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Abstract 

Demanding cognitive functions like working memory (WM) depend on functional brain 

networks being able to communicate efficiently while also maintaining some degree of 

modularity. Evidence suggests that aging can disrupt this balance between integration and 

modularity. In this study, we examined how cognitive training affects the integration and 

modularity of functional networks in older and younger adults. 23 younger and 23 older adults 

participated in 10 days of verbal WM training, leading to performance gains in both age groups. 

Older adults exhibited lower modularity overall and a greater decrement when switching from 

rest to task, compared to younger adults. Interestingly, younger but not older adults showed 

increased task-related modularity with training. Furthermore, whereas training increased 

efficiency within, and decreased participation of, the default-mode network for younger adults, it 

enhanced efficiency within a task-specific salience/sensorimotor network for older adults. 

Finally, training increased segregation of the default-mode from fronto-parietal/salience and 

visual networks in younger adults, while it diffusely increased between-network connectivity in 

older adults. Thus, while younger adults increase network segregation with training, suggesting 

more automated processing, older adults persist in, and potentially amplify, a more integrated 

and costly global workspace, suggesting different age-related trajectories in functional network 

reorganization with WM training. 

 

Keywords: graph theory, intrinsic activity, task-related connectivity, global efficiency, 

participation coefficient, cingulo-opercular network, Sternberg task 
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Introduction 

Cognitive performance critically depends on the brain’s ability to balance functional 

integration and segregation (Dehaene et al., 1998), which is supported by the brain’s modular 

network organization (Crossley et al., 2013). By definition, a modular network has denser 

connections within its modules (or subnetworks) and sparser connections between different 

component modules (Newman, 2006). Typically, brain network modularity has been studied 

using resting-state functional MRI recordings and a high level of modularity has been associated 

with better performance in various cognitive domains, such as working memory (WM), 

attention, episodic memory, learning and overall intelligence (for a recent review, see Gallen & 

D'Esposito, 2019).  

Brain imaging evidence also shows that modularity decreases with aging (e.g., Betzel et 

al., 2014; Cao et al., 2014b; Chan et al., 2014; Gallen et al., 2016b; Geerligs et al., 2015; Iordan 

et al., 2018; Onoda & Yamaguchi, 2013; Song et al., 2014), as brain networks become overall 

less functionally distinct, consistent with the idea of age-related functional dedifferentiation 

(Grady, 2012; Park et al., 2004; Park et al., 2010). Furthermore, aging disproportionately affects 

“associative” brain networks that mediate higher-level functions, such as the fronto-parietal and 

default-mode networks, compared to “sensory-motor” networks, such as the somato-

sensorimotor and visual networks (Chan et al., 2014; Geerligs et al., 2015; Iordan et al., 2018; 

Malagurski et al., 2020). Thus, current evidence suggests that age-related cognitive decline is 

linked, at least in part, to altered communication within and between the associative brain 

networks.  

Complementing resting-state investigations, task-related data show that functional brain 

modularity is also influenced by the level of cognitive demand or load. In general, performance 
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of challenging tasks has been associated with switching from a relatively segregated network 

configuration, which typically characterizes the resting-state, to a more integrated network 

configuration, that supports cognitive performance (Braun et al., 2015; Cohen & D'Esposito, 

2016; Finc et al., 2020; Finc et al., 2017; Shine et al., 2016; Vatansever et al., 2015; Zuo et al., 

2018). Consequently, complex cognitive functions, such as WM, elicit more extensive network 

reconfigurations compared to lower-level or highly automated functions, and these 

reconfigurations primarily involve the associative brain networks (e.g., Cohen & D'Esposito, 

2016; Cole et al., 2013; Yue et al., 2017). Demand-dependent changes in the functional 

relationships between these networks have been reported in various cognitive domains, including 

WM (Vatansever et al., 2015), decision making (Cole et al., 2013), and reasoning (Hearne et al., 

2017). Of note, although such task-related reconfigurations are consistent and support behavioral 

performance, they are relatively small compared to the functional relationships that characterize 

the brain’s intrinsic network architecture (Cole et al., 2014; Crossley et al., 2013; Krienen et al., 

2014).  

Despite recent progress in elucidating the brain’s large-scale functional organization, 

important questions remain unanswered. For instance, how does aging affect brain network 

reconfigurations elicited by demanding cognitive tasks, and can these be influenced by cognitive 

training? In line with the Compensation Related Utilization of Neural Circuits Hypothesis 

(CRUNCH; Reuter-Lorenz & Cappell, 2008), brain activation studies have identified age 

differences in neural recruitment during the performance of demanding cognitive tasks (Li et al., 

2015; Spreng et al., 2010). Such studies also point to cognitive demand as a critical factor 

influencing whether older adults will over-activate or under-activate WM circuitry relative to 

younger adults (Cappell et al., 2010; Heinzel et al., 2014; Schneider-Garces et al., 2010). 
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However, age differences in functional connectivity related to task transitions have been less 

investigated (cf. Gallen et al., 2016b). Furthermore, recent evidence shows that modularity 

increases with training in younger adults, suggesting that less brain network integration is 

required to support high performance once a task is automated, even for complex tasks, such as 

WM (Finc et al., 2020). For older adults, recent evidence (Iordan et al., 2020) suggests that WM 

training increases brain responsiveness by shifting the activation peak towards higher WM loads. 

However, it is unclear what changes in the large-scale network organization occur with training 

in older adults. Recently, brain network modularity has been proposed as a biomarker of 

cognitive plasticity (Gallen & D'Esposito, 2019) based, in part, on accumulating evidence 

showing that individual differences in older adults’ network modularity at rest predict cognitive 

gains in the context of training (Gallen et al., 2016a; Iordan et al., 2018). This is exciting because 

it suggests that the aging brain retains potential for plasticity, which could be harnessed more 

broadly if the mechanisms underlying such benefits can be further elucidated. However, no 

studies so far have investigated age-related changes in the large-scale network organization 

elicited by cognitive training, particularly during cognitive task performance.  

Here, we have investigated age differences in the reconfiguration of large-scale 

functional brain networks in the context of WM training. Because we compared functional 

connectivity during both resting-state and task performance, we focused on “background 

connectivity”, that is endogenous or “residual” functional connectivity between brain regions 

after accounting for variance related to evoked task activity (Summerfield et al., 2006; Turk-

Browne, 2013). Our experimental sample comprised healthy older and younger adults who 

participated in an adaptive verbal WM training study with three functional MRI scanning 

sessions. Sessions 1 and 2 were two weeks apart (Time1 and Time2) and preceded a 10-day 
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adaptive WM training intervention. The third scanning session (Time3) was conducted 

immediately after training, approximately two weeks after Time2. This within-subject design 

enabled us to dissociate the effects of task-exposure (Time1 vs. Time2) from the effects of 

training (Time2 vs. Time3).  

We employed graph theory metrics to assess functional brain network reorganization at 

three levels, specifically (1) at the level of the whole-brain, (2) at the level of individual 

networks, and (3) at the level of pairwise relations between brain regions. We focused on 

modularity to assess whole-brain segregation/integration and followed-up with measures of 

within-network and between-network communication, i.e. global efficiency and the participation 

coefficient, respectively. Global efficiency is a graph measure that indexes integration of 

information within a network, whereas the participation coefficient indexes the propensity of 

nodes within a network to form links with nodes outside of their own network. Finally, at the 

level of pairwise relations between regions, we employed the network-based statistic (NBS) 

method, a univariate approach that tests links between regions individually and controls for 

familywise error at the network level (Zalesky et al., 2010).  

Based on previous evidence, we made the following predictions: First, we expected 

overall lower modularity in older compared to younger adults, lower modularity during task 

performance compared to resting-state, and progressively lower modularity with increasing WM 

load. It remains an open question, however, whether older adults would also show a greater 

decrease in modularity when switching from resting-state to task mode and a steeper decrease in 

modularity with increasing task load, compared to younger adults. Second, regarding WM 

training, we expected that network reorganization would be elicited by the training intervention 

and not by simple task-exposure and that task-related functional connectivity would be more 
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sensitive to the training effects than resting-state recordings. A related open question is whether 

younger adults would show a greater enhancement in modularity with training, compared to 

older adults. Finally, at the level of individual brain networks, we expected that WM training 

would be linked to reconfigurations primarily at the level of associative brain networks, in 

particular the fronto-parietal and default-mode networks. 

Materials and Methods 

Participants 

A sample of 23 healthy, cognitively normal older and 23 younger adults was recruited 

from the University of Michigan campus and community surrounding Ann Arbor, Michigan. The 

initial sample size was based on prior work examining age and load effects in WM (Cappell et 

al., 2010). Detailed sample characteristics are presented elsewhere (Iordan et al., 2020). Briefly, 

all participants were right-handed, native English speakers with normal or corrected-to-normal 

hearing and vision and were screened for history of head injury, psychiatric illness, or 

alcohol/drug abuse. Data from 2 older and 2 younger adults were excluded due to technical 

errors in the administration of the training (1 older adult) or fMRI (1 younger adult) protocols, 

inability to perform the fMRI task (1 younger adult did not provide responses to >50% of the 

trials), and attrition (1 older adult failed to return for the last scan). Thus, the behavioral sample 

consisted of 21 older adults (age range: 63-75; 10 women) with a mean age of 67.81 (± 3.31) 

years and 21 younger adults (age range: 18-28; 12 women) with a mean age (±S.D.) of 21.33 (± 

2.65) years. In addition, 1 younger and 3 older adults were excluded from the fMRI analyses due 

to technical issues related to scan acquisition that affected different phases of the scan, i.e. task (2 

older adults) and resting-state (1 younger and 1 older adults), and thus the fMRI sample 

consisted of 18 older and 20 younger adults. The University of Michigan Institutional Review 
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Board approved all procedures, and all participants provided informed consent prior to 

participating. 

