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Abstract

Pediatric neuropathy attributed to metabolic dysfunction is a well-known complica-

tion in children and youth with type 1 diabetes. Moreover, the rise of obesity and in

particular of type 2 diabetes may cause an uptick in pediatric neuropathy incidence.

However, despite the anticipated increase in neuropathy incidence, pathogenic

insights and strategies to prevent or manage neuropathy in the setting of diabetes

and obesity in children and youth remain unknown. Data from adult studies and

available youth cohort studies are providing an initial understanding of potential diag-

nostic, management, and preventative measures in early life. This review discusses

the current state of knowledge emanating from these efforts, with particular empha-

sis on the prevalence, clinical presentation, diagnostic approaches and considerations,

and risk factors of neuropathy in type 1 and type 2 diabetes in children and youth.

Also highlighted are current management strategies and recommendations for neu-

ropathy in children and youth with diabetes. This knowledge, along with continued

and sustained emphasis on identifying and eliminating modifiable risk factors, com-

pleting randomized controlled trials to assess effectiveness of strategies like weight

loss and exercise, and enhancing awareness to support early detection and preven-

tion, are pertinent to addressing the rising incidence of neuropathy associated with

diabetes and obesity in children and youth.
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1 | INTRODUCTION

Peripheral neuropathy is a heterogeneous group of diseases characterized

by peripheral nerve damage. Associated signs and symptoms include sen-

sory loss, paresthesia, and pain.1-3 Numerous inherited and acquired cau-

ses of peripheral neuropathy manifest in children and youth.2-4 Inherited

forms include Charcot-Marie-Tooth disease and inherited metabolic dis-

orders, such as Fabry disease, Leigh syndrome, and metachromatic leuko-

dystrophy.4-6 Acquired neuropathy can occur with diabetes, infectious

disease, toxin exposure, vasculitis, compression/trauma, vitamin deficien-

cies, and immune-mediated disorders.2,7-10

While peripheral neuropathy in children and youth is primarily

due to hereditary causes,2,8 diabetes is increasingly reported as the

cause of neuropathy in children and youth.11-15 Type 1 diabetes (T1D)

accounts for about 98% of all diabetes cases younger than 10 years

and 87% of all diabetes cases in adolescents (aged 10–19 years).16 As

the prevalence of T1D and type 2 diabetes (T2D) is rising among this

demographic,17-23 the incidence of pediatric diabetic neuropathy

(DN) is also increasing. Moreover, the lifetime exposure to diabetes is

longer in subjects diagnosed in early life.9 Given that diabetes compli-

cations emerge with disease longevity, the increasing diabetes rates in

children and youth is alarming since many will be at risk of diabetes
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complications in early adulthood.14 Longstanding, poorly controlled

diabetes is a well-established DN risk factor.24,25 Recent data, how-

ever, implicate risk factors beyond hyperglycemia for childhood onset

DN.14,26

Two recent studies, SEARCH for Diabetes in Youth (SEARCH)

and Treatment Options for Type 2 Diabetes in Adolescents and Youth

(TODAY), have enhanced our understanding of risk factors and man-

agement of pediatric T2D. In 2001, SEARCH reported a diabetes

prevalence of 6% in the US pediatric population,19,27,28 and follow-up

assessments from 2002 to 2009 reflected increases in T1D and T2D

prevalence, with a steeper 30% increase in T2D.18,19,28 Early signs of

diabetic complications, including DN and cardiovascular autonomic

neuropathy (CAN), were evaluated in a smaller SEARCH cohort, the

first US study to systematically determine the prevalence and predic-

tors of DN.18,27-29 TODAY, which ended in 2011,22 compared out-

comes following different treatments for youths with T2D (n = 699)

with a disease duration ≤2 years and body mass index (BMI) ≥85th

percentile at diagnosis.30,31 Preliminary findings from the TODAY2

long-term observational study tracking T2D progression, com-

orbidities, and complications as participants transition to young adult-

hood demonstrated high DN prevalence.22 These recent large studies

are a testament to the rising prevalence of youth-onset T2D and the

need to identify risk factors and therapeutic management options.

This review presents the current state of knowledge on the prev-

alence, clinical presentations, and traditional and emerging DN risk

factors in children and youth with both T1D and T2D. Pediatric T1D

is the significantly more prevalent diabetes type and many excellent

reviews have been published on the subject.14,15 Herein, we place a

significant focus on the less prevalent T2D, due to its steeper rise in

incidence compared to T1D and as an emergent health issue and

cause of DN in children and youth. Given the public health importance

of the increasing childhood diabetes prevalence and high DN burden,

identifying emerging risk factors is crucial for developing vigilant

screening, early detection, and eliminating modifiable risk factors.

