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stract—In thispaper, four-dimensional (4D) relativistic scattering of electromagnetic waves from an arbitrary collection of uniformly
(ra slational moving lossy dielectric spheresisdiscussed. Two referenceframes, four 4D coor dinate systemsand L orentz transfor mation
are Jsed to obtain the scattered electromagnetic fields. The direct scattering of the spheres and their interactions are considered with a
nc .l approach. Theintroduced method is straightforward and the analytical relationsfor the fields are achieved. To check the validity
of the proposed method, different examplesfor both stationary and moving scatterersareinvestigated. The effect of the key parameters
su nasthesize, material, velocity, number, position of the spheresand also the frequency of theincident wave are discussed. Thederived
sca ered fields are valid for low, medium and high velocities but according to practical applications low and moder ate velocities are

“* lighted in numerical results.

. INTRODUCTION

A vary interesting subject in electromagneticseigted to the
scr tering of electromagnetic (EM) waves from mgwibjects
w.ich has been investigated by researchers overlase
cer ury. From the standpoint of applications, fowland
...wderate speed cases, it can be used to caldubaddtenuation
and transmission of EM waves for rainy, snowy ancty
~~diums, which is very important in meteorologytefiie
communications, environmental issues, radar apgits and
"otely sensed data. Furthermore, for the higledmdjects
profile, it has applications in the understandifigeattering by
~~'~tivistically moving interstellar dust grains][1moving
plasma columns [2-4] and mass flows in pneumate®i5].

The important properties of objects suchhaps, material,
and velocity could be obtained by processing thettered
fields which is known as the inverse scatteringtiarmore,

'~ post-processing, other significant practidadi@cteristics
¢ a collection of objects such as scattering, netidn and
ab: arption cross sections could be derived. Tha otallenge
in“ 1e random and multiple scattering is obtairtimg scattered
nelds from a moving medium or targets. In thisesa®ur 4D
rdinate systems for the rest and moving framesSpecial
Theory of Relativity (STR) should be considered ebhiauses
~~+*hematical difficulties.

Electromagnetic scattering of a translatiomalving body
wit  STR, which has been introduced firstly by Eéms in 1905
1o, has been used for a moving perfectly reflegtin
~i=0or[7],[8]. By applying STR, EM scattered wavdsr
dn.=rent moving shapes such as dielectric medi@mn 10]
cvl 1der [11-15], conducting sphere [16], electligasmall
viiiral sphere [17], small particle [18], perfeatignducting flat
plate [19], rough surface [20], arbitrary obstdele-27], wedge
”7 29], and half-plane [30-32] have been derivedlso,

- tering characteristics (scattering cross sectatinction,
and absorption) for a uniformly moving object [3&hd a
mo'ing concentrically layered sphere [34] are dised. The

Ix

backscattered signal by a uniformly moving spheresidering
incident wave to be a pulsed plane wave, is ingatd [35].
All foregoing works discuss only one moving objediereas
practical applications mostly deal with a colleatiof many
moving random objects. In that case, not only itigason on
relativistic translational motion of the individualbject is
required, the mutual interactions of the movingects also
have significant effects, which make the solutiororen
complicated.

In this paper, time-domain scattered fields fromaahbitrary
collection of uniformly translational moving losselectric
spheres are calculated in the far field region. dike, material,
velocity, number, position of the spheres, andftbguency of
the incident wave can be selected, arbitrarily Wwhinake
studying of effective parameters possible. By adersng the
intrinsic inaccuracies of using numerical techngjseich as the
finite-difference-time-domain method (FDTD) and kptz
precise integration time-domain method (Lorentz{P)|Tfor a
moving object [36-42], here the STR and Mie the@y-46]
are employed. Also other kinds of motions for adividual
object such as rotational [47-50] and vibratioriE#-p4] have
been investigated, but, here the translational onois of
interest.