Experimental Design and Procedure 

fMRI WM task  

During each of the 3 fMRI scanning sessions (Fig. 1a), participants performed a delayed 

match-to-sample verbal WM task (Sternberg, 1966) with span and supraspan loads (Fig. 1b). At 

the beginning of each trial, a set of letters was displayed during encoding (4 s), followed by a 

fixation cross during the maintenance interval (7 s). At retrieval, a probe letter was displayed on 

the screen (2 s), and participants indicated by a button-press whether or not the probe was part of 

the memory set. The memory sets varied in size from 4 to 8 letters for older adults and from 5 to 

9 letters for younger adults. These age-specific ranges of loads were chosen based on pilot data 

to minimize ceiling and floor effects on WM performance, and to allow comparisons of both 

baseline performance and training-induced improvement. Both groups also completed a control 

condition (set size of 1) that served as a “task mode” condition here, specifically a WM task with 

a minimal load. During each fMRI session, participants completed 6 blocks of 24 trials (one 

older and one younger adult completed 5 runs at Time1), with each block comprising 4 trials of 

each set size, displayed in random order. Prior to the first scanning session, all participants 

practiced the task in a mock scanner, for a total of 12 trials, with 2 trials per load. Participants 

were monitored for understanding of the task and accurate responding, and prior to each 

scanning session participants were reminded about the task instructions.  

Behavioral WM Training Task 

The training task was an adaptive verbal WM task, similar to the fMRI task in terms of 

the type of stimuli employed (i.e., letters) but different with respect to the set sizes and timing 
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(Iordan et al., 2018). All participants started the first training session with a set size of 3 letters. 

The number of letters in each memory set remained constant for each block and was determined 

by the participant’s performance in the previous block. The set size increased by one letter if the 

participants’ accuracy was >86% on the preceding block and decreased by one letter if their 

accuracy was <72%. The set size attained in the last session of each day was used as the starting 

set size the subsequent day. For each trial, the memory set was displayed for a duration weighted 

by its size (325 ms × set size) at encoding, followed by a 3 s maintenance interval, and a 2 s 

retrieval period. Participants completed 6 blocks of 14 trials during each of the 10 training 

sessions. All training sessions occurred in our laboratory at the University of Michigan, lasted 

approximately 15 minutes each, and were scheduled on consecutive days (except weekends). 

Both the fMRI and the training tasks were presented using E-Prime 2.0 (Psychology Software 

Tools, Pittsburgh, PA). 

Imaging Protocol 

Imaging data were collected using a 3 T General Electric MR750 scanner with an eight-

channel head coil. Functional images were acquired in ascending order using a spiral-in 

sequence, with MR parameters: TR = 2000 ms; TE = 30 ms; flip angle = 90°; field of view = 

220×220 mm2; matrix size = 64×64; slice thickness = 3 mm, no gap; 43 slices; voxel size = 

3.44×3.44×3 mm3. After an initial ten seconds of signal stabilization, 168 volumes were acquired 

for each of the 6 WM task runs and 235 volumes were acquired for the resting-state run, 

respectively. A high-resolution T1-weighted anatomical image was also collected following the 

WM task and preceding resting-state acquisition, using spoiled-gradient-recalled acquisition 

(SPGR) in steady-state imaging (TR = 12.24 ms, TE = 5.18 ms; flip angle = 15°, field of view = 

256×256 mm2, matrix size = 256×256; slice thickness = 1 mm; 156 slices; voxel size = 1×1×1 
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mm3). Images were produced using a k-space de-spiking of outliers, followed by image 

reconstruction using an in-house iterative algorithm with field-map correction (Sutton et al., 

2003), which has superior reconstruction quality compared to non-iterative conjugate phase 

reconstruction. Initial images and field-map estimates were inspected for distortions and when 

present, the field maps were re-estimated using maps from adjacent runs. 

Preprocessing 

Preprocessing was performed using SPM12 (Wellcome Department of Cognitive 

Neurology, London) and MATLAB R2015a (The MathWorks Inc., Natick, MA). Functional 

images were slice-time corrected, realigned, and co-registered to the anatomical image using a 

mean functional image. A study-specific anatomical template was created (younger and older 

adults together; Iordan et al., 2018), using Diffeomorphic Anatomical Registration Through 

Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007), based on segmented grey matter and 

white matter tissue classes, to optimize inter-participant alignment (Klein et al., 2009). The 

DARTEL flowfields and MNI transformation were then applied to the functional images, and the 

functional images were resampled to 3×3×3 mm3 voxel size. Additional spatial smoothing was 

not applied, based on evidence that it negatively affects network properties and graph measures 

(see Alakorkko et al., 2017; Fornito et al., 2013; Korhonen et al., 2017; Stanley et al., 2013; 

Triana et al., 2020; van den Heuvel et al., 2009; Zalesky et al., 2012). (See Supplementary 

Results for a control analysis using smoothed data.) Identification of outlier scans was performed 

using Artifact Detection Tools (ART; www.nitrc.org/projects/_artifact_detect/), as follows. Scans 

were classified as outliers if frame-to-frame displacement exceeded 0.5 mm in composite motion 

(combination of translational and rotational displacements) or 3 standard deviations in the global 

mean signal. On average, the proportion of outliers was at or below 5% in both older (task: 
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4.33%, resting-state: 3.4%) and younger adults (task: 5.08%, resting-state: 3.6%). Scan-nulling 

regressors (i.e., 1 for the outlier volume and 0 everywhere else) were added to the time-series 

denoising step (Whitfield-Gabrieli & Nieto-Castanon, 2012) in the linear regression to address 

outlier volumes (see below). Overall, there was more motion during task than during rest. 

Mixed-model Group×Time×DataType ANOVAs indicated more outliers (F1,36=4.26, p=0.046, 

ηp2=0.11), as well as more motion (i.e., max frame displacement) both before (F1,36=12.29, 

p=0.001, ηp2=0.25) and after “scrubbing” (F1,36=21.03, p<0.001, ηp2=0.37), for task compared to 

resting-state acquisition. This was not surprising, given that participants provided motor 

responses during the WM task and the task data acquisition lasted substantially longer than the 

resting-state. Critically, though, there were no differences in motion between the two groups 

(ps>0.3), and no other significant main effects or interactions (ps>0.05).  

Graph Construction 

Brain-wide functional connectivity analyses were performed using the Connectivity 

Toolbox (CONN; Whitfield-Gabrieli & Nieto-Castanon, 2012). To construct a brain-wide graph, 

we employed a commonly used functional atlas (Power et al., 2011) shown to provide good 

homogeneity across younger and older participants (Geerligs et al., 2017). The Power et al. atlas 

comprises 264 cortical and subcortical coordinates defined meta-analytically, across a variety of 

tasks, from a large participant sample (N>300). (For robustness analyses, we also employed 

another parcellation by Schaefer et al., (2018), derived from resting-state data; see 

Supplementary Results.) A 5 mm-radius sphere was centered at each of the Power et al. atlas 

coordinates. To ensure that the graph comprised regions that were not susceptible to fMRI signal 

drop-out, each sphere was filtered through a sample-level signal intensity mask, calculated as 

follows. First, binary masks were calculated for each participant’s resting-state and task data, at 
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each time point, thresholded at >70% mean signal intensity (Cohen & D'Esposito, 2016; Geerligs 

et al., 2015; Iordan et al., 2018), computed over all voxels, using ART. Then, a sample-level 

mask was calculated, across all participants, using logical “AND” conjunction. Regions with 

fewer than 8 voxels (~50% volume) overlap with the sample-level mask were excluded, leaving 

221 regions of interest (ROIs). Of note, this procedure eliminated mostly nodes affiliated with 

the “Uncertain” module in the Power et al. atlas (i.e., 68% of the “Uncertain” nodes were 

eliminated), which includes brain regions typically susceptible to fMRI signal drop-out (Power et 

al., 2011).  

To remove physiological and other sources of noise from the fMRI time series we used 

linear regression and the anatomical CompCor method (Behzadi et al., 2007; Chai et al., 2012a; 

Muschelli et al., 2014), as implemented in CONN. Each participant’s white matter and 

cerebrospinal fluid masks derived during segmentation, eroded by 1 voxel to minimize partial 

volume effects, were used as noise ROIs. The following temporal covariates were added to the 

model: undesired linear trend, signal extracted from each participant’s noise ROIs (5 principal 

component analysis parameters for each), motion parameters (3 rotation and 3 translation 

parameters, plus their first-order temporal derivatives), regressors for each outlier scan (i.e., 

“scrubbing”; one covariate was added for each outlier scan, consisting of 0’s everywhere but the 

outlier scan, coded as “1”). For the task-based functional connectivity analyses, additional task 

regressors were added as covariates of no interest (Cole et al., 2014; Hearne et al., 2017), as 

follows. Separate regressors were added for the encoding and probe onsets, respectively, for each 

condition (loads 1, 4-8 for older adults/5-9 for younger adults; total 12 regressors), modeled as 

boxcar functions convolved with a canonical hemodynamic response function (HRF). An 

additional regressor modeled the maintenance intervals of incorrectly answered trials. The 
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residual fMRI time series were band-pass filtered (0.01 Hz < f < 0.15 Hz) at a low frequency 

component sensitive to both resting-state and task-based functional connectivity (Hearne et al., 

2017; Sun et al., 2004). (See Supplementary Results for a control analysis using high-pass 

filtering.)  

For the resting-state data, functional connectivity was estimated using a Pearson 

correlation between each pair of time series, resulting in a 3 (time points) × 221 × 221 

connectivity matrix for each participant. For the task-based functional connectivity analyses, we 

employed the regression approach described above to account for variance associated with task-

related coactivation (Cole et al., 2014; Hearne et al., 2017); see Supplementary Results for a 

control analysis using finite impulse response task regression (Cole et al., 2019). Then, the 

residual time series from each 7 s maintenance interval (accounting for hemodynamic delay by 

convolving the boxcar regressor for each maintenance interval with a rectified HRF; Whitfield-

Gabrieli & Nieto-Castanon, 2012) were concatenated to form condition-specific time series for 

each brain region. This enabled us to compare directly connectivity between resting-state and 

task modes (Hearne et al., 2017). An HRF-weighted Pearson correlation was calculated for the 

resulting regional time series, resulting in a 3 (time points) × 6 (conditions) × 221 × 221 

connectivity matrix for each participant. (See Supplementary Results for a control analysis 

equating resting-state and WM condition durations.) 

