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Abstract 
 
Inconsistencies in the preparation of histology slides and whole slide images (WSI) may lead to 

challenges with subsequent image analysis and machine learning approaches for interrogating 

the WSI. These variabilities are especially pronounced in multicenter cohorts, where batch 

effects (i.e. systematic technical artifacts unrelated to biological variability) may introduce biases 

to machine learning algorithms. To date, manual quality control (QC) has been the de facto 

standard for dataset curation but remains highly subjective and is too laborious in light of the 

increasing scale of tissue slide digitization efforts. This study aimed to evaluate a computer aided 

QC pipeline for facilitating a reproducible QC process of WSI datasets. An open source tool, 

HistoQC, was employed to identify image artifacts and compute quantitative metrics describing 

visual attributes of WSIs to the Nephrotic Syndrome Study Network (NEPTUNE) digital pathology 

repository. A comparison in inter-reader concordance between HistoQC aided and un-aided 

curation was performed to quantify improvements in curation reproducibility. HistoQC metrics 

were additionally employed to quantify the presence of batch effects within NEPTUNE WSIs. Of 

the 1,814 WSIs (458 H&E, 470 PAS, 438 Silver, 448 Trichrome) from n=512 cases considered 

in this study, approximately 9% (163) were identified as unsuitable for subsequent computational 

analysis. The concordance in the identification of these WSIs among computational pathologists 

rose from moderate (Gwet’s AC1 range 0.43 to 0.59 across stains) to excellent (Gwet’s AC1 

range 0.79 to 0.93 across stains) agreement when aided by HistoQC. Furthermore, statistically 

significant batch effects (p<0.001) in the NEPTUNE WSI dataset were discovered. Taken 

together, our findings strongly suggest that quantitative QC is a necessary step in the curation of 

digital pathology cohorts.  
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Introduction 

 

Large multi-institutional consortia1 and digital pathology repositories (DPRs) of renal biopsies 

have exposed the lack of standardization in tissue preparation and the presence of variabilities 

in the presentation and quality of whole slide images (WSIs). These variabilities are often due to 

differences in either slide preparation (e.g., tissue fixation, processing, cutting, staining) or 

scanning (e.g., brightness, contrast, saturation, compression) across and within laboratories. 

Multi-center DPRs are especially likely to contain these variabilities due to the lack of cross-site 

standardized protocols, particularly in the context of special stains 

 

In a fully digital pathology laboratory setting, poor quality tissue presentation may result in delays 

in pathology reporting. This delay is usually caused by poor-quality glass slides requiring to be 

reproduced or WSIs rescanned and add unnecessarily to storage overhead if the slides are not 

diagnostically usable. Evidence suggests that while clinical pathologist’s interpretations are not 

impacted by differences in WSI quality2; these differences may negatively affect the performance 

of digital pathology based computational tools, including machine or deep learning algorithms3, 

4. Current best practices in digital pathology include the manual quality control (QC) of WSIs 

before experimental execution. This involves the subjective removal of poor-quality slides or 

avoidance of tissue regions containing artifacts as determined by the experimenter. However, 

this manual process of identifying poor-quality slides can vary substantially between experts and 

raises concerns from a scientific reproducibility standpoint.  

 

Another issue that has been well-recognized in fields5 other than digital pathology regards the 

presence of batch effects, i.e. systematic technical differences when samples are processed and 

measured in different batches,  that are unrelated to the biological variation of the tissue samples. 
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Batch effects are especially likely to be introduced into multi-site DPRs, where samples originate 

from different laboratories, as previously illustrated in The Cancer Genome Atlas (TCGA) 

dataset6. However, the importance of the identification and compensation for batch effects in 

DRPs remains still widely unrecognized. Without special care and attention to the problem, 

machine learning algorithms such as deep learning7 may attempt to model batch effects, thus 

introducing significant biases. Notably, the identification and management of subtle batch effects 

remains an open challenge in the field of computational pathology.   

