
1.  Introduction
Over the past decade, persistent, abundant precipitation has led to extremely high soil moisture and wide-
spread flooding across central and eastern North America (Carter & Steinschneider, 2018; Feng et al., 2016). 
Previous studies characterizing historical fluctuations in the hydrologic cycle of this region document in-
creasing trends in precipitation and in the likelihood of flood events (Groisman & Easterling, 1994; Hira-
bayashi et al., 2013; Roque-Malo & Kumar, 2017). These conditions are associated with changes in atmos-
pheric moisture fluxes and increasing air temperatures; yet, in other parts of North America (and the globe) 
climate change is more commonly associated with aridification and drought (Lofgren et al., 2013; Milly & 
Dunne, 2017). Near the beginning of this period of regional water abundance, however, drought conditions 
reinforced concerns that high temperatures and evapotranspiration might foreshadow a persistent imbal-
ance in the hydrologic cycle characterized by net water loss (Gronewold & Stow, 2014; Mallya et al., 2013; 
Wang et al., 2014). The recent fluctuation between these hydrologic conditions has been manifest by water 
level variability on the Laurentian Great Lakes (Gronewold & Rood, 2019; Gronewold et al., 2016), the larg-
est system of lakes on Earth.

In the absence of anthropogenic control, the water balance of most fresh surface water systems involves a 
trade-off between atmospheric transfer of moisture onto and across land surfaces, storage in surface and 
subsurface lakes and aquifers, and water loss through evapotranspiration (Jasechko et al., 2013; Munoz & 
Dee, 2017). The water balance of basins containing Earth's large lakes, however, is governed by addition-
al hydrological processes, including those related to heat exchange and evaporation (Blanken et al., 2003; 
Gronewold & Stow, 2014; Xiao et al., 2018), overlake precipitation (Fujisaki-Manome et al., 2020; Holman 
et al., 2012; Swenson & Wahr, 2009), and enhanced intrabasin precipitation recycling (Fu & Steinschnei-
der, 2019; Notaro et al., 2013). These processes play a critical role in global water balance accounting and 
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water management, given that Earth's ten largest lakes contain rough-
ly 80% of all fresh, unfrozen surface water (Cael et al., 2017; Messager 
et al., 2016). On the Great Lakes, for example, an understanding of his-
torical and potential future changes in the major components of the wa-
ter balance guides decisions related to flood risk (particularly along the 
shoreline of Lake Ontario), hydropower management, and commercial 
navigation (Gronewold & Rood, 2019; Labuhn et al., 2020; Millerd, 2011).

Understanding the water balance of large lakes is important not only 
because it facilitates water resources management by accounting for 
the majority of Earth's fresh surface water storage, but also because it 
provides insight into pathways through which climate change and oth-
er continental-scale phenomena are propagating into processes that are 
not addressed in conventional land surface hydrology (Lofgren & Grone-
wold,  2013; Milly & Dunne,  2017). These processes include, for exam-
ple, the subsidence of the Earth's surface beneath the lakes in response 
to the weight of the increased load of the recent water level rise (Argus 
et al., 2020).

Here, we fill a gap in knowledge about the distinction between land and lake surface hydrological processes 
on the continental water balance through an analysis of the Upper St. Lawrence River Basin. The St. Law-
rence River has the second highest annual average discharge from the North American continent (Table 1; 
estimates of discharge are derived from Nilsson et al. [2005]), though the variability of that discharge is 
relatively low compared to other continental rivers because the water balance of the upper portion of the 
basin is dominated by the storage capacity of the Laurentian Great Lakes. It is informative to note that 
there are multiple potential delineations of the boundary of the St. Lawrence River basin, depending on the 
definition of the River's outlet. We extracted a basin boundary delineation from the HydroBASINS data set 
(Lehner & Grill, 2013) where the Great Lakes and St. Lawrence River system outlet is defined as the point 
where it meets the Saguenay River; our delineations are also consistent with definitions in the Global Lakes 
and Wetlands Database (Lehner & Döll, 2004).

