Sharing Code Among Academic Researchers:

Lessons Learned

Carol Schmitz, Ameena Khan, and Libby Hemphill

_—
ILLINOIS INSTITUTE\f//
OF TECHNOLOGY

Based on work supported by the National
Science Foundation Grant # 1525662.

Our Mission

Make our GitHub repositories as accessible
as possible to other researchers with varying
levels ot technical skill

CASM Lab Best Practices for Sharing Code

e Code in a human-readable programming language —
Python

» Use consistent structure to organize our public repositories

Use separate development environments tor each project

and install libraries separately

Use Jupyter Notebooks to explain how each script works,

including inputs, outputs, and how to run the script

Our Repository Structure

AmeenaKhan committed on GitHub Update everyblock_collect.py

B data_samples : Raw data and data produced by scripts :
M files :Any tiles needed or generated by the scripts :
BB scripts Scripts to collect, cache, analyze, and parse data
=) README.md Z Description of repository, supported OS, contact information :
=) environment.yml Z List of Python packages for Anaconda installation :
=) everyblock.ipynb ZJupy’rer Notebook with Markdown and code to explain and run scrip’rs:
=) settings-example.cfg :Somple of all configurable options used by code :

Our Workflow

Challenges of Sharing Code

» Supporting multiple operating systems intfroduces complexity to the task, since certain libraries only exist tor

certain operating systems.

* Python libraries and other system pac

environments tfor each project can he

<ages can cause conftlicts across multiple projects, but using separate

o avoid conflicts

What’s nexi?

* Collaborate with other researchers who share our priorities

* Design and develop a central repository for sharing data sets with accompanying analysis scripts

Collect and Cache

The EveryBlock collector collects data from the Everyblock API and stores it in a text file. If the config file is filled in accurately, the
command in the following cell should produce a text file that can be parsed and mapped with the other notebooks in this repo.

% run scripts/everyblock collect.py

Parse and Add Census Tract

Step 1: Parse. The code will produce 2 tab-separated text files based on the input: one counts the number of posts from each
schema type (as defined by the Everyblock API), and one provides metadata about each post.

$ run scripts/everyblock parse.py

Step 2: Add Census Tract. Takes output from Step 1 and adds Census Tract data from the FCC to each post, based on longitude and
latitude. then returns the 15-digit census tract id (['Block']['FIPS'] in the example below).

{ "Block": { "FIPS": "170311608005017" }, "County": { "FIPS": "17031", "name": "Cook" }, "State": {
"FIPS": "17", "code": "IL", "name": "Illinois" }, "status": "OK", "executionTime": "190" }

The census ID is appended to each line and the file is saved. If no data is returned from the FCC website, "null" is appended rather
than the FIPS number.

NOTE: This process is very long. It can take more than a day, depending on the response times from the FCC website.

$ run scripts/everyblock add census_ tract.py

Parse and Analyze

| prefer to start with a set of questions | want to use the data to answer and then parse it in a way that efficiently addresses those
questions. But, a great first step is to get some bird's eye views of what's in the data in the first place.

Bird's Eye Views

EveryBlock allows users to post a variety of types of content (EveryBlock term: news items) that they call schemas. | wonder what
the relative frequency of those schemas are and how those relative frequencies differ between neighborhoods and metros
(EveryBlock's term for cities). To answer that question, | need something like

schema-freq.txt, a tab-delimited file:

Schema Freq
Announcements 12
Crime-posts 45

user-items-meta.txt, a tab-delimited file:

id pub_date poster name schema latitute longitude reaction _count reaction_score comment_ coun
t url

7285706 2016-01-07T02:06:04.443Z 1d2 talk 41.923467879795 -87.708659235119 1 3 19 http://chi
cago.everyblock.com/talk/jan07-everyone-alright-7285706/

*note: for items with multiple locations, there should be a line for each location

Files for Dedoose

We want one text file per neighborhood, sorted by schema, that contains the following data for each user-generated post:

« Location Name

« Title

« item date

« attribute>comment
« embed>description
« embed>url

» reaction count

« schema

$ run scripts/everyblock parse to dedoose.py