 Finally, the correlation coefficients were Fisher-z transformed, and the diagonal of the 

connectivity matrix was set to zero. Unless stated otherwise (see Pairwise Connectivity Analyses 

below), we retained only positive connectivity values for further analyses, consistent with prior, 

related studies (Chan et al., 2014; Cohen & D'Esposito, 2016; Finc et al., 2020; Hearne et al., 

2017). Setting negative connectivity values to zero prior to proportional thresholding (see below) 
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prevents inclusion of negative values in the thresholded matrices. Here, thresholding signed and 

positive-only matrices yielded identical results. Negative edge weights are often set to zero when 

analyzing fMRI connectivity data due to continuing debates regarding their interpretation (see 

Chai et al., 2012b; Murphy et al., 2009; Schölvinck et al., 2010). Matrices were then thresholded 

based on connection density (preserving connection weights), which equates the number of 

edges across graphs and allows proper comparisons (Garrison et al., 2015; Wijk et al., 2010). To 

ensure that results were not due to any specific threshold, calculations were performed for a 

range comprising 10% – 30% of the strongest connections, in 2% increments. Thresholding is 

generally recommended because inclusion of false-positive connections is more detrimental to 

network measure computations than exclusion of false-negative connections (van den Heuvel et 

al., 2017; Zalesky et al., 2016). This threshold range satisfied several established criteria for 

graph connectedness and small-worldness (see Chong et al., 2019), as follows: (1) the average of 

number of edges per node was larger than the total number of nodes (Wang et al., 2009), (2) at 

least 80% of the nodes were fully connected (Bassett et al., 2008), and (3) small-worldness of the 

network was >1 (Watts & Strogatz, 1998). (See Supplementary Results for details.) In addition, 

this threshold range has been shown to provide robust functional brain-network characterizations 

(Garrison et al., 2015) and is similar to that used in previous work assessing connectivity 

reconfigurations as a function of task demands (e.g., Cohen & D'Esposito, 2016; Cole et al., 

2014; Hearne et al., 2017), thus enabling comparison of the results. Graph construction and 

analyses were performed using tools from the Brain Connectivity Toolbox (BCT) (Rubinov & 

Sporns, 2010). 
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Analysis Overview 

We assessed age differences in functional network reorganization with WM training at 

three levels of progressively increased granularity. First, at the whole-brain level, we derived 

community partitions for resting-state and each task condition, separately at each time point, and 

assessed network modularity. Task-exposure effects were identified by comparing the two time 

points preceding training (i.e., Time1 vs. Time2), whereas training effects were identified by 

comparing pre- vs. post-training (i.e., Time2 vs. Time3). Then, significant training effects at the 

whole-brain level were followed-up at the individual-network level, separately within each 

group. Here, we focused on measures of within- and between-network communication, 

specifically global efficiency and the participation coefficient. To avoid circularity, node-module 

assignments independently derived at Time1 were used for pre- vs. post-training comparisons 

(Time2 vs. Time3). Finally, we examined training effects at the level of pairwise relations 

between brain regions, using network-based statistics (NBS; Zalesky et al., 2010). 

Whole-Brain Network Analyses 

Modularity Calculations. To assess the strength of network segregation at the whole-brain level, 

we employed the Louvain algorithm (Blondel et al., 2008). The algorithm optimizes a modularity 

quality function (Q) comparing the observed intra-module connectivity with that which would be 

expected by chance (Newman, 2006; Newman & Girvan, 2004). Higher modularity values 

indicate more segregation whereas lower modularity values indicate less segregation between 

modules or subnetworks. The modularity index is formally defined as follows: 

𝑄𝑄 =
1

2𝐸𝐸
�[𝐴𝐴𝑖𝑖𝑖𝑖 − 𝛾𝛾𝑒𝑒𝑖𝑖𝑖𝑖]𝛿𝛿(𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑖𝑖)
𝑖𝑖𝑖𝑖

 

where E is the number of graph edges, A is the adjacency matrix, γ is the resolution parameter, e 

is the null model [here, e = kikj/2E, where ki and kj are the degrees of the nodes i and j], and δ is 
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an indicator that equals 1 if nodes i and j belong to the same module and 0 otherwise. Because 

the Louvain algorithm is non-deterministic, modularity was calculated as the average over 1000 

runs of the algorithm. In addition, because differences in total connectivity strength between 

groups may influence the results, modularity scores for each participant and condition were 

normalized by dividing them by the average modularity of a null distribution, calculated by 

randomly rewiring each original network 1000 times (Maslov & Sneppen, 2002). This approach 

has been previously validated in the context of working memory training (Finc et al., 2020), thus 

enabling comparison of the results. Of note, age differences in mean connectivity did not occur 

during resting state, but were driven by within-group differential responses to changing task 

demands and were modulated by training (see Supplementary Results). Because such differences 

cannot be simply attributed to physiological noise, regression of mean connectivity was not 

applied (for a discussion, see Geerligs et al., 2017). (See Supplementary Results for a control 

analysis using regression of mean connectivity.)  

We ran the Louvain algorithm over a range of the resolution parameter gamma (γ) from 1 

to 2 in increments of 0.1, based on previous evidence (Hughes et al., 2020) that gamma values in 

this range are adequate for comparing community structure in younger and older adults. 

Robustness analyses showed overall consistent results over this gamma range (see 

Supplementary Results and Table S1). For subsequent analyses, the resolution parameter was set 

to γ = 1.3, a value that generated resting-state community structures with the following 

properties: (1) high similarity with the Power et al. (2011) canonical networks, (2) comparable 

number of detected networks for younger and older adults, and (3) low number of singletons 

(i.e., nodes with unclear network affiliation; for details, see Supplementary Results). Of note, this 

gamma value is similar to those employed by other related investigations (e.g., Cohen & 
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D'Esposito, 2016; Iordan et al., 2018), allowing comparison of the results. In addition, we 

replicated the results using a different parcellation, by Schaefer et al. (2018) (see Supplementary 

Results and Fig. S1).  

Modularity scores for each participant, condition, and time point were exported to SPSS 

(IBM Corp., Armonk, NY) and analyzed within the ANOVA framework. A Greenhouse-Geisser 

correction for violation of sphericity was applied as needed, for all ANOVA models. Effect-sizes 

are reported as partial eta squared (ηp2). First, we focused on the switch between resting-state and 

task mode (i.e., load of 1) and examined effects on modularity across all three time points, using 

a Group×Time×Mode mixed-effects ANOVA. Then, we focused on the WM loads common to 

both groups (i.e., loads 5-8) and examined the effects on modularity across all three time points 

using a Group×Time×Load mixed-effects ANOVA. Significant effects of Load were followed-up 

with linear trend analyses, whereas significant effects of Time were followed-up by separately 

assessing task-exposure (Time1 vs. Time2) and training effects (i.e., Time2 vs. Time3) between 

and within groups. Of note, between-group comparisons were performed using 

Group×Time×Load ANOVAs across WM loads common to both groups (i.e., loads 5-8), whereas 

within-group comparisons were performed using Time×Load ANOVAs across group-specific 

loads (i.e., loads 4-8 for older and loads 5-9 for younger adults). Matching on load provided us 

with a set of reliable parameters for analyzing WM performance across the different time points. 

Specifically, whereas nominal load was fixed over time, the difficulty associated with a specific 

load was assumed to vary, i.e. decrease with training. 

Individual and Group-Level Consensus Partitions. To achieve a community structure 

representative of each group, for every experimental condition, we used consensus clustering 

(Lancichinetti & Fortunato, 2012). This capitalizes on the consistency of each node’s module 
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affiliation across a set of partitions, thus circumventing the known degeneracy of the Louvain 

algorithm (Good et al., 2010). To account for potential differences in network configuration due 

to age or experimental condition, we used a “purely” data-driven approach (i.e., no node-

community affiliation priors were employed). Consensus clustering was applied first at the 

individual level, to generate a robust partition for each participant, and then at the group level, to 

generate a representative partition for each group. First, to generate a robust partition for each 

participant, the Louvain algorithm was run 1000 times. For each participant, we constructed an 

agreement matrix representing the fraction of runs in which each pair of nodes was assigned to 

the same module. The Louvain algorithm was then iteratively run on the agreement matrix (1000 

Louvain runs at each step), to generate a consensus partition for each participant. For each 

iteration, the agreement matrix was recalculated and thresholded, until a single representative 

partition was obtained for each participant. Second, to generate a group-level representative 

partition, an agreement matrix was calculated based on the consensus partitions of all 

participants in one group. The Louvain algorithm was then run on the agreement matrix to obtain 

a consensus partition for each group, as described above. The thresholding parameter for the 

agreement matrix was set to τ = 0.4, a value similar to those used in other investigations (e.g., 

Cohen & D'Esposito, 2016; Iordan et al., 2018); a range of commonly employed values, τ = [0.3, 

0.4, 0.5] (Lancichinetti & Fortunato, 2012), yielded broadly similar results (see Supplementary 

Results).  

