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Abstract: 

The population of hippocampal neurons actively coding space continually changes across 

days as mice repeatedly perform tasks. Many hippocampal place cells become inactive while 

other previously silent neurons become active, challenging the idea that stable behaviors and 

memory representations are supported by stable patterns of neural activity. Active cell 

replacement may disambiguate unique episodes that contain overlapping memory cues, and 

could contribute to reorganization of memory representations. How active cell replacement 

affects the evolution of representations of different behaviors within a single task is unknown. 

We trained mice to perform a Delayed Non-Match to Place (DNMP) task over multiple weeks, 

and performed calcium imaging in area CA1 of the dorsal hippocampus using head-mounted 

miniature microscopes. Cells active on the central stem of the maze “split” their calcium activity 

according to the animal’s upcoming turn direction (left or right), the current task phase (study or 

test), or both task dimensions, even while spatial cues remained unchanged. We found that, 

among reliably active cells, different splitter neuron populations were replaced at unequal rates, 

resulting in an increasing number of cells modulated by turn direction and a decreasing number 

of cells with combined modulation by both turn direction and task phase. Despite continual 
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reorganization, the ensemble code stably segregated these task dimensions. These results show 

that hippocampal memories can heterogeneously reorganize even while behavior is unchanging.  

 

 

 

 

 

Significance statement: 

Single photon calcium imaging using head-mounted miniature microscopes in freely 

moving animals has enabled researchers to measure the long term stability of hippocampal 

pyramidal cells during repeated behaviors. Previous studies have demonstrated instability of 

neural circuit components including dendritic spines and axonal boutons. It is now known that 

single units in the neuronal population exhibiting behaviorally relevant activity eventually 

become inactive and that previously silent neurons can quickly acquire task-relevant activity. 

The function of such population dynamics is unknown. We show here that population dynamics 

differ for cells coding distinct task dimensions, suggesting such dynamics are part of a 

mechanism for latent memory reorganization. These results add to a growing body of work 

showing that maintenance of episodic memory is an ongoing and dynamic process.  

 

Introduction 
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The idea that stable behaviors and reliable memory representations are supported by 

stable elements of neural circuits (Barnes et al. 1997; Thompson & Best, 1990) has been 

challenged by many findings that neural circuit components across the brain are unstable over 

time. Circuit instability is notable in the continual replacement of active cells with previously 

silent cells (Kinsky et al., 2018; Mau et al., 2018; Ziv et al., 2013), but is also observed in the 

impermanence of dendritic spines and axonal boutons (Attardo et al. 2015; Pfeiffer et al. 2018; 

Grutzendler et al. 2002; De Paola et al. 2006). How circuit instability may affect neural function 

is a topic of much debate (Chambers & Rumpel, 2017; Rule et al. 2019).  

In the hippocampus, a hub for episodic memory and spatial navigation, change is 

observed in the patterns neuronal of activity and the set of currently active cells. In behaving 

animals, single neurons become more sensitive to task demands during training and change their 

firing properties to more precisely encode task demands (Kobayashi et al. 2003; Komorowski et 

al. 2009; Lever et al. 2002). Hippocampal memory representations are also unstable even during 

over-trained behaviors, exhibiting a decorrelation in ensemble activity relative to the elapsed 

time between recordings (Mankin et al. 2015; Mankin et al. 2012; Rubin et al. 2015; Ziv et al. 

2013). These decorrelations result both from remapping of firing locations exhibited by 

continuously active single neurons that is unrelated to changes in behavior (Mehta et al. 2000; 

Poe et al. 2000; Lee et al. 2006; Law et al. 2016), and from population dynamics that include the 

continual inactivation of active cells and their replacement by previously silent cells (Mau et al., 

2018; Ziv et al., 2013). However, these changes have primarily been observed during learning or 
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during performance of foraging tasks. How changes occur during stable performance of a multi-

dimensional memory task remains an open question. Previous studies have linked the long term 

stability of a neuronal activity to different spatial locations and different task behaviors (Kentros 

et al., 2004; Kinsky et al., 2020; Taxidis et al., 2018). We sought to expand on these studies by 

examining how different demands on long term memory influence the evolution of hippocampal 

memory representations during a task where mice pass through the same spatial location under 

multiple different task conditions.  

To study the reorganization of hippocampal representations over time, we used in vivo 

calcium imaging to monitor the activity of hundreds of neurons across multiple sessions in mice 

performing a Delayed Non-Match to Place task on a figure-eight maze. We first confirmed that 

neurons modulate their activity on the central stem according to the animal’s upcoming turn 

direction and the current task phase (Griffin et al., 2007; Wood et al., 2000). We show that the 

distribution of these single unit responses among the reliably active population changes over 

time, resulting in an increased number of turn direction-modulated neurons and a decrease in the 

number of neurons modulated by both the current task phase and upcoming turn direction. These 

changes primarily result from the unequal recruitment of previously inactive cells to different 

neuron coding types. While the distribution of single unit activity was unstable among reliably 

active cells, population analyses revealed a stable separation of task variables in the collective 

ensemble at extended lags between recordings. These results demonstrate that behavior and 

population output can remain stable while single neuron responses are unevenly reorganized.  
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Methods 

Surgical Procedures 

 4 male, naïve mice (C57BL6, Jackson Laboratory) underwent two stereotaxic surgeries to 

prepare for calcium imaging. All procedures presented here were approved by the Institutional 

Animal Care and Use Committee (IACUC) at Boston University. Mice were given 0.05mL/kg 

buprenorphine as a pre-surgical analgesic, and were anesthetized with ~1% isofluorane delivered 

with oxygen. The first surgery was to infuse virus to express GCaMP6f. A small craniotomy was 

made above the dorsal hippocampus at AP -2.0mm, ML +1.5mm relative to bregma, and the 

infusion needle was lowered at this site to DV -1.5mm. 350 nL of the viral vector AAV9-Syn-

GCaMP6f (University of Pennsylvania Vector Core, obtained at a titer of ~4x10e13GC/mL and 

diluted it to ~5-6x10e12GC/mL with 0.05M phosphate buffered saline) was infused at 40nL/min 

and allowed to diffuse for 15 minutes before the infusion needle was slowly removed.  

The second surgery, to implant a gradient-index (GRIN) lens for imaging, was performed 

three weeks later to allow for viral infection and GCaMP6f expression. A 2mm diameter circular 

craniotomy was made at AP-2.25mm, ML +1.8mm, and the neocortex was aspirated until 

rostral-caudal fiber tracts of the alveus were visible. Near-freezing 0.9% saline solution and 

GelFoam (Pfizer) were used continuously to control bleeding and to dry the base of the 

craniotomy prior to lens implantation. The GRIN lens (1mm diameter, 4mm length, Inscopix) 

was slowly lowered stereotaxically to 200 um dorsal to the infusion site of the virus, measured 
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relative to the skull surface. The lens was then fixed in place using a non-bioreactive silicone 

polymer (Kwik-Sil, World Precision Instruments) to entirely cover the craniotomy, which was 

then covered with Metabond dental cement (Parkell) to anchor the lens to the skull. The lens was 

covered with a temporary cap made from Kwik-Cast (World Precision Instruments) until the 

baseplate was attached.  

After allowing a week of recovery from the lens implantation surgery, mice were again 

anesthetized and placed in the stereotaxic holder. The baseplate was magnetically attached to the 

imaging microscope camera, which was then aligned parallel to the GRIN lens by adjusting until 

the edge of the lens was entirely in focus in the nVista recording software (Inscopix). The 

camera with baseplate was then lowered until GCaMP6f-expressing cells were optimally in 

focus, and then raised by 50 um to allow for shrinkage of the dental cement used to affix the 

baseplate. The baseplate was then fixed in place to the existing metabond around the GRIN lens 

with Flow-It ALC Flowable Composite (Pentron), and cured with ultraviolet light. Gaps in the 

dental cement were filled in with Metabond, the camera was removed, and a cover attached to 

the baseplate.    

 

Maze Description 

 The maze was constructed from wood and the internal floor area measured 64.5 cm long 

by 29.2 cm wide, and walls were 17.75 cm high. Middle maze walls separated this area into a 

central hallway (Center Stem) and left and right Return Arms. Each hallway was 7.5 cm wide. 
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This resulted in low variability of the animals’ left/right position within a hallway, although it 

did not prevent the animals from occasionally running with their head turned towards one side. 

Rewards were delivered through ports at the maze walls at floor level of the side arms 12 cm 

from the delay-end of the maze. To dictate turn direction on Study Trials (see below) and to 

contain the mouse during the delay period, arm barriers were used that were made of transparent 

plastic. The delay barrier was made of wood. In this manuscript we only consider data from the 

central stem and return arms.  

For analysis of the central stem, we chose a region starting ~8 cm in front of the delay 

barrier and extending 30cm to end ~5 cm before the choice region at the end of the middle maze 

walls; this region was selected to encompass the region where the mouse was running similarly 

between study and test task phases and left and right turn directions (Figure 1d, purple). Left and 

right variability in the animals’ head position at the end of this region was less than 2.5 times the 

standard deviation of the animals’ left/right variability for the first half of the stem, and was 

usually indistinguishable by visual observation in behavioral recordings. We divided this 30cm 

long region into 8 spatial bins each 3.75 cm in length. For the return arms (Figure 1d, orange), 

we chose a 30cm stretch that started after the animals had fully entered the return arms and 

ended before they reached the reward zone, also separated into 8 bins each 3.75 cm. 

 

Behavior pre-training and recording sequence 
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Mice were trained to run on a Delayed Non-Match to Place (DNMP) task shown in 

Figure 1. This involved extensive pre-training in order to obtain performance at the criterion of 

70% correct.  

After fully recovering from surgeries, mice were extensively handled for ~15 min/day for 

5 days. They were simultaneously food restricted to 80% of free feeding body weight, and 

acclimated to consuming chocolate sprinkles. Over the next two weeks, mice were given time to 

explore the maze, and were slowly shaped to run in a single direction through the maze and to 

receive reward, with inserted walls to block paths and guide them. In the last few days of pre-

training, mice were guided with blocking walls to alternate between the two reward arms and 

given experience with continuous and delayed alternation.  