1.1 | DN prevalence in children and youth

Prevalence studies in children and youth are limited and hard to gen-

eralize to general populations with diabetes due to variability in the

tests used to diagnose neuropathy across studies. Many children and

youth also have subclinical neuropathy, which is not diagnosed unless

sensitive tests and/or detailed neurological examinations are

performed.26,32,33

Neuropathy is present in T1D, with a prevalence ranging from

3 to 62%. In the Pittsburgh Epidemiology of Diabetes Complications

(EDC) study, clinical history and neurological exams identified neurop-

athy in only 3% of patients with T1D ≤18 years old (n = 400), but

prevalence was higher for young adults with longer disease dura-

tion.34 The multicenter EURODIAB IDDM Complications Study35

(3,250 subjects with T1D) reported DN in 19% of subjects aged 15 to

29, as assessed by symptoms and reflex loss, vibration perception

threshold (VPT), and autonomic dysfunction, with increased

prevalence with older age and longer diabetes duration. In contrast, a

population-based longitudinal Danish study reported a DN prevalence

of 62% in 339 subjects with T1D aged 12–27 years using VPT.36

Additionally, in 73 subjects with a mean age of 13.6 years with T1D

duration ≥5 years, only 4% reported neuropathy symptoms, yet 36%

had an abnormal neurological exam, 57% had nerve conduction

abnormalities, 51% had abnormal VPT, and 26% had abnormal tactile

perception thresholds.32 Using nerve conduction studies (NCS) as a

confirmatory tool, screening 151 youths with T1D by neurological

examination and a modified version of MNSI identified DN in 11% of

the subjects.37 Other studies have confirmed a high prevalence of

abnormal nerve conductions in children and adolescents with variable

T1D duration and metabolic control.33,38-44 DN signs are also

reported with shorter diabetes duration; an Australian study reported

abnormal VPT and thermal perception threshold (TPT) tests in 14% of

youth aged 11 to 17 years (n = 819) with only 2 to 5 years T1D

duration.45

For T2D, the first documentations of DN in children and youth

came from single case reports and small case series, which implicated

susceptibility to DN.46,47 A population-based longitudinal Australian

study of youths with T1D (n = 1,433; median T1D duration 6.8 years)

and T2D (n = 68; median T2D duration 1.3 years) showed similar rates

of peripheral (27% T1D; 21% T2D) and autonomic neuropathy

(AN) (61% T1D; 57% T2D) using VPT, TPT, and pupillometry.48 Strik-

ingly, neuropathy, determined using the Michigan Neuropathy Screen-

ing Instrument (MNSI), was more common in T2D (22%; n = 258)

versus T1D (7%; n = 1,734) in the SEARCH cohort among subjects

with similar diabetes duration.12,49 Similarly, a Canadian population of

1,011 subjects with T1D (mean age 8.9 years, 53.2% male; of note,

the subject number was mislabeled in the original article), 342 subjects

with T2D (mean age 13.5 years, 37.8% male), and 1,710 controls with-

out diabetes exhibited shorter neuropathy-free survival for youths

with T2D versus T1D.50 Preliminary analysis of TODAY2 showed high

rates of macro- and microvascular complications, with DN in 28–33%

of subjects by year 12 and increased prevalence in males.22

CAN, an independent predictor of cardiovascular mortality,51-54 is

also highly prevalent among adolescents with T1D and T2D. A sys-

tematic analysis of 19 studies comprising 3,943 subjects with T1D

≤24 years of age reported subclinical CAN prevalence ranging from

16 to 75%, depending on the outcomes reported.55 Methodical evalu-

ation of CAN in SEARCH also showed early signs of autonomic dys-

function in youth56 at prevalence rates of 12 and 17% in participants

with T1D (18 ± 4 years old) and T2D (22 ± 4 years old), respectively.13

The prevalence of cardiac autonomic dysfunction was 8% in a cohort

with T2D from the TODAY study (397 participants; mean age 20.7

± 2.5 years; diabetes duration 7.7 years; 64.7% females; BMI 36.6

kg/m2).57

1.2 | DN clinical presentations

Distal symmetric polyneuropathy (DSP) is the most common DN pre-

sentation.58 Although the terms “diabetic neuropathy” and
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“peripheral neuropathy” are frequently used to refer to DSP, DN is a

family of several neuropathy types,58,59 including mononeuropathies

and radiculopathies, which are rare in childhood.47,60,61 DSP can be

classified as: (a) primarily small fiber neuropathy, defined as impair-

ment of small unmyelinated or thinly myelinated axons, which carry

pain and temperature information, (b) large fiber neuropathy, defined

as impairment of myelinated fibers, which relay vibratory and proprio-

ceptive information, or (c) a mixed polyneuropathy where both fiber

types are involved with corresponding loss of all sensory modalities.