To assess between- and within-subject differences in community structure across rest/task 

conditions and time points (i.e., network reconfiguration), we calculated variation of information 

(VIn), which is a metric of the distance between two partitions (Meilă, 2007). Low VIn values 

indicate greater similarity, whereas high VIn values indicate less similarity between two 
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partitions. Similar to the approach employed for the modularity analyses presented above, first 

we assessed between-groups differences in network reconfiguration from resting-state to task 

mode. Specifically, we calculated VIn between each participant’s resting-state and task mode 

(i.e., load of 1) partitions, separately for each time point, and then examined between-group 

differences in VIn across all three time points, using a Group×Time mixed-effects ANOVA; for a 

similar approach, see Gallen et al. (2016b). Second, we assessed within-group differences in 

network reconfiguration across WM loads and time, separately for older and younger adults. We 

used a repeated-measures permutation procedure to compare the observed variation of 

information with null models, similar to procedures previously employed by Dwyer et al. (2014) 

and Hearne et al. (2017). Specifically, for each contrast of interest, half of the participants’ 

condition labels were randomly switched, resulting in two new sets of individual-level module 

structures. Then, these shuffled module structures were run through the previously described 

partitioning pipeline, to generate randomized group-level module partitions. For computational 

efficiency, we iteratively ran the Louvain algorithm on the agreement matrix 100 times at each 

step. Finally, the difference between these partitions was calculated using VIn. To build a null 

distribution, the procedure was repeated 1000 times for each contrast of interest, and statistical 

significance was ascribed by comparing the actual data with the null distribution.  

Network-Level Analyses 

Training effects at the whole-brain level were followed-up at the individual-network 

level, separately within each group. We specifically targeted the fronto-parietal and default-mode 

modules due to these networks’ sensitivity to both aging and training effects (Salmi et al., 2018; 

Spreng et al., 2010). To avoid circularity, node-module assignments independently derived at 

Time1 were used for pre- vs. post-training comparisons (Time2 vs. Time3); see Iordan et al. 
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(2020) for a similar approach. Furthermore, to enable comparability across conditions, each 

module was represented only by those nodes that were consistently assigned to the same module, 

across all loads (i.e., logical “AND” conjunction of affiliations across all loads), based on the 

Time1 group-level consensus partitions (Geerligs et al., 2015; Iordan et al., 2018). We focused on 

two commonly used network measures indexing within-network and between-network 

communication, namely global efficiency and the participation coefficient. Training effects on 

these network measures were tested using Time×Load ANOVAs performed separately, within 

each group, for each targeted brain network. 

Global Efficiency. To assess within-network communication, we calculated global efficiency 

within each module. Global efficiency (Latora & Marchiori, 2003) is formally defined as 

follows:  
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where N is the number of nodes in the graph and Lij is the shortest path length between nodes i 

and j. At the level of functional brain networks, global efficiency is thought to index the capacity 

for parallel information transfer and integrated processing among all components part of a 

network (Achard & Bullmore, 2007; Rubinov & Sporns, 2010). Here, we used global efficiency 

to examine training effects on network communication within modules, based on previous 

evidence linking high global brain-network efficiency with enhanced cognitive performance 

(e.g., Bassett et al., 2009; Meunier et al., 2014; Shine et al., 2016; van den Heuvel et al., 2009). 

Global efficiency was separately calculated for each individual network by creating a sub-graph 

containing only the nodes part of that specific network. 

Participation Coefficient. To assess between-network communication, we calculated the 

participation coefficient for each module. The participation coefficient (Guimerà & Amaral, 
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2005) indexes inter-network connectivity by quantifying the distribution of each node’s 

connections across different modules. The participation coefficient of a node i is defined as 

follows: 

𝑃𝑃(𝑖𝑖) = 1 − � �
𝑘𝑘𝑖𝑖(𝑚𝑚)
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where M is the number of modules in the graph, and ki(m) is the degree of node i within its own 

module m, and ki is the degree of node i regardless of module membership. Participation 

coefficients of all nodes within a module were averaged to provide an estimate of mean 

participation for a module. 

Pairwise Connectivity Analysis 

To identify training effects at a sub-network level, we employed the network-based 

statistic approach (Zalesky et al., 2010), a procedure that tests for differences in pairwise 

connectivity between brain regions while controlling for family-wise error (FWE) at the network 

level. Using a general linear model, we tested for differences due to training and load, separately 

within each group. For simplicity of interpretation, we limited these analyses to the lowest vs. 

highest loads within each group (i.e., loads 4 vs. 8 for older adults, and loads 5 vs. 9 for younger 

adults). We ran the following contrasts: Time3 > Time2, to identify increased connectivity with 

training; Time2 > Time3, to identify decreased connectivity with training; High Load > Low 

Load, to identify increased connectivity with load; Low Load > High Load, to identify decreased 

connectivity with load. Analyses were performed on unthresholded functional connectivity 

matrices (positive and negative values) and links between any two regions were independently 

tested against the null hypothesis using paired t-tests. The threshold was set to p<0.002 (one-

tailed) within each group, a value that enabled detection of medium-sized network components 

while eliminating small and/or spurious effects; see e.g., (Finc et al., 2017) and (Hearne et al., 
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2017) for a similar approach. Robustness analysis for a range of thresholds, 0.001 < p < 0.005, 

yielded broadly similar results (see Supplementary Results and Tables S2 and S3). Permutation 

tests (5000 permutations) were employed to calculate p-values for the detected components and 

only components that survived p<0.05, FWE-corrected at the whole-network level, were 

reported. This analysis allowed identification of training effects at the level of network 

components and thus provided results complementary to the graph analyses described above.  

Results 

Behavioral Analyses 

Behavioral results showed that WM performance improved with training for both groups, 

and were presented elsewhere (Iordan et al., 2020). Briefly, effects of task-exposure and training 

on WM performance were examined with loads 5-8, which were common to both groups, using 

Group×Time×Load ANOVAs on WM accuracy scores. The main effect of Load was significant 

at p<0.001 for all ANOVA models. First, the task-exposure analysis (Time1 vs. Time2) showed 

that, while younger adults performed overall better than older adults (Group: F1,40=5.91, p=0.02, 

ηp2=0.13), this group difference was reduced with task exposure (Group×Time: F1,40=6.17, 

p=0.017, ηp2=0.13). The main effect of Time was not significant (F1,40=0.26, p=0.611, ηp2=0.01). 

Second, analysis of training effects (Time2 vs. Time3) showed that performance improved with 

training for both groups (Time: F1,40=13.04, p=0.001, ηp2=0.25). The main effect of Group was 

not significant (Group: F1,40=2.34, p=0.134, ηp2=0.06). Similar results were obtained when 

including only participants who had complete fMRI data. Specifically, the task-exposure analysis 

showed that younger adults performed overall better than older adults (Group: F1,36=5.5, 

p=0.025, ηp2=0.13) and that this group difference was reduced with task exposure (Group×Time: 
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F1,36=4.5, p=0.041, ηp2=0.11), whereas analysis of training effects similarly showed that 

performance improved with training for both groups (Time: F1,36=10.57, p=0.003, ηp2=0.23). 

Here, we assessed age differences in functional network reorganization with WM training 

at three levels. First, we examined task-exposure and training effects on brain-wide modularity 

and community structure. Then, we examined training effects at the level of individual brain 

networks, focusing on within- and between-network communication, and using the network 

metrics of global efficiency and participation coefficient. Finally, we examined training effects at 

the level of pairwise relations between brain regions, using network-based statistics.  

Brain-Wide Effects of Task-Exposure and Training 

Exposure and Training Effects on Brain-Wide Modularity 

Modularity is a measure of network segregation, indexing the extent to which a graph is 

organized into separable modules with dense connections within and sparse connections between 

modules. Here, we tested whether age and training influence the decrement in modularity 

typically observed when (1) switching between resting-state and task mode and (2) operating 

under increased task demand. To allow between-groups comparisons, each modularity score was 

normalized relative to a null distribution (see Materials and Methods section). First, we focused 

on the switch between resting-state and task mode (i.e., load of 1) and examined the effects on 

modularity across all three time points (Fig. 2a). A Group×Time×Mode ANOVA on estimates of 

modularity indicated greater overall modularity in younger than older adults (Group: F1,36=31.99, 

p<0.001, ηp2=0.47) and greater modularity during resting-state than task mode (Mode: 

F1,36=141.51, p<0.001, ηp2=0.8). In addition, results showed greater decrement in modularity 

when switching from resting-state to task mode, in older compared to younger adults 

(Group×Mode: F1,36=19.14, p<0.001, ηp2=0.35). No other effects were significant (ps>0.17). 
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Second, we focused on WM loads common to both groups (i.e., loads 5-8) and examined 

the effects on modularity across all three time points (Fig. 2b). A Group×Time×Load ANOVA on 

estimates of modularity (loads 5-8) again indicated greater overall modularity in younger than 

older adults (Group: F1,36=37.38, p<0.001, ηp2=0.51), as well as a main effect of Load 

(F3,108=5.89, p=0.001, ηp2=0.14), qualified by a significant linear trend (F1,36=13.52, p=0.001, 

ηp2=0.27), indicating lower modularity with increasing load. Furthermore, a significant 

Group×Load interaction (F3,108=3.21, p=0.026, ηp2=0.08) indicated that modularity had a steeper 

decrease as a function of Load in older compared to younger adults. Finally, there was a 

significant Group×Time interaction (F2,72=4.64, p=0.013, ηp2=0.11), which we followed-up as 

planned, by separately assessing task-exposure (Time1 vs. Time2) and training effects (Time2 

vs. Time3). Both analyses showed greater modularity in younger compared to older adults 

(ps<0.001) and no main effects of Time (ps>0.08). Critically, a significant Group×Time 

interaction was obtained with training (F1,36=7.97, p=0.008, ηp2=0.18) but not with task-exposure 

(F1,36=1.14, p=0.293, ηp2=0.03), indicating greater training-related gains in brain-wide 

modularity for younger compared to older adults. Furthermore, analyses of task-exposure and 

training effects performed across group-specific loads (i.e., loads 4-8 in older and loads 5-9 in 

younger adults), separately within each age group, showed greater modularity with WM training 

only for younger adults (see Supplementary Results).  

