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60 1. Individual-level demographic outcomes should be predictable upon the basis of traits. 

61 However, linking traits to tree performance has proven challenging likely due to a failure 

62 to consider physiological traits (i.e., hard-traits) and the failure to integrate organ-level 

63 and whole plant-level trait information. 

64 2. Here, we modeled the survival rate and relative growth rate of trees while considering 

65 crown allocation, hard-traits, and local-scale biotic interactions, and compared these 

66 models to more traditional trait-based models of tree performance. 

67 3. We found that an integrative trait, total tree-level photosynthetic mass (estimated by 

68 multiplying specific leaf area and crown area) results in superior models of tree survival 

69 and growth. These models had a lower AIC than those including the effect of initial tree 

70 size or any other combination of the traits considered. Survival rates were positively 

71 related to higher values of crown area and photosynthetic mass, while relative growth 

72 rates were negatively related to the photosynthetic mass. Relative growth rates were 

73 negatively related to a neighbourhood crowding index. Furthermore, none of the hard-

74 traits used in this study provided an improvement in tree performance models. 

75 4. Synthesis. Overall, our results highlight that models of tree performance can be greatly 

76 improved by including crown area information to generate a better understanding of plant 

77 responses to their environment. Additionally, the role of the hard-traits in improving 

78 models of tree performance is likely dependent upon the level of stress (e.g. drought 

79 stress), micro-environmental conditions, or short-term climatic variations that a particular 

80 forest experiences.

81 Key Words: Community Ecology, Demographic Rate, Forest Ecology, Functional Trait, 

82 Trait Integration

83 Introduction 

84 Variation in individual performance (i.e., survival and growth) determines the structure 

85 and dynamics of natural populations and communities. Differential performance is 

86 largely determined by the interaction between the individual phenotype and the abiotic 

87 and biotic environment (Arnold,1983; McGill, Enquist, Weiher & Westoby 2006).  

88 Ecologists have linked commonly-measured morphological and physiological traits, 

89 known as functional traits, to demographic rates, to facilitate predictive models of 

90 populations and communities into the future. 
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91 There is a core suite of functional traits widely measured in plant ecology. These 

92 include specific leaf area (SLA), maximum height, wood density and seed mass. These 

93 traits are often referred to as “soft-traits” due to their relative ease of measurement across 

94 many individuals and species and because they are, typically, indirectly related to a 

95 physiological rate or life-history tradeoff of interest (Westoby, 1998; Hodgson, Wilson, 

96 Hunt, Grime, & Thompson, 1999). These soft-traits are those most commonly used in 

97 tree demographic models (Poorter et al. 2008; Wright et al. 2010). Maximum height 

98 (Westoby, 1998; Bazzaz, Ackerly & Reekie, 2000; Westoby, Falster, Moles, Vesk & 

99 Wright, 2002; Poorter, Bongers, Sterck & Wöll, 2005), wood density (Enquist, West, 

100 Charnov & Brown, 1999; Chave et al. 2009), and seed mass (Rees, 1996; Westoby, 

101 1998) typically explain the greatest amount of variance in tree performance in tropical 

102 forests when compared to leaf traits like SLA (Poorter et al. 2008; Wright et al. 2010). 

103 However, forest ecologists have had variable success in linking these core commonly-

104 measured suite of functional traits to tree growth and mortality rates (Poorter et al. 2008; 

105 Wright et al. 2010; Paine et al. 2015; Yang, Cao & Swenson, 2018; Worthy & Swenson, 

106 2019; Iida & Swenson, 2020). 

107 There are multiple ways in which trait-based models of tree survival and growth 

108 may be improved (Yang, Cao & Swenson, 2018). These include, (i) measuring traits on 

109 individuals instead of using species mean values, (ii) considering less easily-measured 

110 traits, (iii) integrating leaf-level trait data into the context of whole biomass allocation, 

111 and (iv) accounting for biotic interactions. The first of these possibilities has been shown 

112 to be important in studies that have measured individual-level trait data on thousands of 

113 individuals from tens to hundreds of co-occurring sub-tropical and tropical tree species 

114 (e.g., Liu et al. 2016; Umaña, Zhang, Cao, Lin & Swenson, 2017). However, this 

115 approach may prove impractical in many cases. Therefore, here, we focus on the 

116 remaining three issues: considering less easily-measured traits (i.e. hard-traits) more 

117 closely aligned with plant physiological rates, the integration of leaf-level trait data into 

118 the context of whole biomass allocation, and accounting for local-scale biotic 

119 interactions.

120 One way forward for trait-based predictions of tree demographic performance is 

121 to measure additional traits, linked to physiological processes, beyond the core suite of 
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122 commonly-measured soft functional traits. Soft-traits may be strongly correlated with 

123 traits that are more difficult to measure (e.g., photosynthetic rates), making them the most 

124 pragmatic approach for predicting tree population and community structure and dynamics 

125 (e.g., Diaz et al. 2004). However, soft-traits may be weakly correlated or not correlated at 

126 all with important physiological rates and tradeoffs. Thus, tree survival and growth may 

127 be best predicted by less commonly-measured traits. Such traits often referred to as 

128 “hard-traits”, are often difficult to measure, but are more closely linked to physiological 

129 processes of interest (Hodgson, Wilson, Hunt, Gime, & Thompson, 1999; Lavorel & 

130 Garnier, 2002; Swenson et al. 2017; Yang, Cao & Swenson, 2018). For example, traits 

131 directly related to water use efficiency, such as leaf carbon stable isotope composition 

132 (Farquhar, O’Leary & Berry, 1982; Dawson, Mambelli, Plamboeck, Templer & Tu, 

133 2002) and leaf vein length per unit area (Sack & Frole, 2006; Brodribb, Feild & Jordan, 

134 2007; Sack & Scoffoni, 2013, but see Gleason et al. 2016), should be strongly associated 

135 with individual tree performance under hydraulic stress or drought events by significantly 

136 affecting photosynthetic capacity and leaf hydraulic conductance (Angert, Huxman, 

137 Barron-Gafford, Gerst & Venable, 2007; Correia et al. 2008; Gebrekirstos, van 

138 Noordwijk, Neufeldt & Mitlöhner, 2011; Sack et al. 2013; Iida et al. 2016). Thus, it is 

139 crucial to determine the importance of these traits in tropical forests, in which drought 

140 events are expected to increase (Chadwick, Good, Martin & Rowell, 2016). These hard-

141 trait data can be used in tree performance models and then competed against models that 

142 include only soft-trait data.