 

We hypothesized that a quantitative QC approach, driven by algorithmically defined metrics, may 

facilitate an efficient and reproducible QC paradigm, as well as aid in the identification of both 

obvious and subtle batch effects. Janowczyk et al6 introduced HistoQC (Version 1.0, Center of 

Computational Imaging and Personalized Diagnostics, Case Western Reserve University, 

Cleveland, OH, USA), an open-source digital QC tool which was employed in the context of 

identifying sub-optimal breast cancer WSIs. HistoQC has been shown to (a) quantitatively 

measure and capture WSI-level metrics (e.g., color, brightness, contrast), and (b) localizes WSI 

regions affected by artifacts (e.g. coverslip edges, bubbles). This information facilitates the 

discovery of poor quality WSI, ultimately helping users to select WSIs for subsequent image 

analysis and DPR storage. However, HistoQC has not been extensively evaluated in the context 

of kidney pathology WSIs or within non-H&E stained WSIs. 

 

In this study, we sought to identify WSIs unsuitable for computational analysis, confirm the 

reproducibility of this assessment amongst computational pathologists, and evaluate the 

presence of batch effects within the Nephrotic Syndrome Study Network (NEPTUNE) DPR using 

HistoQC-derived metrics.  
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Materials and methods 

The overall study design, including dataset curation, QC, and experiments is illustrated in Figure 

1.  

 

Dataset  

NEPTUNE is a multi-site observational cohort study of children and adults with glomerular 

disease, enrolled at time of a clinically indicated kidney biopsy8. The  renal biopsies were 

processed in 38 different pathology laboratories, collected, and shipped to the NEPTUNE image 

coordinating center, where glass slides were centrally scanned by two scanners (Aperio 

Scanscope AT2, Leica Biosystems Inc., Buffalo Groove, IL, USA; and Hamamatsu Nanozoomer 

2.0 HT, Hamamatsu Corporation, Hamamatsu City, Japan; both with an Olympus UPlan-SApo 

20X objective, with a 0.75 NA, and image doubler) and subsequently uploaded into the 

NEPTUNE DPR9.  A total of 1,814 WSIs from 512 digital renal biopsies, including 458 stained 

with Hematoxylin & Eosin (H&E), 470 Periodic Acid Schiff (PAS), 438 Silver (SIL), and 448 

trichrome (TRI), were included in this study (Figure 1A). WSIs were chosen such that each patient 

contributed up to one randomly selected WSI per stain resulting in a minimum of 1 to a maximum 

of 4 WSIs per case. 

 

HistoQC Functionality 

HistoQC is designed to aid users in the completion of quantitative QC. HistoQC consists of a 

pipeline of modules sequentially applied to a WSI. Each module acts on the image to either (a) 

quantify visual characteristics associated with a digital pathology image, allowing for identification 

of heterogeneity within a population of images (e.g. color, brightness, and contrast) or (b) to 

detect various artifacts which may be present on a WSI (e.g., pen markings and folded tissue). 
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The modules used in HistoQC analysis for this study are summarized in Table 1. The HistoQC 

output consists of a quantitative report corresponding to the visual characteristics mentioned 

above as well as images delineating regions identified as artifact-free in each WSI; together these 

HistoQC outputs facilitate the interactive interrogation of the WSI via its user interface.  

 

Experiment 1: Quantitative QC pipeline for computational analysis qualification of WSIs 

For each stain, HistoQC was used to compute quality metrics reflecting visual properties of the 

WSIs (Table 2). HistoQC’s quantitative metrics were visualized in a parallel coordinate plot (PCP) 

supplied by the user interface (Figure 1B). Since each line in the plot represents a WSI, the 

clustering of lines visually indicates WSIs with similar properties. In contrast, WSI outliers with 

distinct visual properties compared to the rest of the cohort can be identified when the WSI’s 

corresponding line is highly divergent from other WSIs. Metrics presenting with a large standard 

deviation indicate strongly diverse presentations of visual features in the dataset. From the 

HistoQC PCP and user interface, a computational pathologist identified outlying WSIs in each 

quality metric, and visually assessed the HistoQC artifact identification results to identify sub-

optimal WSIs (Figure 2). WSIs that are especially poor in one metric, could likely be removed 

without much additional scrutiny at higher magnification. The extreme outliers shown in Figure 3 

are some of these easily eliminated cases. Once a WSI passes each of the individual metrics, a 

global review of the cohort takes place to identify if there are any combinational metrics which 

should result in WSI removal. 