 Mice were recorded performing two tasks. In the Delayed Non-Match to Place (DNMP) 

task (Griffin et al., 2007), mice alternated between Study and Test trials. On Study trials, mice 

were placed in the center stem in front of the delay barrier, ran to the choice point, where a 

removable barrier forced them to take a path down one return arm where they received a reward 

of one chocolate sprinkle. They then moved to the delay area, waited through a 20-second delay, 

and the delay barrier was lifted to start the Test trial. On a test trial, mice again ran to the choice 

point but there was no barrier and mice had to go down the return arm opposite to the preceding 

study trial in order to receive a reward. They then moved to the delay area, from which they were 

removed to their home cage to wait through a 15-25 second inter-trial interval while the next 

Study trial was prepared. Mice completed between 25 and 40 Study-Test trial pairs per session.  
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A second task, termed the Forced-Free task, was used on other days for a different study 

question not addressed here. On each trial in the Forced-Free task, mice were placed in front of 

the delay barrier, proceeded to the choice point and were either forced down a particular return 

arm or were free to choose which arm. On all trials mice received a reward regardless of which 

arm they entered. After consuming the reward, mice entered the delay area and were 

immediately returned to their home cage for a 15-25 second inter-trial interval while the next 

trial was prepared. Mice typically completed 40 trials per session. Forced and free trials were 

pseudo-randomly interleaved, as was turn direction on forced trials.  

 The full recording sequence involved blocks of DNMP days interleaved with Forced-Free 

sessions and 0-2 day breaks. The full sequence is as follows: FF-D-D-D-FF, break, FF-D-D-D-

FF, break, FF-D-D-D-D-D-FF. In this manuscript, we present data from DNMP recording 

sessions when mice made the correct turn direction on ≥70% of test trials (opposite of preceding 

study trial). Only correct Test trials and their preceding Study trials are included. Additional 

sessions were excluded where cell registration could not be performed.  

 

Imaging 

 Imaging data were acquired using a commercially available miniaturized head-mounted 

epifluorescence microscope (Inscopix). Microscopes were attached on awake, restrained mice, 

and optical focus, LED gain and intensity adjusted for each individual mouse but kept stable 

across days. Videos were captured at 20 Hz with a resolution of 1440 x 1080 pixels, spatially 
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downsampled 2x to 720 x 540 pixels. Dropped and corrupted frames were replaced with the 

preceding good frame, and lost frames were excluded from analysis. Mosaic (Inscopix) was used 

to pre-process recordings for motion correction and cropping (exclude pixels without GCaMP6f 

activity), and to generate a minimum projection of the final video (image which has the same 

height and width of each frame and each pixel is the minimum of that pixel for the entire video) 

to be used during ROI extraction.  

 To extract neuron regions of interest (ROIs) and calcium event times, pre-processed 

videos were then passed through custom-made MATLAB-based image segmentation software 

(Mau et al., 2018; Kinsky et al., 2018) (TENASPIS, software available at https://github. 

com/SharpWave/TENASPIS; see D.W. Sullivan et al., 2017, Soc. Neurosci., abstract). Briefly, 

TENASPIS applies an adaptive thresholding process on a frame-by-frame basis to a band-pass 

filtered video to identify discrete regions of fluorescent activity (blobs). Blobs are then identified 

as likely cells based on expected shape and size, and the software aligns these blobs together 

over successive frames. Dynamics in calcium activity, including event duration, distance traveled 

over successive frames, and probable spatial origin, are used to identify putative neuron ROIs. 

Fluorescence of neuron ROIs is refined into events based on the rising phase of calcium activity. 

Neuron ROIs with significant spatial overlap and high correlations in calcium activity are 

merged into single cells.  

This neuron ROI and calcium transient event detection algorithm does not exclude 

overlapping cells, and includes steps to isolate events to individual cells. The image 
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segmentation step is designed to minimize type 1 errors in calcium transient detection, but this 

comes with a tradeoff of increased type 2 errors (i.e., increased probable transient event rejection 

at the expense of false event detection). We correct these type 2 errors by summing pixel 

intensity within the ROIs over time to create fluorescence traces, and then detect missed calcium 

transients from sharp peaks in the traces. Because a calcium transient in a single neuron often 

causes a peak in the fluorescence trace of any other overlapping ROIs, the correct ROI origin of 

any peak in the fluorescence trace must be determined. To achieve this, we calculate averaged 

pattern of pixel intensities during a given detected fluorescence peak, and calculate the 

correlation of those intensities to the average pattern of intensities of segmentation-detected 

transients of all ROIs that overlap with the ROI in question. The ROI that produces the highest 

correlation (Spearman rho) is then considered to be the correct origin of that calcium transient. 

See example in Supplementary Figure 1b. 

 Cells were registered across sessions using a semi-automated procedure with custom 

software developed in MATLAB that is available along with the rest of our analysis code. For 

each animal, each session was first aligned to the same ‘base’ session, selected from the middle 

of the recording schedule. To align sessions, a set of 25-40 ‘Anchor’ cells was chosen based on 

the relative positions of neuron ROIs in the base session and each other session (Supplementary 

Figure 1a-b). Centers of these ‘anchor’ cells were used to compute an affine geometric 

transformation (‘fitgeotrans’ function in MATLAB) and then align the entire set of ROIs in the 

sessions being registered with the base session (‘transformpointsforward’ function in 
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MATLAB). Cells with centers within 3um (translated to pixels) were identified as the same cell, 

and when there was more than one match within that radius, the registered cell with the higher 

spatial correlation to the base cell was chosen (Supplementary Figure 1c). Cells from a 

registered session that were not partnered to the base session were added to the set of unique 

footprints alongside base session cells so that cells in successively registered sessions could be 

paired to them in turn. Alignment maps were validated by visual inspection: this included 

looking at the relative alignment with other cells in the field of view, and orientation of 

putatively mapped cells across sessions. Cells that were not aligned by the automated procedure 

based on center-to-center distance but that shared orientation and relative alignment to 

neighboring cells were registered manually (Supplementary Figure 1e, green cell). When 

looking at the relationship for all cell pairs across all sessions, the correlation of ROIs and 

distances between centers formed a cluster near the top of the distribution for all cell pairs 

(Supplementary Figure 1d). The TENASPIS algorithm is designed to discriminate between 

partially overlapping cells, which gives rise to in many pairs of cells that have high ROI 

correlations and low center-to-center distances, but remain unregistered because a better matched 

pair was found using the procedures above; in Supplementary Figure 1d, this manifests in the 

black points mixed in among the red registered cell pairs.  

 

Behavioral Tracking 
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 Animal position was recorded using an overhead video camera and CinePlex V2 tracking 

software (Plexon). Tracking was performed at 30 Hz, and was synchronized with a TTL pulse to 

the imaging data acquisition through nVista software. Tracking was validated manually and 

errors were corrected using custom software written in MATLAB. Position was then interpolated 

to the 20 Hz imaging time stamps. We did not filter our data by the animal’s running speed, but 

the animals moved consistently through the central stem and we did not observe incidents where 

the animal would entirely stop moving or reverse direction while traversing the central stem. 

 

Histology 

Mice were perfused transcardially with 10% phosphate buffered saline until outflow ran 

clear and then with 10% phosphate buffered formalin. Brains were then extracted and post-fixed 

in formalin for 2-4 days, and then transferred to 30% sucrose solution in phosphate buffered 

saline for 1-2 days. Brains were then frozen and sliced into 40 um sections on a cryostat (Leica 

CM 3050S), mounted, and coverslipped with Vectashield Hardset mounting medium with DAPI 

(Vector Laboratories). Slides were then imaged using a Nikon Eclipse Ni-E epifluorescence 

microscope at 10x and 20x to verify viral expression and location and GRIN lens location 

relative to the CA1 cell layer.  

 

Quantification and Statistical Analysis 

Event likelihood  
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 Calcium events were detected and analyzed to compute the likelihood of calcium events 

occurring at a given location. The analysis software, TENASPIS, (see above) defines an event as 

the time during the rising phase of a spike in calcium fluorescence in a cell which exceeds a local 

threshold of that cell’s session average of fluorescence activity. This returns a binary output for 

each cell which describes whether that cell was or was not, at every imaging frame, exhibiting a 

calcium event. We calculated event likelihood by pooling data from the set of trials of interest 

for each cell (e.g., Study trials on the stem), and then, for each spatial bin, dividing the number of 

frames for which an event was occurring by the number of frames when the mouse was in that 

bin in that set of trials. This produces an output between 0 (an event never occurred in that 

spatial bin) and 1 (an event always occurred when the mouse was in that spatial bin).  

 

Reliably Active/Included Cells 

 For single unit analyses, cells are included on a given day when they exhibited a 

calcium event on at least 25% of trials in a single trial type (e.g. Study-Left) (Supplementary 

Figure 2). These criteria were chosen before analysis was conducted based on intuition that 

some reliability criteria would be necessary to exclude neurons which might pass certain 

statistical criteria (e.g., splitter identification via permutation test, see below) but which might be 

unconvincing given observation of a neuron’s single-trial calcium activity (see example cell in 

Supplementary Figure 2d). An analysis of the choice of this effect on results can be found in 
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Supplementary Figure 4. In the population analyses, we included all cells that were 

successfully registered to the sessions being compared. 

 

Splitter Identification  

  Splitter neurons are cells that exhibit a significant bias in their firing activity on the 

central stem for trials of a particular upcoming turn direction (Left versus Right) or task phase 

(Study versus Test) (Figure 2). Thus, each cell is a member of one of four mutually exclusive 

categories, depending on whether its calcium activity is modulated by either task dimension, 

both, or neither: turn splitter neuron, task phase splitter neuron, turn+phase splitter neuron, or 

non-splitter. Note that turn+phase splitter neurons refer to cells splitting both turn direction and 

task phase.  