143 A second potential way forward is placing organ-level trait data into a whole plant 

144 allocation context. Previous work has demonstrated that tree architectural traits such as 

145 crown width (Iida et al. 2014b) or estimates of the amount of leaf area deployed for light 

146 interception (e.g., Falster, Brännström, Dieckmann, & Westoby, 2011) are valuable for 

147 understanding the functional strategies of plants and/or their performance. The most 

148 obvious and important starting place for accomplishing this goal is an integration of the 

149 most commonly measured leaf traits, SLA (i.e., the inverse of leaf mass per area [LMA]), 

150 and whole crown biomass leaf area allocation (i.e., an estimation of leaf area ratio). SLA 

151 reflects a fundamental tradeoff relating resource capture, leaf investment and leaf lifespan 

152 at the scale of a leaf (Reich, Walters & Ellsworth, 1997). However, individuals and 
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153 species vary widely in their relative allocation to whole crowns and this variation makes 

154 it unlikely that SLA alone will serve as a robust predictor of tree demographic rates 

155 (Yang, Cao & Swenson, 2018). Individual-level and inter-specific variation in crown 

156 biomass allocation or whole plant leaf mass divided by whole plant mass have been 

157 identified as critical predictors of plant growth or relative growth rate, respectively 

158 (Garnier, 1991; Enquist et al. 2007). Despite this, a placement of leaf traits into a crown 

159 context is not frequently done in the current trait-based tree growth modeling literature, 

160 which likely greatly reduces our ability to predict plant performance (Yang, Cao & 

161 Swenson, 2018; Yang et al. 2020). Thus, variables representing allocation to leaves 

162 should also be considered in models of tree survival and growth and these models should 

163 be compared to models lacking this information.  

164 Lastly, the role of local-scale biotic interactions (e.g., competition) need to be 

165 considered to understand the survival and growth responses resulting from the 

166 interactions between focal trees and their neighbours. Plant performance is expected to be 

167 affected by local population densities via positive or negative interactions (Pacala & 

168 Silander, 1985; Chesson 2000; Uriarte et al. 2010). Neighbourhood models that consider 

169 the density, size and distance of neighbouring trees have been increasingly used in trait-

170 based studies to determine the role of neighbourhood competition in tree community 

171 structure and dynamics (e.g., Uriarte et al. 2010; Canham, LePage, & Coates, 2004; 

172 Uriarte, Canham, Thompson, & Zimmerman, 2004; Zambrano et al. 2019).

173 Here, we compare models of tropical tree survival and growth that incorporate 

174 traits linked to tree water use (i.e. leaf carbon isotope composition (leaf C13), leaf 

175 hydraulic capacity and photosynthetic rates (i.e. leaf vein length per unit area), a measure 

176 of crown area multiplied by LMA to estimate tree-level allocation to photosynthetic mass 

177 (Mp), and neighbourhood crowding. In this work, we ask the following questions. 

178 1) How correlated are soft-traits with hard-traits?  We predict a strong positive 

179 correlation between leaf traits associated with hydraulic and photosynthetic capacity 

180 (e.g., Brodribb et al. 2007) (i.e., vein length per unit area and LMA), and between leaf 

181 traits related to water use efficiency such as leaf carbon isotopic composition with 

182 phosphorus concentration (Brück et al. 2000), and wood density (Santiago et al. 2004).  

183 Answering this question is critical because if these two types of traits are significantly 
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184 correlated, it would indicate that hard-traits may not be as valuable to measure and will 

185 likely not dramatically improve tree survival and growth models. 2) Does the use of an 

186 estimate of total tree-level photosynthetic mass (Mp) improve model fits of tree survival 

187 and growth as compared to models that do not include this information? We predict that 

188 the inclusion of Mp will improve model fit as it relates to crown resource allocation of the 

189 whole tree-level that ultimately affects survival and growth rates. 3) Do models of tree 

190 survival and growth that include traits related to water use and photosynthetic capacity 

191 (i.e., hard-traits) outperform models that include commonly measured soft-traits? We 

192 expect that including hard-traits will improve tree performance models as these traits are 

193 closely linked to physiological responses such as photosynthetic capacity and leaf 

194 hydraulic conductance. 4) Does including the effects of neighbourhood crowding 

195 improve the models of tree survival and growth? We predict strong neighbourhood 

196 crowding effects on tree survival and growth, due to either competition for similar 

197 resources or shared enemies reducing individual performance.

198

199 Methods

200 Luquillo forest dynamics plot

201 This study was conducted in the Luquillo Forest Dynamics Plot, a 16-ha long-term forest 

202 plot located in northeast Puerto Rico (18° 20' N, 65° 49' W; LTFP). The plot, divided into 

203 400 20x20m quadrats, has been censused every five years since 1990, where all free-

204 standing woody stems  1 cm in diameter at breast height (dbh) were identified and 

205 measured (Zimmerman, 2010). The plot is located in a subtropical wet forest type with 

206 Dacryodes excelsa (Burseraceae) and the palm Prestoea acuminata (Arecaceae) as the 

207 most dominant species. The mean annual rainfall is 3500mm/yr and mean monthly 

208 temperatures range between 21-25ºC. The plot experienced severe hurricane damage in 

209 1989, 1998 and 2017 due to hurricanes Hugo, Georges and Maria. The censuses used in 

210 this study included only those most distant from hurricane disturbance (2005 and 2011) 

211 and previous work has shown that the forest largely recovered from Hugo and Georges 

212 prior to the 2005 census (Swenson et al. 2012)

213

214 Functional trait measurement
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215 We used soft-trait data for 111 woody plant species that were previously collected 

