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1  | INTRODUC TION

Variation in individual performance (i.e. survival and growth) deter-
mines the structure and dynamics of natural populations and com-
munities. Differential performance is largely determined by the 
interaction between the individual phenotype and the abiotic and 
biotic environment (Arnold, 1983; McGill et al., 2006). Ecologists 

have linked commonly measured morphological and physiological 
traits, known as functional traits, to demographic rates, to facil-
itate predictive models of populations and communities into the 
future.

There is a core suite of functional traits widely measured in 
plant ecology. These include specific leaf area (SLA), maximum 
height, wood density and seed mass. These traits are often 
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Abstract
1. Individual-level demographic outcomes should be predictable upon the basis of 

traits. However, linking traits to tree performance has proven challenging likely 
due to a failure to consider physiological traits (i.e. hard-traits) and the failure to 
integrate organ-level and whole plant-level trait information.

2. Here, we modelled the survival rate and relative growth rate of trees while con-
sidering crown allocation, hard-traits and local-scale biotic interactions, and com-
pared these models to more traditional trait-based models of tree performance.

3. We found that an integrative trait, total tree-level photosynthetic mass (estimated 
by multiplying specific leaf area and crown area) results in superior models of tree 
survival and growth. These models had a lower AIC than those including the effect 
of initial tree size or any other combination of the traits considered. Survival rates 
were positively related to higher values of crown area and photosynthetic mass, 
while relative growth rates were negatively related to the photosynthetic mass. 
Relative growth rates were negatively related to a neighbourhood crowding index. 
Furthermore, none of the hard-traits used in this study provided an improvement 
in tree performance models.

4. Synthesis. Overall, our results highlight that models of tree performance can be 
greatly improved by including crown area information to generate a better un-
derstanding of plant responses to their environment. Additionally, the role of the 
hard-traits in improving models of tree performance is likely dependent upon the 
level of stress (e.g. drought stress), micro-environmental conditions or short-term 
climatic variations that a particular forest experiences.
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referred to as ‘soft-traits’ due to their relative ease of measure-
ment across many individuals and species and because they are, 
typically, indirectly related to a physiological rate or life history 
trade-off of interest (Hodgson et al., 1999; Westoby, 1998). These 
soft-traits are those most commonly used in tree demographic 
models (Poorter et al., 2008; Wright et al., 2010). Maximum height 
(Bazzaz et al., 2000; Poorter et al., 2005; Westoby, 1998; Westoby 
et al., 2002), wood density (Chave et al., 2009; Enquist et al., 1999) 
and seed mass (Rees, 1996; Westoby, 1998) typically explain the 
greatest amount of variance in tree performance in tropical forests 
when compared to leaf traits like SLA (Poorter et al., 2008; Wright 
et al., 2010). However, forest ecologists have had variable success 
in linking these core commonly measured suite of functional traits 
to tree growth and mortality rates (Iida & Swenson, 2020; Paine 
et al., 2015; Poorter et al., 2008; Worthy & Swenson, 2019; Wright 
et al., 2010; Yang et al., 2018).

There are multiple ways in which trait-based models of tree 
survival and growth may be improved (Yang et al., 2018). These 
include, (a) measuring traits on individuals instead of using species 
mean values, (b) considering less easily measured traits, (c) integrat-
ing leaf-level trait data into the context of whole biomass allocation 
and (d) accounting for biotic interactions. The first of these possibil-
ities has been shown to be important in studies that have measured 
individual-level trait data on thousands of individuals from tens to 
hundreds of co-occurring subtropical and tropical tree species (e.g. 
Liu et al., 2016; Umaña et al., 2017). However, this approach may 
prove impractical in many cases. Therefore, here, we focus on the 
remaining three issues: considering less easily measured traits (i.e. 
hard-traits) more closely aligned with plant physiological rates, the 
integration of leaf-level trait data into the context of whole biomass 
allocation and accounting for local-scale biotic interactions.

One way forward for trait-based predictions of tree demo-
graphic performance is to measure additional traits, linked to phys-
iological processes, beyond the core suite of commonly measured 
soft functional traits. Soft-traits may be strongly correlated with 
traits that are more difficult to measure (e.g. photosynthetic rates), 
making them the most pragmatic approach for predicting tree popu-
lation and community structure and dynamics (e.g. Díaz et al., 2004). 
However, soft-traits may be weakly correlated or not correlated 
at all with important physiological rates and trade-offs. Thus, tree 
survival and growth may be best predicted by less commonly mea-
sured traits. Such traits often referred to as ‘hard-traits’, are often 
difficult to measure, but are more closely linked to physiological pro-
cesses of interest (Hodgson et al., 1999; Lavorel & Garnier, 2002; 
Swenson et al., 2017; Yang et al., 2018). For example, traits directly 
related to water use efficiency, such as leaf carbon stable isotope 
composition (Dawson et al., 2002; Farquhar et al., 1982) and leaf 
vein length per unit area (Sack & Frole, 2006; Brodribb et al., 2007; 
Sack & Scoffoni, 2013, but see Gleason et al., 2016), should be 
strongly associated with individual tree performance under hydrau-
lic stress or drought events by significantly affecting photosyn-
thetic capacity and leaf hydraulic conductance (Angert et al., 2007; 
Correia et al., 2008; Gebrekirstos et al., 2011; Iida et al., 2016; Sack 

et al., 2013). Thus, it is crucial to determine the importance of these 
traits in tropical forests, in which drought events are expected to 
increase (Chadwick et al., 2016). These hard-trait data can be used 
in tree performance models and then competed against models that 
include only soft-trait data.