 

Experiment 2: Evaluation of quantitative QC on inter-reader concordance of WSI curation  

To determine if WSI cohort curation was more reproducible when computational pathologists 

employed HistoQC, the difference between their aided and unaided curation efforts was 

assessed. For further clinical comparison, these results were juxtaposed with an examination of 
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pathologists’ unaided quality assessment as a baseline. All sub-optimal WSIs (N = 163) and a 

10% random sample of qualified WSIs (N = 167) from Experiment 1 were combined to create 

Experiment 2’s (Figure 1C) dataset, resulting in 330 WSIs (78 H&E, 92 PAS, 77 SIL, and 83 TRI). 

Inter-reader concordance of the QC process among two groups of investigators was assessed: 

a) three computational pathologist readers (R1-3) having extensive experience in WSI quality 

needed for computational digital pathology; and b) seven clinical renal pathologist readers (P1-7), 

who possess field expertise associated with renal pathology and historically have determined the 

suitability of histology preparations for human interpretation.  

 

A comprehensive scoring with detailed explanation of the scoring process and example images 

of each type of artifact was provided to help scorers (computational pathologist readers and 

clinical pathologist readers) minimize subjectivity within the experiment. The protocol (available 

in supplementary material, Section I) was reviewed for consensus during a webinar to facilitate 

cross-training between all scorers. A scoring sheet was designed for scorers to indicate their 

subjective perception on the quality/adequacy of a WSI for clinical assessment and computer 

analysis. Four choices were available for the subjective assessment of WSI adequacy: 1) good 

for feature extraction at cellular level, 2) good for histologic primitive segmentation analysis but 

not cellular-level feature extraction, 3) good for conventional disease diagnosis but not for 

machine learning, or 4) not good for either machine learning or clinical diagnostic tasks. For the 

purpose of image analysis QC, choices 1 and 2 were merged to indicate good quality and 3 and 

4 to indicate poor quality. Each scorer received a file containing an individual scoring sheet for 

each WSI, with an associated link to the WSI and identifying information (WSI ID, stain, disease 

category) so scorers could confirm they were scoring the correct images. WSIs were randomly 

assigned to P1-7 such that each image was scored by two different clinical pathologists with every 

possible pair of clinical pathologists evenly distributed across the sample. The same WSIs were 
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also randomly assigned to R1-3 such that any pair of computational pathologists could be 

compared. After an 8-week washout period from the initial concordance assessment, R1-3 re-

scored the same WSIs with the aid of the HistoQC user interface. R1-3 were blinded to their 

original scores and cases were randomly re-ordered. They referred to both qualitative output 

(artifact-free mask generated) and quantitative output (parallel coordinate plot of quality metrics) 

from HistoQC to evaluate each WSI and compare it against the rest of the dataset. For each 

WSI, R1-3 indicated whether the WSI had good or poor quality as defined above.  

 

Concordance was assessed amongst R1-3 on their agreement in good vs. poor quality of WSIs 

within each stain without (Cunaid) and with (Caid) the use of HistoQC. Similarly, concordance (Cp) 

was also assessed amongst P1-7 in their manual assessment of WSIs quality. Concordance is 

measured using proportion of agreement, Cohen’s Kappa, and Gwet’s Agreement Coefficient 1 

(AC1), with the latter two agreement statistics supplied due to their corrections for chance 

agreement10. The statistical analysis in this study was conducted using SAS (SAS Institute Inc., 

Version 9.4, Cary, NC, USA). 

 

Experiment 3: Heterogeneity and batch effect assessment of NEPTUNE WSIs 

Since HistoQC facilitates efficient, quantitative QC for digital pathology on large WSI cohorts, it 

was hypothesized that the HistoQC pipeline can also be applied to identify batch effects. In this 

experiment (Figure 1D), HistoQC quantitative metrics from Experiment 1 were used to identify 

preparation artifacts associated with individual histology laboratories at the enrolling centers. 