216 (Swenson et al. 2012; Umana et al. 2015; Swenson & Umana, 2015). These traits were 

217 collected from 5 to 10 adult trees per species and included: leaf phosphorus (P; 

218 percentage P of dry mass), leaf carbon (C; percentage C of dry mass) and leaf nitrogen 

219 (N; percentage N of dry mass) concentration; wood specific gravity (referred to as wood 

220 density WD); leaf area (LA; cm2); specific leaf area (SLA; cm2 g-1); maximum tree height 

221 (Hmax; m); and seed dry mass (SM; g). In addition to these traits, we also measured two 

222 hard-traits related to plant hydraulics. The first was vein length per unit area (VLA; mm 

223 mm-2) measured following the protocol described in Iida et al. (2016). Briefly, two leaves 

224 from the outer crown per species were cut into 1x1cm squares, cleared with NaOH, 

225 stained with safranin, mounted on slides and imaged at 20x magnification. Next, the 

226 length of non-primary veins in the image was quantified by tracing the veins in ImageJ. A 

227 VLA value for 60 of the species was generated by averaging values from 3-5 individuals 

228 per species. Detailed physiological studies have shown that VLA is strongly positively 

229 correlated with photosynthetic capacity (Brodribb et al. 2007). We also quantified leaf 

230 carbon stable isotope ratios (leaf C13; ‰) using leaves collected between January and 

231 March 2008 (i.e. midway between censuses and during the driest part of the year). The 

232 isotope analyses were conducted using mass spectrometry at the Cornell University 

233 Stable Isotope Laboratory using leaves from 1-3 adult trees per species. Carbon stable 

234 isotope levels are indicative of water use efficiency (Farquhar, O’Leary & Berry, 1982; 

235 Dawson, Mambelli, Plamboeck, Templer & Tu, 2002) and, therefore, may indicate plant 

236 performance during periods of limited water.

237

238 Trait correlations

239 Trait values were first log-transformed to approximate normality if their distributions 

240 from the raw data were not approximately normal. Correlations between the hard-traits 

241 and soft-traits were examined using Pearson’s correlation coefficient. In addition, we 

242 applied a principal component analysis (PCA) to all traits from the same 60 species from 

243 which all trait data were available to determine trait relationships and the contribution of 

244 each trait to the principal components. 

245
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246 Total tree-level photosynthetic mass

247 Total tree-level photosynthetic mass (Mp) was calculated for each individual from 17 of 

248 the 30 most common species in the plot. These 17 species account for ~56% of the 

249 individuals (excluding palm species) and 13% of the species in the plot in the 2005 

250 census. We established species-specific crown allometries from field measurements 

251 (Table S1).  Specifically, we measured the stem diameter and the crown radius in two 

252 cardinal directions for 5 to 25 individuals (with dbh ranging from = 0.5cm to 56.3cm) per 

253 species to produce species-specific allometries (Eq. 1, Table S1, Figure S1; r2=0.66-

254 0.97). The species-specific Mp was obtained implementing equations (1), (2) and (3) that 

255 describe the crown area allometry in terms of individual tree crown radius as follows 

256 (Hunt 1978; Poorter 1989; Niklas & Enquist, 2001; Yang, Cao & Swenson, 2018):

257

258 log (������) = ����� ∗ log (��ℎ) + ���������   ��. (1)

259 �� =  � ∗ ������2     ��. (2)

260 �� = ��� ∗ ��      ��. (3)

261

262 where intercept and slope are species-specific estimates from the log10-log10 allometric 

263 regressions, and leaf mass per area (LMA) = 1/ SLA, which is related to leaf lifespan and 

264 photosynthetic rates (Reich et al. 1997). We estimated the Mp across all individuals (i) of 

265 each species based upon their dbhi values and crown area (CAi). It is important to note 

266 that this approach simplifies the estimate of Mp by making the unrealistic, but a most 

267 simple, assumption that all individuals and species have an identical leaf area index. 

268

269 Neighbourhood crowding index

270 We examined the effects of neighbours by calculating a total Neighbour Crowding Index 

271 (NCI). The negative influence of a neighbour was calculated as follows: 

272

273 NCIi =∑
j

��ℎ2��2��     ��. (4)

274  
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275 The index varies as a function of the squared dbh of the neighbour (j) and an inverse 

276 function of the squared distance (d) of the focal tree (i) to the neighbour (j) (Canham, 

277 LePage & Coates, 2004; Uriarte, Canham, Thompson & Zimmerman, 2004). The effect 

278 was calculated within a 20-m radius around the focal tree (i) and summed over all 

279 neighbours. Previous studies have shown that the effects of the neighbours can be 

280 detected within a radius smaller than 20m (Hubbell 2001; Uriarte, Canham, Thompson & 

281 Zimmerman, 2004; Uriarte et al. 2010), and that, in this forest, the effects of NCI are 

282 consistent across different radii (5m-30m) (Zambrano et al. 2020). We used all 128 

283 species in the 2005 census as neighbours (j) and estimated NCI for all individuals (i) of 

284 the 17 species for the demographic models. 

285

286  Modeling tree demographic rates: including total photosynthetic mass 

287 We used census data for the same 17 non-palm species for which we had species-specific 

288 allometries including all individuals with dbh values greater than or equal to one. We 

289 included 17,007 individuals for the survival models and 10,538 individuals for the growth 

290 models (see Table S4 for individuals per species). We measured tree survival by 

291 determining the presence of the individual in the next census. In addition, we calculated 

292 tree relative growth rate (RGR, cm y-1) as follows:

293

294       Eq. (5)��� =  (����ℎ� + Δ�― ����ℎ�)/Δ�
295

296 where dbht is measured at a successive time steps t ( , measured in years). A value of 1 Δ�
297 was added to the observed data before log-transforming. Additionally, negative values 

298 obtained (n = 1056), possibly due to stem shrinkage, measurement error, or breakage, 

299 were discarded before the log-transformation. Tree survival was fitted using a binomial 

300 function while tree growth was modeled using a Gaussian function. For both survival and 

301 growth, we used generalized linear mixed effect models (lmer and glmer functions from 

302 the lme4 package in R, Bates et al. 2015) as follows:

303

304   Eq. (6)���� = � + � �������� + �� + ��
305
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306 where YiSk represents survival (1: alive or 0: dead) or log-transformed RGR values for 

307 each individual tree i of species S,  represents any of the following (see Model �������� 

308 selection and assessment): the initial dbh in 2005),  (the tree-level total ��ℎ0� (  ���
309 photosynthetic mass), CAi (crown area) of each individual i, or LMAS (leaf mass per area) 

310 of species S.  and   are random effects of differences in species S and quadrat k, �� ��
311 respectively. S is species-specific intercept and S are species-specific coefficients 

312 representing the effect of the parameters. Parameters were z-score standardized 

313 (subtracting the mean and dividing by the standard deviation) prior to analyses.