A second potential way forward is placing organ-level trait data 
into a whole plant allocation context. Previous work has demon-
strated that tree architectural traits such as crown width (Iida, 
Poorter, et al., 2014) or estimates of the amount of leaf area de-
ployed for light interception (e.g. Falster et al., 2011) are valuable 
for understanding the functional strategies of plants and/or their 
performance. The most evident and important starting place for ac-
complishing this goal is an integration of the most commonly mea-
sured leaf traits, SLA (i.e. the inverse of leaf mass per area [LMA]), 
and whole crown biomass leaf area allocation (i.e. an estimation of 
leaf area ratio). SLA reflects a fundamental trade-off relating re-
source capture, leaf investment and leaf life span at the scale of a 
leaf (Reich et al., 1997). However, individuals and species vary widely 
in their relative allocation to whole crowns and this variation makes 
it unlikely that SLA alone will serve as a robust predictor of tree de-
mographic rates (Yang et al., 2018). Individual-level and interspecific 
variation in crown biomass allocation or whole plant leaf mass di-
vided by whole plant mass have been identified as critical predic-
tors of plant growth or relative growth rate respectively (Enquist 
et al., 2007; Garnier, 1991). Despite this, a placement of leaf traits 
into a crown context is not frequently done in the current trait-based 
tree growth modelling literature, which likely greatly reduces our 
ability to predict plant performance (Yang et al., 2018, 2020). Thus, 
variables representing allocation to leaves should also be considered 
in models of tree survival and growth and these models should be 
compared to models lacking this information.

Lastly, the role of local-scale biotic interactions (e.g. competi-
tion) needs to be considered to understand the survival and growth 
responses resulting from the interactions between focal trees and 
their neighbours. Plant performance is expected to be affected 
by local population densities via positive or negative interactions 
(Chesson, 2000; Pacala & Silander, 1985; Uriarte et al., 2010). 
Neighbourhood models that consider the density, size and distance 
of neighbouring trees have been increasingly used in trait-based 
studies to determine the role of neighbourhood competition in 
tree community structure and dynamics (e.g. Canham et al., 2004; 
Uriarte et al., 2004, 2010; Zambrano et al., 2019).

Here, we compare models of tropical tree survival and growth 
that incorporate traits linked to tree water use (i.e. leaf carbon iso-
tope composition (leaf δC13), leaf hydraulic capacity and photosyn-
thetic rates (i.e. leaf vein length per unit area), a measure of crown 
area multiplied by LMA to estimate tree-level allocation to photo-
synthetic mass (Mp) and neighbourhood crowding. In this work, we 
ask the following questions.

(1) How correlated are soft-traits with hard-traits? We predict a 
strong positive correlation between leaf traits associated with hy-
draulic and photosynthetic capacity (e.g. Brodribb et al., 2007) (i.e. 
vein length per unit area and LMA), and between leaf traits related 
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to water use efficiency such as leaf carbon isotopic composition with 
phosphorus concentration (Brück et al., 2000), and wood density 
(Santiago et al., 2004). Answering this question is critical because if 
these two types of traits are significantly correlated, it would indi-
cate that hard-traits may not be as valuable to measure and will likely 
not dramatically improve tree survival and growth models. (2) Does 
the use of an estimate of total tree-level photosynthetic mass (Mp) 
improve model fits of tree survival and growth as compared to mod-
els that do not include this information? We predict that the inclusion 
of Mp will improve model fit as it relates to crown resource allocation 
of the whole tree-level that ultimately affects survival and growth 
rates. (3) Do models of tree survival and growth that include traits 
related to water use and photosynthetic capacity (i.e. hard-traits) 
outperform models that include commonly measured soft-traits? 
We expect that including hard-traits will improve tree performance 
models as these traits are closely linked to physiological responses 
such as photosynthetic capacity and leaf hydraulic conductance. (4) 
Does including the effects of neighbourhood crowding improve the 
models of tree survival and growth? We predict strong neighbour-
hood crowding effects on tree survival and growth, due to either 
competition for similar resources or shared enemies reducing indi-
vidual performance.

2  | MATERIAL S AND METHODS

2.1 | Luquillo forest dynamics plot

This study was conducted in the Luquillo Forest Dynamics Plot, 
a 16-ha long-term forest plot located in northeast Puerto Rico 
(18°20′N, 65°49′W; LTFP). The plot, divided into 400 20 m × 20 m 
quadrats, has been censused every five years since 1990, where 
all free-standing woody stems ≥1 cm in diameter at breast height 
(dbh) were identified and measured (Zimmerman, 2010). The plot 
is located in a subtropical wet forest type with Dacryodes excelsa 
(Burseraceae) and the palm Prestoea acuminata (Arecaceae) as the 
most dominant species. The mean annual rainfall is 3,500 mm/year 
and mean monthly temperatures range between 21 and 25°C. The 
plot experienced severe hurricane damage in 1989, 1998 and 2017 
due to hurricanes Hugo, Georges and Maria. The censuses used in 
this study included only those most distant from hurricane distur-
bance (2005 and 2011) and previous work has shown that the forest 
largely recovered from Hugo and Georges prior to the 2005 census 
(Swenson et al., 2012).