We note that most historical studies of the water balance in North America are constrained to land surface 
processes either strictly within the United States or strictly within Canada because of the challenges asso-
ciated with harmonizing hydrometeorological data across the international border (Gronewold et al., 2018; 
Mason et al., 2019). Historical studies linking climate change to hydrology also commonly omit basins with 
large lakes because, we believe, of the challenge of representing them accurately in land surface and atmos-
pheric models (Gu et al., 2013; Maurer et al., 2002; Nijssen et al., 2001; Notaro et al., 2013). To address this 
limitation, we have synthesized the most reliable estimates for each component of the water balance of the 
Laurentian Great Lakes. Importantly, these estimates address components of the water balance not only 
over the land surface, but also over the lake surfaces of this massive freshwater system.

2.  Data Sets
2.1.  Historical Great Lakes Water Levels

We obtained monthly average Great Lakes water level data from the Coordinating Committee on Great 
Lakes Basic Hydraulic and Hydrologic Data (hereafter simply “Coordinating Committee”). This ad hoc 
group of federal scientists from the United States and Canada synthesizes, and distributes to the pub-
lic, a comprehensive suite of climate and hydrological data for the Great Lakes and St. Lawrence River 
system (Gronewold et al., 2018). The Coordinating Committee calculates, and reports, monthly average 
water level values for each of the Great Lakes based on a network of shoreline-based water level moni-
toring stations maintained by the National Oceanic and Atmospheric Administration (NOAA) and the 
Canadian Hydrographic Service. The data is distributed through multiple portals, including web sites 
hosted by the Coordinating Committee, the United States Army Corps of Engineers, and NOAA (Smith 
et al., 2016).
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River Annual average discharge (cms)

Mississippi 18,400

St. Lawrence 10,800

Mackenzie 9,900

Columbia 7,500

Yukon 6,400

Fraser 3,600

Nelson 2,800

Koksoak 2,400

Table 1 
Annual Average Discharge (in Cubic Meters Per Second, cms) of North 
America's Eight Largest Rivers (Rounded to the Nearest Hundred)
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2.2.  Components of the Great Lakes Water Balance

We developed multiple estimates of each component of the Great Lakes water balance (see supporting 
information) and selected those that we believe to be the most accurate (see supporting information Fig-
ure S2). It is informative to note that, given the seasonality of each component of the Great Lakes hydrologic 
cycle, we aggregated monthly water balance component estimates into a modified version of the conven-
tional hydrological “water year”; our water year (for each lake) begins July 1, and ends on the last day of 
the following June.

Annual precipitation totals on the land surface surrounding the Great Lakes and St. Lawrence River (Fig-
ure 1) are derived from areally-averaged gage measurements documented in the NOAA Great Lakes Envi-
ronmental Research Laboratory (GLERL) Great Lakes Monthly Hydrometeorological Database, or GLM-
HMD (Hunter et al., 2015). Land evapotranspiration estimates starting in 1950 and ending in 2013 are from 
what is commonly referred to as the “Livneh Gridded Precipitation and Other Meteorological Variables 
product” (Livneh et al., 2015). Land evapotranspiration estimates from 2014 onward are from ERA5 (Coper-
nicus Climate Change Service (C3S), 2017).

Estimates of runoff, lake precipitation, lake evaporation, and net lake moisture flux are derived from the 
Large Lake Statistical Water Balance Model (L2SWBM). The L2SWBM includes a series of conventional 
lake water balance algorithms encoded within a Bayesian statistical framework (Gronewold et al., 2020) 
that infers (with an expression of uncertainty) each component of the water balance for either a single lake, 
or for a connected system of lakes. We then aggregated these estimates, using the surface area of each lake, 
into a single value of total overlake precipitation, total overlake evaporation, and total lake inflow through 
tributary runoff. Details of our parameterization of the L2SWBM for this study, as well as the L2SWBM 
simulations and corresponding code, are available via the University of Michigan's Deep Blue archive (Do 
et al., 2020).

3.  Results and Discussion
Water levels across the Great Lakes system have risen sharply over the past 5 years (Figure 2) surpassing 
both monthly and all-time record highs. Lake Superior and Lake Michigan-Huron, for example, set new 
monthly high water level records in 2019 and 2020. Lake Ontario set a new all-time high level in 2017, and 
both Lake Erie and Lake Ontario set new all-time high level records 2019. These conditions are all-the-more 
profound given that water level measurements on the Great Lakes date to 1860 (see supporting information, 
Figure S1), and that water levels on Lakes Superior and Michigan-Huron were at or near record low condi-
tions for much of the period from 1999 through 2013 (Figure 2). Lake Superior reached record monthly lows 
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Figure 1.  Map of the St. Lawrence River basin, including a delineation of the subbasin of the Laurentian Great Lakes (hatched area). Inset figure delineates the 
20 largest river basins on Earth with St. Lawrence River basin highlighted for clarity.
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in both August and September of 2007, while Lake Michigan-Huron reached a record low for the month of 
December in 2012 and an all-time record low in January 2013 (Gronewold & Stow, 2014).