To identify whether each cell’s activity was significantly modulated by task variables, we 

used a permutation test to measure the significance of the difference in event activity likelihood 

against a shuffled distribution. This was repeated separately to measure activity bias for turn 

direction or task phase. We first separated epochs when the mouse ran through the central stem 

according to the given task dimension (i.e. left and right turn trials, or study and test trials), and 

computed the event likelihood (see above) for these sets of trials. Then took the difference in 

likelihood scores by subtracting the Right trial event likelihood in each spatial bin from that for 

Left trials, or Test trial from Study. We then repeated this for all 1000 sets of shuffled trials, 

which were generated by shuffling the trials between trial types accordingly, to get a shuffled 
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difference distribution. Cells were determined to “split” the dimension of interest if their original 

event likelihood difference was greater than 95% of the shuffle differences in any spatial bin.  

 In the supplemental data, this procedure was repeated in the same fashion for epochs 

when the mouse ran down the return arms to measure selectivity for the separate (Right or Left) 

return arms and for Study and Test task phases while on the return arms.   

 

Population Vector Correlations  

Population vector correlations were computed in a manner similar to that described by 

Leutgeb et al. (2005) (Figure 3a). We generated three sets of correlations: 1) within-condition: 

trials of the same type (e.g. Study-Left vs. Study-Left); 2) Left vs Right, and 3) Study vs. Test. 

First, trials were grouped for the comparison of interest and then each group was split so that 

within condition comparisons would have the same number of trials as the other two 

correlations. For a given half-set of trials, we computed the event likelihood in each spatial bin 

with the method described above. We then took these spatial bin event likelihoods for the set of 

cells included and computed a Spearman correlation for each spatial bin against the event 

likelihoods in the same spatial bin for the trials in the different comparisons listed above. For 

correlations computed across days, we computed all day-pair combinations for each self-

comparison and for each comparison between study and test trials and between left and right turn 

trials, for example between left turn trials on day 1 and right turn trials on day 4. Cells included 
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were those present (successfully registered) on both days for each comparison (Similar results 

were achieved using several other cell inclusion criteria, data not shown). 

 

Statistics 

 All statistical tests were done with Spearman rank correlations, Wilcoxon rank-sum tests 

(Mann-Whitney U tests), Wilcoxon signed-rank tests, sign tests, or permutation tests with 

threshold set at >95% of shuffles for the given test. These tests were used because data were 

often not normally distributed. Statistics for results in individual animals can be found in 

Supplementary Table 5. 

 
 

Results 

Heterogeneous changes in daily distribution of single-cell task-related responses 

We recorded calcium activity in neurons in dorsal area CA1 as mice performed a delayed non-

match to place (DNMP) task over several days. In the DNMP task, mice first run a Study trial 

where they are forced to turn into one side arm to receive reward. After a 20-second delay, mice 

begin the Test phase and must choose to go down the opposite arm to receive a reward (Figure 

1a). We used this task because mice traverse the same section of the maze (the central stem, 

Figure 1d purple) under each combination of the current Task Phase and upcoming Turn 

Direction. This allows us to examine hippocampal representations of the same space under four 

different behavioral conditions: Study-Left, Study-Right, Test-Left, Test-Right. Performance in 
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this task is measured by the number of Test trials on which the mouse correctly chooses the side 

arm opposite that from the immediately preceding Study trial; we include only sessions where 

the mouse made 70% correct alternations (38 sessions in 4 male mice: 9 days in 3 mice, 11 days 

in 1, spanning up to 18 calendar days, Figure 1b). 4 sessions were excluded for performance 

below 70%. Performance did not change over the experiment (only days above threshold: rho=-

0.031, p=0.852; all days recorded: rho=0.198, p=0.210; Spearman rank correlation).  

We recorded activity using the virally-delivered fluorescent calcium indicator GCaMP6f 

and head-mounted miniature microscopes (Figure 1c), and extracted 8256 unique cell ROIs, 

cumulative from all sessions in all animals, using custom software (example ROIs in Figure 1e-

f, bottom; see Methods) (Kinsky et al., 2018; Mau et al., 2018) (see also Supplementary Figure 

1a-c). The number of cells found in each animal stayed consistent over the course of recordings, 

ranging from 500-1600 (Supplementary Figure 2a). On average, each cell was successfully 

registered for 3.45 sessions (Supplementary Figure 1f-j, 2b), and cells often displayed stable 

activity profiles across sessions (see examples in Figure 1e-f).    

Single cells often modulate their spatial firing activity according to context-dependent 

task dimensions such as upcoming turn direction or current task phase. Turn direction responses 

are thought to represent specific spatial trajectories (Frank et al. 2000; Wood et al. 2000; 

Ferbinteanu and Shapiro 2003), while a task phase-modulated response profile reflects the 

(presumably) different network activity states for encoding during the study phase and retrieval 

during the test phase (Griffin et al. 2007). We assessed whether task variables were encoded by 
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neurons in our recordings by measuring the bias of calcium events towards one task variable 

using a permutation test which shuffled trial types (see Methods).  

We first present the data from all neurons found in our imaging: in each recording 

session, an average of 34.52±0.47% of cells exhibited at least one calcium event on the central 

stem during the full set of passes through the central stem, and this proportion did not change 

over the course of recordings (rho=0.200, p=0.228; Spearman rank correlation of percent cells 

with any transients vs. recording day number) (Figure 2b). Many neurons passed the 

permutation test for splitting activity, displaying a functional phenotype described by a 

modulation of their calcium activity according to the animal’s upcoming turn direction (turn 

splitter neurons), the current task phase (phase splitter neurons), or both (turn+phase splitter 

neurons) (see examples in Figure 2a). Over all recording sessions, 7,403 out of 11,281 

observations of neurons (each recording day treated as a separate observation) which displayed 

at least one transient were found to have their activity modulated by one or both of the task 

variables. On each recording day, an average of 14.77±0.91% of neurons active on the stem were 

turn splitters, significantly less than either the daily mean proportion of task phase splitters at 

24.21±0.95% (z=4.59, p=4.333e-06; Wilcoxon signed-rank test) or turn+phase splitters at 

26.91±1.39% (z=4.971 p=4.663e-07), which did not differ in proportion from each other 

(z=1.380, p=0.168); the remaining average of  34.11±1.66% did not split either task variable 

(Non-splitters), and this proportion was significantly greater than both that of phase splitters 

(z=4.068, p=4.774e-05) and turn+phase splitters (z=2.18, p=0.29) (Figure 2c). Over the course 

This article is protected by copyright. All rights reserved.



 21 

of recordings, these proportions did not change (Turn: rho=0.086, p=0.608; Phase: rho=0.130, 

0.438; Turn+phase: rho=-0.183, p=0.272; Non-splitter: rho=0.036, p=0.832; Spearman rank 

correlation on percentage of splitter neurons against recording day number) (Figure 2d). These 

categories of splitter neurons are mutually exclusive. Note that many cells which display a turn 

direction-modulated response on Study trials, suggesting that mice could see the turn barrier 

before having reached it.  

When visually inspecting raster plots of calcium activity, we observed many neurons 

which exceeded the 95% confidence interval determined by shuffling activity in the permutation 

test but whose activity appeared too unreliable to satisfy our intuition for being a reliable splitter 

neuron; this was often a result of circumstances related to the low sampling rate for calcium 

imaging and variable animal behavior. We did not apply a speed threshold to our data, but did 

not observe trials when the mice entirely stopped moving or reversed their direction while 

running towards the choice point. Exceptionally long trials can have outsize effects on calcium 

event likelihoods, and can especially affect neurons that have low activity rates and do not fire 

on exceptionally long trials (see example in Supplementary Figure 2d). To address these 

potential issues, we repeated the analyses above with an activity threshold which only included 

cells that were active on at least 25% of trials of one trial type (reliably active cells).  

Across all DNMP recordings, an average of 11.23±0.74% of cells found were above the 

reliable activity threshold on the stem, and this increased over the course of recordings 

(rho=0.437, p=0.006; Spearman rank correlation) (Figure 2e). Across recordings, ~90% of 
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reliably active cells displayed a functional phenotype described by a modulation of their calcium 

activity according to one or both task variables (3,334 passed permutation test/3,654 reliably 

active on the stem across all recording days, where each day is a separate observation). Among 

reliably active neurons, there was no difference in the percentages of turn or phase splitter 

neurons (19.66±1.29% and 18.30±1.20%, respectively, z=1.056, p=0.291, Wilcoxon signed-rank 

test), but there were more turn+phase splitter neurons than either group (52.72±1.87%, vs. turn: 

z=5.315, p=1.066e-07, vs. phase: z=5.289, p=1.238e-07) (Figure 2f). We also observed a 

location bias among different splitting phenotypes of single cells: phase splitter neurons were 

more likely to have their activity center of mass (event activity pooled across all trial types) 

closer to the start of the stem (Bin 1) than did turn splitter neurons (p=3.313e-31, Mann-Whitney 

U test) (Figure 2g). A bias in firing location may indicate that cells tend to fire in proximity to 

features of behavioral relevance: for phase splitters, this could be whether the trial began in the 

delay area or by being placed on the maze by the experimenter, while turn splitters encode an 

upcoming spatial turn direction.  

The daily distribution of splitter types among reliably active neurons was not stable: the 

percentage of turn+phase splitters significantly declined over the course of the experiment (rho=-

0.369, p=0.023, Spearman rank correlation), though it remained greater than other splitter types. 

Meanwhile, the percentage of turn splitter neurons went up (rho=0.357, p=0.028) and there was 

no change in the percentages of phase splitter neurons (rho=0.120, p=0.472) and non-splitter 

neurons (rho=0.267, p=0.105) (Figure 2h). The percentages of each type of splitter neuron were 

This article is protected by copyright. All rights reserved.



 23 

not correlated with animals’ performance on the DNMP task (all rho absolute value <0.276, all 

p>0.094) (Supplementary Figure 3a). To examine how our activity criterion affected these 

results, we repeated this analysis across a range of criteria and find that at the majority of 

thresholds they at least trend in the same direction (Supplementary Figure 4a,c). The observed 

changes in reliably active splitter cell distributions (Figure 2h) could result from an increase in 

calcium activity over time; however, this does not seem to be the case since the average 

likelihood of calcium events increases over time in turn splitters but not in turn+phase 

(Supplementary Figure 4e-f). 