DSP is a mixed polyneuropathy, which usually starts as small fiber

neuropathy62,63 and progresses to a large fiber neuropathy in a

length-dependent “stocking-glove” pattern, that is, starts in the feet

and slowly spreads distally-to-proximally. Most children and youth

with early DSP are asymptomatic or have mild symptoms. Classically,

DSP presents with spontaneous and stimulus-evoked distal extremity

pain, sensory impairments like paresthesias, altered temperature sen-

sations, neuropathic itch, burning, tingling, or deep aching. Symptoms

generally worsen at night. Although DSP is primarily a sensory neu-

ropathy, there may be later distal motor nerve involvement, typically

detected by weakness of the extension. However, motor unit number

estimation (MUNE), an electromyography metric, can detect motor

unit loss at earlier disease stages. Significantly, lower MUNE is

reported in asymptomatic children with T1D,64 but profound early

muscle weakness warrants a differential diagnosis for other causes,

for example, Charcot-Marie-Tooth disease.65

Diabetes is a common cause of AN,66,67 which may affect both

sympathetic and parasympathetic fibers. Overt AN is rare in children,

but autonomic dysfunction signs can be detected a few years after

diabetes diagnosis.68-71 AN most commonly presents with impaired

gastric emptying and brittle diabetes, as well as vomiting, diarrhea,

constipation, and fecal incontinence. Brittle diabetes is a term used to

describe difficult to treat diabetes, which is characterized by severe

glycemic instability and unexpected hypoglycemic episodes.72-74 AN

also causes neurogenic bladder. However, all these above-stated AN

symptoms are rare in children and youth.75,76

CAN is a serious diabetes complication, which presents with a

wide range of symptoms, including exercise intolerance, heart palpita-

tions, orthostatic tachycardia syndrome, postural hypotension,

lightheadedness, silent myocardial infarctions, and sudden death.67

CAN may relate to impaired hypoglycemia awareness, a serious condi-

tion associated with severe hypoglycemic episodes77,78 and

neuroglycopenia,78 by altering the counter regulatory catecholamine

response to hypoglycemia and diminishing autonomic alarming symp-

toms. This phenomenon becomes more severe when the glucagon

response is lost. Although recent studies provided evidence of

impaired glucagon response, already in the early phases of T1D,79 glu-

cagon response to hypoglycemia is generally completely lost in many

patients with longstanding T1D.80 Also, repeating hypoglycemic

episodes in T1D may lead to a phenomenon called “hypoglycemia-

associated autonomic failure,” which can contribute to defective

glucose counter-regulation. In children and youth with T1D or T2D,

CAN is associated with arterial stiffness, a well-documented risk fac-

tor, which predicts future cardiovascular events.56,57,81 Early CAN

may be asymptomatic, but can be detected by reduced heart rate vari-

ability (HRV),82,83 which can develop after a mean diabetes duration

of 8 years in children and youth.13

1.3 | DN diagnosis in children and youth

DN diagnoses are based on symptoms and signs. A careful differential

diagnosis is essential,84 since potential treatable and reversible neu-

ropathies, such as vitamin B12 deficiency or inflammatory neuropa-

thies, can be present in young diabetes patients and should be

considered.59,85 Unique presentations should alert physicians to the

possibility of neuropathies other than DN, for example, acute or sub-

acute presentations, upper limb involvement, severe painful or asym-

metrical neuropathy, cranial nerve involvement, family history, and

presence of distinct hereditary neuropathy characteristics.

1.3.1 | Symptoms

DN is rarely reported in pediatric practice, likely due to subclinical

presentation,26,32,33 and children and youth may not voluntarily report

DN symptoms. Early DN symptoms are usually related to small fiber

involvement.58,86 Several scoring systems exist to screen and evaluate

neuropathic symptoms, though most are validated for adults.87-89 A

study in a small cohort developed self-reported measures for youth

and found that they may suffer from unique DN symptoms.90 Pain

and dysesthesias are the most common presentation,58,90,91 but

patients should also be questioned for hyperalgesia and allodynia.

Symptoms like gait imbalance, and weakness may arise with large fiber

involvement.

1.3.2 | Neurological examination

Neurological exams assess small and large fiber functions. Small fiber

function is evaluated by pinprick and temperature sensation, while

large fiber function is usually evaluated by VPT and propriocep-

tion.58,59 Motor function should be examined, with specific attention

to great toe extension. More profound weakness should prompt con-

sideration of alternative etiologies.59,92 Reflexes, with attention to

ankle reflexes, should be checked. DN may cause bounding pulses;

dorsal pedal and posterior tibial pulses should be checked to rule out

impaired peripheral circulation.16

1.3.3 | MNSI

MNSI is an easy, accurate, and widely used screening tool to detect

DN,93,94 including in children and youth.12,37 MNSI has high specific-

ity (95%) and sensitivity (80%) to detect DN in adults.93,94 Although

the tool has not been formally validated in children, several groups

has used the original or modified versions to detect DN in pediatric
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populations.12,37 The two main parts include a questionnaire of key

DN symptoms, and a focused neurological examination with foot

inspection, great toe VPT, and ankle reflexes. MNSI can further be

combined with other additional tests, TPT or pinprick sensation, to

evaluate small fiber function.

1.3.4 | Quantitative sensory testing (QST)