Water level fluctuations across this massive lake system are driven by seasonal and interannual partitioning 
of precipitation and evapotranspiration across the lake and surrounding land surfaces. Water balance as-
sessments of the Great Lakes, and other large lakes, commonly aggregate these processes into three discrete 
components: lake lateral tributary runoff (defined here as the summation of lake inflow from all lateral 
tributaries and streams, with the exception of inflow from a lake's upstream connecting channel), over-
lake precipitation, and overlake evaporation (Fry et al., 2013; Gaborit et al., 2017; Lenters, 2001; Pietroniro 
et al., 2007). Our analysis of changes in these water balance components across the upper portion of the St. 
Lawrence River basin dating to 1950 (Figure 3) indicates that the recent (2013–2018) extreme water level 
fluctuations on the Great Lakes are a response to an increase in both the magnitude and variability of pre-
cipitation, land surface evapotranspiration, and lake evaporation. It is informative to note that while Great 
Lakes water level in situ measurements date to 1860, few data sets extend evaporation records prior to 1950 
because of the limited extent of hydrometeorological monitoring networks prior to that year. As such, our 
historical context for the recent water level surge is based on a record dating to 1900, however our historical 
context for changes in the water balance dates only to 1950.

We find that precipitation over the land surfaces of the basin (Figure 3a) has risen steadily over the past 
2 decades and is now at extraordinary levels. The three highest years of precipitation between 1950 and 2020 
were 2018 (highest), 2013 (second highest), and 2016 (third highest). It is very unlikely that this pattern 
is the result of natural variability alone. In fact, this sequence aligns with climate change projections for 
the Great Lakes region, which generally indicate an expected increase in long-term regional precipitation 
(Chao, 1999; Lofgren & Gronewold, 2014; Michalak et al., 2013; Milly & Dunne, 2017). One study, for exam-
ple (Notaro et al., 2015), showed that 33 general circulation models (GCMs) selected from the fifth Coupled 
Model Intercomparison Project (CMIP5) projected virtually no change (3 GCMs) or a definitive increase (30 
GCMs) in annual precipitation across the Great Lakes by the mid-21st century (with an expected continued 
increase through the end of the 21st century). A related study (Basile et al., 2017) also found that most 
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Figure 2.  Annual water level anomalies from 2000 to 2019 for (a) Lake Superior, (b) Michigan-Huron, (c) Erie, and (d) Ontario. Upward-pointing hollow and 
solid triangles represent years with either a monthly or (respectively) all-time record low water level. Downward-pointing hollow and solid triangles represent 
years with either a monthly or (respectively) all-time record high water level. Histograms of historical water level differentials across every incremental window 
of (e) 12 years for Lake Superior, (f) 6 years for Michigan-Huron, (g) 7 years for Erie, and (h) 10 years for Ontario. Black tick marks represent the differential 
from each historical time window; red tick mark represents the most recent water level differential shown in panels (a–d), respectively.
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regional climate models (RCMs) driven by GCMs from CMIP5 indicate a 10%–20% increase in precipitation 
(specifically for Lake Erie) by mid-21st century.

Interestingly, between 1998 and 2013, when water levels on Lakes Superior, Michigan, and Huron were very 
low (Figure 2), land evapotranspiration and lake evaporation dominated the water balance (Figures 3b and 
3e). Only when lake evaporation shifted abruptly from above-to below-average conditions in the winter of 
2013–2014 (Figure 3e) did abundant precipitation across the region propagate into a record-setting rate of 
water level rise (Gronewold et al., 2016) and the recent series of record-high monthly and annual average 
levels (Figure 2).