2.2 | Functional trait measurement

We used soft-trait data for 111 woody plant species that were pre-
viously collected (Swenson et al., 2012; Swenson & Umana, 2015; 
Umaña et al., 2015). These traits were collected from 5 to 10 adult 
trees per species and included: leaf phosphorus (P; percentage P of 
dry mass), leaf carbon (C; percentage C of dry mass) and leaf nitrogen 

(N; percentage N of dry mass) concentration; wood specific gravity 
(referred to as wood density WD); leaf area (LA; cm2); specific leaf 
area (SLA; cm2/g); maximum tree height (Hmax; m); and seed dry mass 
(SM; g). In addition to these traits, we also measured two hard-traits 
related to plant hydraulics. The first was vein length per unit area 
(VLA; mm/mm2) measured following the protocol described in Iida 
et al. (2016). Briefly, two leaves from the outer crown per species 
were cut into 1 cm × 1 cm squares, cleared with NaOH, stained with 
safranin, mounted on slides and imaged at 20× magnification. Next, 
the length of non-primary veins in the image was quantified by trac-
ing the veins in ImageJ. A VLA value for 60 of the species was gener-
ated by averaging values from 3 to 5 individuals per species. Detailed 
physiological studies have shown that VLA is strongly positively 
correlated with photosynthetic capacity (Brodribb et al., 2007). 
We also quantified leaf carbon stable isotope ratios (leaf δC13; ‰) 
using leaves collected between January and March 2008 (i.e. mid-
way between censuses and during the driest part of the year). The 
isotope analyses were conducted using mass spectrometry at the 
Cornell University Stable Isotope Laboratory using leaves from 1 to 
3 adult trees per species. Carbon stable isotope levels are indicative 
of water use efficiency (Dawson et al., 2002; Farquhar et al., 1982) 
and, therefore, may indicate plant performance during periods of 
limited water.

2.3 | Trait correlations

Trait values were first log-transformed to approximate normality if 
their distributions from the raw data were not approximately normal. 
Correlations between the hard-traits and soft-traits (Table 1) were ex-
amined using Pearson's correlation coefficient. In addition, we applied 

TA B L E  1   Soft- and hard-traits considered as potential predictors 
of tree survival and growth rates

Soft-traits

Commonly measured 
but weakly correlated 
or not correlated at 
all with important 
physiological rates

Leaf phosphorus 
concentration

P (%P)

Leaf carbon 
concentration

C (%C)

Leaf nitrogen 
concentration

N (%N)

Wood density WD

Leaf area LA (cm2)

Specific leaf area SLA (cm2/g)

Maximum tree 
height

H (m)

Seed dry mass SM (g)

Hard-traits

Difficult to measure 
but closely linked 
to physiological 
processes of interest

Stable leaf 
carbon isotope 
composition

δC13 (‰)

Vein length per unit 
area

VLA (mm/mm2)
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a principal component analysis (PCA) to all traits from the same 60 spe-
cies from which all trait data were available to determine trait relation-
ships and the contribution of each trait to the principal components.

2.4 | Total tree-level photosynthetic mass

Total tree-level photosynthetic mass (Mp) was calculated for each 
individual from 17 of the 30 most common species in the plot. 
These 17 species account for ~56% of the individuals (excluding 
palm species) and 13% of the species in the plot in the 2005 census. 
We established species-specific crown allometries from field meas-
urements (Table S1). Specifically, we measured the stem diameter 
and the crown radius in two cardinal directions for 5–25 individu-
als (with dbh ranging from =0.5 cm to 56.3 cm) per species to pro-
duce species- specific allometries (Equation 1; Table S1; Figure S1; 
r2 = 0.66–0.97). The species-specific Mp was obtained implement-
ing Equations 1–3 that describe the crown area allometry in terms 
of individual tree crown radius as follows (Hunt, 1978; Niklas & 
Enquist, 2001; Poorter, 1989; Yang et al., 2018):

where intercept and slope are species-specific estimates from the 
log10–log10 allometric regressions, and leaf mass per area (LMA) =  
1/SLA, which is related to leaf life span and photosynthetic rates (Reich 
et al., 1997). We estimated the Mp across all individuals (i) of each spe-
cies based upon their dbhi values and crown area (CAi). It is important 
to note that this approach simplifies the estimate of Mp by making the 
unrealistic, but a most simple, assumption that all individuals and spe-
cies have an identical leaf area index.

2.5 | Neighbourhood crowding index

We examined the effects of neighbours by calculating a total 
Neighbour Crowding Index (NCI). The negative influence of a neigh-
bour was calculated as follows:

The index varies as a function of the squared dbh of the neighbour (j) 
and an inverse function of the squared distance (d) of the focal tree 
(i) to the neighbour (j) (Canham et al., 2004; Uriarte et al., 2004). The 
effect was calculated within a 20-m radius around the focal tree (i) and 
summed over all neighbours. Previous studies have shown that the ef-
fects of the neighbours can be detected within a radius smaller than 
20 m (Hubbell et al., 2001; Uriarte et al., 2004, 2010), and that, in this 

forest, the effects of NCI are consistent across different radii (5–30 m) 
(Zambrano et al., 2020). We used all 128 species in the 2005 census as 
neighbours (j) and estimated NCI for all individuals (i) of the 17 species 
for the demographic models.

2.6 | Modelling tree demographic rates: Including 
total photosynthetic mass

We used census data for the same 17 non-palm species for which 
we had species-specific allometries including all individuals 
with dbh values ≥1. We included 17,007 individuals for the sur-
vival models and 10,538 individuals for the growth models (see 
Table S4 for individuals per species). We measured tree survival 
by determining the presence of the individual in the next census. 
In addition, we calculated tree relative growth rate (RGR, cm/year) 
as follows:

where dbht is measured at successive time steps t (Δt, measured 
in years). A value of 1 was added to the observed data before log- 
transforming. Additionally, negative values obtained (n = 1,056), pos-
sibly due to stem shrinkage, measurement error, or breakage, were 
discarded before the log-transformation. Tree survival was fitted using 
a binomial function while tree growth was modelled using a Gaussian 
function. For both survival and growth, we used generalized linear 
mixed effect models (lmer and glmer functions from the lme4 package 
in r, Bates et al., 2015) as follows:

where YiSk represents survival (1: alive or 0: dead) or log-transformed 
RGR values for each individual tree i of species S, Variable represents 
any of the following (see Model selection and assessment): dbh0i (the 
initial dbh in 2005), Mpi

 (the tree-level total photosynthetic mass), CAi 
(crown area) of each individual i or LMAS (leaf mass per area) of species S.  
�S and �k are random effects of differences in species S and quadrat k 
respectively. αS is species-specific intercept and βS are species-specific 
coefficients representing the effect of the parameters. Parameters 
were z-score standardized (subtracting the mean and dividing by the 
standard deviation) prior to analyses.