These types of artifacts are quantified by the brightness, contrast, and color channel intensity 

measurements produced by the HistoQC pipeline. In this analysis, nine metrics associated with 

the chromatic appearance of WSI tissue were employed (Table 2). These features (denoted by 

F1-F9) were used to train a random forest (RF) classification model with 50 trees to match each 
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WSI with its originating site S. To eliminate possible biases introduced by an unbalanced number 

of WSIs from each histology laboratory, only WSIs from sites supplying >20 WSIs were 

employed. These criteria reduced the 38 enrolling centers down to 8, which were then labeled 

as S1 – S8. The resulting 250 WSIs were split into training (Gtrain) and testing (Gtest) sets by a ratio 

of 8:2, where the training set (N = 200) was used to train the RF classifier, and the testing cohort 

(N = 50) was used for determining classification accuracy.  

 

To identify batch effects, a permutation test was conducted to assess whether the RF predictions 

significantly differed from predictions based on randomized labels. The null hypothesis for this 

test thus implies that HistoQC metrics cannot predict WSI origination sites any better than 

random assignment. For the 1000 iteration permutation test, site labels were randomly assigned 

to WSIs, and RF models with 50 trees were trained and evaluated using the same training (Gtrain) 

and testing (Gtest) cohorts as with the original RF classifier. These permutations resulted in a 

distribution of 1000 accuracy measures based on random site labels. A p-value was generated 

by calculating the proportion of permuted accuracy measures that were at least as extreme as 

the accuracy from our original RF model. Features were then ranked by their predictor 

importance to identify factors driving the identification of batch effects. 

 

Finally, all the features (F1 - F9) were used in an unsupervised Uniform Manifold Approximation 

and Projection (UMAP) algorithm to reduce their dimensionality for 2D plotting to visualize the 

distribution of features among each site (S1-8). For plotting, each site S was assigned a color, 

allowing for a visual representation of metrics according to site S. WSIs in the Gtrain of RF 

classification are shown as circles, while those from the Gtest are represented by hollow 

diamonds. To allow for easier visualization, each histology laboratory was shown individually 

overlaid with the other institutions/laboratories in black. 
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Results 

 

Experiment 1: Quantitative QC pipeline for computational analysis qualification of WSIs  

The quantitative quality metrics generated by HistoQC for the four stains evaluated can be seen 

in the PCPs of Figure 3. These plots exhibit dramatic variability in most HistoQC metrics 

indicating notable tissue presentation differences (heterogeneity) in the WSIs considered. 

Employing the HistoQC user interface, R1-3 identified 163 poor quality WSIs (9.0% of 1814 WSIs). 

Disqualified WSI were distributed across all four stains: 38 from H&E, 38 PAS, 42 SIL, and 45 

TRI. These WSIs either had a variety of pronounced artifacts, including dirty slides, pen markings, 

tissue folding, thick tissue, and blurriness (Figure 4), or appeared to be outlying from the majority 

of the WSIs with the same type of staining in the dataset. The remaining 1,651 WSI were 

considered to be of good quality. While minor artifacts may still remain in these images, they can 

be identified and masked by HistoQC, potentially facilitating computational image analysis 

(Figure 4). 

 

Experiment 2: Evaluation of quantitative QC on inter-reader concordance of WSI curation 

The inter-reader concordance Cunaid across R1-3 for the manual scoring of WSI quality/adequacy 

for each stain is shown in Table 3. For comparison, Table 4 gives the results of concordance 

amongst P1-7. Moderate concordance was observed on WSI stained with H&E (Gwet’s 

AC1=0.59). By contrast there was slightly poorer concordance for the scoring of Trichrome-

stained WSI quality (Gwet’s AC1=0.43). Moderate concordance was obtained on Silver (Gwet’s 

AC1 = 0.52) and PAS stains (Gwet’s AC1 = 0.56). These results indicate only moderate 

reproducibility among R1-3 on the selection of WSIs for computational analysis. Cp among P1-7 

varied widely across stains, with the highest agreement among WSIs stained with Trichrome 
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(Gwet’s AC1=0.68). By contrast, there was poor agreement on image quality of silver stained 

WSIs (Gwet’s AC1=0.23). Moderate concordance was obtained on H&E (Gwet’s AC1 = 0.58) 

and PAS stains (Gwet’s AC1 = 0.52) (Table 4).  