These results indicate heterogeneous stability within the population, with the entire 

population maintaining a distribution of task-related activity but exhibiting change in that 

representation among more reliably active neurons. These findings replicate a previous result  

showing phase and turn splitters (Griffin et al. 2007) in a new species and extend that work to 

suggest that the distribution of task-dimension modulated responses among reliably active 

neurons is unstable over time, even though behavioral output is reliable. In particular, the 

number of reliably active turn splitter neurons increases over time, whereas the number of 

reliably active turn+phase splitter neurons decreases over time, suggesting representations in 

single-neurons become less experience-specific over time.  

We applied these same analyses to determine activity modulation according to task 

variables to neuronal activity during the return arm epochs. Because this analysis is performed in 

the same way, it can be used to indicate relative distinctiveness in the way neurons code for 
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overlapping spatial trajectories (central stem) as opposed to unique spatial locations (return 

arms). Many cells displayed a calcium event bias for one arm over the other (place cells, referred 

to in the text as “place splitters”), and many cells also showed selectivity for one task phase (see 

Statistics in Supplementary Table 1). The percentages of place and phase splitter neurons on 

the return arms did not change over time, though there was an increase in the number of cells 

which were reliably active on the return arms but did not show place or task phase selectivity 

(non-splitters) (Supplementary Figure 5a-e). Additionally, we repeated these procedures for 

central-stem activity during the Forced-Free sessions (see Methods). We observed fewer neurons 

coding for task phase in these sessions than during DNMP sessions, and saw neither a change in 

the number of splitter neurons over time nor a correlation with spontaneous alternation behavior 

(“Accuracy,” choosing a return arm during a free trial opposite that of the prior trial, even though 

all choices were rewarded) (Supplementary Figure 5f-i). That we saw a change in distribution 

of splitter neurons in the DNMP task but not in the Forced-Free task suggests that 

representations for these tasks do not affect each other. These results also show that changes in 

the representations of the task and environment among reliably active neurons are modulated by 

memory load, which is low on the return arms and high in the central stem during the DNMP 

task.  

In summary, by demonstrating that the distribution of task variable responses among 

single units is unstable, we show that representations for various task dimensions experienced in 
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the same spatial location and during similar behaviors (stem traversal) are heterogeneously 

stable, with divergent changes based on their coding of the behavioral context.  

 

Population-level separation of task dimensions is stable over experience 

We next asked how these patterns of activity manifested in the activity state of CA1 as a 

whole. This population analysis was designed to measure the similarity in the pattern of activity 

among the population of neurons within and across recording sessions. We computed Spearman 

correlations for the calcium event likelihood in each spatial bin from the start of the stem to the 

choice point for a given trial type using the calcium event likelihood for each trial type of all 

cells present in the session pair (Figure 3a) (see Methods). We generated three sets of 

correlations: 1) trials of the same turn direction and task phase (within-condition; e.g. Study-Left 

vs. Study-Left), 2) trials of different turn directions (Left vs. Right, abbreviated as LvR), and 3) 

trials of different task phases (Study vs. Test, abbreviated as SvT). 

We found a stable ensemble activity pattern when examining the population vector 

correlations for trials occurring on the same day. Activity states for trials of the same type were 

significantly more correlated than those for trials of different direction and for trials of different 

task phase, thus showing a discrimination in the ensemble-level code for different trial types (see 

Supplementary Table 2 for detailed statistics). As shown in Figure 3b, the correlations 

between trials of the same type did not change across spatial bins (rho=0.045, p=0.116; 

Spearman rank correlation). In contrast, activity states for left and right trials grew more 
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decorrelated as animals approached the choice point (rho=-0.678, p=4.946e-83), and study and 

test trials were most discriminable (less correlated) at the start of the stem (rho=0.332, p=4.418e-

17). The correlation change along the stem follows the center-of-mass distribution for splitter 

cell firing fields (Figure 2f). This pattern of correlations across spatial bins was stable over the 

course of recordings (all rho absolute value < 0.313, all p > 0.056; Spearman rank correlation of 

2-bin mean for each type of population vector correlation value against recording day number) 

(Examples for bins 1-2 and 7-8 in Figure 3c-d). This result demonstrates that, in spite of the 

changing distribution of single-neuron encoding properties (Figure 1e), the population-level 

distinction between activity states (Figure 3b) and its relationship to spatial position is stable 

over time (Figure 3c-d). We also evaluated the relationship between population vector 

correlation and animal behavioral performance, and only found a relationship between increasing 

performance and increased correlation between left and right trials for bins 1-2 (rho=0.350, 

p=0.032, Spearman rank correlation; Supplementary Figure 3b). This stability of 

representations at the population level mirrors that observed in the population as a whole without 

thresholding for reliably active neurons (Figure 2a-d). 

We next assessed the correlations within and between trial types for trials on different 

days. It may be expected that population activity states would diverge with respect to time (i.e., 

become less correlated) due to cell replacement and changes in the splitter neuron distribution 

(Figure 2e). To assess this, we examined the mean population vector correlations at the 

beginning and end of the stem between sessions recorded 1 to 16 days apart. We observed that 
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all three types of correlations significantly decreased with increasing day lag at both ends of the 

stem, (Figure 3e-f). However, even as correlations decreased, LvR and SvT correlations were 

significantly lower than those between trials of the same type for at least a week between 

sessions and in many cases longer (see detailed statistics in Supplementary Table 3,4). These 

results show that constant cell turnover minimally impacts the ability of the population to 

represent different experiences of the same space over many days of recording and that this 

representational structure is preserved over time. However, the extent to which the neuronal 

population distinguishes between task dimensions depends on the dimensions being compared, 

the animal’s physical location, and the temporal lag between experiences.     

 
Evolution of single-unit to responses is attributable to changing distribution of new cell 

activity types 

We next assessed the origin of the changes in the distribution of splitter neuron types 

over time. There are several possible sources of change in the splitter neuron distribution: 

different splitter neuron types could be persistently active for different amounts of time before 

becoming silent (variable stability); neurons could change their splitter type (splitter type 

transition); or previously silent neurons could be preferentially allocated to certain splitter types 

(unequal allocation of newly active cells). We found no evidence of variable stability: cells were 
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equally likely to be reactivated in later recording days regardless of splitting type (all p>0.05, 

Wilcoxon rank-sum test between each pair of splitting phenotypes at each day lag) (Figure 4a). 

We next tracked the history of all cells to determine the origin or “source” of each splitter 

neuron in the preceding session. For each splitter neuron from the second included session 

onwards, we tracked whether that cell was a splitter neuron of any type in the preceding DNMP 

session or was inactive (neurons below the reliable activity threshold or undetected by our ROI 

extraction algorithm; note that this includes cells which may have been active 2 or more sessions 

before the session of interest). We found that previously inactive cells were the largest source 

category to all types of splitter neurons in 89.26% of recording sessions, and contributed an 

average of 57.10% of splitter neurons per session (Figure 4b). Turn+phase splitter neurons were 

the second largest source category to splitter neurons of all types, contributing on average 

21.30% of splitter neurons. The percentage of active cells which had been inactive on the prior 

recording day did not change over time (Figure 4c) (rho=-0.025, p=0.891, Spearman rank 

correlation). In addition to showing the immediate integration of newly active cells into the 

coding population, this result suggests that representation of task variables in single units 

becomes less specific over time, where cells become less likely to encode both task phase and 

turn direction. 

The above result on splitter neuron sources suggests that changes in the distribution of 

single unit responses are, to a large degree, driven by the splitting type a newly active neuron 

assumes as opposed to transitions between different splitting types. Indeed, the percentage of 
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splitter types of newly active cells closely matched the distribution of splitter types overall: new 

cells were more likely to become turn+phase splitter neurons rather than turn-only or phase-only 

splitter neurons (Turn+phase vs. Turn: z=5.069, p=4.000e-07; Turn+phase vs. Phase: z=5.001, 

p=5.709e-07; Wilcoxon signed-rank test) (Figure 4d). Additionally, the changes in this 

distribution of newly active cells over the course of recordings closely matched those observed 

for all splitter neurons (Figure 2g): while newly active cells on all days were more likely to be 

turn+phase splitter neurons than other types, this likelihood significantly decreased over time 

(rho=-0.388, p=0.023; Spearman rank correlation), the percentage of new cells allocated to turn 

splitter neurons on the stem exhibited a non-significant trend towards increasing (rho=0.328, 

p=0.058), while those for phase splitter neurons and non-splitters were stable (rho=0.161, 

p=0.362 and rho=0.189, p=0.285 respectively) (Figure 4e).  

Splitter and place neurons on the return arms were also found to be equally stable and 

primarily derived from newly active cells, but the distribution of cells newly active on the return 

arms among splitter types did not change over time, again suggesting the redistribution of splitter 

neurons is related to memory load (Supplementary Figure 6).  

These results show that the changing distribution of single unit responses is primarily 

attributable to changes in the allocation of new cells to encode task variables, rather than unequal 

stability of different splitter types.  

 
Discussion  
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We recorded cells in dorsal CA1 of the hippocampus in mice performing a Delayed Non-

Match to Place task over several sessions. In tracking the same populations of cells, we found 

that there was heterogeneity in the stability of task-related representations. Many single cells 

exhibited context-dependent modulation in their calcium activity while the animal was in the 

same spatial location, replicating earlier findings demonstrating that hippocampal place cells 

encode the behavioral context in addition to spatial position (Griffin et al., 2007). Among cells 

active on the stem, ~65% were sensitive to turn context or phase context, and the distribution of 

splitting types among active neurons was stable over the course of recordings. However, we also 

found that this proportion went up to ~90% among neurons crossing a threshold for reliable 

activity, a proportion typically higher than seen in previous studies but may be attributable to 

differences in species, recording methods and statistical detection of splitting (see Appendix 1 

for specific details), and that this distribution of context-dependent responses among reliably 

active neurons was not stable over the course of recordings: the percentage of task phase splitter 

neurons was stable, the percentage of turn direction splitter neurons increased, and the 

percentage of turn+phase splitter neurons decreased. Thus heterogeneous stability is suggested 

both in a distinction between populations of neurons with different activity rates and among the 

distribution of task-modulated responses among more reliably active neurons. We found the 

change of splitter distributions among reliably active neurons was not attributable to variable 

stability of each splitter type, but instead appeared to be due to how cells which became reliably 

active were allocated to different splitter types. In spite of cell turnover and changes in the 
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representation of task features among single neurons, ensemble-level population representations 

for different trial types were stably segregated over many recording sessions. These data 

demonstrate that the hippocampal representation of ongoing experience can undergo 

reorganization at the single neuron level while minimally impacting population-level coding. 