Overall, these results suggest that training increases brain-wide modularity specifically in 

younger adults. Of note, the results reported here used the brain parcellation by Power et al. 

(2011). For robustness tests, we performed the same analyses using the Schaefer et al. (2018) 

parcellation, and obtained similar results (see Supplementary Results and Fig. S1). Finally, an 

ancillary analysis employing a recently proposed measure of network segregation (Chan et al., 
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2014; Wig, 2017) provided results that were overall consistent with the modularity findings (see 

Supplementary Results and Fig. S2). However, as expected, the effects of training on segregation 

were relatively less specific when employing the Power et al. (2011) intrinsic (i.e., resting-state) 

node-module affiliations, instead of the data-driven community structure detected for each 

individual condition. This suggests that differences in community structure, such as those that 

occur when shifting from resting-state to task mode (see below), may bias the segregation, but 

not the modularity, metric. 

Age and Rest-to-Task Shift Effects on Community Structure 

While the modularity index characterizes the segregation/integration quality of a network 

partition, it does not inform about its community structure (i.e., composition of the modules). 

Hence, we also examined the community structure at rest and during task performance, as well 

as potential effects of task exposure and training on module composition, in older and younger 

adults. Community detection analyses identified five major modules during resting-state, for 

both older and younger adults, which broadly correspond to the visual, sensorimotor, 

salience/cingulo-opercular, fronto-parietal, and default-mode networks (Power et al., 2011; Yeo 

et al., 2011). This is consistent with previous, related studies that employed a similar data-driven 

approach in older and younger adult samples comparable in size (e.g., Geerligs et al., 2015; 

Hearne et al., 2017; Vatansever et al., 2015). (See Fig. 3 for a depiction of community structure 

at Time1.) However, switching between resting-state and task mode (i.e., load of 1) led to a 

different module configuration, and this was more evident in older adults. Specifically, for older 

adults, task-mode was associated with the emergence of a module comprising mainly salience 

and sensorimotor nodes (i.e., a salience/sensorimotor module), whereas for younger adults, the 

reorganization from resting-state to task mode better preserved the distinction between these two 
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modules. To ascribe statistical significance to observed differences, we calculated the variation 

of information metric (Meilă, 2007), which indexes the distance between two partitions; in this 

case, we estimated the distance between each participant’s resting-state and task mode partitions, 

separately for each time point. A Group×Time mixed-effects ANOVA on variation of information 

scores indicated greater rest to task network reconfiguration in older than younger adults (Group: 

F1,36=75.89, p<0.001, ηp2=0.68), as well as a Group×Time interaction (F2,72=4.19, p=0.019, 

ηp2=0.10). The main effect of Time was not significant (p>0.8). Together with the modularity 

results presented above, these findings indicate greater network reorganization supporting 

enhanced integration when transitioning from resting-state to task mode, in older compared to 

younger adults. 

Regarding network reorganization with WM load, the community structure attained by 

older adults for the task mode was largely preserved with increasing task load (loads 4-8). In 

contrast, for younger adults, a module emerged with increased WM load (loads 5-9), which 

conjoined the fronto-parietal and salience networks (i.e., a fronto-parietal/salience module). 

Given these descriptive results, we next tested for statistical differences in community structure 

as a function of Time and Load, separately for older and younger adults. First, permutation tests 

(see Materials and Methods section) identified differences in the community structure of resting-

state compared to all WM loads, for both groups (Fig. 4a); at the same time, there were no 

consistent differences in community structure between the different loads (i.e., loads 4-8 in older 

and loads 5-9 in younger adults). Second, comparing task-exposure (Time1 vs. Time2) and 

training effects (Time2 vs. Time3) for each load indicated no significant differences in 

community structure across time (Fig. 4b). Together, these results suggest that community 

structure varies mainly between resting-state and task mode, and once the task-specific 
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configuration is established, increasing WM load or task-exposure/training do not substantially 

alter community structure in older or younger adults.  

Training Effects at the Network Level 

The analyses of community structure presented above identified similar modules across 

time and WM loads within each group. Because brain-wide changes in segregation/integration 

may be driven by changes in communication within and between specific networks, we next 

examined training effects at the level of individual networks, in older and younger adults. To 

analyze training effects on brain networks while avoiding circularity, we employed the 

community structure independently identified at Time1 to compare network properties pre- vs. 

post-training (Time2 vs. Time3). Because graph measures depend on the number of nodes in a 

graph, each module was represented only by those nodes that were consistently assigned to the 

same module across loads at Time1 (Geerligs et al., 2015; Iordan et al., 2018) (see Fig. 5). We 

targeted two a priori associative networks critical for WM/executive function, i.e. the fronto-

parietal/salience and default-mode networks. Of note, because the emergence of a 

salience/sensorimotor module with WM load in older adults was not initially anticipated, 

analyses pertaining to this module were deemed exploratory. To assess within- and between-

network communication, we calculated global efficiency and the participation coefficient for 

each network.  

Training Effects on Network Efficiency 

For older adults, a Time×Load ANOVA indicated no training effects on global efficiency 

for the fronto-parietal or default-mode networks (ps>0.3); however, there were main effects of 

Load for both networks (fronto-parietal: F4,68=3.64, p=0.01, ηp2=0.18; default-mode: F4,68=2.88, 

p=0.029, ηp2=0.15), qualified by linear trends (fronto-parietal: F1,17=9.59, p=0.007, ηp2=0.36; 
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default-mode: F1,17=6.46, p=0.021, ηp2=0.28), indicating lower efficiency with increasing WM 

load in both networks. In contrast, training was associated with greater global efficiency within 

the combined salience/sensorimotor network (Time: F1,17=8.91, p=0.008, ηp2=0.34) (Fig. 6a). For 

younger adults, results showed greater global efficiency with training in the default-mode 

network (Time: F1,19=11.11, p=0.003, ηp2=0.37), whereas the training effect for the fronto-

parietal/salience network did not reach significance (Time: F1,19=3.53, p=0.076, ηp2=0.16), 

although the general direction was increased efficiency with training (Fig. 6b).  

Training Effects on Network Participation 

For older adults, a Time×Load ANOVA indicated no significant effects for the fronto-

parietal network (ps>0.4), whereas for the default-mode network there was only a main effect of 

Load (F4,68=11.45, p<0.001, ηp2=0.4), qualified by a linear trend (F1,17=26.72, p<0.001, 

ηp2=0.61), indicating greater default-mode network participation with increasing load. In 

addition, there were no significant effects for the salience/sensorimotor module (ps>0.2) (Fig. 

7a). In younger adults, results showed lower participation coefficients with training for both the 

fronto-parietal/salience (Time: F1,19=7.74, p=0.012, ηp2=0.29) and default-mode networks (Time: 

F1,19=20.73, p<0.001, ηp2=0.52), consistent with the general trend of greater network segregation 

with training (Fig. 7b).  

Training Effects on Pairwise Connectivity 

To investigate training-related reconfigurations at a subnetwork level, we further assessed 

changes in pairwise connectivity between brain regions, separately within each group, using 

network-based statistics (Zalesky et al., 2010). For simplicity of interpretation, we included only 

the lowest and highest WM loads within each group (i.e., loads 4 and 8 in older adults, and loads 
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5 and 9 in younger adults), and tested for effects of WM training (Time2 vs. Time3) and load 

(see Materials and Methods section).  

First, regarding effects of training, results showed opposite changes in between-network 

connectivity for younger and older adults (Fig. 8a). Specifically, training decreased between-

network connectivity, further segregating the default-mode from the task-specific fronto-

parietal/salience and visual networks in younger adults. Results identified a network component 

comprising 97 nodes and 120 edges (p=0.001, FWE-corrected), with 78% of edges involving the 

default-mode network and out of these, 94% showing decreased connectivity of the default-mode 

with the fronto-parietal/salience and visual networks. In contrast, training diffusely increased 

functional connectivity between task-related brain networks in older adults, with results 

identifying a network component comprising 52 nodes and 55 edges (p=0.045, FWE-corrected) 

roughly evenly distributed across the main networks. 

Second, regarding effects of WM load, results showed similar patterns of increased vs. 

decreased connectivity for younger and older adults, although their magnitude differed with age 

(Fig. 8b). Specifically, for older adults, greater WM load strongly increased between-network 

connectivity of the default-mode with other networks. Results identified a network component 

comprising 112 nodes and 191 edges (p<0.001, FWE-corrected), with 86% of edges involving 

the default-mode network and out of these, 89% showing increased connectivity of the default-

mode with the salience/sensorimotor, sensorimotor, and visual networks. By comparison, 

younger adults showed a relatively weaker response to increased WM load (58 nodes and 64 

edges; p=0.021, FWE-corrected). However, younger adults showed a more extensive pattern of 

decreased connectivity under high vs. low WM load (90 nodes and 106 edges; p=0.001, FWE-

corrected), with 51% of edges involving the task-specific fronto-parietal/salience network. In 
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contrast, older adults showed relatively less decreased connectivity under high WM load (45 

nodes and 52 edges; p=0.023, FWE-corrected). 

Discussion 

The goal of the present study was to assess age differences in the reconfiguration of 

functional brain networks elicited by training on a demanding WM task. According to the Global 

Workspace Theory (Dehaene et al., 1998), whereas “lower-level” (e.g., perceptual, motor) or 

automated functions can be well supported by the operation of relatively segregated neural 

modules, “higher-level” or effortful cognitive processes, such as WM, require a more integrated 

neuronal workspace. This implies that performance of demanding cognitive tasks may be 

critically dependent on the reconfiguration of the functional brain networks from their canonical 

(i.e., resting) state, and that novice and expert performance of those tasks should differ in respect 

to this network (re)organization. Given previously reported age differences in network 

segregation or modularity, we hypothesized that younger and older adults would show different 

patterns of network reconfiguration with WM training. Our results identified such differences at 

the level of brain-wide modularity, at the level of individual network properties, and at the level 

of pairwise connections between different brain regions. These results are discussed, in turn, 

below, while emphasizing links between the different levels of analysis.  

