frail (n=177) Black, Frail (n=87) 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

 β (95%CI)* 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

β(95%CI) 
p-value 

Val/Val -.06 
 (-.04, -.003) 

p=.02 

-.05 
 (-.04, -.003) 

p=.02 

-.06 
 (-.02, .09) 

p=.17 

-.06 
 (-.02, .09) 

p=.17 

-.23 
 (-.14, -.006) 

p=.03 

-.24 
 (-.14, -.004) 

p=.04 

-.18 
 (-.20, .05) 

p=.23 

-.17 
 (-.20, .06) 

p=.26 

Val/Met -.03 
 (-.03, .004) 

p=0.13 

-.03 
 (-.03,.003) 

p=.11 

-.005 
 (-.05,.06) 

p=.91 

-.000 
 (-.05, .05) 

p=.99 

-.04 
 (-.08, .05) 

p=0.68 

-.03 
 (-.08,.06) 

p=.75 

-.14 
 (-.18, .06) 

p=.32 

-.11 
 (-.17, .07) 

p=.41 
* standardized beta coefficient (95% confidence interval) , referent group= Met/Met  
Model 1:  adjusted for age, gender, education, race 

Model 2: further adjusted for variables bivariately associated with COMT genotype: body mass index, diabetes, cerebrovascular 
diseases, cardiovascular diseases, cognitive status. 
Bold text indicates statistically significant results (p<0.05). 
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	PARTICIPANTS:  Volunteer community-dwelling adults aged 65 and older, without evidence of Parkinson’s Disease (N= 3,744, 71 years, 82% white, 39% male).
	MEASUREMENTS:  Gait speed (usual pace, m/sec), physical frailty (Fried definition), and genetic polymorphism of Catechol-O-methyltransferase (COMT, rs4680), an enzyme regulating tonic brain dopamine levels, were assessed. Interaction of COMT by frailt...