A collection of uniformly translational movingpheres of
radius a, complex refractive index ofn=n"+ jn" and

constant velocity of vy =vZ moving along z-direction is
considered. Four 4D coordinate systems (three diiorg are
associated with the position and one with the tiraeg
considered regarding the rest and moving frame<twhie
denoted withK andK', respectively, as shown in Fig.1. In the
rest frame, the spheres appear to be moving atigéimoving
frame the spheres seem to be stationary.

In order to synchronize timel, andK ' are considered to
coincide at the timet =t = 0. Each frame has two spatial
coordinate systems. In order to characterize alve $oe whole
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problem, Cartesiaffx, y, 2 and spherica(r,&,¢) coordinate
systems are considered for the rest frafkg and similarly,
the prime formgx', y, Z) and(r',&',¢') are chosen to indicate

the quantities in the moving fram@") . Considering that all

spheres are moving in the rest frame, it would barem ,

appropriate to transform the problem to the movfiagne. In 4

other words, the problem is solvedkn' and then the resulting >’
scattered fields transformed back ito The incident wave N
and the observation point are given in khrame. According =
to symmetry characteristics of spheres, withoutinips x’ =
generality, an incident plane wave is considergutépagate in

the negative % directiot and has a polarization in thg z

direction which can be expressed in the rest fraye ¥

-\
~

—

o P Ve Gi__ Lo =
E' =Ee*y ,H'——;xxE' 1) =,
X
where  is the intrinsic impedance of the free space &nd Fig.1. Two reference frames for relative motion.
the wave number in the rest frame.

The incident plane wave is transformed into theving

A. Electromagnetic scattering from a moving sphere:
9 g gsp frame [7, 16]:

At the timet =0, the coordinates of thith moving sphere

is represented by(x,,, Y,, %Z,) - Moreover, T is the time L1 Ckn
when theth sphere scatters a spherical wavefront gnds the E" = \/1_7 Ee*™y (8)
instantaneous distance betweenithemoving sphere and the
observation point(x ,,y,,z,), as shown in Fig.2. So the | ' _ k ©)
position of this sphere in the rest frame can bgressed by J1- 3
X Y0 Z . )=(X,, Yo, Zot V,7) and the angled is
defined as: By applying Mie theory to the incident fiéldor the far-field

Z,-Z,—VT region (k'r’ > 1) in the moving frame, the direct scattered field
cosf o @) can be derived as

1 = ,ds _ 1 N ' '

r :[(Xp_xi)2+(yp_yi)2+(zp_ZO_VI-)Z]Z 3) E, ,—1_ﬂ2[31(5)sm¢. cosb, .

k'
In order to associateK and K'using the Lorentz +0.25S, (3')sin @, sin 3, Leiz

transformation [7, 8]

~ t-(2)z, Els = ———[S,(3") cos’ § cosp/
X{ =X,y =Y:7 = \Z/ ,\l;r = \/ C,B (4) ’ Vi- '8 (12)
1 1_ 2 ik’
-S,(8")sin? ¢, sing, )]k,e,x,2

Where S =v /cand c is the speed of light in free spathe

components of the spherical coordinate systeniKircan be with X '=(1-sin* 8’ cog,’ ? and o' is the angle between

written as [7, 8] incident direction (kAi') and scatteringdirection (kAs') The

1- Bcosh scattering amplitude matrix coefficients for Mietny [45] can
= (5) be stated as
V1-5 2n+1
cos - f sin@ /1- £ (9= Zn(n +1)[a”” (0S0)* R, (cosd )]
=1 = s = (6) w (12a)
1-[Bcosd 3 cog
X~ X %Y =
co ! =_° 7 ; Sl ) =-Fr 2 ; ! = 7

! Throughout this pap%ij"’ usedto transfornto the time-harmonic 2 For the convenience amplitude of the incidentifislconsidered to be
) v/m.
fields.
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p(x,y,2,) E g _; o C0520 co
. - 11— ECOSH[X'Z(S( ) d (15)

k(r —ct)

-S,(9)sin’ ¢! sind' )]7

In order to represent the phase fadi@f ")) of the obtained

scattered fields in an unprimed form and to relatéth 7 itis
noted that

r'=c(t'-7") and jk'(r'—ct)=—jkcry1- B (16)