314

315 Model selection and assessment

316 First, we examined whether including Mp or any of its components, LMAS and CAi, 

317 instead of dbhi increased the quality of the tree survival and growth models by fitting one 

318 model for each variable with a similar structure (intercept and the random effects) (Eq.6; 

319 Table 2). We used three different methods to select the best model: (i) the Akaike’s 

320 information criterion (AIC), (ii) Akaike weights (wi) and (iii) Cross-Validation/loss 

321 function (C-V loss). For AIC, we used a delta-AIC threshold of 2 units (AIC differences 

322 relative to the smallest AIC value: AICi - AICmin). For Akaike weights, we compared the 

323 likelihood (weight of evidence) of each model to the best model by computing their 

324 Akaike’s weights (Burnham & Anderson, 2002). Lastly, for the C-V loss method we 

325 calculated the test error (loss) associated to each model (i.e., goodness of fit) by 

326 performing a 10-fold cross-validation. This approach provides a direct estimate of the test 

327 error and makes fewer assumptions about the true underlying model (James, Witten, 

328 Hastie & Tibshirani, 2013). We chose the “best model” or “best models” as the one/ones 

329 with low AIC, high Akaike weight, and low C-V loss scores. To calculate the C-V loss, 

330 the data was randomly divided into 10-folds of approximately equal size. Nine of the 

331 folds were used to train the models and the one remaining fold to test the models (James, 

332 Witten, Hastie & Tibshirani, 2013). This process was repeated ten times in which a 

333 different group was treated as the test set. For the ten folds, we calculated the averaged 

334 loss for each model (the error associated with fitting each of the models on the data). We 

335 implemented two loss functions to assess the goodness of fit of a model (i.e. model 

336 quality) by estimating its prediction error on new (i.e. test) data (Hastie, Tibshirani & 
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337 Friedman, 2009). For tree survival models only, we used a log-loss function (cross-

338 entropy cost function from the package MLmetrics in R, Yan 2016) that accounts for 

339 uncertainty in the predictions. For tree growth, we calculated the Huber loss that uses a 

340 quadratic loss function for small residuals or a linear loss function when residuals exceed 

341 the minimum value of the 90th quantile (package qrmix in R, Resa, Emir & Cabrera, 

342 2017). Thus, this function avoids the effects of large outliers that make the quadratic loss 

343 less robust (Hastie, Tibshirani & Friedman, 2009). When comparing models using the 

344 loss function values, the smallest value indicates the model with higher performance 

345 when predicting unseen data. In other words, this value indicates which model can be 

346 expected to perform better on other sets of data (James, Witten, Hastie & Tibshirani, 

347 2013).

348

349 Modeling tree demographic rates: including soft- and hard-traits

350 Following the selection of the best predictor (Mp, LMA, CA, or dbh) of survival and 

351 growth using Eq. 6 (Table 2), we fit all different model combinations that included the 

352 selected predictors, both soft- and hard-traits, and the neighbour crowding index. The 

353 models were fit controlling for multicollinearity among traits (excluding trait 

354 combinations with Pearson’s correlation coefficient |r | 0.60) using the function pdredge 

355 from the package MuMIn in R (Bartoń 2018), setting:

356

357   Eq. (7)�� = � + 1� �������� + 2� ����� + 3� ℎ���� + 4� ���� + �� + ��
358

359 where Variable represents the selected parameter (Mp, CA, dbh, or LMA), softS and hardS 

360 represent all the soft- and hard-traits used at the species level S, and NCIi represents a 

361 neighbourhood crowding index at the individual level i. The  and  parameters are �� ��
362 random effects for species S and quadrat k, respectively. The S is a species-specific 

363 intercept, 1S-4S are species-specific coefficients representing the effect of the 

364 parameters. The data were z-score standardized (subtracting the mean and dividing by the 

365 standard deviation). We performed model selection following the same methodology 

366 described above in the Model selection and assessment section. 

367
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368 Model averaging

369 When multiple models were indiscernible (AICi - AICmin 2) due to similar Akaike 

370 weights and C-V losses, we carried out multi-model inference to increase precision and 

371 reduce bias (Burnham & Anderson, 2002). This methodology first selects a model set 

372 from which model averaging is performed including model selection uncertainty from the 

373 set of models. We compared the standardized coefficients to determine the relative 

374 importance of the variables in the averaged model. Predicted versus observed values were 

375 plotted to test the fit of the model. All the analyses were carried out with the R software 

376 version 3.5.1 (R Development Core Team 2008).