2.7 | Model selection and assessment

First, we examined whether including Mp or any of its components, 
LMAS and CAi, instead of dbhi increased the quality of the tree sur-
vival and growth models by fitting one model for each variable with 
a similar structure (intercept and the random effects) (Equation 6; 
Table 2). We used three different methods to select the best model: 
(a) the Akaike's information criterion (AIC), (b) Akaike weights (wi) 
and (c) Cross-Validation/loss function (C-V loss). For AIC, we used a 

(1)log (radius) = slope × log (dbh) + intercept,

(2)CA = � × radius2,

(3)Mp = LMA × CA,

(4)NCIi =
∑

j

dbh2
j

d2
ij

.

(5)RGR =
(

lndbht+Δt − lndbht
)

∕Δt,

(6)Yisk = �S + �SVariable + �S + �k,
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delta-AIC threshold of 2 units (AIC differences relative to the small-
est AIC value: AICi − AICmin). For Akaike weights, we compared the 
likelihood (weight of evidence) of each model to the best model by 
computing their Akaike's weights (Burnham & Anderson, 2002). 
Lastly, for the C-V loss method we calculated the test error (loss) 
associated to each model (i.e. goodness-of-fit) by performing a 10-
fold cross-validation. This approach provides a direct estimate of 
the test error and makes fewer assumptions about the true underly-
ing model (James et al., 2013). We chose the ‘best model’ or ‘best 
models’ as the one/ones with low AIC, high Akaike weight and low 
C-V loss scores. To calculate the C-V loss, the data were randomly 
divided into 10-folds of approximately equal size. Nine of the folds 
were used to train the models and the one remaining fold to test 
the models (James et al., 2013). This process was repeated ten 
times in which a different group was treated as the test set. For 
the ten folds, we calculated the averaged loss for each model (the 
error associated with fitting each of the models on the data). We 
implemented two loss functions to assess the goodness-of-fit of a 
model (i.e. model quality) by estimating its prediction error on new 
(i.e. test) data (Hastie et al., 2009). For tree survival models only, 
we used a log-loss function (cross-entropy cost function from the 
package MLmetrics in r, Yan, 2016) that accounts for uncertainty 
in the predictions. For tree growth, we calculated the Huber loss 
that uses a quadratic loss function for small residuals or a linear 
loss function when residuals exceed the minimum value of the 90th 
quantile (package qrmix in r, Resa et al., 2017). Thus, this function 
avoids the effects of large outliers that make the quadratic loss less 
robust (Hastie et al., 2009). When comparing models using the loss 
function values, the smallest value indicates the model with higher 
performance when predicting unseen data. In other words, this 
value indicates which model can be expected to perform better on 
other sets of data (James et al., 2013).

2.8 | Modelling tree demographic rates: Including 
soft- and hard-traits

Following the selection of the best predictor (Mp, LMA, CA or dbh) 
of survival and growth using Equation 6 (Table 2), we fit all differ-
ent model combinations that included the selected predictors, both 
soft- and hard-traits and the neighbour crowding index. The mod-
els were fit controlling for multicollinearity among traits (excluding 
trait combinations with Pearson's correlation coefficient |r| ≥ 0.60) 
using the function pdredge from the package MuMIn in r (Bartoń, 
2018), setting:

where Variable represents the selected parameter (Mp, CA, dbh or 
LMA), softS and hardS represent all the soft- and hard-traits used at the 
species level S and NCIi represents a neighbourhood crowding index at 
the individual level i. The �S and �k parameters are random effects for 
species S and quadrat k respectively. The αS is a species-specific inter-
cept, β1S–β4S are species-specific coefficients representing the effect 
of the parameters. The data were z-score standardized (subtracting the 
mean and dividing by the standard deviation). We performed model se-
lection following the same methodology described above in the Model 
selection and assessment section.

2.9 | Model averaging

When multiple models were indiscernible (AICi − AICmin ≤ 2) due 
to similar Akaike weights and C-V losses, we carried out multi-
model inference to increase precision and reduce bias (Burnham & 
Anderson, 2002). This methodology first selects a model set from 
which model averaging is performed including model selection un-
certainty from the set of models. We compared the standardized 
coefficients to determine the relative importance of the variables in 
the averaged model. Predicted versus observed values were plotted 
to test the fit of the model. All the analyses were carried out with the 
R software version 3.5.1 (R Development Core Team, 2018).

3  | RESULTS

3.1 | Correlations between soft- and hard-traits

We found positive correlations between leaf δC13 and leaf phospho-
rus concentration (r = 0.27, p = 0.004, n = 105; Figure 1a), between 
leaf δC13 and wood density (r = −0.20, p = 0.03, n = 105; Figure 1b) 
and between VLA and leaf carbon concentration (r = 0.45, p < 0.001, 
n = 60; Figure 1c). No significant correlations were found between 
the other traits studied (Table S2). In the PCA, the first three prin-
cipal components (PCs) accounted for 60.2% of the total variance. 
PC1 accounted for 27.8% of the total variance and was possibly re-
lated to resource capture. At the negative end of this axis, we found 