By applying (16) and (9) to (14) and (15), the tih@rmonic
direct scattered fields in the rest frame coul@xgressed by:

E;
X E® = 1-f° —r = 1 ~(S(d)sing’ cosy
Fig.2. Scattering configuration and angles for laesp moving with velocity v (1 ,BCOSH ) X
along z-direction. .e_jka (17)
where +0.255, @' )sin® sin@' )i—
7 (cos3 )= - P!(cosd) ke
12(3) ds 1- ,8 1
1 = cog g co
r,(cosd )= _dR,(cos9) 5= 1- [ cof X >z (59 i
do e —jker (18)

_ K%k, Al ka, (k) - K& J( b al kB _g(g)sint g sing )]_
k%,a"],(k,alkah(kal - K A [ K& k & KH
_ dn(k @)[kai,(Ka) - j,(kal K, aif k, 3’ He =L x(E, 5+E, ) (19)
"Lk a)kah (k3] - h( K k al kR 7

(12¢) Itis important to state that although these diseetitered fields

Where a is the radius of the sphera,, b, are the Mie components are functions af, they represent the scattered
' n

scattering coefficients,j,, h, are the spherical Bessel andfields in the observation point at the time=7+—.
c

Hankel functions of the first kind, respectively, is the

associated Legendre function and prime is the iootgor ~ B- Secondary electromagnetic scattering fields from tw
derivation. spheres configurations

In this section, two moving spheres are ichared and the
To transform back to the stationary frame, theofelhg problem is to evaluate the secondary scatteredsfieThe

relations are used [7] secondary scattered fields are the fields scatfevetla moving
sphere, when illuminated by a primary scatterett fleom
h- /1 ( anot.her moving spher(_a. A;summg tithtandjth spher_es are
o= i o° Efr=—t—— F E, “ (13) moving along the z-direction, as represented inJritheir
1-pcod Fp cof positions in the< frame can be expressed by
Hence, the time-harmonic expressibfis E,* and E,“can  (Xi» ¥i» 3.9 =(%,, Yo, Zo+ T 7) (20)
be written according to (10), (11) and (13) as X0 Y02 )=(X0, Yor Zot+ \,T)
ds 1 The incident field in (1) is upon thth sphere and this sphere
E, 1 B cosb, [x’2 (S(0)sing/ coss! scatters a field which illuminates tljih sphere, then thgh
k(s (14)  sphere scatters a field which would be calculat8ihce these
+0.25S, (0" )sin D' sin 3/ H two spheres move with an equal velocity and havielantical

direction of motion, they appear stationary to eattter in the
moving frame; therefore, the secondary scatteedddican be
called coupling fields. It is assumed that fhesphere is in the
far-field region of théth sphere. If the distance between the two

8 For the sake of simplicity thReal{.} operation is not represented.
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z . used for evaluation of the scattered fields fromith sphere

4 E o could be obtained with direct replacementdjfin (12a) and
. o (12b) ands;; , S,; are related to thigh sphere that could be

.- d achieved by replacing; in (12a) and (12b).

)

s .--—"' cos@ )=-sing cog (27a)

; cos@; )= ,,[(Xp,(X =X )y (Y - Y+ g (- 2)]
(i) .y d'r
(27b)

ij l
The parameterslzi and IZS are incident and scattered fields
//"/'_ propagation directions, respectively, associateth he jth
E

Tl

X sphere. Therefor(—i’ 2’ I%) and (L,QS ,Izs)are the orthonormal

Fig.3. Two moving spheres with the direct and cimgp$cattered fields. unit systems [45] to characterize scattering byjthesphere
which can be defined as

spheres represented hy, and the radius of théh sphere & _ X, =Xy =Y =Y 4, = 4 2
P P P L]
denoted bya, then the far-field condition mathematically can

be stated as K :_[)431 X+ V+ 474, k=T,

831-2
d, 2 (21) . . Kx @

A 1=1=— mwm (28)
(SN
According to the length-contraction property of STRean be 1 .
written that 2 =Kk'x1 =TIN [OL +4L]
1
1 £ cosd 1- B cosd,