 

HistoQC-aided reader concordance Caid was notably higher compared to Cunaid, the inter-reader 

concordance among R1-3 without use of HistoQC (Table 3). Of note, in H&E staining, Caid 

compared to Cunaid improved the most, by 0.33 in Gwet’s AC1. In addition, computational 

pathologists reported that less effort was needed in identifying cohort level outliers, while the time 

needed for artifact quality assessment was also noticeably decreased (roughly 90% decrease in 

time). WSIs which remained discordant were individually discussed by R1-3 and found to be 

borderline cases. As such, these cases could not be consistently called without explicitly defining 

additional quantitative guidelines (examples are shown in supplementary material, Section II)  

 

Experiment 3: Heterogeneity and batch effect assessment of the NEPTUNE DPR 

In the absence of batch effects, the RF classifier predicting the sites that produced the WSIs 

based on HistoQC metrics should not be able to perform better than random guessing. This null 

hypothesis coincides with a classification accuracy of between 0.1 and 0.15 (Figure 5A). In 

comparison, our RF classifier yielded a 0.52 overall accuracy, with a p-value <0.001, implying 

the existence of batch effects. The corresponding sites driving this appeared to be sites with high 

recall values: S2 (recall = 66.7%), S3 (recall = 100%), S4 (recall = 80%), S5 (recall = 75%), S6 

(recall = 75%). (Figure 5B). Features associated with WSI contrast, and color intensity of red, 

green, and blue channels appeared to contribute the most to the classification results, with the 

brightness of the blue channel reflecting the highest feature importance (supplementary material,  

Section III) This appears to suggest that the batch effects in NEPTUNE DPR may have been 
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imparted during the tissue staining process. The UMAP plot of the HistoQC metrics appears to 

confirm these quantitative results (Figure 6), as clustering was observed in site S2, S3, S4 and S5.  

 

Discussion 

Multicenter DPRs of renal biopsy WSIs have been established to facilitate precision medicine but 

are inundated with heterogeneity in tissue processing and scanning differences between centers. 

National guidelines for standardizing tissue processing were instituted in the pre-digital pathology 

era and may no longer be adequate in ensuring the tissue presentation quality needed by modern 

machine learning enabled digital workflows. Currently, most clinical and research digital 

pathology workflows rely on manual QC of WSIs, a subjective, laborious and error prone process. 

In comparison, other technologies which have transitioned from analog to digital signals (e.g., 

RNA sequencing) now operate under rigorous QC processes, and as such disciplines like 

genomics11,12 proteomics13, radiomics14 have adopted systematic and reproducible digital QC15. 

Thus, during a similar transition in pathology, digital QC tools are expected to be similarly 

adopted. To this end, there have already been efforts to develop algorithms to improve QC in the 

DPR space, such as those detecting blurriness16 and assessing slide quality17–19. HistoQC is 

designed to not replace these methods, but instead provide a singular open-sourced pipeline for 

them to be embedded in, thus providing a means to visually examine their outputs via a singular 

user interface. 

 

This study set out to begin evaluation of the effects of quantitative QC, via the integration of 

HistoQC, into routine QC procedures typically undertaken by computational researchers. The 

experiments included evaluating the multi-institutional NEPTUNE WSI DPR to identify WSIs with 

artifacts or cohort-level abnormal presentation, along with the presence of DPR-level batch 

effects.  
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Our study found that 9% of the NEPTUNE DPR WSIs have a suboptimal quality and should be 

considered for disqualification from subsequent computational image analysis. Poor quality 

images were not limited to specific stain types and had a variety of artifacts contributing to their 

disqualification, thus implying a wide range of issues during WSI creation. In contrast to centers 

uploading WSIs directly to DRPs, the majority of NEPTUNE WSIs were centrally scanned by two 

scanners, likely minimizing differences associated with digitization. In settings where the WSIs 

are scanned by multiple scanners, scanner variabilities are anticipated to contribute additional 

quality inconsistency. These results highlight the importance of detailed, standardized protocols 

for histology preparation along with quality monitoring during the image acquisition and DPR 

curation. 

 

Our results further demonstrate that despite detailed guidelines provided to readers, manual 

quality assessment of WSIs, whether performed by computational pathologists or clinical 

pathologists, remains subjective and showed limited reproducibility. On the other hand, a 

substantially higher concordance is witnessed when the scoring computational pathologists were 

aided by HistoQC. It is interesting to note that although a WSI may appear artifact free in isolation, 

when placed amongst its peers, it may manifest as an outlier due to presentation differences. 