(7)Yi = �S + �1SVariable + �2S softS + �3S hardS + �4SNCIi + �S + �k,

TA B L E  2   Survival (S) and growth (RGR) models. The table 
shows the models compared to determine whether including total 
photosynthetic mass estimates (Mp) outperformed models that 
included the components of Mp by themselves. Also included were 
an intercept (βo), crown area (CA), initial diameter at breast height 
(dbh) and leaf mass per area (LMA). Variables that are significant 
in a model are bolded. Moreover, Akaike's value (AIC), ∆AIC 
(AICi − AICmin), Akaike weights (wi) and Cross-Validation loss (C-V 
loss) are shown for each model. Lower Cross-Validation loss (C-V 
loss) values are underlined showing the model with best goodness-
of-fit and higher probability of being the best model

Model AIC ∆AIC wi C-V loss

S ~ βo + Mp 16,049.8 0 0.495 0.453323

S ~ βo + CA 16,058.6 0 0.498 0.453323

S ~ βo + dbh 16,049.8 8.8 0.006 0.453670

S ~ βo + LMA 17,063.6 1,013.77 <0.001 0.485296

RGR ~ βo + Mp 28,388.4 0 0.615 0.281690

RGR ~ βo + CA 28,389.4 1 0.381 0.281712

RGR ~ βo + dbh 28,398.5 10.1 0.004 0.281812

RGR ~ βo + LMA 28,548.7 160.3 <0.001 0.282589
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species with high leaf phosphorus and nitrogen concentrations, and 
low wood density, while the positive end had species with low values 
of leaf phosphorus and nitrogen concentrations, and high wood den-
sity. The PC2 accounted for 18.4% of the total variance and was pos-
sibly related to maximum height, with large-statured, low specific 
leaf area and large seeded species found at positive values of this 
axis, while at negative values of this axis we found small-statured 

species with high specific leaf area and small seeds. The PC3 ac-
counted for 13.9% of the total variance and was possibly related to 
water use, with species showing low values of vein length area, and 
leaf carbon concentration, and high values of leaf δC13 at high values 
of this axis, while at negative values of this axis species display high 
values of leaf vein length area and leaf carbon concentration, and 
low values of leaf δC13 (Table S3; Figure S2).

F I G U R E  1   (a) Correlation between leaf carbon isotope composition and leaf phosphorus concentration. (b) Correlation between leaf 
carbon isotope composition and wood density. (c) Correlation between vein length per unit area (VLA) and leaf carbon concentration.  
The Pearson correlation coefficient (r), sample size (n), and p-value are shown for each graph
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Model AIC ∆AIC wi C-V loss

S ~ βo + Mp + C + Hmax + P 16,047.6 0 0.095 0.453325

S ~ βo + Mp + C + Hmax + P + N + SM + VLA 16,047.7 0.1 0.089 0.453337

S ~ βo + Mp + C + Hmax + P + NCI 16,048.1 0.4 0.076 0.453288

S ~ βo + Mp + C + Hmax + N + P + SM +  
NCI + VLA

16,048.2 0.5 0.073 0.453301

S ~ βo + Mp + P 16,048.4 0.8 0.065 0.453317

S ~ βo + Mp + C + P 16,048.5 0.9 0.061 0.453324

S ~ βo + Mp + C + Hmax + P + c13 16,048.7 1.0 0.056 0.453331

S ~ βo + Mp + P + NCI 16,048.8 1.2 0.053 0.453281

S ~ βo + Mp + C + Hmax + N + P + SM +  
VLA + c13

16,048.9 1.3 0.051 0.453344

S ~ βo + Mp + C + P + NCI 16,048.9 1.3 0.049 0.453287

S ~ βo + Mp + Hmax + P 16,049.0 1.3 0.048 0.453314

S ~ βo + Mp + C + P + wsg 16,049.1 1.4 0.046 0.453325

S ~ βo + Mp + C + Hmax + P + NCI + c13 16,049.1 1.5 0.045 0.453294

S ~ βo + Mp + C + Hmax + P + wsg 16,049.2 1.6 0.042 0.453327

S ~ βo + Mp + Hmax + P + NCI 16,049.4 1.8 0.039 0.453277

S ~ βo + Mp + P + LA 16,049.4 1.8 0.039 0.453311

S ~ βo + Mp + C + P + NCI + wsg 16,049.5 1.9 0.037 0.453289

S ~ βo + Mp + C + c13 16,049.6 2 0.035 0.453336

S ~ βo + CA + C + Hmax + P 16,045.0 0 0.268 0.453334

S ~ βo + CA + C + Hmax + P + NCI 16,045.4 0.4 0.217 0.453298

S ~ βo + CA + C + Hmax + P + N + SM + VLA 16,046.0 1.0 0.163 0.453347

S ~ βo + CA + C + Hmax + N + P + SM +  
NCI + VLA

16,046.4 1 0.134 0.453311

S ~ βo + CA + C + Hmax + P + c13 16,046.7 1.7 0.115 0.453336

S ~ βo + CA + C + Hmax + P + wsg 16,046.9 1.9 0.104 0.453335

TA B L E  3   Survival (S) models that 
include total photosynthetic mass (Mp) 
or crown area (CA). The table shows the 
set of models for survival with ∆AIC ≤ 2 
that include the intercept (βo), and soft- 
and hard-traits (refer to Table 1 for 
abbreviations). Moreover, Akaike's value 
(AIC), ∆AIC (AICi − AICmin), Akaike weights 
(wi) and Cross-Validation loss (C-V loss) are 
shown for each model
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3.2 | Demographic models