A A A 1. -
IJ T U o "
it Y B il bt N 22) 2 =KxI,=[-6L,+pL)]

/_l 3 j j /—1—,6’2 j N

where

where r is considered as the instantaneous distance betwee
sphere numbgrand the observation poif,, ¥,, z,)in thek %t =%X» (y; =¥ = ¥y (5 = %)

frame. U, =y, (2 -2)-%(y-
The parametersd, .4, ) and (6, ,¢,) are defined as u = zy (X =X)=% (3~ 7) (29)
1 u, =u (Y] - ¥)-w(g - )
o5 =g, @7 @) u =0/ -2)- (4 - ¥
__ 1 Ceing = L Us =g (X] = X) = (Y = ¥)
cosg. = LX) sing =—————(y; —, 24 & T3 !
= ang XS =G ) (@) :
1 N = (U +u,)” + u%)?
cost, =— @, -z, Vr) 5§2
r.
: 1 | 1 L, =S, cosg sing + 0.2%, sing sing?
% = amg, €7 )M T Gng Ve TV B a5, cod g cogt -, s iy
_ _ L, =u, cosd cog +u, cof sig -u, sif
Prime forms of(6,,¢,) and (6,,¢,)in moving frame can be (30)
obtained in a similar way (6-7). L, =-u,sing; +u; cosp|

The coupling fields would be calculated by applyiig theory ' ' y ' ' it o
. K R = ; -+ ) | — /
in two levels and transformations between statipnand Ly =u, cos6) cog +u; cof s —ug st
moving frames would be employed. L=y, sing +u. cosp!

The parameter§;, ,S, , S;; ands,, construct the scattering

amplitude matrices that are used to calculate thmgpy and

secondary scattered fields. The param@&grsS, which are
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X'=(1-sirf g cosg } 31)

Then the secondary scattered fields components imtving
frame can be written as

£ [ (S, (L L+ L)
S e]k(d +r1f) (32)
+ 2j Lr Ler + LIL!
di} 4( 1=5 2 6))] k,zd” rj
E;CS_[XIZNIZ( L"‘( Ll’L’3+ L’Z L’4)
S ejk'(d"+r’) (33)
2j ] o r r
+d—,l|-3(|-1|-s+ LzLe))]W

ij

Referring (13) for transforming scattered fields bauo the
stationary frame, the time-harmonic field composetdn be
expressed as

Ji- 52 L

—Ccs _ _
E, =

(S, L(LL+ L)

1- B cosd,  X'*N'

S . ejk(duﬂJ ct') (34)
+—ZE L (Ll + )

dij kzdu i
= cs 1_ﬁ2 1 r e ryr
B9 =1 oosg e (S BUL L+ LU

]
S2J gl tdi+=ct) (35)
Q! Ly (LiLg LzLe))]W

1 J
Consideringt; andt; the corresponding elapsed times dgr

andr/ respectively; it can be written that

t' =7+t +t]
jK(d +r -ct)=-jKay1- £

Applying (9), (24) and (37) to (34-35) leads to ttime-
harmonic secondary scattered fields in the statjoflame

(36)

: 0-7y -
Ees=—
*" (- oo ) cof z)x'zN'z(% L(LL+ 1L -
Szj echr
L, Ll

q} (bl + L oo 47

Fos = (1~ BZ)5 o
E:ﬁs_(l—ﬁco 9 )k cof ?) X,zN,z(SJ L(LL+ LL) -
SZJ PG LLG))]eJU

It is important to notice that components of thdidds
represent secondary scattered fields in the obenvpoint at

i

. dij
the timet =7+ c

The developed approach for deriving direct and Gogp
scattered fields can be generalized to a colleafoarbitrary
number of spheres by the employment of an itergiieeedure
to achieve the scattered fields up to the secoddrof his is a
good approximation regarding that the spheres are¢hé
farfield of each other then the amplitudes of sret fields
more than second order are negligible.