The changes that we observed in the distribution of splitter neurons may be influenced by 

the use of specific methods and thresholds. The results on distribution of task representations 

among the population of cells are presented as a percentage of cells which met criteria for 

reliable activity on a particular recording session, so changes in these percentages will be 

influenced by the number of cells included. Regarding our reliability threshold, this does seem to 

be a possible factor in our results since more neurons pass this threshold over time (Figure 2e), 

although we found that this was consistent across a range of reliability thresholds 

(Supplementary Figure 4a-d). Since any proportion is related to other proportions in the 

sample, an increase or decrease in proportion could arise either from an increase of the one 

quantity of interest (here, number of cells which pass a particular test for splitting) or from a 

change in the number of elements sampled (here, number of cells included). To estimate possible 

changes in activity coding over time, future studies should seek to employ methods which can 

better track individual neurons across recording sessions in a manner that is not activity 

dependent, such as two-photon imaging, and by methods which more precisely resolve 

individual action potentials.  
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Representations may change in different ways over time during stable behavior based on 

competing demands on memory reorganization. Generalization emphasizes the similarities 

across experiences to aid in the transfer of learning across contexts, while orthogonalization 

makes representations more distinct to mitigate interference between contexts. Both mechanisms 

are important for spatial navigation and episodic memory (Hasselmo & Wyble, 1997; Kumaran 

& McClelland, 2012; McNaughton & Morris, 1987; Norman & O’Reilly, 2003; Schapiro et al. 

2017; Treves & Rolls, 1994; Winocur et al. 2010), and both processes are observed in the 

hippocampus in fMRI studies using behavioral tasks with multiple demands (Brown et al. 2010; 

Brown & Stern, 2014; Chanales et al. 2017). However, the interplay of generalization and 

orthogonalization in the long term reorganization of memory has not been previously studied at 

the single neuron level in a dynamically evolving neural circuit. Representations of different trial 

types may become more orthogonalized and distinct, following the precedent set by many studies 

on learning (Komorowski et al. 2009; McKenzie et al. 2013; Chanales et al. 2017). Alternatively, 

representations could become more schematic through generalization as the animals become 

over-trained on the task, perhaps preserving only those distinctions relevant to performing the 

task. At the single neuron level, we observed a result consistent with the generalization 

hypothesis among the population of reliably active neurons: a decreasing number of turn+phase 

splitter neurons (which encode a single experience: a route to a single destination during a single 

task phase) and an increasing number of turn splitter neurons (which encode multiple 
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experiences: routes to the same destination during multiple task phases). At the population level, 

however, we instead observed a highly stable representational structure. 

Studies which report orthogonalizing change in hippocampal coding properties typically 

examine an initial learning phase, comparing data from before and after a subject reaches a 

performance criterion, and often in a single session (Kobayashi et al. 2003; Komorowski, et al. 

2009; McKenzie et al. 2013). Because our recordings began after animals had received 

considerable experience with the maze environment during behavioral shaping, we may have 

captured a set of operational demands unlike initial task learning. To reconcile our finding of 

generalization with previous reports of orthogonalization, we propose that both mechanisms act 

on the organization of hippocampal memory but at different timescales: orthogonalization 

dominates an early, fast encoding process which emphasizes the uniqueness of current 

experiences, while generalization acts as a slower refinement of existing memory representations 

by finding statistical regularities; both of these processes likely involve regions outside the 

hippocampus (Ghosh & Gilboa, 2013; Koster et al., 2018; Lewis et al., 2018). This distinction 

suggests that it is more appropriate for our work to be framed in terms of long-term mechanisms 

of memory stability, rather than those which are relevant to shaping the initial learning and 

encoding process.  

Divergent expectations for short and long-term memory organization are apparent when 

comparing our results to a previous report which employed a similar task to ours in which human 

participants navigated partially overlapping trajectories in a virtual environment (Chanales et al., 
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2017; see also Brown et al. 2010; Brown and Stern 2014). The authors found that the 

hippocampal voxel activity patterns for overlapping trajectory segments grew more distinct from 

each other over the course of learning, while patterns for non-overlapping segments did not 

change in their representational similarity. Our results parallel this finding in showing that 

conflicts between behavioral responses in overlapping locations (experienced on the central stem 

in the DNMP task) can drive changes in the neural representation while representations for non-

overlapping segments remain stable (return arms, Supplementary Figure 5). However, unlike 

Chanales and colleagues, we did not observe a population-level increase in discriminability of 

overlapping segments, which could be explained by the fact that their study was conducted in a 

single session while ours ran for multiple weeks.  

Prior studies have attributed a working memory role to the hippocampus in DNMP and 

other alternation tasks. Working memory accounts propose that on short, behaviorally relevant 

timescales the hippocampus maintains a representation of the previous trial to inform future 

behavior. This interpretation was prompted by findings that hippocampal lesions produce 

performance deficits in alternation tasks which involve a delay (Hampson et al. 1999; 

Dudchenko et al. 2000) and by correspondence between during delay period neural activity and 

upcoming turn directions (Deadwyler et al. 1996). However, alternation tasks cannot distinguish 

between prospective and retrospective coding (see Frank et al. 2000 and Ferbinteanu & Shapiro 

2003), meaning delay and central stem activity could represent a previous trial or upcoming 

trajectory. 

This article is protected by copyright. All rights reserved.



 35 

We suggest instead that continued involvement of the hippocampus in distinctly 

representing overlapping spatial trajectories may be appropriate for self-localization within an 

existing spatial memory map (Redish & Touretztky, 1998). It was previously assumed that task 

splitter neurons reflected respective encoding and retrieval demands for Study and Test trials 

(Griffin et al. 2007); the self-localization interpretation suggests instead that task phase splitters 

instead encode immediate history of the stem traversal, whether the current trial began by being 

placed in the maze by the experimenter (Study) or being released from the delay area (Test). 

Self-localization assumes neither that the animals are sensitive to our conception of the task nor 

that encoding and retrieval “modes” be expressed as measurably different patterns of activity in 

CA1. The lack of neurons that code exclusively for Task Phase on the return arms 

(Supplementary Figure 5), where the trial-start behavioral cue is less salient, is consistent with 

this hypothesis. The strictest interpretation of task phase splitting as self-localization suggests it 

acts as a code to distinguish slightly different routes to the same reward destination (Grieves et 

al. 2016). Task phase splitting (Figure 2) and delay period splitting (Deadwyler et al. 1996) 

could together contribute to self-localization within a cognitive map of the task that links longer 

sequences of events through the maze, wherein overlapping trajectories begin on the central 

stem, pass down one side arm, linger in the delay area, and then pass again through the stem and 

onto the other side arm (Hasselmo, 2008). Task phase splitting on the central stem is similar to 

many other findings of context-dependent place-cell activity (Ferbinteanu & Shapiro, 2003; 

Frank et al., 2000; Hasselmo, 2008; Sun, Yang, Martin, & Tonegawa, 2019). Disambiguating the 
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working-memory and self-localization accounts of splitter neuron activity will require designing 

tasks that use behavioral and spatial cues that are highly consistent across distinct but 

overlapping behaviors.  

We observed that neurons which became active (above the reliability criterion) over the 

course of the study often displayed a high activity level and task-modulated activity patterns 

even on the first day that they were apparent in our recordings. The immediate integration of 

newly active cells suggests an attractor-like mechanism, constrained by the activity and 

connectivity within an area and its inputs, which defines the “activity coding space” that new 

cells are likely to function within, manifested as a low-dimensional manifold that remains stable 

despite cell turnover over days and trial-to-trial variability of activity over minutes (Low et al., 

2018; Rubin et al., 2015). In the context of this study where no new learning occurred, we 

suggest that new cells are activated by intra-cell factors that raise a cell’s excitability, such as the 

level of CREB (Han et al., 2007; Yiu et al., 2014; Zhou et al., 2009), coupled with changes in 

inputs to CA1 neurons from upstream contacts. Higher excitability and raised input activity 

together would cause activation via previously silent synapses to drive new CA1 neurons with 

task-modulated activity. This would result in LTP of synaptic inputs that would enable these new 

CA1 neurons to remain active for many days. Drift incidentally coupled across regions thus 

preserves task representations in low dimensional activity states and over time causes the activity 

in a given structure to reflect the dominant coding scheme of its upstream partners, preventing a 

wholesale disconnection between associated regions. New hippocampal learning, the highly 
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orthogonal and relational explicit recombination and extraction of features from upstream 

activity patterns, would not occur on this timescale and could instead be driven at short 

timescales by mismatched activity patterns (Hasselmo and Schnell 1994; Hasselmo and Wyble 

1997; Hasselmo and Eichenbaum 2005; Lisman and Otmakhova 2001; Hasselmo 2005) and 

signals such as dopaminergic input (Kempadoo et al., 2016; Kentros et al., 2004; Takeuchi et al., 

2016) or cholinergic input (Hasselmo & Schnell, 1994; Hasselmo & Wyble, 1997).  

To address our results specifically, we observed that reliably active single neurons 

encoded fewer task variables over time. Lipton et al. (2007) previously found that there were 

more turn-direction splitter neurons in the medial entorhinal cortex (MEC) than in CA1: if this is 

additionally true in the DNMP task and there are more neurons coding for task phase in the MEC 

than in CA1, the hippocampus may over long periods of time emphasize those dimensions in the 

activity of single neurons, slowly “undoing” the highly orthogonal coding hypothesized to occur 

during episodic memory encoding (Alme et al. 2014; McClelland et al., 1995; Hasselmo and 

Wyble 1997). These hypotheses could be tested with computational models looking at task 

dimensionality coding in connected areas drifting at different rates, and in future experiments 

employing simultaneous recordings in HPC and MEC during the DNMP task.  