QST relies on a patient's response and cooperation to quantitate

levels of sensorial involvement.95,96 Monofilament testing applies a

predefined force using a 10-g Semmes-Weinstein nylon filament to

evaluate light-touch perception and assess foot ulcer development

risk.97 Monofilament testing characteristics vary in sensitivity

(19–73%) and specificity (64–87%).32,98 VPT evaluates large myelin-

ated fiber function,99,100 most commonly in clinical practice using a

128 Hz tuning fork,59 which has high specificity but low sensitiv-

ity.98,101 The Rydel-Seiffer graduated 64 Hz tuning fork may provide a

quantitative VPT measurement.102 The use of graduated fork has

been shown to be reliable in adults,103 but its sensitivity and specific-

ity in children may be poor.101,104 Alternative VPT-measuring devices

are also available, for example, biothesiometer, neurothesiometer,105,106

and pocket-sized Vibratip™.107 Although finer monofilaments and elec-

tronic devices, like biothesiometers, are more sensitive,32,101,106 addi-

tional research is needed to determine their utility in clinical pediatric

practice. The sensitivity and specificity of biothesiometry to detect DN

was reported as 82 and 75% in children and adolescents with T1D.106

However, the reproducibility of VPT was low in children.108 TPT detects

small fiber dysfunction109; however, the lack of standardized testing

procedures and reference values limits its clinical use in children and

youth.98,110,111

1.3.5 | NCS

NCS are the accepted gold standard for objectively detecting and

quantifying early changes in DN, but they are time-consuming and

expensive.42,44,92,112-115 NCS detect DN-induced reductions in sen-

sory nerve action potential (SNAP) amplitudes accompanied with mild

slowing of motor conduction velocities.116 Age, sex, height, weight,

and surface temperature are important parameters for interpreting

results.117 Current algorithms suggest that if sural sensory and pero-

neal motor NCS in one distal lower extremity are normal, no further

NCS are needed.118,119 Abnormal test parameters in at least two sep-

arate nerves are generally sought to confirm DN.87,120 NCS are rarely

used in children and youth to diagnose DN, but are helpful to exclude

inherited or inflammatory neuropathies. NCS assess large fibers, thus

readings can be normal in patients with early DN, when small fibers

are primarily affected. Nevertheless, NCS abnormalities in one or

more nerves can be detected in children.37,101,104 Also, some children

would poorly tolerate the technique because of the discomfort cau-

sed. Despite having been used in the DCCT study, the use of NCSs to

monitor the progression of DN is still limited in pediatric age.121

1.3.6 | Autonomic function testing

Symptoms and signs of diabetic AN, such as resting tachycardia,

reduced exercise tolerance, and gastroparesis, should be investi-

gated.55,58,122 CAN may be asymptomatic in earlier diabetes stages in

pediatric patients, but can be detected by reduced HRV.13,59,123

Orthostatic hypotension can be documented in more advanced CAN.

Age- and race/ethnic-dependent variations in HRV should be

accounted for while interpreting test results.124-127 Several

approaches can identify CAN, including evaluation of HRV and blood

pressure changes following various maneuvers, such as deep breath-

ing, standing, and Valsalva maneuver,122,128 but cardiovascular reflex

tests are the gold standard.122128 Other autonomic dysfunction tests

include the thermoregulatory sweat test, quantitative sudomotor axon

reflex test, sympathetic skin response test, pupillometry, and gastric

emptying scintigraphy.129-133 Like NCS, these techniques are uncom-

monly used for CAN testing in children and youth due to limitations,

for example, sophisticated, time consuming, expensive, specific equip-

ment requirements, and usually assess rare DN presentations in

childhood.

1.3.7 | Skin biopsy

Immunohistochemical analysis of skin punch biopsies provides a sensi-

tive, reproducible, quantitative measure of small unmyelinated sen-

sory fiber neuropathy by counting intraepidermal nerve fiber density

(IENFD).134 It is usually well tolerated in neuropathy research, but is

seldom used in children and youth as it is considered invasive and

pediatric reference values are lacking.63,135

1.4 | DN risk factors in children and youth

Beyond hyperglycemia, several risk factors for DN in children and

youth with diabetes have emerged in recent years. These risk factors

are further discussed below, and likely interconnect in a multifactorial

manner to promote DN development (Figure 1).

1.4.1 | Traditional risk factors

The role of hyperglycemia in DN has been examined by several large,

well-designed clinical studies. The Pittsburgh EDC study showed a

significant association between baseline HbA1c and DN in subjects

with childhood-onset T1D,34 and that long-term HbA1c improvement

correlated with lower DN incidence.136 EURODIAB demonstrated

that DN prevalence increased in parallel with elevated HbA1c,24 and

the Diabetes Control and Complications Trial (DCCT) found that good

glycemic control prevents or delays DN development and progression

in T1D.121 Several additional studies in children and youth with T1D

confirmed an increased DN risk with poor glycemic control and longer

disease duration.42,115,137-141
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Overall, the evidence suggests that well-controlled glucose delays

DN development and progression in T1D.142 In contrast, in T2D, the

impact of improved glycemic control on DN progression is moderate

in adults,143 and few studies have been conducted in children and

youths.92 Disease duration associates with higher DN prevalence in

T2D.50 SEARCH demonstrated a significant relationship between DN

and diabetes duration in children and adolescents with T1D and

T2D.12 In a recent Asian Indian study in children/youths with T2D,

Obesity

Metabolic 
syndrome

Hyperlipidemia

Hypertension

Environment & 
modifiable factors

Lifestyle

Diabetic 

neuropathy

Autoimmunity in 

T1D

Other contributors

Hyperglycemia

Genetic 
predisposition

Eating habits, 
exercise

Environment &
modifiable factors

Lifestyle
Eating habits,

exercise

F IGURE 1 Risk factors underlying DN in children and youth. DN development in pediatric populations is likely due to complex, multifactorial
factors that interconnect to drive nerve damage. Traditionally, hyperglycemia is the main DN risk factor, and the duration of diabetes and poor
glycemic control are two major drivers of nerve damage. In addition to these well known risk factors, emerging data suggest multifactorial
etiology. Diet, lifestyle, and genetic predisposition can all contribute to the onset of metabolic syndrome and associated features, including
obesity, hyperlipidemia, hypertension, and hyperglycemia. In parallel, age, puberty, genetics, race, ethnicity, smoking, and other comorbid
conditions further compound DN risk
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DN prevalence by VPT increased from 3% (n = 165) with a diabetes