Age and Training Effects on Brain-wide Modularity 

Lower Overall Network Modularity for Older compared to Younger Adults 

First, at the whole-brain level, our results showed lower network modularity in older 

compared to younger adults, across both resting-state and task performance. This finding is in 

line with an increasing body of evidence indicating a trend toward decreased segregation or 

modularity with increasing age (reviewed in Damoiseaux, 2017). Although the majority of 
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investigations so far have been based on resting-state data (Achard & Bullmore, 2007; Betzel et 

al., 2014; Cao et al., 2014a; Chan et al., 2014; Chong et al., 2019; Geerligs et al., 2015; Meunier 

et al., 2009; Onoda & Yamaguchi, 2013; Song et al., 2014; Varangis et al., 2019), emerging 

evidence points to lower modularity in older than younger adults also during cognitive task 

performance (Gallen et al., 2016b). For instance, using a visual N-back task, Gallen et al. 

(2016b) have shown lower modularity in older than younger adults during WM task 

performance, suggesting that global age differences in brain network organization are expressed 

not only during rest but also during cognitive task performance (see also Iordan & Reuter-

Lorenz, 2017). Thus, available functional evidence largely converges on the observation that 

older adults show generally lower within- and higher between-network connectivity, suggesting 

decreased segregation and loss of functional specificity of the brain networks with aging 

(Damoiseaux, 2017; Ferreira & Busatto, 2013; Naik et al., 2017).  

Lower Modularity with Increasing Task Demand for Younger and Older Adults  

Furthermore, the present results showed that modularity decreased when shifting from 

resting to task mode, as well as with increasing task demands during WM task performance, for 

both younger and older adults. This is consistent with previous evidence in younger adults, 

showing lower modularity during cognitive task performance than during resting-state, as well as 

lower modularity with increasing task demand (Bola & Sabel, 2015; Braun et al., 2015; Cohen & 

D'Esposito, 2016; Cole et al., 2014; Finc et al., 2020; Finc et al., 2017; Godwin et al., 2015; 

Hearne et al., 2017; Kitzbichler et al., 2011; Lebedev et al., 2018; Liang et al., 2016; Shine et al., 

2016; Vatansever et al., 2015; Westphal et al., 2017; Yue et al., 2017). Although relevant studies 

so far have been based mainly on young adult samples, more recent investigations (Gallen et al., 

2016b; Lebedev et al., 2018) have confirmed this pattern for both young and older adults. These 
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findings complement previous results showing load-dependent alterations in between- and 

within-network connectivity in younger and older adults (Grady et al., 2016; Huang et al., 2016; 

Nagel et al., 2009; Salami et al., 2018). Thus, available evidence indicates that modularity 

decreases with increasing cognitive demand and suggests that this reconfiguration is necessary 

for task performance. 

Greater Cost for Switching from Rest to Task in Older Adults  

Critically, we report here for the first time that, compared to younger adults, older adults 

show greater decrement in modularity when switching from rest to task mode. From a network 

perspective, brains are thought to minimize wiring costs and metabolism by favoring a small-

world structure with dense short-range connections and sparse long-range connections, because 

the latter are more costly (Achard & Bullmore, 2007; Bullmore & Sporns, 2009). The present 

results suggest that, in order to switch from resting-state to task mode, older brains need to 

expend a higher cost for integrating multiple modules, putatively via long-range connections. 

Thus, the present results suggest that aging affects not only network integration and segregation 

but also the balance between these two neural processes (Damoiseaux, 2017). It should be noted, 

however, that wiring costs can only be approximated in functional networks, because two 

functionally connected regions do not necessarily share a direct structural link (Rubinov & 

Sporns, 2010; Zalesky et al., 2012).  

The present results also extend previous evidence in older adults based mainly on binary 

load manipulations (i.e., low vs. high load) and block designs (e.g., Gallen et al., 2016b) in two 

more ways. First, we have demonstrated parametric effects on modularity over a larger range of 

loads, comprising both span and supra-span loads (Reuter-Lorenz & Iordan, 2018). Our results 

showed an overall steeper decrease in modularity with increasing load in older compared to 
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younger adults, suggesting that the negative linear trend is more evident in older adults. 

However, this difference was likely driven by network modularity being substantially more 

responsive to the training intervention in younger compared to older adults, as we elaborate 

below. Interestingly, though, even with supra-span loads, modularity did not asymptote but 

continued to descend in older adults, suggesting that participants remained engaged in the task 

even at high WM loads (i.e., they did not revert to more rest-like states). Second, in contrast with 

the N-back task, which has a block design, the event-related format of the Sternberg task is able 

to differentiate between different phases of a WM trial (i.e., encoding, maintenance, and 

retrieval). Here, we show that effects reported during N-back blocks (e.g., Gallen et al., 2016b) 

replicate when focusing on the maintenance interval, which is relatively free of sensory and 

motor demands, enabling us to compare directly connectivity between resting-state and task 

modes.   

Age Differences in the Effects of Training on Modularity 

Regarding WM training, our results showed increased modularity post- relative to pre-

training for younger but not for older adults. Critically, this effect was observed during WM 

performance under load and was not observed during either resting-state or task mode (i.e., load 

of 1), suggesting demand-related plasticity. Furthermore, the effect was specific to the training 

intervention and was not observed with simple task exposure. Our findings replicate recent 

results by Finc et al. (2020) in a sample of young adults. Using a dual N-back task, in 

conjunction with adaptive training and multiple fMRI sessions, Finc et al. (2020) identified a 

gradual increase in modularity with training, suggesting more segregated, and thus less costly, 

cognitive processing with increasing task automation. Also in line with Finc et al. (2020), we 

showed that cognitive training leads to increased baseline network segregation, extending their 
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results to a parametric context. Specifically, although segregation increases with training, a 

certain level of modularity breakdown with increasing load is still preserved, as illustrated by 

consistent negative trends in modularity with increasing load, both pre- and post-training.  

In contrast to the effects of training on modularity in younger adults, we did not observe 

similar trends in older adults. This suggests that, despite training-related gains with WM training 

(see Supplementary Results), information processing per se remains costly for older adults. 

Taken together, these different effects of training for younger and older adults suggest a potential 

age-related dissociation, whereby a mastered cognitive task could be supported by a more 

segregated network (i.e., via operation of specialized brain modules) for younger adults, but 

would still require a more integrated workspace for older adults, which is functionally costly and 

behaviorally effortful (see Finc et al., 2020).  

The present results also have further implications for assessing the value of modularity as 

a biomarker of intervention-related plasticity in older adults (Gallen & D'Esposito, 2019). 

Specifically, whereas high pre-training modularity, particularly during resting-state, may reflect a 

more “optimal” functional network organization that promotes cognitive improvements with 

training (e.g., Gallen et al., 2016a; Iordan et al., 2018), older adults may be less able to increase 

network segregation with training, as an expression of overall diminishing neural plasticity (Park 

& Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). Another possibility is that modularity 

may be beneficial for older adults’ cognitive functioning, and local declines in brain function 

may be compensated by a more integrated workspace. However, correlations between changes in 

modularity and WM gains with training (during fMRI task performance) were not significant. 

Alternatively, it is possible that the lack of training effects on modularity in older adults could be 

related to the relatively short intervention employed (i.e., 10 training days over ~2 weeks). For 
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instance, using a longer WM training intervention (20 sessions over ~4 weeks), Lebedev et al. 

(2018) have recently reported increased modularity with training in older adults. The increase in 

older adults’ network segregation may be sensitive to varying the duration and/or intensity of 

training. Thus, future training studies with longer/more intensive interventions should further 

clarify whether network modularity can be influenced by cognitive training in older adults. 

Elucidation of these aspects is critically important for designing future cognitive training 

interventions to prevent or alleviate age-related cognitive decline.  

A main goal of the present investigation was to compare the community structure 

between age groups and across different network states/configurations (i.e., “resting-state”, 

“task-mode”, and “increased task demand”). Therefore, we adopted a data-driven approach 

where the community structure was independently calculated for each experimental condition. 

This was achieved by optimizing a modularity quality function (i.e., Q; see Materials and 

Methods), which also provided the estimate of network segregation (i.e., higher/lower 

modularity values indicate more/less segregation). A similar estimate can be provided by a 

recently proposed measure (i.e., “segregation”; Chan et al., 2014; Wig, 2017) which simply 

calculates the difference in within- versus between-network connectivity, relative to within-

network connectivity, given a predetermined community structure. However, using a 

predetermined community structure (e.g., the Power et al. canonical networks, which were 

derived based on young adult and resting-state data) would not have been ideal because here we 

show that (1) community structure differs between younger and older adults and (2) community 

structure changes between rest and task mode (see also Geerligs et al., 2015; Hearne et al., 

2017). Indeed, we show in the Supplementary Results that segregation analyses using the Power 

et al. canonical networks yield less specific training effects, whereas segregation analyses using 
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data-driven communities based on modularity maximization yield training effects consistent with 

the modularity findings. We posit that modularity is the preferable metric for comparing brain 

network integration/segregation balance across distinct states, particularly when differences in 

community structure between states might occur. Together with the converging results using a 

different parcellation scheme (Schaefer et al., 2018) (see Supplementary Results), these findings 

demonstrate that the present results hold across different measures of network 

segregation/integration, as well as across different brain parcellations.  