While stark infrequent differences are typically easily identified, non-systemic subtle differences 

are harder to manually identify at scale. For example, in images with large contrast and staining 

differences from the rest of the cohort (Figure 6, as seen by the WSI thumbnails in red and yellow 

boxes), both visual and quantitative metrics show high divergence, making them easier to 

identify. On the other hand, those with subtle contrast or staining differences within the dataset 

(see supplementary material, Section II Case 1) may not be readily appreciated without 

comparison to other slides thus necessitating quantitative metrics. Our results indicate that 
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employing HistoQC helps to address this issue, evidenced by the increase in computational 

pathologist concordance during cohort curation. On the other hand, systemic differences are also 

of concern, as these batch effects may potentially confound clinical variables of interest with WSI 

preparation artifacts. In our NEPTUNE DPR, HistoQC metrics were able to statistically identify 

batch effects in at least three pathology laboratories. These batch effects were associated with 

stain and tissue thickness heterogeneity. While obvious batch effects (see examples of WSIs 

with heterogeneous visual characteristics in Figure 6) are likely to be identifiable via visual 

inspection, our results show subtle batch effects are more difficult to identify in isolation, and yet 

may still affect image analysis and machine learning algorithms. While HistoQC now includes a 

real-time UMAP plot to facilitate similar investigations, improved awareness of batch effects will 

be needed in the future to help limit their negative impact.  

 

This study does however have limitations worth noting. Artifacts of interest were constrained to 

those presenting within the NEPTUNE DPR and thus may not represent the entire spectrum of 

possible slide generation and scanning issues. Grading of slides was grouped into a two-tier 

system (qualified / disqualified) which may obfuscate subtle patterns only visible within more 

granularly refined tiers. This decision was made due to significant reader discordance in our 

preliminary experiments involving the aforementioned four-tiers, thus a refinement of the 

experimental design for improving concordance in the unaided case was deemed necessary. 

Further, two key areas for future investigations not addressed in this study remain: first, 

associating specific processes in WSI preparation with artifacts and batch effects, in addition to 

suggesting protocol adjustments to ameliorate them; and second, assessing concordance 

implications after training clinical personnel in the use of HistoQC, and how that knowledge 

impacts future WSI generation. 
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As clinical pathology is transitioning to a more digital practice, approaches for QC will have to 

evolve accordingly. This process will naturally require increased interdisciplinary collaboration 

and cross-specialization education between pathology and computational personnel. For 

example, pathology personnel will likely require specialized training to employ HistoQC, as it is 

currently geared toward those with computational expertise. These cross-pollination training 

activities will help better define the vocabulary needed for each group to work towards their 

clinical targets as well as computational algorithm development. Armed with more precise 

laboratory procedures and appropriate monitoring tools, workflows for consistent slide creation 

can be designed, starting from tissue collection to WSI generation. The constant monitoring of 

WSI production can alert laboratory staff of potential equipment malfunctions sooner, reducing 

the number of slides not suitable for computational analysis. On a broader scale, when a similar 

process is undertaken across multiple sites, the process of homogenous DPR creation is greatly 

eased.  

 

In conclusion, our results strongly suggest a quantitative human-machine interactive process is 

needed for the robust and reproducible QC of digital pathology slides. Quantitative QC not only 

substantially improved overall concordance but enabled the identification of batch effects in our 

digital pathology cohort. As we leverage DPRs more fully for the creation of WSI based tools and 

biomarkers, having pristine input data will be critical for both the development and deployment 

of these applications. Only through a concerted effort of improved laboratory standards, cross-

discipline training and collaboration, will a suitable environment be primed for the employment of 

novel precision medicine tools. 
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Tables 
 
Table 1. HistoQC modules. The HistoQC modules used for quantitative quality control with module 
names on left and intended purpose provided on the right. 
 