duration <5 years to 49.2% (n = 61) with a duration >15 years.144 Fur-

ther research is needed to better understand the evolution and DN

risk factors in youth with T2D, though recent studies are highlighting

novel findings (see “Emerging risk factors”).
Hyperglycemia is a well-documented risk factor for CAN develop-

ment and progression, as clearly shown in the DCCT/Epidemiology of

Diabetes Interventions and Complications (EDIC) long-term follow-up

of the T1D DCCT cohort.145 Glycemic control and CAN were also sig-

nificantly correlated in EURODIAB.146 The effect of glycemic control

on CAN in T2D is less clear13,147; more research is required.

1.4.2 | Emerging risk factors

Obesity and dyslipidemia: Recent studies support additional risk factors

for DN beyond hyperglycemia.148 Our meta-analysis of interventional

studies found that good glycemic control delays DN progression in

adults with T1D, but much less so in adults with T2D.143 Indeed, in

clinical adult populations, we142,149-154 and others155-158 have shown

that the metabolic syndrome (MetS), independent of glycemic status,

raises the risk of developing DN.159 MetS is an array of metabolic

impairments, which include obesity (larger waist circumference), dys-

lipidemia (an abnormal lipid profile, e.g., adult characteristics are tri-

glycerides ≥150 mg/dL; high-density lipoprotein cholesterol (HDL-C)

<40 mg/dL males, <50 mg/dL females), elevated fasting glucose (≥100

mg/dL), and hypertension (systolic ≥130 or diastolic ≥85 mmHg).160

Defining MetS is more challenging in children and adolescents

due to intra-individual variation over time.161 However, available

studies in childhood cohorts reveal a similar correlation between obe-

sity and dyslipidemia with increased DN risk. EURODIAB followed

youths and young adult enrollees with T1D for 8 years to identify inci-

dent DN risk factors other than glycemia. They observed that ele-

vated total cholesterol, low-density lipoprotein cholesterol (LDL-C),

triglycerides, BMI, and hypertension, correlated with DN risk, after

adjusting for HbA1c and diabetes duration.24 SEARCH found that

obesity, increased triglycerides, LDL-C, diastolic blood pressure, and

decreased HDL-C were DN risk factors in youths with T1D, but that

poor glycemic control over time was also a DN risk, even after

adjusting for several parameters.12 In contrast, lower HDL-C corre-

lated with higher DN risk in youths with T2D, independent of glucose

regulation. SEARCH found similar effects of dyslipidemia on CAN,

with elevated triglycerides increasing DN development in youths with

T1D and T2D.13 Higher BMI and central adiposity, after adjusting for

HbA1c, likewise predicted CAN, measured by HRV, at follow-up in

participants with T1D (n = 253, aged 8–30 years).162

A few small scale studies have shown the association of obesity

and neuropathy in children with impaired fasting glucose or insulin

resistance without clinical diabetes. NCS on adolescents with obesity

and impaired glucose tolerance (n = 15), insulin resistance (n = 31),

and normal glucose tolerance (n = 23) versus age- and sex-matched

controls without obesity (n = 32) revealed significant differences in

medial plantar mean SNAPs, although most parameters did not differ

across groups.163 Another study of adolescents with obesity with

(n = 27) and without insulin resistance (n = 33) in Turkey found medial

and sural SNAP abnormalities versus controls (n = 30), along with

slowed medial and peroneal nerve conduction velocities (NCVs).164

Recently, BMI was found to be associated with cardiac autonomic

dysfunction in the TODAY study.57

Comorbid microvascular complications: Several studies indicate

that DN is linked to the presence of microvascular complications. In

Pittsburg EDC patients with T1D, DN correlated with nephropathy,

retinopathy, and cardiovascular disease (CVD) in univariate analysis.34

EURODIAB also found that CVD and albumin excretion rate corre-

lated with a raised cumulative risk of DN incidence.35 A systematic

review further reported associations of AN with nephropathy and ret-

inopathy in several studies after adjusting for covariates.55

Genetic markers: Genetic susceptibility to DN has been recently

reviewed in T1D26 and T2D26,165; thus, only salient points related to

diabetes pathophysiology166 and new directions are highlighted here.