377

378 Results

379 Correlations between soft- and hard-traits

380 We found positive correlations between leaf C13 and leaf phosphorus concentration (r = 

381 0.27, P=0.004, n = 105; Figure 1a), between leaf C13 and wood density (r=-0.20, P=0.03, 

382 n=105; Figure 1b),and between VLA and leaf carbon concentration (r = 0.45, P<0.001, n 

383 = 60; Figure 1c). No significant correlations were found between the other traits studied 

384 (Table S2). In the PCA, the first three principal components (PCs) accounted for 60.2% 

385 of the total variance. PC1 accounted for 27.8% of the total variance and was possibly 

386 related to resource capture. At the negative end of this axis, we found species with high 

387 leaf phosphorus and nitrogen concentrations, and low wood density, while the positive 

388 end had species with low values of leaf phosphorus and nitrogen concentrations, and high 

389 wood density. The PC2 accounted for 18.4% of the total variance and was possibly 

390 related to maximum height, with large-statured, low specific leaf area and large seeded 

391 species found at positive values of this axis, while at negative values of this axis we 

392 found small-statured species with high specific leaf area and small seeds. The PC3 

393 accounted for 13.9% of the total variance and was possibly related to water use, with 

394 species showing low values of vein length area, and leaf carbon concentration, and high 

395 values of leaf C13 at  high values of this axis, while at negative values of this axis species 

396 display high values of leaf vein length area and leaf carbon concentration, and low values 

397 of leaf C13 (Table S3 & Figure S2). 

398
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399 Demographic models

400 For tree survival the models that included Mp or CA, instead of LMA or dbh, showed a 

401 slight improvement in the model quality (Table 2). Therefore, we fit all the different 

402 combinations of tree survival models, controlling for multicollinearity among traits, 

403 (models with Mp: 588; models with CA: 588) that included Mp, neighbourhood crowding, 

404 and soft- and hard-traits (Table S5), and models that included CA, neighbourhood 

405 crowding, and soft- and hard-traits (Table S6). We selected the models that had a AIC  

406 2 (Table 3), but since multiple models had indiscernible AIC values, and the Akaike 

407 weights provided no strong evidence for a single superior model, we performed model 

408 averaging (see results in Table 4). The averaged model that included total photosynthetic 

409 mass (Mp) as a predictor showed that survival increases with total photosynthetic mass, 

410 but the other traits were not significantly related to survival (Figure 2a & Table 4).  The 

411 averaged model that included crown area (CA) as a predictor showed, in order of 

412 importance, CA, carbon concentration, maximum height, and leaf phosphorus 

413 concentration as significant predictors of tree survival, with survival increasing with CA 

414 and maximum height, and decreasing with leaf carbon and phosphorus concentrations 

415 (Figure 2b & Table 4). Leaf nitrogen concentration, seed mass, vein length per unit area, 

416 neighbourhood crowding, leaf C13, leaf area, and wood density showed low support and 

417 no statistical significance. In addition, the observed versus predicted plots (Figure S3) 

418 showed no difference between the survival averaged models with Mp and CA suggesting 

419 that both models perform equally well.  

420 For tree growth, the model that included Mp instead of its components (LMA, CA, 

421 or dbh) showed an improvement in the model quality as evidenced by a reduction in both 

422 AIC and the C-V loss (Table 2). The inclusion of soft- and hard-traits and the 

423 neighbourhood crowding information in growth models resulted in two models with 

424 indiscernible AICs that included Mp, wood density, and neighbourhood crowding as 

425 strong predictors of tree growth (Table 5). The averaged growth model showed that tree 

426 growth decreases with high values of Mp, wood density, and neighbourhood crowding 

427 (Figure 3 & Figure S4, Table 6). Similar to survival models, none of the tree growth 

428 models with indiscernible AIC or | r |< 0.6 for tree relative growth rate included leaf C13 

429 or vein length area as independent variables at a significance level of 0.05. 
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430

431 Discussion

432 Modeling individual-level performance including trait information is a key goal in 

433 ecology (e.g., Poorter et al. 2008; Iida et al. 2014a; Paine et al. 2015; Iida et al. 2016). It 

434 has been suggested that tree survival and growth models may be improved by integrating 

435 leaf-level traits with whole plant allocation to leaf area, through the measurement of less 

436 commonly-measured traits more directly linked to physiological rates, and the inclusion 

437 of local-scale biotic interactions (Yang, Cao & Swenson, 2018). Here, we have shown 

438 that growth models that integrate leaf-level traits (i.e., 1/SLA) with whole tree crown 

439 allocation were superior to models that did not include crown information. Similarly, 

440 survival models that integrate leaf-level traits with whole tree crown allocation or total 

441 crown area were superior to models that did not include them. Surprisingly, less 

442 commonly-measured traits (hard-traits), such as leaf C13 and leaf vein length per area, 

443 were not better predictors of tree survival and growth compared to traits widely measured 

444 in plant ecology. In addition, neighbourhood crowding showed a strong effect on tree 

445 growth, but not tree survival. In the following, we discuss our key results in more detail. 

446

447 How are soft-traits with hard-traits correalated? 

448 Plant ecologists often utilize easily-measured functional traits in their research to estimate 

449 key tradeoffs relating to organismal form and function. These traits are referred to as soft-

450 traits, which are contrasted with hard-traits that are potentially more directly tied to 

451 physiological rates and performance, but less easily measured. Thus, trait-based analyses 

452 of plant performance may be strengthened by the measurement of hard-traits, but this 

453 may largely hinge on the degree of correlation between soft- and hard-traits. Our results 

454 showed little to no correlation between the hard-traits measured (leaf C13, vein length 

455 per area (VLA)) and commonly-measured soft-traits (wood density, maximum tree 

456 height, seed mass, leaf nitrogen concentration, leaf phosphorus concentration, leaf carbon 

457 concentration, leaf area and specific leaf area (SLA)) (Table S2). The only exceptions 

458 were correlations found between leaf C13 with leaf phosphorus concentration, and with 

459 wood density, and VLA with leaf carbon concentration (Figure 1, Table S2). A positive 

460 relationship between leaf C13 and leaf phosphorus concentration has been previously 
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461 described in other tropical forests (e.g., Baraloto et al. 2010). High values of soil 

462 phosphorus, which directly determine leaf phosphorus concentration (Wright et al. 2004), 

463 have been shown to increase plant water use efficiency (e.g., glasshouse experiment by 

464 Brück et al. 2000; Tibetan plateau by Song et al. 2010; and Canadian prairies by Kröbel 

465 et al. 2012), which corresponds with less negative values of leaf C13. Contrary to our 

466 expectations, the weak negative relationship between leaf C13 and wood density could 

467 be explained by a decoupling of stem and leaf hydraulic traits in this forest (but see 

468 Santiago et al. 2004 for scaling of these traits). A positive correlation between VLA and 

469 leaf carbon concentration, highlighting the role of VLA with respect to within-leaf 

470 support investment and not only its relation with hydraulics, has been reported previously 

471 (Niinemets et al. 2007). Leaf veins are composed of xylem and phloem cells (Sack & 

472 Scoffoni 2013), which contain mainly lignin, cellulose, and other structural 

473 carbohydrates. Thus, an increase in the number of veins per unit area should be 

474 associated with an increase in the amount of lignin in the leaf, which coincides with the 

475 concentrations of total carbon (Poorter & Villar, 1997).