. NUMERICAL RESULTS

Theoretical results achieved in the last sectiorafoollection
of both stationary and moving spheres are simuleidthve a
deeper physical insight of the problem. The inctdiéld is

considered to propagate in the negatié direction
(Ei =e’jkxA)/) and the maximum value used forin the Mie

theory is set to be 100 to calculate the numerieslilts. The
azimuth and elevation angles are angular measutsrirethe
spherical coordinate system and have the intefal®, 277

and [0, 7] respectively.

A. Fields for Stationary Scatterers
In this section the refractive index of the sphdseset to be
n =3.2+ j 0.3Z. An individual stationary sphere with a radius
of a=1cmand size parameter dfa =10 (f =47.75GHz)

which is located afx, y, 2 =(0,-5m,( is considered. Fig.4.a
represents the 3D scattered field pattern at amtst of10m
from the origin of the coordinate system (radius10m) and

Fig.4.b illustrates the azimuth pattern fof@ elevation angle.
According to the position of the sphere, it is extpd for the
elevation pattern to be symmetric about the elewatingle of

(37) 90 which is confirmed by Fig. 4.c.

-3

10

w

£

w

(N]

-

10 .
10 5 0 5

.10 10

X
Fig.4. a. Electric scattered field pattern foratishary sphere at =10m.
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Second Order Theory
First Order Theory

E(V/m)

- - - 0 50 100 150 200 250 300 350 400

0 50 100 1.50 200 250 300 350 400 Azimuth Angle (deg)
Azimuth Angle (deg)

T
Fig.5. b. Bistatic scattered field amplitude foreevation angle of- .

7T
Fig.4. b. Bistatic scattered field amplitude foredevation angle OE . 2

4
axm

ond Orther Theory|
First Order Thory

x10%

1 . - ' 0 20 40 60 80 100 120 140 180 180
0 50 100 150 200 Elevation Angle (deg)

Elevation Angle (deg) . . . . . .
Fig.4. c. Bistatic scattered field amplitude forazimuth angle of/7. Fig.5. c. Bistatic scattered field amplitude foramimuth angle of77 .

Ten similar spheres with a=5mm and ka=3
In the following, scattered fields are calculatedtivo similar  (f =28.6GHz) with locations shown in Table.l are
spheres witha =5mmand ka =1.5 (f =14.3GHz; which  cgnsidered and the bistatic scattered field patiem= 20mis

are located at(1.5cm, 1.5cm,): and (-1.5cm,-1.50m, ); illustrated in Fig.6.a. Maximum amplitude in botly$6.a and
Fig.5.a shows the field patterntat=10m and the 2D patterns 6.0 occurs-qround a}Z|muth anglelﬁq which stgtes the gffect
of the addition of direct scattered fields. Maximdewviations

in the azimuth and elevation planes are illustratefligs 5.b ) i .
and 5.c, respectively. Fig.5.b demonstrates thatmaximum of the first and second-order fields, which happgérabout

level for coupling fields are approximately arouhd azimuth 45 ,223as highlighted, are due to the coupling interaction
angle of 225 which is expected regarding the position of théegarding the locations of spheres. These deviatitiow the
spheres and direction of the incident field. Fig&gain has the mportance of the coupling fields when the numblespheres
property of symmetry due to the position of spheres increases. Fig.6.c idsosymmetric about the elevation angle of

90 .

=104 Table.1. Configurations of two stationary spheres.
9
109 8 NO x(cm) y(cm) z(cm)
7 1 1.5 1.5 0
o 6 2 4.5 45 0
5 3 7.5 7.5 0
B 09 4 4 10.5 10.5 0
3 5 135 135 0
= 2 6 -1.5 -1.5 0
1 7 -4.5 -4.5 0
N T 8 7.5 7.5 0
E i g B B o 9 105  -105 0
10 -135 -13.5 0

Fig.5. a. Electric scattered field pattern for tstationary spheres at10m.
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Fig.6. a. Electric scattered field pattern for s¢ationary spheres at=20m.
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""""" First Order Theory
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Fig.6. b. Bistatic scattered field amplitude foredevation angle 05 .
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.