Highly relevant are single-nucleotide polymorphisms (SNPs), either

injurious or protective, in genes related to metabolism (aldose reduc-

tase [AKR1B1] involved in the polyol pathway, adolescent study),167

cholesterol transport (apolipoprotein E [APOE], adult study),168 mito-

chondrial uncoupling (UCP2, UCP3, adult study),169 and oxidative

stress defense (superoxide dismutase [SOD2, SOD3, children and

younger adult study]),170 catalase (CAT, younger adult study),171 gluta-

thione peroxidase-1 (GPX1, adult study).172 Mutations in vascular

endothelial growth factor (VEGF, adult studies) may be relevant to the

ischemic nature of nerve damage, and correlate with DN173,174 and

diabetic foot ulcers,175 although associations may be population-

dependent.176 CAN has been linked to genes regulating DNA methyl-

ation (DNA methyltransferase 1 [DNMT1, younger female adult

study],177 which also causes hereditary sensory neuropathy) and anti-

oxidants (glutathione S-transferase [GST, adolescent study],178 GPX4,

younger adult study)179 polymorphisms.

To date, we know of a single GWAS for DN from the Action to

Control Cardiovascular Risk in Diabetes (ACCORD; n = 4,384 DN,

n = 784 controls, adult study) trial, which identified 28 SNPs on chro-

mosome 2q24 that were validated in the Bypass Angioplasty Revascu-

larization Investigation in Type 2 Diabetes (BARI 2D, adult study)

cohort.180 Multiple analyses of the Genetics of Diabetes Audit and

Research Tayside (GoDARTS, adult study) cohort identified clusters

on 8p21.3 (next to GFRA2),181 1p35.1 (ZSCAN20-TLR12P), and 8p23.1

(next to HMGB1P46) related to neuropathic pain,182 and a MAPK14

SNP on 6p21.31 related to diabetic foot ulcers.183

We conducted the first genome-wide DNA methylation analysis

of human sural nerve biopsies from DN patients (adult study),184 iden-

tifying profound differences in regulation of genes involved in neuron

development and axon guidance, glycerophospholipid metabolism,

and cell signaling in patients with progressive versus nonprogressive

DN. A genome-wide DNA methylation study of patient-derived dia-

betic foot ulcer fibroblasts found differences related to angiogenesis

and extracellular matrix assembly.185 Overall, GWAS and genome-

wide DNA methylation studies will more comprehensively character-

ize genetic susceptibility to DN and CAN. Although the vast majority
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of studies have been conducted in adults, identified SNPs or as yet

unidentified SNPs may also predispose children and youth to DN or

CAN, and studies are need to evaluate this possibility.

Race and ethnicity: From 2002 to 2015, SEARCH determined that

T1D and T2D incidence increased more in racial/ethnic minorities

compared to whites in the US.17 Racial and ethnic disparities are like-

wise reported in T1D treatments and outcomes.205 SEARCH revealed

no difference in DN prevalence in participants with T1D (p = 0.65)

and T2D (p = 0.77), by self-reported race/ethnicity,12 although signifi-

cant effects of race/ethnicity on CAN were noted in youths with T2D

(p = 0.001), which was more prevalent in non-Hispanic whites (27%)

and Hispanics (29%), but not in youths with T1D (p = 0.63; 8–14%

prevalence).13 This partly agrees with an earlier study, which found a

CAN prevalence of 29% by HRV, but no racial differences in children

and adolescents with T1D, using their classification of white or

black.186 Thus, the influence of race/ethnicity on DN and CAN risk is

incompletely understood due to lack of evidence, and larger studies

are needed to evaluate this relationship and to address health care

inequalities.

Puberty: Several studies have evaluated the effect of puberty on

DN and CAN incidence. Using VPT to measure DN signs, threshold

differences between children with T1D (n = 55) versus controls

(n = 34) were greatest postpubertal, after accounting for sex and

age.187 Late puberty is also reported to independently raise the risk of

peripheral sensory dysfunction (n = 92, mean age 14.2 years),140

although no effect of puberty was noted on CAN in T1D (n = 110,

aged 6–18 years) in multivariate analysis.188 This contrasts with a

T1D study (n = 73, aged 3–18 years, mean age 12.1 years) that found

critical effects of puberty on CAN using the more sensitive HRV out-

come measure.82 Hence, puberty represents a time pediatric physi-

cians should be especially vigilant for DN and CAN in children with

T1D. In children with T2D, diabetes onset occurs in the postpubertal

period.

Eating disorders (EDs) and disordered eating (DE): Eating disorders

are usually associated with poor glycemic control189 and increased

risk for acute and chronic diabetes complications.190 In its most

extreme form, diabetes patients omit taking their glucose-controlling

medication in order to lose weight, a condition colloquially termed

“diabulimia.” SEARCH determined the presence of DE in 21.2% of

subjects with T1D (2,156 participants; 50.0% female, mean 17.7 years

old) and 50.3% of those with T2D (149 participants; 64.4 % female,

mean 21.8 years old).191 Since poorly controlled glycemia is a DN risk

factor in T1D and T2D,143 patients with ED and DE can be at risk for

developing DN as a result of uncontrolled glycemic and related fac-

tors. The association of ED with clinical DN has been reported in small

clinical series.192 Among 208 young women with T1D aged between

16 and 25, Steel et al.193 reported six neuropathies associated with

EDs. Of those, four patients with anorexia nervosa had acute painful

polyneuropathy. The development of pain was not associated with

any significant change in HbA1c but coincided with ED onset, and

pain remission was observed after subjects regained weight. Although

these case series are interesting, they do not rule out the contribution

from other aspects, such as deficient nutritional factors.194 Diabetes

patients suffering from EDs and DE require particular attention for

early DN symptoms or signs, as well as any other complications.