476 The negligible correlations between hard-traits with soft-traits in our study 

477 suggest that the soft-traits measured here are insufficient proxies of VLA and leaf C13. 

478 Nevertheless, it is possible that the strength of the correlations shown here, and the 

479 importance of these hard-traits for modeling plant performance would be different if we 

480 included ontogenetic differences (Grime et al. 1997; Poorter et al. 2008; Wright et al. 

481 2010), considered another set of species (Sack et al. 2013), or focused on a period time 

482 after intense drought events given the association of these hard-traits with tree 

483 performance under hydraulic stress.   

484

485 Total tree-level photosynthetic mass and crown area as better predictors of tree 

486 performance

487 Studies that have only considered leaf-level traits such as SLA (e.g., Wright et al. 2010; 

488 Paine et al. 2015) on large organisms (e.g., trees) likely have a reduced capacity to 

489 predict demographic rates due to individual- and species-level variation in overall crown 

490 allocation and architecture. Instead, total photosynthetic mass (Mp), as others have 

491 proposed (e.g., Hunt, 1978; Poorter, 1989; Garnier, 1991; Enquist et al. 2007; Yang, Cao 
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492 & Swenson, 2018) should be a stronger predictor of plant survival and growth than SLA. 

493 By estimating Mp via measurements of crown area integrated with LMA (i.e 1/SLA), we 

494 generated stronger models of tree demographic rates than those including initial dbh 

495 (Table 2). 

496 The fact that survival models including crown area and models including total 

497 photosynthetic mass performed similarly suggests that omitting LMA and measuring 

498 crown area alone would be sufficient to improve the predictions of tree survival in this 

499 forest (Table 3 & Figure S3). This result highlights the importance of individual-level 

500 measurements (i.e., crown area, leaf area index) for improving predictions of tree 

501 performance (Poorter et al. 2008; Wright et al. 2010; Yang, Cao & Swenson, 2018; Yang 

502 et al. 2020; Iida & Swenson, 2020). It is also important to note the negative effect of Mp 

503 on growth. This result could be driven by big trees, expected to have big canopies, 

504 growing slower, or by variations in individual crown depths not included in this study.  

505

506 We note that our estimates of Mp are still crude in that they do not consider overall 

507 crown volume and measurements of the leaf area index, but they do provide a marked 

508 improvement of the traditional paradigm of relating leaf-level traits to demographic rates 

509 without context relating to crown allocation. It is, potentially, also important to note that 

510 the impact of Mp (reduced AIC, included in all the best models, and high variable 

511 importance/significance) in our models was large relative to that gained by adding or 

512 removing soft- and hard-traits (see below, Table 2, Table 3 & Table 5). Thus, future work 

513 should start from a foundation of crown measurements in models of tree demographic 

514 rates.

515

516 Hard-traits did not improve model predictions of tree survival and growth 

517 Contrary to our expectations, soft-traits were better predictors of tree performance than 

518 hard-traits related to water use. These soft-traits have been found to be related to tree 

519 survival and growth in other tropical forests (e.g. Enquist, West, Charnov & Brown, 

520 1999; Poorter et al., (2008); Chave et al. 2009; Wright et al., (2010)). In a study of five 

521 neotropical forests, Poorter et al., (2008) found that wood density was the best predictor 

522 of relative growth rates while survival rates increased with maximum height. Using the 
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523 forest plot used in this study, Uriarte et al. (2010) found that models in which the effects 

524 of neighbourhood interactions were scaled to trait values such as wood density provided 

525 stronger predictions of tree performance. Similarly, Zambrano et al. (2020) found that 

526 maximum height and leaf phosphorus concentration influenced the strength (positively 

527 and negatively, respectively) of neighbourhood interactions on survival rates. 

528 Several explanations can be attributed to the limited model improvement when 

529 adding hard-traits. One potential, but unlikely, reason is that water-related traits are not 

530 an important predictor of performance. These traits are expected to be strongly associated 

531 with individual performance under hydraulic stress or drought events, but they might not 

532 be critical for tree performance during periods lacking intense dry events (such as the 

533 period evaluated in this study: 2005-2011). Rather, these water-related traits may be more 

534 important in the context of future drought events or in other forests experiencing strong 

535 droughts (Chadwick, Good, Martin & Rowell, 2016; Santiago et al. 2018). A second 

536 possibility is that these traits must be considered in light of more contextual information 

537 regarding regional-to-local scale abiotic gradients (Zambrano, Marchand, & Swenson, 

538 2017; Yang, Cao & Swenson, 2018). A third possibility that we consider to be the most 

539 probable is that these hydraulic traits can be sensitive to micro-environmental conditions 

540 or short-term climatic variations and they may need to be measured at those scales 

541 (Correia et al. 2008; Seibt, Rajabi, Griffiths & Berry, 2008; Baraloto et al. 2010; Paine et 

542 al. 2015). Thus, links between leaf C13 values and growth may be detected at a finer 

543 temporal scale than we could assay in this study. Lastly, it could be possible that the link 

544 between these hard-traits (VLA and leaf C13) and tree performance is directly influenced 

545 by changes in plant allocation resulting from differences in ontogeny and tree size 

546 (Gibert, Gray, Westoby, Wright, & Falster, 2016; Falster, Brännström, Dieckmann, & 

547 Westoby, 2011; Iida et al. 2014a, 2016; Falster, Duursma, & FitzJohn, 2018). For 

548 example, plant traits such as LMA are known to change as the plant grows (Wright et al. 