1.6
——— Second Order Theary.
[seasaene: First Order Theory

1.4

] 20 40 60 80 100 120 140 160 180
Elevation Angle (deg)

Fig.6. c. Bistatic scattered field amplitude foramimuth angle of77 .

A. Fields for Moving Scatterers

In this section, the amplitude of the scatteredtéle field is

illustrated in a determined observation point wihpect to the
time. Influence of the effective parameters suchthessize,
material, number, velocity, position of the sphesssl the
frequency of incident wave on the scattered fiefddie moving

spheres has been demonstrated in this sectiorordiog to the
quickly time varying phase of the both primary astondary

scattered fields, it is expected that the fieldgrat appear with
a slowly varying amplitude envelop with a rapidlgrying
carrier.

Firstty, ~—one sphere  with a=1mm,ka =10
(f =477GHz),n =3.2+ j 0.3Z2 and initial position in the
origin of the coordinate system, moving with thdoegy of
v=0.5m/ sis considered. The scattered field amplitude & th

observation point o(xp, Yor zp) =(-5m, 0, 5n) is illustrated

in Fig.7. According to the speed of the spherelagight of the
observation point, it is expected that the maxintewme| of field
amplitude to occur at about=10sregarding that the forward
scattering is dominant for thika value. Since the position of
the sphere is symmetric about the observation psaatttered
field amplitude must be either symmetric which is full
agreement with Fig.7.

In the next step, the conditions are as thmesas the
previous sphere except that the velocity is set+®2x 10 m/s
As it is seen in Fig.8, amplitudes before the peakment
(t,ea) are larger than their symmetric corresponding musne

(after t.,) which is because of the effect of aberration in

propagation direction phenomenon. Also, the pea&uarnof

the amplitude is decreased compared to the precioudition.
For two spheres scenario, a reference modmsadered and

only one parameter would be changed in each foligwnode

0.012

0.01

0.008

0.006

E(V/m)

0.004

0.002

0
0 5 10 15 20 25 30 35 40

time(sec)
Fig.7. Time-Domain electric scattered field ampligfor a moving sphere.

x10™*

0 20 40 60 80 100
time(nsec)
Fig.8. Time-Domain electric scattered field ampliétfor a moving sphere
(B=213)
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to have a better understanding of the intendedhpete. In the
reference mode, two spheres are assumed to ha/bBmm,

v=1m/sand n=3.2+ j0.32. The size parameter is set to

ka =10 (f =477GHz) and coordinates of observation point

and primary location of spheres are given in T&bl&he
maximum amplitude at = 5sand symmetry in Fig.9 could be
predicted by physical interpretation. The peakabsis about
two times of the peak of Fig.7 which indicates ttia direct
scattered field of each sphere has been addedgcinatly.
This time, the radius of the spheres is ghdrtoa =1um

and Fig.10 shows that the amplitude reduction efdtattered
field (about 1000 times) is proportional to theuetibn of the

radiuses. Fig.11 relates to the mode tHe@=5. Thus
comparing this with the results of the referencedenceveals

that the lowerka causes the wider beam which is in agreement

with the general fact that moving from optical thgh Mie and
Rayleigh scattering regions makes scattering pattaore
homogeneous then forward scattered pattern becordes.

In the next mode to represent the effecthefdielectric
materia) the extinction coefficient is omitted and the refraetiv
index is set to ben =3.2, as shown in Fig.12.