Module Name Targeted Artifact or Metric  
Basic Module WSIs’ magnification, file pyramid levels, and microns per pixel 

Light Dark Module Identify tissue location and folded tissue  
Classification Module Identify pen marking, cover slip, and cracks 

Bubble Region By Region Demarcate contours of air bubbles on WSIs 
Bright Contrast Module Overall and per channel tissue brightness, indicating 

stain/scan variations 
Blur Detection Module Identifies out of focus WSI regions  
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Table 2. Quantitative metrics used to identify site-based batch effects in NEPTUNE. These 9 
HistoQC features were selected for identifying batch effects as they quantify chromatic artifacts 
imparted during the staining and cutting of the tissue samples – steps conducted at individual 
laboratories before central scanning in NEPTUNE. 
 

Quality Feature (F) Description 
F1 rms_contrast Root mean square (RMS) contrast, defined as the standard 

deviation of the pixel intensities across the pixels of interests 

F2 michelson_contrast Measurement of image contrast defined by luminance difference 
over average luminance 

F3 grayscale_brightness Mean pixel intensity of the image after converting the image to 
grayscale 

F4 chan1_brightness Mean pixel intensity of the red color channel of the image 
F5 chan2_brightness Mean pixel intensity of the green color channel of the image 
F6 chan3_brightness Mean pixel intensity of the blue color channel of the image 

F7 

chan1_brightness_YUV 
Mean channel brightness of red color channel of image after 
converting to YUV color space 

F8 

chan2_brightness_YUV 
Mean channel brightness of green color channel of image after 
converting to YUV color space 

F9 

chan3_brightness_YUV 
Mean channel brightness of blue color channel of image after 
converting to YUV color space 
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Table 3. Agreement between computational pathologists R1 and R2 / R3 with and without the 
help of HistoQC.This table shows the concordance between computational pathologists’ subjective 
assessment on quality of the WSIs with (upper row) and without (lower row) using the help of HistoQC. 
Notably, the usage of a quantitative visual approach drastically improves concordance between 
computational pathologists. 
 

Stain  Agreement Kappa Gwet’s AC1 
Without HistoQC 

Hematoxylin and eosin 0.73 0.26 0.59 
Periodic acid–Schiff 0.73 0.31 0.56 
Silver 0.75 0.50 0.52 
Trichrome 0.69 0.36 0.43 

With HistoQC 
Hematoxylin and eosin 0.96 0.91 0.92 
Periodic acid–Schiff 0.89 0.75 0.79 
Silver 0.96 0.93 0.93 
Trichrome 0.90 0.77 0.81 
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Table 4. Agreement among human assessed image quality. The concordance between two 
clinical pathologists that reviewed the same WSI, in raw agreement, Kappa, and Gwet’s AC1 grouped 
by stain type. 

Stain  Agreement Kappa Gwet’s AC1 
Concordance among clinical pathologists 

HE 0.77 0.48 0.58 

PAS 0.71 0.27 0.52 

SIL 0.60 0.19 0.23 

TRI 0.79 0.41 0.68 
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Figure legends 
 
Figure 1. Experimental pipeline. Using over 1800 WSIs stained with Haemotoxylin and Eosin 

(H&E), Periodic acid–Schiff (PAS), Silver (SIL) and Trichrome (TRI), from the NEPTUNE DPR, a 

HistoQC aided quality control pipeline was applied to each stain independently. WSIs were assessed 

for qualification of computational analysis as determined by presence of artifacts and whether the 

WSI was an outlier within the stain population. 10% of the qualified WSIs and all of the disqualified 

WSIs were reviewed and scored by three reviewers R1, R2, and R3, for evaluation of inter-reader 

concordance with and without using HistoQC. HistoQC quantitative quality metrics were later used to 

assess the presence of batch effects in the NEPTUNE data. 

   

Figure 2. Example artifacts that frequently present on digital renal pathology images. In 

general, common artifacts found in digital renal pathology images can be divided into (A) Glass Slide 

Artifacts, (B) Tissue Section Artifacts, and (C) Scanning Artifacts. 

 

Figure 3. HistoQC user interface demonstrating selected metrics across 4 stain types. 