Age Effects on Rest-to-Task Reconfiguration 

Regarding topological changes in network configuration, we identified distinct patterns 

of rest-to-task network reorganization in younger and older adults, as well as preserved within-

groups modular architecture with increasing demand and training. First, for younger adults, 

increasing WM load led to the emergence of a conjoined fronto-parietal/salience module. This is 

consistent with evidence for an “executive meta-system” formed via enhanced communication 

between fronto-parietal and salience/cingulo-opercular regions under high-demand task 

conditions (Cocchi et al., 2013). Specifically, whereas the fronto-parietal network, anchored in 

the dorsolateral PFC and lateral parietal cortex, has been implicated in phasic aspects of 

cognitive control (e.g., moment-to-moment adjustments of behavior) the salience/cingulo-

opercular network, anchored in the dorsal ACC and frontal operculum/anterior insula, has been 

implicated in stable set-maintenance and multimodal sensory integration (Bressler & Menon, 

2010; Dosenbach et al., 2008; Dosenbach et al., 2007; Dosenbach et al., 2006; Menon, 2011; 

Power & Petersen, 2013; Seeley et al., 2007). Thus, the present findings are in line with 

accumulating evidence that functional connectivity within this executive meta-system is dynamic 

and depends on task processing demands (Cocchi et al., 2013; Liang et al., 2016).  
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In contrast, for older adults, switching from rest to task mode led to the emergence of a 

salience/sensorimotor module, formed by enhanced communication between cortical and 

subcortical components of the salience/cingulo-opercular and sensorimotor networks identified 

during rest. Sensorimotor reconfiguration during WM task performance is consistent with 

evidence showing that parts of the motor system are implicated in (internal) information 

processing that parallels (external) object manipulation (here, covert rehearsal of the memory 

set), and may play a role in WM gains with training (for a recent discussion, see Simmonite & 

Polk, 2019). While not initially anticipated during task performance, these findings are in line 

with recent evidence showing greater participation coefficients at rest for older than younger 

adults (Geerligs et al., 2015; Iordan et al., 2018), probably reflecting age-related dedifferentiation 

of the salience and sensorimotor networks (Cassady et al., 2020; Cassady et al., 2019; Corte et 

al., 2016; He et al., 2014; Meier et al., 2012; Onoda et al., 2012). 

The present results showing steeper modularity decline, greater network reorganization, 

and higher number of subnetworks when switching from rest to task, for older compared to 

younger adults, are consistent with recent evidence showing that older adults’ network 

organization is more diffuse (i.e., less distinct) during task than during rest (Hughes et al., 2020). 

Together with the results of the network segregation analysis (see Supplementary Results), these 

findings provide converging evidence that older adults show a disproportionately weaker 

network configuration during task. Specifically, older adults show not only lower overall 

segregation across both rest and task, but also steeper segregation decrement with shifting from 

rest to task mode, compared to younger adults. Thus, although the task-related community 

structure for older adults may comprise more modules than for younger adults, overall 
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segregation is weaker in older adults, consistent with the modularity results (see also Hughes et 

al., 2020).  

Training Effects at the Network Level 

Our results also showed that, once the resting-state networks achieve the configuration 

characteristic of task performance, further changes in connectivity with increased WM load or 

training do not significantly alter this task-related modular structure (see also Hearne et al., 

2017). Nevertheless, we identified changes with increasing WM load and training at the level of 

individual brain networks, and for younger adults, these paralleled the changes in whole-brain 

modularity discussed above, which further highlights the links across the two different levels of 

analysis. First, younger adults showed both increased default-mode network efficiency and 

decreased default-mode and fronto-parietal/salience network participation with training. These 

results suggest that enhanced modularity with training in younger adults may be driven by (1) 

strengthening of information exchange within the default-mode network and (2) further 

segregation of the fronto-parietal/salience and default-mode networks from other functional brain 

modules. This is not surprising, given that the fronto-parietal and default-mode networks are 

frequently described as being anti-correlated (Fox et al., 2005) and their competitive relationship 

is thought to be important for attention-demanding task performance (e.g., Kelly et al., 2008). 

Furthermore, these findings are in line with recent evidence that segregation of the default-mode 

and fronto-parietal systems supports WM task performance improvements in younger adults 

(Finc et al., 2020).  

In contrast, older adults showed increased efficiency only within the task-related 

salience/sensorimotor network with training. Of note, the identification of the 

salience/sensorimotor module, emergent only during task performance, was independent of the 
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analysis of training effects. Specifically, identification of network (re)configuration with 

increasing task demand was performed based on Time1 data, whereas the analysis of training 

effects compared Time2 vs. Time3 data. For this reason, we interpret the present training results 

as providing converging evidence that network reorganization leading to the emergence of this 

module under increasing task demand supports WM performance in older adults. However, 

because the emergence of the salience/sensorimotor module was not considered a priori, these 

findings should be interpreted with caution. Finally, regarding the effects of WM load, older 

adults also showed lower efficiency in the fronto-parietal and default mode networks, as well as 

greater participation of the default-mode network, with increasing WM load. This suggests that 

load effects on within- and between-network communication involving the fronto-parietal and 

default-mode networks likely drive the load effects on brain-wide modularity in older adults 

discussed above.  

Training Effects on Pairwise Connectivity 

Finally, pairwise connectivity analyses identified group-specific subnetworks whose 

connectivity patterns changed with training and high demand, suggesting that the global and 

network-level changes discussed above are supported by both increases and decreases in 

functional connectivity, which span multiple brain networks. First, regarding WM training, 

results showed opposite changes in between-network connectivity for younger and older adults. 

Specifically, while training decreased between-network connectivity in younger adults, 

amplifying segregation of the default-mode from other networks, it diffusely increased between-

network connectivity in older adults. These results suggest that increased network segregation 

with training is more specific to younger adults, consistent with more automated processing with 

enhanced expertise (Finc et al., 2020). In contrast, older adults seem to persist in, and potentially 
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amplify, a more integrated and costly global workspace. This suggests that, despite training-

related performance gains regardless of age, younger and older adults may exhibit different 

trajectories in functional network reorganization with WM training. Future investigations, 

comprising lengthier, more extensive training interventions are needed to clarify whether this is a 

specific pattern or whether older adults eventually show increased modularity with training (cf. 

Lebedev et al., 2018).  

Second, while the response to high vs. low WM load showed similarities across age, the 

magnitude of effects differed between younger and older adults. Specifically, while younger 

adults showed greater decreases in connectivity between the task-specific fronto-parietal/salience 

and sensory networks under high load, older adults showed greater increases in connectivity 

between default-mode and sensory networks. These age differences at a sub-network level are 

consistent with the brain-wide results showing overall steeper drop in modularity with increasing 

load in older adults, and with the network-level results indicating decreased efficiency and 

increased participation of the default-mode network with higher WM load in older adults. 

Together, they suggest that decreased segregation of the default-mode with increasing demand 

may be a hallmark of functional dysregulation in older adults during cognitive task performance 

(e,g., Sambataro et al., 2010). 

Finally, while we acknowledge the integration between different levels of analysis (i.e., 

brain-wide community structure, individual networks, pairwise connections), we also recognize 

that there are important distinctions between these levels, and thus they are not simply reducible 

to one-another (for a similar perspective, see Hearne et al., 2017). For instance, first we show 

that community structure differs with age and changes with switching from rest to task. That is, 

no single community structure explains these different contexts/states, which are characterized 
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by large differences in connectivity patterns. Second, once the resting-state networks reconfigure 

to their task-specific state, changes with WM load and with training occur within specific 

networks, without substantially altering the gross task-related community structure. 

Conclusion 

In sum, we provide novel evidence for age differences in functional network 

reconfiguration with increasing task demand and WM training. Modularity is a fundamental 

property of brain network organization, thought to support the brain’s functional segregation and 

integration. While modularity generally decreases with aging, it has been linked with better 

training outcomes and shown to be responsive to cognitive training. Our results showed that, 

while modularity decreases with greater task demand regardless of age, older adults are more 

sensitive to increasing demand and less sensitive to training, at least with the relatively low 

number of training sessions used here, compared to younger adults. Furthermore, changes in 

modularity were accompanied by age differences in functional network reconfiguration with 

training. In particular, whereas younger adults showed increased segregation of the fronto-

parietal/salience and default-mode networks, accompanied by increased efficiency within the 

default-mode network, older adults showed increased efficiency within a task-related 

salience/sensorimotor network and diffusely increased between-network connectivity, with WM 

training. The present findings advance our understanding of the effects of aging and training on 

large-scale functional organization and provide evidence for different trajectories of functional 

network reconfiguration with WM training in younger and older adults.  
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Fig. 1. Experimental design. a, The present within-subjects design enabled the dissociation of 

task-exposure (Time1 vs. Time2) from training (Time2 vs. Time3) effects. b, During each fMRI 

session, participants performed a delayed match-to-sample verbal WM task, with varying 

memory sets. OA, older adults; YA, younger adults; WM, working memory. 
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Fig. 2. Training effects on brain-wide modularity for older and younger adults. Each line 

represents an fMRI session. Sessions 1 and 2 (Time1 and Time2) preceded the training 

intervention, whereas session 3 (Time3) was conducted immediately after training. a, Effect of 

switching between resting-state and task mode (i.e., WM load of 1) on modularity. Although 

modularity decreased when shifting from rest to task for both groups, older adults showed lower 

modularity overall and greater decrement with the rest-to-task shift. b, Modularity as a function 

of WM load (L). Only younger adults showed increased modularity with training. Error bars 

display standard error of the mean. OA, older adults; YA, younger adults; WM, working 

memory.  
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Fig. 3. Community structure across conditions for older (a) and younger adults (b). The 

alluvial diagram illustrates the flow of node-module affiliations across conditions (RS, resting-

state; L, WM load) at Time1. Each individual streamline represents a node in the network, 

colored by its original resting-state affiliation. Labels on the left identify main functional 

networks at rest, whereas labels on the right identify main functional networks during task 

performance. Results are shown for 20% network density, but statistics were performed across 

multiple thresholds (see Materials and Methods section). DMN, default-mode network; FPN, 

fronto-parietal network; Sal, salience network; SMN, sensorimotor network; Vis, visual network; 

Sal/SMN, emerging salience-sensorimotor network in older adults; FPN/Sal, emerging fronto-

parietal/salience network in younger adults; WM, working memory. Figure displayed using 