For tree survival the models that included Mp or CA, instead of LMA 
or dbh, showed a slight improvement in the model quality (Table 2). 
Therefore, we fit all the different combinations of tree survival mod-
els, controlling for multicollinearity among traits, (models with Mp: 
588; models with CA: 588) that included Mp, neighbourhood crowd-
ing, and soft- and hard-traits (Table S5), and models that included 
CA, neighbourhood crowding and soft- and hard-traits (Table S6). 
We selected the models that had a ΔAIC ≤ 2 (Table 3), but since mul-
tiple models had indiscernible AIC values, and the Akaike weights 
provided no strong evidence for a single superior model, we per-
formed model averaging (see results in Table 4). The averaged model 
that included total photosynthetic mass (Mp) as a predictor showed 
that survival increases with total photosynthetic mass, but the other 
traits were not significantly related to survival (Figure 2a; Table 4). 
The averaged model that included crown area (CA) as a predictor 

showed, in order of importance, CA, carbon concentration, maxi-
mum height and leaf phosphorus concentration as significant predic-
tors of tree survival, with survival increasing with CA and maximum 
height, and decreasing with leaf carbon and phosphorus concentra-
tions (Figure 2b; Table 4). Leaf nitrogen concentration, seed mass, 
vein length per unit area, neighbourhood crowding, leaf δC13, leaf 
area and wood density showed low support and no statistical signifi-
cance. In addition, the observed versus predicted plots (Figure S3) 
showed no difference between the survival averaged models with 
Mp and CA suggesting that both models perform equally well.

For tree growth, the model that included Mp instead of its com-
ponents (LMA, CA or dbh) showed an improvement in the model 
quality as evidenced by a reduction in both AIC and the C-V loss 
(Table 2). The inclusion of soft- and hard-traits and the neighbour-
hood crowding information in growth models resulted in two models 
with indiscernible AICs that included Mp, wood density and neigh-
bourhood crowding as strong predictors of tree growth (Table 5). 
The averaged growth model showed that tree growth decreases 
with high values of Mp, wood density and neighbourhood crowding 

TA B L E  4   Average survival (S) models that include total 
photosynthetic mass (Mp) or crown area (CA), and soft- and hard-
traits (refer to Table 1 for abbreviations). Variables are displayed in 
order of importance. Also included are the unconditional (model 
selection uncertainty not conditional in any particular model from 
the set) sampling standard error (ŜE), unconditional confidence 
intervals (Lower CI and Upper CI) and absolute Wald values that are 
shown for each variable

Variable Estimate ŜE

Lower 
CI

Upper 
CI |Wald Z|

S ~ βo + Mp + C + Hmax + P + N + SM + VLA + NCI + c13 + WD + LA

Mp 0.863 0.029 0.806 0.919 29.8

C −0.427 0.355 −1.122 0.269 1.20

H 0.298 0.348 −0.384 0.980 0.86

P −0.415 0.244 −0.894 0.064 1.70

N 0.086 0.159 −0.225 0.398 0.54

SM −0.073 0.136 −0.339 0.192 0.54

VLA 0.053 0.109 −0.160 0.267 0.49

NCI 0.010 0.017 −0.023 0.043 0.61

c13 0.035 0.073 −0.108 0.178 0.48

WD −0.036 0.079 −0.191 0.119 0.45

LA 0.010 0.022 −0.034 0.053 0.43

S ~ βo + CA + C + Hmax + P + N + SM + VLA + NCI + c13 + WD

CA 0.794 0.027 0.742 0.846 29.8

C −0.649 0.296 −1.229 −0.070 2.20

H 0.528 0.247 0.043 1.013 2.13

P −0.500 0.206 −0.904 −0.096 2.42

N 0.120 0.183 −0.239 0.479 0.66

SM −0.102 0.156 −0.408 0.204 0.65

VLA 0.102 0.157 −0.205 0.409 0.65

NCI 0.012 0.018 −0.023 0.047 0.69

c13 0.010 0.030 −0.049 0.070 0.34

WD −0.009 0.036 −0.080 0.063 0.24

F I G U R E  2   Standardized regression coefficients for the 
averaged survival models. Two averaged models were applied: 
(a) a model including photosynthetic mass (Mp) and traits; and 
(b) a model including photosynthetic crown area (CA) and traits. 
Refer to Table 1 for abbreviations. Variables are displayed in order 
of importance. Lines represent 95% confidence intervals, while 
circles represent the model estimated value. Open circles are non-
significant effect, and filled black circles represent a significant 
parameter at alpha = 0.05. Refer to Table 4 for details
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TA B L E  5   Growth (RGR) models. The table shows the set of 
models with indiscernible ΔAIC ≤ 2 that include intercept (βo) and 
traits (refer to Table 1 for abbreviations). Moreover, Akaike value 
(AIC), ∆AIC (AICi − AICmin), Akaike weights (wi) and Cross-Validation 
loss (C-V loss) are shown for each model

Model AIC ∆AIC wi C-V loss

RGR ~ βo + Mp +  
WD + NCI

28,321.7 0 0.67 0.281006

RGR ~ βo + Mp + NCI 28,323.1 1.4 0.33 0.281043
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(Figure 3; Figure S4; Table 6). Similar to survival models, none of the 
tree growth models with indiscernible AIC or |r| < 0.6 for tree rela-
tive growth rate included leaf δC13 or vein length area as indepen-
dent variables at a significance level of 0.05.

4  | DISCUSSION

Modelling individual-level performance including trait information is 
a key goal in ecology (e.g. Iida, Kohyama, et al., 2014; Iida et al., 2016; 
Paine et al., 2015; Poorter et al., 2008). It has been suggested that 
tree survival and growth models may be improved by integrating 
leaf-level traits with whole plant allocation to leaf area, through the 

measurement of less commonly measured traits more directly linked 
to physiological rates and the inclusion of local-scale biotic interac-
tions (Yang et al., 2018). Here, we have shown that growth models 
that integrate leaf-level traits (i.e. 1/SLA) with whole tree crown al-
location were superior to models that did not include crown infor-
mation. Similarly, survival models that integrate leaf-level traits with 
whole tree crown allocation or total crown area were superior to 
models that did not include them. Surprisingly, less commonly meas-
ured traits (hard-traits), such as leaf δC13 and leaf vein length per 
area, were not better predictors of tree survival and growth com-
pared to traits widely measured in plant ecology. In addition, neigh-
bourhood crowding showed a strong effect on tree growth, but not 
tree survival. In the following section, we discuss our key results in 
more detail.