Table.2. Configurations of Reference Mode for two moving spheres.

units in meter

Observation point Sphere 1 Sphere 2

Xp yp Zp Xl yl Zl X2 y2 ZZ
5 0 5 0 =00 0 0 001 O

%107

2.5

Reference Mode

E(V/m)

0 5 10 15 20
time(sec)
Fig.9. Time-Domain electric scattered field ampliétfor a moving sphere.
(Reference Mode)

x10°8

2.5

E(V/m)

0 5 10 15 20
time(sec)

Fig.10. Time-Domain electric scattered field amyali¢ for two moving

spheres(a =1um)

%1072

1.4

E(V/m)

0 5 10 15 20
time(sec)

Fig.11. Time-Domain electric scattered field amyali¢ for two moving

spheres. ka=5)

%107

25

E(V/m)

0 2 4 6 8 10 12 14 16 18 20
time(sec)

Fig.12. Time-Domain electric scattered field amyuli for two moving

spheres. 1 =3.2)
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2.5

0.5¢

0

0 0.2 0.4

Fig.13. Time-Domain electric scattered field amyuli for two moving

time(sec)

0.6

0.8

spheres. y=20m/s)

Fig.13 is for a condition that spheres move lid velocity
of v =20m/swhich states that the pattern has been scaled.
Since the velocity of spheres is negligible whempared to
the velocity of light,the electric scattered field amplitude is

similar to the reference mode.

In the next situation, the observation p@rdgpproached to
(X, ¥ps Z,) = (-1m,0,5m), as shown in Fig.14, which means

that the closer distances result in narrower seattdeam-

widths.

Next, the velocity is set to=2x10° m/s. As it is depicted
in Fig.15, the scattered electric field amplitudegbing to be
more asymmetric by increasing the velocity to tektivistic

speeds due the aberration

to be ka=10 (f =477GHz)

scattered field amplitude.

in propagation
phenomenon. Also, the peak amplitude decreasesareshpo
the previous and reference mode.

In the following, scattered field amplituder fa collection
of ten moving spheres witha=1mm and v=1m/s is
calculated. The size parameter and the refractidex are set
and n=3.2+j0.32
respectively. Table.3 specifies the configuratibthe spheres
collection andthe observation point is considered to be
(X,1 Yp» Z,) = (-1m, 0,20m.. Fig.16 demonstrates thesulting

1

(%¥,:2,)=(-1m, 0, 5m)

0 5

Fig.14. Time-Domain electric scattered field amyali¢ for two moving

10
time(sec)

15

spheres with(x,, y,, z,) = (~1m,0,5m)

20

direction

3
1.4 10 .
1.2 1
1
E 0.8
=
Wo.6
0.4
0.2
0
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Fig.15. Time-Domain electric scattered field amyalié for two moving sphere
(B=213)
Table.3. Configurations of ten moving spheres.
NO x(cm) y(cm) z(m)
1 15 15 2
2 45 45 4
3 7.5 7.5 6
4 105 105 8
5 135 13.5 10
6 -1.5 -1.5 -2
7 -4.5 -4.5 -4
8 -7.5 -7.5 -6
9 -10.5 -10.5 -8
10 -13.5 -13.5 -10
6 %107
5L
4 F
E
=3
frr
2
1
0
0 5 10 15 20 25 30 35 40
time(sec)
Fig.16. Time-Domain electric scattered field amyalié for ten moving
spheres.

Finally, time-domain electric scatteradld amplitude
for a collection of ten spheres moving in relatigisspeed
(B=213) is represented in Fig.17. The remaining parameters

are the same as in the previous case.
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Fig.17. Time-Domain electric scattered field ampul# for a moving sphere
(B=213)

IV. CONCLUSION

In this work, the Frame-Hopping Method (FHM) which
based on the Special Theory of Relativity (STRus&d to
obtain time-domain relativistic scattered fields tp the
second-order from an arbitrary collection of unifily
translational moving lossy-dielectric spheres. &g deeper
physical insight of the problem, scattered fieldisd collection
of both stationary and moving spheres have beenlaied.
The influence of effective parameters sucthassize, material,
velocity, number, position of the spheres and #isdrequency
of the incident field on the scattered fields ofallection of

moving spheres has been investigated and the ebtai

numerical results are in good agreement with playsiancepts.
Also, a wide variety of objects, such as raindrapsmwflakes,
and dust particles, could be approximated by sphanel the
study of scattered fields from a collection of mayispheres
has a substantial significance for many practiggiliaations.

The procedure applied in this work may be the b#mighe

study of multiple and random scattering from otbeltections

of moving objects considering their mutual intei@cs.
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