Our results here show that the stability of hippocampal representations is heterogeneous, 

displaying different rates of change in task-relevant activity across activity levels, cognitive 

demands, maze locations, and levels of analysis. These changes are largely attributable to 

changes in the allocation of newly reliably active cells among task-modulated activity types, as 
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well as individual cells’ transitioning from coding both task dimensions to just coding for one. 

Together, the results suggest that reorganization of memory representations actively reshapes 

hippocampal memories among single neurons but not at the population level. Future studies 

should seek to clarify the behavioral parameters which predict the rate of cell replacement, the 

allocation of newly reliably active cells, and the cellular and network mechanisms which mediate 

them. 

Software and Data availability 

Software used in our analysis is freely available on GitHub. TENASPIS is available at 

https://github. com/SharpWave/TENASPIS, and all other analysis software is available at 

https://github.com/samjlevy/CaImageRelated. Data can be made available from the authors upon 

reasonable request. 
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Figure Legends 
 
Figure 1.      A, Task outline: each trial has a Study and Test Phase, separated by a 20-second 
delay. Each trial is followed by a ~15s inter-trial interval in the mouse’s home cage, adjacent to 
the alternation maze (not shown). B, Performance of individual mice (separate colors) over all 
days of recording. Only sessions with performance above 70% were included, excluded sessions 
are marked in red. C, Example viral expression and lens placement in dorsal CA1. Green is 
GCaMP6f-EYFP, blue is DAPI. D, Map showing regions for activity analysis. Purple indicates 
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Central Stem, Orange indicates return arms. E, Top: Activity maps for one cell (a Turn Splitter 
Neuron; see Figure 2) over five days of recording. Each plot represents the average activity map 
for one set of task conditions, ordered clockwise from top-left: Study-Left, Study-Right, Test-
Right, Test-Left. In each plot, the black trace is the animal’s recorded position, and colored dots 
indicate frames where the cell was active. Dots are colored based on the local transient 
likelihood, normalized by local occupancy, where red is the highest transient likelihood within 
that day and blue is the lowest. Bottom: Cell ROI masks for that recording day. Cell of interest is 
colored in green, and indicated with red arrow on first day shown. Masks were aligned across 
days based on relative positions of cells and cells were aligned based on distance between cell 
centers and correlation of masks. F, Same as E but for a place cell. 
 
Figure 2.      A, Example activity maps for each type of splitter neuron on the central stem. B, 
Percentage of cells in each recording that had at least one calcium event on the central stem. 
Colored lines indicate individual animals, black line is best fit regression. Statistic: Spearman 
rank correlation. C, Percentage of splitter cells out of the active cell population on each day for 
all animals. Box shows inter-quartile range and middle line shows median. Statistic: Wilcoxon 
signed-rank test. D, Percentage of splitter neurons in individual animals (unique colors) and 
group regression (black) over the course of the experiment. Color of box indicates splitter type as 
described by y-axis label. Significance calculated with Spearman rank correlation between 
percentage of splitters and recording day number for all included sessions (n=38). E, Same as B 
but for percentage of cells that exceed the activity threshold (see Methods). F, Same as C but for 
reliably active cells. G, Distribution of centers-of-mass of event activity for Turn and Phase 
splitter neurons. Statistic: Mann-Whitney U-test. H, same as D but for reliably active cells.    
* p<0.05, ** p<0.01, ***p<0.001 
 
Figure 3.    A, Method for making population vector correlations. Calcium event likelihoods for 
one day, from one trial type, and from one spatial bin are correlated against event likelihoods 
from another (or the same) day and trial type but in the same spatial bin. Calcium event 
likelihoods are included for all cells found on both recording days of interest.  B, Population 
vector correlations between trials of the same turn direction and task phase (gray), different turn 
directions (red) and different task phases(blue). Correlations in this panel B are generated from 
trials that occur on the same day. Shaded patch indicates 95% of points for the indicated 
correlation type in that spatial bin, trend line indicates mean. Statistic: Wilcoxon rank-sum test  
on all points for these groups. C,D, Mean correlation for pairs of spatial bins over the course of 
recordings. Thin lines indicate individual animals’ correlations, bold lines are best fit regression. 
Statistic: Spearman rank correlation on points from all recording days. E,F, Correlations between 
trials on separate recording days for indicated pairs of spatial bins. See text and supplementary 
data tables for statistics.  
* p<0.05, ** p<0.01, ***p<0.001 
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Figure 4.      A, Percentage of cells that are still present at increasing day lags. Statistic: 
Wilcoxon signed-rank test. B, Percentage of each splitter type by what that cell was on the prior 
day of recording. C, Percentage of active cells that were inactive on the prior day of recording. 
Colored lines are individual animals, black line is best fit regression. Statistic: Spearman rank 
correlation. D, Percentage of each splitting phenotype among each recording day’s set of  
previously inactive cells (from second recording day forward). Statistic: Wilcoxon signed-rank 
test. E, Changes in the distribution of splitting phenotypes among previously inactive over the 
course of recordings. Colored lines are individual animals, black line is best fit regression. Color 
of box indicates cell type as described by y-axis label. Statistic is indicated at right: Spearman 
rank correlation.  
* p<0.05, ** p<0.01, ***p<0.001 
 
Supplementary Figure 1.      A, Minimum projection from one recording session, with all 
identified cell ROI boundaries overlaid. White box indicates zoom used in B. B, Example of 
calcium event assignment disambiguation for partially overlapping cell ROIs. Top, fluorescence 
activity (arbitrary units) for two indicated cells, significant calcium events indicated in red. 
Dotted line indicates the frame shown below, left and right respectively. C, Histogram showing 
number of recording sessions each neuron was found in, separated for overlapping and non-
overlapping ROIs. Difference is significant, two-sample Kolmogorov-Smirnov test, p=7.0355e-
57. D, Correlation between percentage of cells overlapping and percentage of each splitter type. 
Unique dot colors refer to different mice. Turn: rho=-0.066, p=0.694; Phase: rho=-0.047, 
p=0.780; Turn+Phase: rho=0.119, p=0.476; Non-Splitter: rho=-0.165, p=0.323. E, Proportions of 
splitter neurons out of cells which had overlapping ROIs. ***=p<0.001, Wilcoxon signed-rank 
test. F, Cell ROI outlines for the base session (top) and one registered session (middle) for one 
mouse. Green filled-in cells are manually selected “anchor cells” used to compute the affine 
transformation for alignment. Bottom, overlaid base session in red and registered session  
in blue, same as above. G, Scatter plot showing relationship between ROI correlation and center-
to-center distance for every pair of cells in each base-registered session pair. Registered cells are 
marked in red. Green dashed line indicates 3 um threshold used during registration. X-axis is 
log-scaled. H, Enlarged section of a registered session illustrating a manually registered cell 
(filled in green). This cell was skipped by the algorithm because the centers in the base and 
registered sessions were further apart than the 3um threshold (3.316um, ROI correlation 0.757). 
This cell was added manually based on its relative alignment to other cells successfully 
registered and the similarity of ROI outlines. 
 
Supplementary Figure 2    A, Counts of number of cells found on each day of recording in each 
animal. Blue shows the total number of unique ROIs found on the indicated day of recording, 
Red shows the number of cells which were successfully registered on any other recording 
session, and green shows the number of cells which were above the activity threshold on that  
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day. B, Counts of unique cell ROIs. Blue indicates cumulative number of unique ROIs up to that 
day in the recording schedule, Red shows the number of cells which are new ROIs on that day, 
Green shows the number of ROIs which were found on that day only. C, Example raster plot for 
one cell from one animal on four days of recording. Each column shows the correct trials  
from a given trial type; columns are separated horizontally by days of recording, indicated at 
right. Each row of ticks is a single trial as the animal passes along the central stem from the delay 
area to the choice point. Each tick mark represents the animal’s position at each frame of 
imaging, sampled at 20hz. Ticks are colored where that cell was exhibiting a significant calcium  
transient (see Methods). Day-trial type blocks are shaded green where that set of trials exceeds 
our reliable activity threshold (the cell exhibited a transient on at least 25% of trials of that type). 
D, Example raster plot for a cell with a low activity rate that passes the permutation test as a 
significant Turn Splitter neurons. Variability of the mouse’s running speed over trials (trials with  
slow movement speed indicated by orange box on Study Right) leads to lower calcium event 
likelihood. Activity threshold (see Methods) was included to reject these spurious results. 
 
Supplementary Figure 3.    A, Percentage of splitter cells out of active cells as a function of 
animal’s performance in that session. Each color refers to one mouse, each point is a single 
session. Black line is best fit linear regression. Turn rho=-0.135, p=0.156. Phase rho=0.276, 
p=0.094. Turn+Phase rho=-0.006, p=0.972. Non-Splitter rho=-0.160, p=0.337. Spearman rank 
correlation. B, Correlation between population vector correlation of indicated trial type and 
animal’s performance in that session. Each color refers to one mouse, each point is the mean of 
the population vector correlation in the bins indicated above for that session. Black line is best fit 
linear regression. Bins 1-2: Within-Condition: rho=0.119, p=0.230; Left vs. Right: rho=0.349, 
p=0.032; Study vs. Test: rho=-0.083, p=0.619; Bins 7-8: Within-Condition: rho=0.056, p=0.738; 
Left vs. Right: rho=0.064, p=0.704; Study vs. Test: rho=-0.021, p=0.901. 
 