4.1 | How are soft-traits with hard-traits correlated?

Plant ecologists often utilize easily measured functional traits in 
their research to estimate key trade-offs relating to organismal form 
and function. These traits are referred to as soft-traits, which are 
contrasted with hard-traits that are potentially more directly tied to 
physiological rates and performance, but less easily measured. Thus, 
trait-based analyses of plant performance may be strengthened by the 
measurement of hard-traits, but this may largely hinge on the degree 
of correlation between soft- and hard-traits. Our results showed lit-
tle to no correlation between the hard-traits measured (leaf δC13, 
vein length per area (VLA)) and commonly measured soft-traits (wood 
density, maximum tree height, seed mass, leaf nitrogen concentra-
tion, leaf phosphorus concentration, leaf carbon concentration, leaf 
area and specific leaf area (SLA)) (Table S2). The only exceptions were 
correlations found between leaf δC13 with leaf phosphorus concentra-
tion, and with wood density, and VLA with leaf carbon concentration 
(Figure 1; Table S2). A positive relationship between leaf δC13 and leaf 
phosphorus concentration has been previously described in other 
tropical forests (e.g. Baraloto et al., 2010). High values of soil phospho-
rus, which directly determine leaf phosphorus concentration (Wright 
et al., 2004), have been shown to increase plant water use efficiency 
(e.g. glasshouse experiment by Brück et al., 2000; Tibetan plateau by 
Song et al., 2010; and Canadian prairies by Kröbel et al., 2012), which 
corresponds with less negative values of leaf δC13. Contrary to our ex-
pectations, the weak negative relationship between leaf δC13 and wood 
density could be explained by a decoupling of stem and leaf hydraulic 
traits in this forest (but see Santiago et al., 2004 for scaling of these 
traits). A positive correlation between VLA and leaf carbon concentra-
tion, highlighting the role of VLA with respect to within-leaf support 
investment and not only its relation with hydraulics, has been reported 
previously (Niinemets et al., 2007). Leaf veins are composed of xylem 
and phloem cells (Sack & Scoffoni, 2013), which contain mainly lignin, 
cellulose and other structural carbohydrates. Thus, an increase in the 
number of veins per unit area should be associated with an increase in 
the amount of lignin in the leaf, which coincides with the concentra-
tions of total carbon (Poorter & Villar, 1997).

F I G U R E  3   Model standardized regression coefficient for 
the averaged growth model. Variables are displayed in order of 
importance. Refer to Table 1 for abbreviations. Lines represent 
95% confidence intervals, while the circles represent the model 
estimated value. Filled black circles represent a significant effect. 
Standardization was performed by log-transforming and scaling 
(z-scoring, subtracting the mean and dividing by the standard 
deviation) the variables. Refer to Table 6 for details
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TA B L E  6   Average growth (RGR) models that include total 
photosynthetic mass (Mp) and soft- and hard-traits (refer to Table 1 
for abbreviations). Variables are displayed in order of importance. 
Also included are the unconditional (model selection uncertainty 
not conditional in any particular model from the set) sampling 
standard error (ŜE), unconditional confidence intervals (Lower 
CI and Upper CI) and absolute Wald values are shown for each 
variable

Variable Estimate ŜE

Lower 
CI

Upper 
CI |Wald Z|

RGR ~ βo + Mp + WD + NCI

Mp −0.161 0.012 −0.184 −0.138 13.71

WD −0.136 0.065 −0.265 −0.008 2.08

NCI −0.086 0.010 −0.105 −0.066 8.72
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The negligible correlations between hard-traits with soft-traits 
in our study suggest that the soft-traits measured here are insuffi-
cient proxies of VLA and leaf δC13. Nevertheless, it is possible that 
the strength of the correlations shown here, and the importance 
of these hard-traits for modelling plant performance would be dif-
ferent if we included ontogenetic differences (Grime et al., 1997; 
Poorter et al., 2008; Wright et al., 2010), considered another set of 
species (Sack et al., 2013) or focused on a period time after intense 
drought events given the association of these hard-traits with tree 
performance under hydraulic stress.

4.2 | Total tree-level photosynthetic mass and 
crown area as better predictors of tree performance

Studies that have only considered leaf-level traits such as SLA (e.g. Paine 
et al., 2015; Wright et al., 2010) on large organisms (e.g. trees) likely 
have a reduced capacity to predict demographic rates due to individual- 
and species-level variation in overall crown allocation and architecture. 
Instead, total photosynthetic mass (Mp), as others have proposed (e.g. 
Enquist et al., 2007; Garnier, 1991; Hunt, 1978; Poorter, 1989; Yang 
et al., 2018) should be a stronger predictor of plant survival and growth 
than SLA. By estimating Mp via measurements of crown area integrated 
with LMA (i.e 1/SLA), we generated stronger models of tree demo-
graphic rates than those including initial dbh (Table 2).

The fact that survival models including crown area and models 
including total photosynthetic mass performed similarly suggests 
that omitting LMA and measuring crown area alone would be suffi-
cient to improve the predictions of tree survival in this forest (Table 3; 
Figure S3). This result highlights the importance of individual-level 
measurements (i.e. crown area, leaf area index) for improving predic-
tions of tree performance (Iida & Swenson, 2020; Poorter et al., 2008; 
Wright et al., 2010; Yang et al., 2018, 2020). It is also important to note 
the negative effect of Mp on growth. This result could be driven by big 
trees, expected to have big canopies, growing slower or by variations 
in individual crown depths not included in this study.