Smoking: Smoking has repeatedly been linked to DN in multiple

studies. The Pittsburg EDC study found smoking correlated with DN

in participants with T1D ≥18 years,34 and in EURODIAB, smoking was

linked to cumulative DN incidence in T1D, independent of diabetes

duration or HbA1c.35 SEARCH similarly pointed to smoking as a DN

risk factor in subjects with both T1D and T2D,12 and a focused

smoking analysis in SEARCH found that tobacco use in youth with

T1D and T2D correlated with longer diabetes duration, older age,

poorer glycemic regulation, and MetS.195

2 | MANAGING DN IN CHILDREN AND
YOUTH

Earlier identification and intervention is optimal since DN may be

improved or even reversed at subclinical stages with appropriate

interventions.11,91,196 The American Diabetes Association currently

recommends performing an annual comprehensive foot exam in youth

with T1D, starting 5 years after diagnosis, at the start of puberty, or at

age ≥10 years, whichever is earlier.16,59,197 Screening is recommended

at diagnosis and then annually in youth with T2D.92 Comprehensive

foot examinations should include inspection, palpation of dorsalis

pedis and posterior tibial pulses, assessing either temperature or pin-

prick sensation, and determination of proprioception, vibration sensa-

tion, monofilament sensation, and patellar and Achilles reflexes.16,197

The importance of frequent foot inspection should be discussed with

patients at diagnosis and each visit.198

2.1 | Managing glycemia

2.1.1 | Type 1 diabetes

Achieving glycemic control is the primary mainstream goal for manag-

ing DN.11 Long-term impairment of glycemic control is the strongest

predictor of DN development in T1D. Several clinical studies, most in

adults, found robust associations between poor glycemic control and

DN development. The DCCT is a landmark study showing the benefit

of intensive glycemic control to improve DN related outcomes in sub-

jects with T1D.25,121 NCS showed slower NCVs at 5 years in conven-

tionally versus intensively treated DCCT youth with T1D (195 of

1,441).121 The EDIC study, a follow-up of DCCT, demonstrated the

effect of early intensive glycemic control, also called metabolic mem-

ory effect).199-201 Although both standard and intensive glycemic con-

trol groups had comparable HbA1c levels (around 8%) one year after

treatment initiation as per EDIC protocol, subjects within the former

intensive group had lower DN incidence at year 8 and years

13–14.202,203 Mean HbA1c was recently identified as the most signifi-

cant risk factor for DN after over 23 years of follow-up in the EDIC

cohort.204 Poorly controlled long-term diabetes has been demon-

strated as a significant risk factor for CAN development in children

138 AKINCI ET AL.



and youth with T1D.13,162,205 DCCT demonstrated that intensive gly-

cemic regulation reduced DN and CAN risk.25,206,207 On the other

hand, there is little evidence that well controlled glycemia improves

neuropathic pain in T1D, but rapid and large glycemic drops can occa-

sionally precipitate a dramatic worsening of pain.208,209 Recently, glu-

cose variability was proposed to accelerate DN development and

progression, but well-designed studies are needed in children and

youth.210,211

2.1.2 | Type 2 diabetes

Despite well-established evidence in T1D that intensive glycemic con-

trol reduces DN risk, the effect of glycemic control is less clear in

T2D, even in adulthood.143 The benefit of glycemic control on DN

development and progression has not been widely investigated in chil-

dren and youth with T2D; a few adult studies suggest improve-

ment212,213 but most report weak or no effect.143,214-217 Data from

the TODAY study showed the association of HbA1c with CAN in sub-

jects with youth onset T2D.57 The SEARCH study found a significant

relationship between DN and diabetes duration in children and ado-

lescents with T2D.12 Similarly, an Asian Indian study reported higher

DN prevalence with increasing diabetes duration in children and

youths with T2D.144

2.2 | Managing metabolic and other risk factors

Obesity and dyslipidemia are emerging adult DN and CAN risk factors,

particularly in T2D,149-158,218 which is mirrored in pediatric stud-

ies.12,13,24,162-164,219,220 Youths and their guardians should be

counseled on nutrition, weight loss, and exercise as a means to shed

excess weight and improve insulin resistance.92,221 Adult studies

found exercise improved IENFD, even without significant weight

loss,222-224 and a small randomized controlled trial found aerobic exer-

cise improved NCS parameters and VPT after 4 years in adults with

T1D and T2D.225 Nevertheless, the effect of managing weight on DN

is not well-established in T1D, but since excess weight is an emerging

issue in youth with T1D,197,226 dietary counseling with exercise

should be integrated. Several diabetes medications (e.g., metformin,

SGLT2 inhibitors, GLP-1 agonists) potentially reduce weight,92,227-231

but their impact on DN is not conclusive yet,232-235 and only metfor-

min and liraglutide are currently FDA-approved for pediatric

patients.236,237 Moreover, orlistat is FDA-approved for weight loss in

pediatric patients with obesity aged 12 years and older,238,239 inde-

pendent of diabetes status, but its effect on neuropathy is unknown.