Supplementary Figure 4    This figure is to demonstrate the effect of using a given cell activity 
inclusion criterion on the results of the primary findings in Figure 2. While the criteria used in 
the main text (25% of trials of one trial type) was chosen before the analysis began in order to 
reject cells with sparse activity that might nevertheless pass our test for detecting splitting, these 
results complement those in Supplementary Figure 2 to show the generality of the findings of 
Figure 2 are not limited to a specific choice of criteria for the definition of reliably active cells. 
A. Rho values for Spearman rank correlations of each splitter type as a function of increasing 
activity criterion. P-value of the correlation is indicated in the legend. B. Top, total number of 
cell/days included at the criterion level. Treats a cell’s appearance as a separate measurement. 
Bottom, mean percentage of cells included from a given recording session out of all those found 
in that recording session as a function of increasing activity criterion. C,D, Same as A,B, but 
using a threshold based on activity across all trials in a given recording session. E, Mean 
percentage of laps cells were active for cells that had at least one calcium event on the stem. 
Colored lines indicate individual animals, black line is best fit regression. Statistic: Spearman 
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rank correlation. rho=0.021, p=0.899.  F, Same as E, but separated for each type of neuron that 
passed the permutation test. Spearman rank correlation: Turn splitters: rho=0.406, p=0.012; 
Phase splitters: rho=0.216, p=0.193; Turn+Phase splitters: rho=0.271, p=0.099; Non-Splitters: 
rho=0.501, p=0.001, Spearman rank correlation. 
* p<0.05, ** p<0.01, ***p<0.001 
 
Supplementary Figure 5.      A, Example activity maps and ROI maps for splitters of each type 
on return arms. B, Percentage of cells that pass activity threshold on return arms on each day of 
recording. Unique colors refer to individual animals, black line is best fit linear regression. 
Statistic: Spearman rank correlation, rho=-0.154, p=0.355. C, Counts of center of  
mass of activity across all trials on the return arms for Place cells and Phase Splitters. Statistic: 
Mann-Whitney U test. D, Percentages of splitter and place cells on the return arms out of the 
total active cell population on each day for all animals. Box shows inter-quartile range and 
middle line shows media. Statistic: Wilcoxon signed-rank test. E, Percentages of splitter cells on 
return arms in individual animals (unique colors) and group regression (black) over the course of 
the experiment (n=38). Place: rho=-0.112, p=0.506; Phase: rho=0.104, p=0.536; Place+Phase: 
rho=-0.060, p=0.723; Non-Splitters: rho=0.483, p=0.002Statistic: Spearman rank correlation. F, 
Same as D but for stem activity during Forced-Free sessions. Turn vs. Phase: z=3.771, p=0.0002; 
Phase vs. Turn+Phase: z=3.5413, p=0.0004; Non-Splitter vs. Phase: z=3.280, p=0.001. Statistic: 
Wilcoxon signed-rank test. G, Same as B but for stem activity during Forced-Free sessions. 
Rho=0.311, p=0.182. H, Same as E but for stem activity during Forced-Free sessions. Statistic: 
Spearman rank correlation. Turn: rho=0.417, p=0.067; Phase: rho=0.148, p=0.534; Turn+Phase: 
rho=0.262, p=0.264; Non-Splitter: rho=0.626, p=0.003. I, Percentage of splitter neurons out of 
active cells as a function of animal’s performance in a given session. No correlations are 
significant, all rho<abs(0.189), all p>0.425. Statistic: Spearman rank correlation. 
*p<0.05, **p<0.01, ***p<0.001 
 
Supplementary Figure 6.      These analyses are the same as those presented in Figure 4 but for 
the return arm epochs. A, Percentage of cells that are still present at increasing day lags. Statistic: 
Wilcoxon signed-rank test. B, Percentage of each splitter type by what that cell was on the prior 
day of recording. C, Percentage of each splitting phenotype among each recording day’s set of 
previously inactive cells (from second recording day forward). Statistic: Wilcoxon signed-rank 
test. D, Changes in the distribution of splitting phenotypes among previously inactive over the 
course of recordings. Colored lines are individual animals, black line is best fit regression. 
Statistical significance p-value is indicated at right (Spearman rank correlation).  
* p<0.05, ** p<0.01, ***p<0.001 
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Appendix 1 

Citation Splitters/Cells Found Method 
Wood et al. 2000 31/33 

23/33 
ANOVA 
ANCOVA, accounting for speed and 
variance in lateral position 

Lee et al. 2006 53/78 Discrimination Index > 0.5 
Lipton et al. 2007 16/48 in CA1 

21/41 in MEC 
ANOVA 
 

Griffin et al. 2007 3/77 Turn Direction 
43/77 Task Phase 
11/77 Turn+phase 
20/77 Non-Splitter 

ANOVA 

 

 

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 1.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 2.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 3a-b.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 3c-d.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 3e-f.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Figure 4.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 1.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 2a-b.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 2c.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 2d.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 3.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 4.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 5.tif

This article is protected by copyright. All rights reserved.



HIPO_23272_Supplementary Figure 6.tif

This article is protected by copyright. All rights reserved.



 z, STEM p, STEM z, ARM p, ARMS 
Turn vs. Phase 0.016379 0.98693 5.3731 7.7397e-

08*** 
Turn vs. Conj. 5.2861 1.2497e-07*** 2.9222 0.0034756** 
Phase vs. Conj. 5.2861 1.2497e-07*** 5.3731 7.7397e-

08*** 
Conj. vs. Neither 5.3586 8.3874e-08*** 5.3732 7.7337e-

08*** 
Turn vs. Neither 4.111 3.9373e-05*** 5.3731 7.7397e-

08*** 
Phase vs. Neither 4.5033 6.69e-06*** 0.65823 0.51039 

Supplementary Table 1: Percentage comparisons of splitter neurons, Wilcoxon signed-rank 
test, on STEM and ARMS  
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Spatial 
Bin: 

VS 
Self vs 
LvR 
z-value 

VS Self vs 
LvR 
p-value 

VS Self 
vs SvT 
z-value 

VS Self vs 
SvT 
p-value 

LvR vs 
SvT 
z-value 

LvR vs SvT 
p-value 

1 8.312 9.44E-
17*** 9.653 4.75E-22*** 2.924 0.004*** 

2 9.807 1.05E-
22*** 8.855 8.39E-19*** -0.518 0.605 

3 10.782 4.18E-
27*** 8.22 2.03E-16*** -3.831 0.0001*** 

4 11.464 2.01E-
30*** 7.345 2.06E-13*** -6.137 8.40E-10*** 

5 11.79 4.41E-
32*** 6.612 3.79E-11*** -7.755 8.84E-15*** 

6 11.82 3.10E-
32*** 5.941 2.83E-09*** -8.599 8.05E-18*** 

7 12.086 1.26E-
33*** 5.108 3.25E-07*** -9.222 2.93E-20*** 

8 12.177 4.11E-
34*** 5.164 2.42E-07*** -9.491 2.30E-21*** 

 

Supplementary Table 2: Wilcoxon rank-sum test statistics for comparisons between population 

vector correlations in each spatial bin 
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Day  
Lag 

Vs Self 
vs LvR 
z 
Values 

Vs Self vs 
LvR p Values 

Vs 
Self vs 
SvT z 
Values 

Vs Self vs SvT p 
Values 

LvR  vs SvT 
z Values 

LvR  vs SvT 
p Values 

1 8.088 6.09E-16*** 7.657 1.90E-14*** -0.187 0.852 
2 6.893 5.48E-12*** 6.062 1.35E-09*** -0.614 0.54 
3 5.527 3.25E-08*** 4.446 8.77E-06*** -1.106 0.269 
4 5.29 1.22E-07*** 4.721 2.35E-06*** -1.467 0.143 
5 5.0951 3.49E-07*** 5.139 2.77E-07*** -0.255 0.799 
6 4.47 7.82E-06*** 4.47 7.82E-06*** -0.125 0.9 
7 5.018 5.23E-07*** 4.283 1.84E-05*** -0.465 0.643 
8 3.715 0.0002*** 3.028 0.003** -0.473 0.637 
9 3.541 0.0004*** 3.575 0.0004*** 0.622 0.5341 

10 3.152 0.002** 3.727 0.0002*** 0.63779 0.524 
11 4.37 1.25E-05*** 2.738 0.006** -1.254 0.21 
12 3.285 0.001*** 1.749 0.08 -1.556 0.12 
13 2.88 0.004** 2.235 0.026* -0.437 0.663 
14 2.67 0.008** 2.203 0.028* -0.302 0.763 
15 2.339 0.019* 1.143 0.253 -0.844 0.399 
16 0.855 0.393 0.479 0.633 -0.5 0.617 

Supplementary Table 3: Wilcoxon rank-sum test z and p values comparing each population 

vector correlation type across day lags for means of correlations in bins 1 and 2. 
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Day  
Lag 

Vs 
Self vs 
LvR z 
Values 

Vs Self vs LvR p 
Values 

Vs 
Self vs 
SvT z 
Values 

Vs Self vs SvT p 
Values 

LvR  vs 
SvT z 
Values 

LvR  vs SvT 
p Values 

1 12.903 4.35E-38*** 4.072 4.66E-05*** -9.439 3.78E-
21*** 

2 10.476 1.11E-25*** 3.037 0.002** -8.697 3.41E-
18*** 

3 7.34 2.14E-13*** 2.804 0.005** -5.973 2.33E-
09*** 

4 7.416 1.21E-13*** 1.39 0.165 -6.366 1.94E-
10*** 

5 8.991 2.46E-19*** 1.846 0.065 -7.198 6.12E-
13*** 

6 9.679 3.72E-22*** 2.196 0.028* -7.527 5.19E-
14*** 

7 10.237 1.36E-24*** 2.077 0.0378* -7.262 3.83E-
13*** 

8 8.245 1.65E-16*** 1.841 0.066 -5.763 8.25E-
09*** 

9 8.638 5.71E-18*** 2.59 0.01* -6.263 3.77E-
10*** 

10 6.828 8.62E-12*** 2.926 0.003** -5.123 3.02E-
07*** 

11 6.675 2.47E-11*** 0.878 0.38 -5.334 9.61E-
08*** 

12 6.045 1.49E-09*** 1.294 0.196 -4.937 7.95E-
07*** 

13 6.952 3.60E-12*** 1.154 0.248 -4.881 1.06E-
06*** 

14 6.074 1.25E-09*** 1.084 0.278 -4.424 9.68E-
06*** 

15 5.091 3.57E-07*** 0.489 0.625 -3.761 0.0002*** 
16 3.505 0.0005*** 1.529 0.126 -1.258 0.209 

Supplementary Table 4: Wilcoxon rank-sum test z and p values comparing each population 

vector correlation type across day lags for means of correlations in bins 7 and 8. 
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Supplementary Table 5: Statistics for individual animal data in indicated figures  
 