It is informative to note that the rapid decline in overlake evaporation in early 2014 coincided with an ex-
treme Arctic polar vortex deformation (Clites et al., 2014; Zhang et al., 2016) that resulted in an outburst of 
very cold air over central North America, and a decrease in Great Lakes surface water temperatures (Grone-
wold et al., 2015). While there appears to be a strong association between the cold air outburst and the 
decrease in evaporation, the nature of connections between global climate change and the frequency, inten-
sity, and orientation of Arctic polar vortex deformations is less clear (Lee & Butler, 2020; Zhang et al., 2016). 
It is also worth noting that evapotranspiration on the land surface of the Great Lakes basin, which had been 
increasing over the period of record (Figure 3b), also abruptly declined in 2014 but, unlike lake evaporation, 
has since returned to high levels. Improving understanding of the mechanisms that initiated and continue 
to maintain low levels of evaporation after 2014, and whether those mechanisms might continue to be 
linked to Arctic polar vortex deformations, is an area for future research.

We have found evidence of an increase in the variability of competing forces on the water balance across a 
large portion of central and eastern North America, suggesting a continental-scale hydrological tug-of-war. 
We also note that runoff into the lakes, despite the rise in regional precipitation, has been relatively stable 
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Figure 3.  Anomalies in the components of the Great Lakes water balance including (a) overland precipitation, (b) evapotranspiration, (c) lateral tributary (or 
the “net” difference between land precipitation and land evapotranspiration) runoff, (d) overlake precipitation, (e) overlake evaporation, and (f) the difference 
(i.e., “net” moisture flux) between overlake precipitation and overlake evaporation from 1950 to present. To facilitate a comparison across panels, all values are 
expressed as annual water totals (anomalies) distributed over the collective surface area of the lakes. Colors differentiate positive and negative anomalies. Black 
lines represent the (centered) 10-year rolling mean. Gray regions bound anomalies between 2013 and 2018.
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over much of the past 30 years, reflecting the offsetting effect of water loss through high evapotranspiration 
from the land surface. While water levels on the Great Lakes surged when lake evaporation slowed in 2014, 
our research suggests that any comparable change in one of the region's water balance components could 
lead to an extreme water level fluctuation. A decrease in regional precipitation, for example, given its cur-
rent magnitude, could lead to sudden water level declines.

4.  Conclusion
In freshwater basins with large lakes, water balance accounting on land surfaces alone does not address 
the full suite of changes in the hydrologic cycle that can lead to flooding, coastal erosion, and threats to 
human health and safety. We have shown that changes in precipitation and lake evaporation across the 
surfaces of one of Earth's largest lake systems have profoundly influenced inland coastal water level vari-
ability and continental discharge. These findings have provided insight into important hydroclimate rela-
tionships that are not reflected in commonly used global data sets and models (Bryan et al., 2015; Minallah 
& Steiner, 2020; Notaro et al., 2013; Wright et al., 2013). This type of inconsistency in the representation of 
hydrologic conditions between models and data sets developed at different spatial scales further exacerbates 
challenges facing regional climate science and water management. Reconciling and forecasting the water 
balance for managing human and environmental health and safety warrants adoption of data development 
and modeling protocols that explicitly propagate global climate dynamics into hydrologic response at re-
gional scales. In future research, we suggest implementing similar analyses for lake-dominated hydrologic 
systems to ensure an appropriate accounting of historical, and potential future variability in Earth's fresh 
surface water storage.

Data Availability Statement
Data sets and model simulations for this project derived from the GLM-HMD (Hunter et al., 2015), L2S-
WBM (Do et al., 2020; Gronewold et al., 2020), WCPS (Deacu et al., 2012; Durnford et al., 2018), AHPS 
(Apps et al., 2020; Gronewold et al., 2011), WATFLOOD (Kouwen, 1988), CaPA (Lespinas et al., 2015; Mah-
fouf et  al.,  2007), MPE (Seo,  1998; Seo & Breidenbach,  2002), and the “Merged” overlake precipitation 
data set (Gronewold et al., 2018) have been compiled and sotred on the University of Michigan Deep Blue 
archive at https://deepblue.lib.umich.edu/data/concern/data_sets/sb3978457.

Additionally, estimates of overland precipitation are available directly from the NOAA-GLERL re-
pository at www.glerl.noaa.gov/data/dashboard/data/hydroIO/precip/. ERA5 data (Copernicus Climate 
Change Service (C3S), 2017) is available at: https://cds.climate.copernicus.eu/, and the data developed by 
Dr. Ben Livneh (Livneh et al., 2015) is available at: www.ncei.noaa.gov/access/metadata/landing-page/bin/
iso?id=gov.noaa.nodc:Livneh-Model.

Soil moisture data was obtained from the NOAA CPC at: https://psl.noaa.gov/data/gridded/data.cpc-
soil.html.
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