We note that our estimates of Mp are still crude in that they do 
not consider overall crown volume and measurements of the leaf area 
index, but they do provide a marked improvement of the traditional 
paradigm of relating leaf-level traits to demographic rates without 
context relating to crown allocation. It is, potentially, also important to 
note that the impact of Mp (reduced AIC, included in all the best mod-
els, and high variable importance/significance) in our models was large 
relative to that gained by adding or removing soft- and hard-traits (see 
below, Tables 2, 3 and 5). Thus, future work should start from a foun-
dation of crown measurements in models of tree demographic rates.

4.3 | Hard-traits did not improve model 
predictions of tree survival and growth

Contrary to our expectations, soft-traits were better predictors 
of tree performance than hard-traits related to water use. These 

soft-traits have been found to be related to tree survival and growth 
in other tropical forests (e.g. Chave et al., 2009; Enquist et al., 1999; 
Poorter et al., 2008; Wright et al., 2010). In a study of five neo-
tropical forests, Poorter et al. (2008) found that wood density was 
the best predictor of relative growth rates while survival rates in-
creased with maximum height. Using the forest plot used in this 
study, Uriarte et al. (2010) found that models in which the effects of 
neighbourhood interactions were scaled to trait values such as wood 
density provided stronger predictions of tree performance. Similarly, 
Zambrano et al. (2020) found that maximum height and leaf phos-
phorus concentration influenced the strength (positively and nega-
tively respectively) of neighbourhood interactions on survival rates.

Several explanations can be attributed to the limited model 
improvement when adding hard-traits. One potential, but un-
likely, reason is that water-related traits are not an important pre-
dictor of performance. These traits are expected to be strongly 
associated with individual performance under hydraulic stress 
or drought events, but they might not be critical for tree per-
formance during periods lacking intense dry events (such as the 
period evaluated in this study: 2005–2011). Rather, these water- 
related traits may be more important in the context of future 
drought events or in other forests experiencing strong droughts 
(Chadwick et al., 2016; Santiago et al., 2018). A second possibility 
is that these traits must be considered in light of more contextual 
information regarding regional-to-local-scale abiotic gradients 
(Yang et al., 2018; Zambrano et al., 2017). A third possibility that 
we consider to be the most probable is that these hydraulic traits 
can be sensitive to micro-environmental conditions or short-term 
climatic variations and they may need to be measured at those 
scales (Baraloto et al., 2010; Correia et al., 2008; Paine et al., 2015; 
Seibt et al., 2008). Thus, links between leaf δC13 values and growth 
may be detected at a finer temporal scale than we could assay in 
this study. Lastly, it could be possible that the link between these 
hard-traits (VLA and leaf δC13) and tree performance is directly 
influenced by changes in plant allocation resulting from differ-
ences in ontogeny and tree size (Falster et al., 2011, 2018; Gibert 
et al., 2016; Iida, Kohyama, et al., 2014; Iida et al., 2016). For ex-
ample, plant traits such as LMA are known to change as the plant 
grows (Wright et al., 2010) due to changes in specific-size plant 
requirements to allocate biomass or increments on construction 
costs (Gibert et al., 2016; Iida & Swenson, 2020). Therefore, tree 
survival and growth models need be further refined to consider 
changes associated with plant ontogenetic stage or size (Falster 
et al., 2018) in order to detect significant patterns.

Finally, including information regarding neighbour crowding only 
improved the quality of our tree growth models (Table 5). Increased 
neighbourhood crowding reduced tree growth, which was consis-
tent with previous work in this forest (Uriarte et al., 2004, 2010; 
Zambrano et al., 2019, 2020). Although the previously described neg-
ative impact of crowding on tree survival (e.g. Hubbell et al., 2001; 
Weiner, 1990), neighbourhood crowding was not a strong predic-
tor of survival in this study. Specifically, survival models including 
neighbourhood crowding had indiscernible AIC values compared to 
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other models (Table 3), but in the averaged survival models, the ef-
fect of neighbourhood crowding was relatively small suggesting that 
removing it from the models does not impact the predictions. This 
may be due to species responding differentially to neighbourhoods 
by having variable effective radii (Uriarte et al., 2004; Zambrano 
et al., 2020), or because the neighbourhood crowding index did not 
include species-specific functional trait values (Uriarte et al., 2010).

5  | CONCLUSIONS

Studies linking traits to tree performance usually fail to include 
physiological traits and whole plant allocation information. In this 
study we considered the importance of hard-traits, crown allocation, 
an integration of organ-level traits and crown allocation and biotic 
interactions to determine whether models of tropical tree perfor-
mance could be improved in comparison to models that only use eas-
ily measured soft-traits. Given that the leaf δC13 and VLA traits failed 
to improve the models and did not strongly correlate with the leaf 
and stem traits, we suggest that soft-traits used in this study might 
not be useful as proxies of leaf δC13 and VLA in this forest, and that 
these hard-traits might not be useful without contextual information 
regarding water availability (i.e. drought events) and/or finer scale 
sampling.

Lastly, the inclusion of a whole crown allocation data or crown 
area improved our predictions of tree performance. This result 
underscores the importance of integrating organ-level trait data 
with whole plant allocation data when modelling the performance 
of tropical trees and how they interact with the abiotic and biotic 
environment. Thus, future studies should strive to incorporate in-
dividual-level crown data and continue to seek out additional less 
commonly measured traits and biotic interactions that will improve 
tree survival and growth models.
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