The parallel coordinate plots provide an overview of the distribution of WSIs, with each blue line 

representing a single WSI and each y-axis represents the metric plotted on a normalized axis. Each 

vertical axis corresponds to a distinct image metric computed by HistoQC. Each horizontally 

orientated line represents a WSI analyzed by HistoQC. Examples of disqualified WSIs are shown and 

are highlighted in red in the plot. Disqualified images (red lines) are examples of outliers in certain 

metrics, indicating potential preparation artifacts. For example, in the first outlier in the H&E stained 

image cohort, the WSI highlighted in red deviates from the majority of WSIs (blue lines) in metrics 

such as “Spur_pixels”, and the brightness of all color channels. This indicates that this WSI has much 

more spur pixels compared to the rest of the H&E stained WSI, and the tissue itself is likely too dark 

compared to other HE WSIs, as the brightness is low. These outlying metrics indicate that a more 
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through manual quality assessment is warranted for this particular WSI: it was discovered that the 

image is dark because of the thick cutting, over staining and has a large air bubble covering the entire 

core. The collection of these artifacts resulted in the disqualification for computational analysis of this 

WSI. 

Figure 4. Examples of artifacts identified and associated HistoQC overlay image. 

For each example, the mask of computationally acceptable tissue overlaid on the WSI is presented 

on the left, where acceptable tissue areas are highlighted in pink, while background and noisy tissue 

area are shown in green. The raw thumbnail for each WSI is presented on the right. For each panel, 

different artifact detection results are shown: (A) Glass Artifact: Stain residue on a glass slide of a SIL 

WSI. (B) Glass Artifact: Pen marking outside the core of a PAS WSI. (C) Tissue Artifact: tissue folding 

on a PAS WSI. (D) Tissue and Scanning Artifact: thick tissue, tissue folding and blurriness on a TRI 

WSI. 

Figure 5. Statistical analysis of batch effect presence. (A) Histogram showing accuracy 

distribution of random forest classifiers trained with randomized site labels (blue bins) from a 

permutation test. The accuracy of a RF classifier trained with correct labels is highlighted on the figure 

in red. (B) Confusion matrix illustrating RF predicted sites of the N=50 testing cohort; rows correspond 

to the predicted class (Output Class) and columns to true class (Target Class). Diagonal cells 

correspond to observations that are correctly classified. Both the number of observations and the 

percentage of the total number of observations are shown in each cell. The last column shows the 

precision, or positive predictive value, in green. The bottom row shows the recall, or true positive rate, 

in green. The bottom right cell shows the overall accuracy. Sites S2 (recall = 66.7%), S3 (recall = 

100%), S4 (recall = 80%), S5 (recall = 75%), S6 (recall = 75%) can be seen to have high recall values, 

driving the overall accuracy of the classifier, and demonstrating the presence of detectable batch 

effects. 
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Figure 6. UMAP embedded plot for assessment of batch effects in NEPTUNE DPR. (A) 

Samples from 8 sites plotted in the 2-dimensional embedded space produced by UMAP (Uniform 

Manifold Approximation and Projection), where examples from left (red arrow, site S2), and right 

(yellow arrow, site S5) are shown, where circles represent cases from training set and diamonds 

represent cases from test set for all color pairs, with (B) the same sites shown in individual plots 

(with other laboratories in black) to highlight their distributions. The UMAP embedding was 

generated in an unsupervised fashion, with the training and testing cases used in the RF 

experiment shown as circles and diamonds, respectively. These labels appear to cluster by 

originating WSI site well, indicating training and testing samples are near each other in the high 

dimensional color space features computed by HistoQC. As can be observed, site S2, S3, S4, S5 are 

demonstrating concise clusters, indicating the potential presence of batch effects. These findings 

are in line with observations from confusion matrix in Figure 5 - B. Panel A further demonstrates that 

notable presentation differences are driving divergent locations on the plot, with the left WSI 

showing a higher red and lower blue channel intensity versus the WSI on the right having heavy 

contrast and a high intensity blue channel.. 

 

 

 

SUPPLEMENTARY MATERIAL ONLINE 

Section I: Manual WSI Scoring Protocol 

Section II: Borderline cases in quality assessment 

Section III: Feature (predictor) importance for batch effect identification in PAS stained WSIs of 

NEPTUNE DPR 

 

Figure S1. Example Scoring Form  
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Figure S2. Example WSI as it appears on your screen when you click on the “link to image” 
 

Appendix A: Examples of artifacts 
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