Mouse 1 Mouse 2 Mouse 3  Mouse 4      

Stem % all active cells / found that day (Fig 2b) 
 

 
rho=0.8, 
p=0.014 

rho=-0.467, 
p=0.213 

rho=0.417, 
p=0.270 

rho=0.836, 
p=0.003      

Splitter Props change over time, all active cells (Fig 2d) 
Turn, rho,p rho=0.217, 

p=0.581 
rho=-0.833, 
p=0.008 

rho=0.6, p=0.097 rho=0.527, 
p=0.100 

Phase, rho,p rho=0.467, 
p=0.213 

rho=0.067, 
p=0.88 

rho=-0.55, 
p=0.133 

rho=0.4, p=0.225 

Turn+Phase, rho,p rho=-0.85, 
p=0.006 

rho=-0.15, 
p=0.708 

rho=0.067, 
p=0.880 

rho=0.573, 
p=0.071 

Non-splitter, rho,p rho=0.467, 
p=0.213 

rho=0.417, 
p=0.270 

rho=0.033, 
p=0.948 

rho=-0.8, 
p=0.005      

Stem splitter Props category comparisons, All cells (Fig. 2c) 
Turn vs. Phase p=1 p=0.945 p=0.098 p=0.001 
Phase vs. 
Turn+Phase 

p=0.008 p=0.008 p=0.004 p=0.001 

Turn vs. 
Turn+Phase 

p=0.012 p=0.008 p=0.004 p=0.001 

Turn+Phase vs. 
Non-split 

p=0.004 p=0.004 p=0.004 p=0.001 

Phase vs. Non-split p=0.008 p=0.359 p=0.008 p=0.004 
Turn vs. Non-split p=0.04 p=0.125 p=0.25 p=0.001      

Stem % reliably active cells / found that day (Fig 2e) 
 

 
rho=0.3, 
p=0.437 

rho=0.5, 
p=0.178 

rho=0.517, 
p=0.162 

rho=0.982, 
p=0.001      

Stem splitter Props category comparisons (Fig 2f) 
 

Turn vs. Phase p=0.004 p=0.004 p=0.004 p=0.001 
Phase vs. 
Turn+Phase 

p=0.004 p=0.004 p=0.004 p=0.001 

Turn vs. 
Turn+Phase 

p=0.055 p=0.098 p=0.012 p=0.898 

Turn+Phase vs. 
Non-split 

p=0.004 p=0.004 p=0.004 p=0.001 

Phase vs. Non-split p=0.156 p=0.184 p=0.945 p=0.813 
Turn vs. Non-split p=0.004 p=0.004 p=0.004 p=0.001      
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Stem Splitter Props change over time, reliably active cells; Fig 2g 
Turn, rho,p Rho=0.7, 

p=0.043 
rho=0.167, 
p=0.678 

rho=0.633, 
p=0.076 

rho=0.309, 
p=0.356 

Phase, rho,p Rho=0.6, 
p=0.097 

rho=-0.35, 
p=0.359 

rho=0.3, p=0.437 rho=-0.536, 
p=0.094 

Turn+Phase, rho,p rho=-0.767, 
p=0.021 

rho=0.033, 
p=0.948 

rho=-0.433, 
p=0.250 

rho=0.146, 
p=0.673 

Non-splitter, rho,p rho=0.356, 
p=0.354 

rho=0.717, 
p=0.037 

rho=-0.217, 
p=0.581 

rho=0.018, 
p=0.968      

Stem Splitter Props vs. Accuracy (Supp, Fig. 3a) 
 

Turn, rho,p rho=0.050, 
p=0.904 

rho-0,p=1 rho=-0.234, 
p=0.540 

rho=0.3, p=0.371 

Phase, rho,p rho=0.176, 
p=0.653 

rho=0.712, 
p=0.038 

rho=0.075, 
p=0.853 

rho=-0.364, 
p=0.273 

Turn+Phase, rho,p rho=-0.059, 
p=0.887 

rho=-0.424, 
p=0.262 

rho=0.326, 
p=0.390 

rho=0.4, p=0.225 

Non-splitter, rho,p rho=-.0281, 
p=0.460 

rho=-0.441, 
p=0.242 

rho=-0.260, 
p=0.500 

rho=-0.3, 
p=0.371      

Arm % reliably active cells / found that day (Fig 5b) 
 

 
rho=-0.767, 
p=0.021 

rho=0.017, 
p=0.982 

rho=0.17, 
p=0.982 

rho=0.4, p=0.225 
     

Arm Splitter Props change over time, reliably active cells; Fig 5e 
Turn, rho,p rho=-0.117, 

p=0.776 
rho=0.4, 
p=0.291 

rho=-0.55, 
p=0.133 

rho=-0.182, 
p=0.595 

Phase, rho,p rho=0.5, 
p=0.178 

rho=-0.517, 
p=0.162 

rho=0.083, 
p=0.843 

rho=0.073, 
p=0.839 

Turn+Phase, rho,p rho=0.3, 
p=0.437 

rho=-0.617, 
p=0.086 

rho=0.267, 
p=0.493 

rho=-0.027, 
p=0.946 

Non-splitter, rho,p rho=0.7, 
p=0.043 

rho=0.653, 
p=0.064 

rho=0.417, 
p=0.270 

rho=0.2, p=0.558 
     

Arm Splitter Props vs. Accuracy 
 

Turn, rho,p rho=0, p=1 rho=0.-254, 
p=0.517 

rho=0.034, 
p=0.937 

rho=-0.046, 
p=0.903 

Phase, rho,p rho=-0.025, 
p=0.956 

rho=0.288, 
p=0.458 

rho=-0.661, 
p=0.060 

rho=-0.173, 
p=0.614 

Turn+Phase, rho,p rho=0.410, 
p=0.273 

rho=0.322, 
p=0.403 

rho=0.117, 
p=0.766 

rho=0.164, 
p=0.634 

Non-splitter, rho,p rho=-0.184, 
p=0.634 

rho=-0.502, 
p=0.172 

rho=0.243, 
p=0.527 

rho=-0.1, 
p=0.776      
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Forced-Free % reliably active cells / found that day (Fig 5g)  
rho=1, p=0.333 rho=-0.8, 

p=0.333 
rho=-0.143, 
p=0.783 

rho=0.943, 
p=0.017      

Forced-Free Splitter Props change over time, reliably active cells; Fig 5h 
Turn, rho,p rho=0.5, p=1 rho=0.2, 

p=0.917 
rho=0.75, 
p=0.066 

rho=-0.086, 
p=0.919 

Phase, rho,p rho=-0.5, p=1 rho=0.8, 
p=0.333 

rho=0.25, 
p=0.595 

rho=-0.771, 
p=0.103 

Turn+Phase, rho,p rho=-0.5, p=1 rho=0.4, 
p=0.75 

rho=0.393, 
p=0.397 

rho=0.371, 
p=0.497 

Non-splitter, rho,p rho=-0.5, p=1 rho=-1, 
p=0.083 

rho=-0.679, 
p=0.110 

rho=-0.771, 
p=0.103      

Forced-Free Splitter Props change over time, reliably active cells; Fig 5i 
Turn, rho,p rho=0.5, p=1 rho=-0.2, 

p=0.917 
rho=0.685, 
p=0.098 

rho=0.714, 
p=0.136 

Phase, rho,p rho=0.5, p=1 rho=-0.8, 
p=0.333 

rho=-0.072, 
p=0.889 

rho=-0.771, 
p=0.103 

Turn+Phase, rho,p rho=0.5, p=1 rho=-0.4, 
p=0.75 

rho=-0.288, 
p=0.537 

rho=-0.257, 
p=0.658 

Non-splitter, rho,p rho=0.5, p=1 rho=1, p=0.083 rho=-0.234, 
p=0.623 

rho=0.771, 
p=0.103      

Stem Prop Previously Inactive (Figure 4c) 
 

 
rho=0.431, 
p=0.286 

rho=0.024, 
p=0.977 

rho=-0.477, 
p=0.243 

rho=-0.624, 
p=0.060      

Stem Splitter Props of Previously Inactive Cells Change (Fig 4e) 
Turn, rho,p rho=0.238, 

p=0.582 
rho=0.667, 
p=0.083 

rho=0.310, 
p=0.462 

rho=0.624, 
p=0.060 

Phase, rho,p rho=0.119, 
p=0.793 

rho=-0.167, 
p=0.703 

rho=0.167, 
p=0.703 

rho=-0.670, 
p=0.296 

Turn+Phase, rho,p rho=-0.527, 
p=0.186 

rho=-0.548, 
p=0.171 

rho=-0.167, 
p=0.703 

rho=-0.321, 
p=0.368 

Non-splitter, rho,p rho=0.168, 
p=0.692 

rho=0.663, 
p=0.085 

rho=-0.095, 
p=0.840 

rho=0.091, 
p=0.811      

Arm Splitter Propsof Previously Inactive Cells (6d) 
 

Turn, rho,p rho=-0.548, 
p=0.171 

rho=0.286, 
p=0.501 

rho=-0.333, 
p=0.429 

rho=-0.018, 
p=0.973 

Phase, rho,p rho=0.527, 
p=0.185 

rho=-0.238, 
p=0.582 

rho=0.017, 
p=0.882 

rho=0.552, 
p=0.104 
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Turn+Phase, rho,p rho=0.551, 
p=0.163 

rho=-0.587, 
p=0.134 

rho=0.167, 
p=0.703 

rho=-0.212, 
p=0.560 

Non-splitter, rho,p rho=0.476, 
p=0.243 

rho=0.623, 
p=0.106 

rho=0.357, 
p=0.390 

rho=0.403, 
p=0.785 
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