549 2010) due to changes in specific-size plant requirements to allocate biomass or 

550 increments on construction costs (Gibert, Gray, Westoby, Wright, & Falster, 2016; Iida & 

551 Swenson, 2020).  Therefore, tree survival and growth models need be further refined to 

552 consider changes associated with plant ontogenetic stage or size (Falster, Duursma, & 

553 FitzJohn, 2018) in order to detect significant patterns. 
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554 Finally, including information regarding neighbour crowding only improved the 

555 quality of our tree growth models (Table 5). Increased neighbourhood crowding reduced 

556 tree growth, which was consistent with previous work in this forest (Uriarte, Canham, 

557 Thompson & Zimmerman, 2004; Uriarte et al. 2010; Zambrano et al. 2019; Zambrano et 

558 al.  2020). Although the previously described negative impact of crowding on tree 

559 survival (e.g., Weiner 1990; Hubbell et al. 2001), neighbourhood crowding was not a 

560 strong predictor of survival in this study. Specifically, survival models including 

561 neighbourhood crowding had indiscernible AIC values compared to other models (Table 

562 3), but in the averaged survival models, the effect of neighbourhood crowding was 

563 relatively small suggesting that removing it from the models does not impact the 

564 predictions. This may be due to species responding differentially to neighbourhoods by 

565 having variable effective radii (Uriarte, Canham, Thompson & Zimmerman, 2004; 

566 Zambrano et al. 2020), or because the neighbourhood crowding index did not include 

567 species-specific functional trait values (Uriarte et al. 2010). 

568

569 Conclusions

570 Studies linking traits to tree performance usually fail to include physiological traits and 

571 whole plant allocation information. In this study we considered the importance of hard-

572 traits, crown allocation, an integration of organ-level traits and crown allocation, and 

573 biotic interactions to determine whether models of tropical tree performance could be 

574 improved in comparison to models that only use easily-measured soft-traits. Given that 

575 the leaf C13 and VLA traits failed to improve the models and did not strongly correlate 

576 with the leaf and stem traits, we suggest that soft-traits used in this study might not be 

577 useful as proxies of leaf C13 and VLA in this forest, and that these hard-traits might not 

578 be useful without contextual information regarding water availability (i.e., drought 

579 events) and/or finer scale sampling. 

580 Lastly, the inclusion of a whole crown allocation data or crown area improved our 

581 predictions of tree performance. This result underscores the importance of integrating 

582 organ-level trait data with whole plant allocation data when modeling the performance of 

583 tropical trees and how they interact with the abiotic and biotic environment. Thus, future 

584 studies should strive to incorporate individual-level crown data and continue to seek out 
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585 additional less commonly-measured traits and biotic interactions that will improve tree 

586 survival and growth models. 

587
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958 Figure 1.  (a) Correlation between leaf carbon isotope composition and leaf phosphorus 

959 concentration. (b) Correlation between leaf carbon isotope composition and wood 

960 density. (c) Correlation between vein length per unit area (VLA) and leaf carbon 

961 concentration. The Pearson correlation coefficient (r), sample size (n), and p-value are 

962 shown for each graph. 
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965 Figure 2. Standardized regression coefficients for the averaged survival models. Two 

966 averaged models were applied: (a) a model including photosynthetic mass (Mp) and traits; 

967 and (b) a model including photosynthetic crown area (CA) and traits. Refer to Table 1 for 

968 abbreviations. Variables are displayed in order of importance. Lines represent 95% 

969 confidence intervals, while circles represent the model estimated value. Open circles are 

970 non-significant effect, and filled black circles represent a significant parameter at alpha = 

971 0.05. Refer to Table 4 for details.
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972

973

974 Figure 3. (a) Model standardized regression coefficient for the averaged growth model. 

975 Variables are displayed in order of importance. Refer to Table 1 for abbreviations. Lines 

976 represent 95% confidence intervals, while the circles represent the model estimated value. 

977 Filled black circles represent a significant effect. Standardization was performed by log-

978 transforming and scaling (z-scoring, subtracting the mean and dividing by the standard 

979 deviation) the variables. Refer to Table 6 for details.

980

981

982

983

984

985 TABLES

986 Table 1. Soft- and hard-traits considered as potential predictors of tree survival and 

987 growth rates.
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Soft-traits     

Leaf phosphorus concentration P (%P)

Leaf carbon concentration C (%C)

Leaf nitrogen concentration N (%N)

Wood density WD

Leaf area LA (cm2)

Specific leaf area SLA (cm2 g-1)

Maximum tree height H (m)

Commonly measured but weakly 

correlated or not correlated at all with 

important physiological rates 

Seed dry mass SM (g)

Hard-traits     

C13 (‰)Stable leaf carbon isotope 

composition

Vein length per unit area VLA (mm mm-2)

Difficult to measure but closely linked to 

physiological processes of interest

988

989

990 Table 2. Survival (S) and growth (RGR) models. The table shows the models compared 

991 to determine whether including total photosynthetic mass estimates (Mp) outperformed 

992 models that included the components of Mp by themselves. Also included were an 

993 intercept (ßo), crown area (CA), initial diameter at breast height (dbh), and leaf mass per 

994 area (LMA). Variables that are significant in a model are bolded. Moreover, Akaike’ s 

995 value (AIC), ∆AIC (AICi - AICmin), Akaike weights (wi), and Cross-Validation loss (C-V 

996 loss) are shown for each model. Lower Cross-Validation loss (C-V loss) values are 

997 underlined showing the model with best goodness of fit and higher probability of being 

998 the best model. 