Metformin use may be associated with B12 deficiency and worsening

of neuropathy symptoms,240,241 and increased lower extremity

amputation rates were reported for canagliflozin,242 an SGLT2 inhib-

itor. Lipid control may potentially prevent DN development, but evi-

dence is limited.243 Future well-designed studies must establish the

effect of exercise, diet, weight loss, and lipid lowering strategies on

DN in children, youth, and adults. Although several studies suggest

angiotensin-converting enzyme inhibitors improve DN,244-250 evi-

dence is limited and hypertension should be treated appropriately for

individuals. Smoking and alcohol use are DN risk factors,11,12,34,35,65 and

youths should be counseled to avoid smoking (including e-cigarettes)

and alcohol use.

2.3 | Managing painful neuropathy

Compared to adults, painful DN is rare in children and youth.251-254

Calcium channel a2δ ligands (gabapentin, pregabalin), serotonin-

norepinephrine reuptake inhibitors, and tricyclic antidepressants are

the most widely used medications for painful DN in adults.255-258

These medications are used to treat various presentations of neuro-

pathic pain in children, but clinical studies devoted to painful DN are

not available259-264 and no drugs are licensed specifically for painful

DN in childhood and youth.254

2.4 | Managing CAN

Morbidity and mortality is higher in CAN patients,122 who require a

vigilant cardiovascular risk elimination strategy. Patients with diabetes

and CAN undergoing surgery require perioperative caution, since

CAN is linked to arrhythmia risk and hemodynamic dysbalance.265

Cardiac status should also be carefully reviewed in patients with CAN

before advising exercise program participation, and patients with

orthostatic hypotension may require specialized personalized care.59

Managing hypoglycemia awareness and brittle diabetes is outside the

scope of this review, but the role of autonomic dysfunction should be

considered.58,266

3 | FUTURE DIRECTIONS

Our understanding of DN in pediatric patients has improved, but

remains suboptimal, particularly for pediatric T2D because most find-

ings are based on studies of pediatric patients with T1D, which funda-

mentally differs in pathophysiology and hence in potential

management approaches. The second reason for this less than optimal

situation is that much of our understanding is based on drawing paral-

lels to studies of adults with T2D. Therefore, we have substantial

knowledge gaps, which will require further research to fill. For

instance, screening at all ages, even in younger children, using stan-

dardized and sensitive tools shown to be sensitive and specific in

pediatric populations, will be needed to both refine the prevalence

data in pediatric populations with T1D and T2D and identify

evidence-based age brackets for screening in the American Diabetes

Association pediatric guidelines. Furthermore, as childhood T2D prev-

alence continues to mount, we must better understand DN in the

T2D context. Importantly, this means defining the magnitude of the

problem, not only of childhood obesity, for which statistics are

available,267 but also on the childhood prevalence of prediabetes, a
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risk factor for developing frank diabetes, of which relatively little is

known. We further must investigate the role of obesity, other MetS

components, and additional potential risk factors (genetic susceptibil-

ity, race/ethnicity, lifestyle habits, physical activity level) on DN devel-

opment and progression in children and youth with normoglycemia

and prediabetes as well as diabetes. More sensitive screening

methods are imperative to detect subclinical DN when it is most feasi-

ble to slow DN progression or halt development. To date, there is no

curative DN treatment and good glycemic control remains the main-

stream goal. However, glycemic control may not be the only parame-

ter, especially in youth with T2D.143,153 With obesity and dyslipidemia

emerging as T2D risk factors, we must systematically evaluate the

efficacy of weight loss and exercise on childhood DN through ran-

domized controlled trials.268 Targeted, mechanism-based pharmaco-

logical approaches are also needed, and may be forthcoming, as

preclinical and clinical research sheds light on DN pathophysiology

and alternative risk factors. For instance, in children with T1D for

whom well controlled glucose does not prevent DN, investigation into

additional interventions beyond hyperglycemia management can be

explored in the context of T1D, for example, autoimmunity.

4 | CONCLUSION

Diabetes is a modern day epidemic with an increasing incidence and

prevalence of both T1D and T2D. The increase in T2D prevalence is

more dramatic as a result of childhood obesity and sedentary life-

styles, which continue to rise. Childhood onset diabetes constitutes a

high risk for developing DN due to disease longevity. DN signs are

usually subclinical in youth with diabetes, but can be detected if sensi-

tive tools are used. Early DN recognition is important. If left

undiagnosed, subclinical DN progresses to overt neuropathy with risk

of neuropathic pain, foot injury/ulceration, and limb amputation risk—

symptoms associated with increased morbidity/mortality and high

economic cost. Therefore, we urge clinicians to screen for and be vigi-

lant of DN complications in young patients with diabetes. Data from

T1D studies show a clear association between DN and poor glycemic

control and longer lifetime exposure to hyperglycemia; thus, achieving

glycemic control still remains the main strategy to prevent DN occur-

rence or progression. The role of hyperglycemia, on the other hand, is

less conclusive on the emergence of DN in T2D, and additional factors

are likely involved. Although pediatric studies are limited, recent data

from adult studies underscore obesity as an independent risk factor

for neuropathy. Therefore, we advocate similar considerations for

obese pediatric patients and weight loss and lifestyle interventions

may potentially be beneficial.
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