999  

Model  AIC ∆AIC wi C-V loss

o + Mp 16049.8 0 0.495 0.453323

o + CA 16058.6 0 0.498 0.453323

o + dbh 16049.8 8.8 0.006 0.453670

o + LMA  17063.6 1013.77 <0.001 0.485296

RGR ~ ßo + Mp 28388.4 0 0.615 0.281690
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RGR ~ ßo + CA 28389.4 1 0.381 0.281712

RGR ~ ßo + dbh 28398.5 10.1 0.004 0.281812

RGR ~ ßo + LMA 28548.7 160.3 <0.001 0.282589

1000

1001

1002 Table 3. Survival (S) models that include total photosynthetic mass (Mp) or crown area 

1003 (CA). The table shows the set of models for survival with ∆AIC 2 that include the 

1004 intercept (ßo), and soft- and hard-traits (refer to Table 1 for abbreviations). Moreover, 

1005 Akaike’ s value (AIC), ∆AIC (AICi - AICmin), Akaike weights (wi), and Cross-Validation 

1006 loss (C-V loss) are shown for each model. 

Model  AIC ∆AIC wi C-V loss

o + Mp + C + Hmax + P 16047.6 0 0.095 0.453325

o + Mp + C + Hmax + P + N 16047.7 0.1 0.089 0.453337

o + Mp + C + Hmax + P + NCI   16048.1 0.4 0.076 0.453288

o + Mp + C + Hmax + N + P LA 16048.2 0.5 0.073 0.453301

o + Mp + P 16048.4 0.8 0.065 0.453317

o + Mp + C + P 16048.5 0.9 0.061 0.453324

o + Mp + C + Hmax + P + c13 16048.7 1.0 0.056 0.453331

o + Mp + P + NCI 16048.8 1.2 0.053 0.453281

o + Mp + C + Hmax + N + P c13 16048.9 1.3 0.051 0.453344

o + Mp + C + P + NCI 16048.9 1.3 0.049 0.453287

o + Mp + Hmax + P 16049.0 1.3 0.048 0.453314

o + Mp + C + P +wsg 16049.1 1.4 0.046 0.453325

o + Mp + C + Hmax + P + NCI + c13 16049.1 1.5 0.045 0.453294

o + Mp + C + Hmax + P + wsg 16049.2 1.6 0.042 0.453327

o + Mp + Hmax + P + NCI 16049.4 1.8 0.039 0.453277

o + Mp + P + LA 16049.4 1.8 0.039 0.453311

o + Mp + C + P + NCI + wsg 16049.5 1.9 0.037 0.453289

o + Mp + C + c13  16049.6 2 0.035 0.453336

o + CA + C + Hmax + P 16045.0 0 0.268 0.453334

o + CA + C + Hmax + P + NCI 16045.4 0.4 0.217 0.453298

o + CA + C + Hmax + P + N 16046.0 1.0 0.163 0.453347

o + CA + C + Hmax + N + P LA 16046.4 1 0.134 0.453311

o + CA + C + Hmax + P + c13 16046.7 1.7 0.115 0.453336

o + CA + C + Hmax + P + wsg 16046.9 1.9 0.104 0.453335
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1007

1008

1009

1010 Table 4. Average survival (S) models that include total photosynthetic mass (Mp) or crown 

1011 area (CA), and soft- and hard-traits (refer to Table 1 for abbreviations). Variables are 

1012 displayed in order of importance. Also included are the unconditional (model selection 

1013 uncertainty not conditional in any particular model from the set) sampling standard error (

1014 ), unconditional confidence intervals (Lower CI and Upper CI), and absolute Wald ��
1015 values are shown for each variable.

1016   

Variable Estimate �� Lower CI Upper CI |Wald Z|

S ~ ßo + Mp + C + Hmax + P + N + SM + VLA + NCI + c13 + WD + LA

Mp 0.863 0.029 0.806 0.919 29.8

C -0.427 0.355 -1.122 0.269 1.20

H 0.298 0.348 -0.384 0.980 0.86

P -0.415 0.244 -0.894 0.064 1.70

N 0.086 0.159 -0.225 0.398 0.54

-0.073 0.136 -0.339 0.192 0.54

VLA 0.053 0.109 -0.160 0.267 0.49

NCI 0.010 0.017 -0.023 0.043 0.61

c13 0.035 0.073 -0.108 0.178 0.48

WD -0.036 0.079 -0.191 0.119 0.45

LA 0.010 0.022 -0.034 0.053 0.43

S ~ ßo + CA + C + Hmax + P + N + SM + VLA + NCI + c13 + WD

CA 0.794 0.027 0.742 0.846 29.8

C -0.649 0.296 -1.229 -0.070 2.20

H 0.528 0.247 0.043 1.013 2.13

P -0.500 0.206 -0.904 -0.096 2.42

N 0.120 0.183 -0.239 0.479 0.66

-0.102 0.156 -0.408 0.204 0.65

VLA 0.102 0.157 -0.205 0.409 0.65

NCI 0.012 0.018 -0.023 0.047 0.69

c13 0.010 0.030 -0.049 0.070 0.34
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WD -0.009 0.036 -0.080 0.063 0.24

1017

1018

1019 Table 5. Growth (RGR) models. The table shows the set of models with indiscernible 

1020 AIC 2 that include intercept (ßo) and traits (refer to Table 1 for abbreviations). 

1021 Moreover, Akaike value (AIC), ∆AIC (AICi - AICmin), Akaike weights (wi), and Cross-

1022 Validation loss (C-V loss) are shown for each model. 

Model AIC ∆AIC wi C-V loss

RGR ~ ßo + Mp + WD + NCI 28321.7 0 0.67 0.281006

RGR ~ ßo + Mp + NCI 28323.1 1.4 0.33 0.281043

1023

1024

1025 Table 6. Average growth (RGR) models that include total photosynthetic mass (Mp) and 

1026 soft- and hard-traits (refer to Table 1 for abbreviations). Variables are displayed in order 

1027 of importance. Also included are the unconditional (model selection uncertainty not 

1028 conditional in any particular model from the set) sampling standard error ( ), ��
1029 unconditional confidence intervals (Lower CI and Upper CI), and absolute Wald values are 

1030 shown for each variable.

Variable Estimate �� Lower CI Upper CI |Wald Z|

RGR ~ ßo + Mp + WD + NCI

Mp -0.161 0.012 -0.184 -0.138 13.71

WD -0.136 0.065 -0.265 -0.008 2.08

NCI -0.086 0.010 -0.105 -0.066 8.72
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