Alluvial Generator (http://mapequation.org).  
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Fig. 4. Differences in community structure as a function of time and load. Heat maps reflect 

variation of information between any two partitions, averaged across network density thresholds 

(see Materials and Methods section). a, Differences in community structure across conditions, 

for each scanning session (i.e, time point). Only resting-state (RS) was systematically different 

from working memory load conditions (L). b, There were no significant differences in 

community structure across time for any condition. *p<0.05; **p<0.01; ***p<0.001. OA, older 

adults; YA, younger adults.   
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Fig. 5. Group-level community structure across WM loads, for older (a) and younger adults 

(b). Anatomical projections identify nodes consistently assigned to modules across loads 4-8 in 

older adults (a) and loads 5-9 in younger adults (b) at Time1. Nodes are colored depending on 

their module affiliation. Dark shades identify nodes that were assigned to the same module 

across all loads (i.e., logical “AND” conjunction of affiliations across all WM loads; see 

Materials and Methods section). Light shades identify nodes that were assigned to a module 

across most loads (i.e., mode of the set of affiliations). Two singletons (i.e., nodes with uncertain 

module affiliation) for older adults are displayed in grey. FPN, fronto-parietal network; DMN, 

default-mode network; Sal/SMN, salience/sensorimotor network; SMN, sensorimotor network; 

Vis, visual network; FPN/Sal, fronto-parietal/salience network; L, left; R, right. Figure displayed 

using BrainNet Viewer (Xia et al., 2013).   
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Fig. 6. Training effects on network global efficiency for older (a) and younger adults (b). 

Older adults showed increased global efficiency within Sal/SMN with training, whereas younger 

adults showed increased global efficiency within DMN with training. Error bars display standard 

error of the mean. FPN, fronto-parietal network; DMN, default-mode network; Sal/SMN, 

salience/sensorimotor network; FPN/Sal, fronto-parietal/salience network; OA, older adults; YA, 

younger adults; WM, working memory.  
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Fig. 7. Training effects on network participation for older (a) and younger adults (b). 

Younger adults showed lower participation of FPN and DMN with training. There were no 

significant training effects for older adults. Error bars display standard error of the mean. FPN, 

fronto-parietal network; DMN, default-mode network; Sal/SMN, salience/sensorimotor network; 

FPN/Sal, fronto-parietal/salience network; OA, older adults; YA, younger adults; WM, working 

memory.  
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Fig. 8. Differences in pairwise connectivity with training (a) and load (b) in older (top) and 

younger adults (bottom). a, With training, older adults showed diffusely increased functional 

connectivity between brain networks, whereas younger adults showed greater decreased 

connectivity, further segregating DMN from FPN/Sal and Vis networks. b, Older and younger 

adults showed similar patterns of increased vs. decrease connectivity under high load, though the 

magnitude of load-related changes in connectivity differed between age groups. Circular 

diagrams identify nodes consistently assigned to modules across loads 4-8 in older adults and 

loads 5-9 in younger adults, at Time1. Nodes are colored depending on their module affiliation. 

Dark and light shades identify nodes with stable and variable affiliation across WM loads, 

respectively (see legend of Fig. 5 for details). Two singletons (i.e., nodes with uncertain module 

affiliation) for older adults are displayed in grey. Each line identifies a significantly increasing or 

decreasing connection between two regions. Lines are color-coded according to the color bars on 

the right (t-values). Results are displayed at an initial threshold of p=0.002 and p<0.05, FWE-

corrected at the whole-network level (see Materials and Methods section). FPN, fronto-parietal 

network; DMN, default-mode network; Sal/SMN, salience/sensorimotor network; SMN, 

sensorimotor network; Vis, visual network; FPN/Sal, fronto-parietal/salience network. 
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Abstract 

Demanding cognitive functions like working memory (WM) depend on functional brain 

networks being able to communicate efficiently while also maintaining some degree of 

modularity. Evidence suggests that aging can disrupt this balance between integration and 

modularity. In this study, we examined how cognitive training affects the integration and 

modularity of functional networks in older and younger adults. 23 younger and 23 older adults 

participated in 10 days of verbal WM training, leading to performance gains in both age groups. 

Older adults exhibited lower modularity overall and a greater decrement when switching from 

rest to task, compared to younger adults. Interestingly, younger but not older adults showed 

increased task-related modularity with training. Furthermore, whereas training increased 

efficiency within, and decreased participation of, the default-mode network for younger adults, it 

enhanced efficiency within a task-specific salience/sensorimotor network for older adults. 

Finally, training increased segregation of the default-mode from fronto-parietal/salience and 

visual networks in younger adults, while it diffusely increased between-network connectivity in 

older adults. Thus, while younger adults increase network segregation with training, suggesting 

more automated processing, older adults persist in, and potentially amplify, a more integrated 

and costly global workspace, suggesting different age-related trajectories in functional network 

reorganization with WM training. 

 

Keywords: graph theory, intrinsic activity, task-related connectivity, global efficiency, 

participation coefficient, cingulo-opercular network, Sternberg task 
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Introduction 

Cognitive performance critically depends on the brain’s ability to balance functional 

integration and segregation (Dehaene et al., 1998), which is supported by the brain’s modular 

network organization (Crossley et al., 2013). By definition, a modular network has denser 

connections within its modules (or subnetworks) and sparser connections between different 

component modules (Newman, 2006). Typically, brain network modularity has been studied 

using resting-state functional MRI recordings and a high level of modularity has been associated 

with better performance in various cognitive domains, such as working memory (WM), 

attention, episodic memory, learning and overall intelligence (for a recent review, see Gallen & 

D'Esposito, 2019).  

Brain imaging evidence also shows that modularity decreases with aging (e.g., Betzel et 

al., 2014; Cao et al., 2014b; Chan et al., 2014; Gallen et al., 2016b; Geerligs et al., 2015; Iordan 

et al., 2018; Onoda & Yamaguchi, 2013; Song et al., 2014), as brain networks become overall 

less functionally distinct, consistent with the idea of age-related functional dedifferentiation 

(Grady, 2012; Park et al., 2004; Park et al., 2010). Furthermore, aging disproportionately affects 

“associative” brain networks that mediate higher-level functions, such as the fronto-parietal and 

default-mode networks, compared to “sensory-motor” networks, such as the somato-

sensorimotor and visual networks (Chan et al., 2014; Geerligs et al., 2015; Iordan et al., 2018; 

Malagurski et al., 2020). Thus, current evidence suggests that age-related cognitive decline is 

linked, at least in part, to altered communication within and between the associative brain 

networks.  

Complementing resting-state investigations, task-related data show that functional brain 

modularity is also influenced by the level of cognitive demand or load. In general, performance 
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of challenging tasks has been associated with switching from a relatively segregated network 

configuration, which typically characterizes the resting-state, to a more integrated network 

configuration, that supports cognitive performance (Braun et al., 2015; Cohen & D'Esposito, 

2016; Finc et al., 2020; Finc et al., 2017; Shine et al., 2016; Vatansever et al., 2015; Zuo et al., 

2018). Consequently, complex cognitive functions, such as WM, elicit more extensive network 

reconfigurations compared to lower-level or highly automated functions, and these 

reconfigurations primarily involve the associative brain networks (e.g., Cohen & D'Esposito, 

2016; Cole et al., 2013; Yue et al., 2017). Demand-dependent changes in the functional 

relationships between these networks have been reported in various cognitive domains, including 

WM (Vatansever et al., 2015), decision making (Cole et al., 2013), and reasoning (Hearne et al., 

2017). Of note, although such task-related reconfigurations are consistent and support behavioral 

performance, they are relatively small compared to the functional relationships that characterize 

the brain’s intrinsic network architecture (Cole et al., 2014; Crossley et al., 2013; Krienen et al., 

2014).  

Despite recent progress in elucidating the brain’s large-scale functional organization, 

important questions remain unanswered. For instance, how does aging affect brain network 

reconfigurations elicited by demanding cognitive tasks, and can these be influenced by cognitive 

training? In line with the Compensation Related Utilization of Neural Circuits Hypothesis 

(CRUNCH; Reuter-Lorenz & Cappell, 2008), brain activation studies have identified age 

differences in neural recruitment during the performance of demanding cognitive tasks (Li et al., 

2015; Spreng et al., 2010). Such studies also point to cognitive demand as a critical factor 

influencing whether older adults will over-activate or under-activate WM circuitry relative to 

younger adults (Cappell et al., 2010; Heinzel et al., 2014; Schneider-Garces et al., 2010). 
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However, age differences in functional connectivity related to task transitions have been less 

investigated (cf. Gallen et al., 2016b). Furthermore, recent evidence shows that modularity 

increases with training in younger adults, suggesting that less brain network integration is 

required to support high performance once a task is automated, even for complex tasks, such as 

WM (Finc et al., 2020). For older adults, recent evidence (Iordan et al., 2020) suggests that WM 

training increases brain responsiveness by shifting the activation peak towards higher WM loads. 

However, it is unclear what changes in the large-scale network organization occur with training 

in older adults. Recently, brain network modularity has been proposed as a biomarker of 

cognitive plasticity (Gallen & D'Esposito, 2019) based, in part, on accumulating evidence 

showing that individual differences in older adults’ network modularity at rest predict cognitive 

gains in the context of training (Gallen et al., 2016a; Iordan et al., 2018). This is exciting because 

it suggests that the aging brain retains potential for plasticity, which could be harnessed more 

broadly if the mechanisms underlying such benefits can be further elucidated. However, no 

studies so far have investigated age-related changes in the large-scale network organization 

elicited by cognitive training, particularly during cognitive task performance.  

Here, we have investigated age differences in the reconfiguration of large-scale 

functional brain networks in the context of WM training. Because we compared functional 

connectivity during both resting-state and task performance, we focused on “background 

connectivity”, that is endogenous or “residual” functional connectivity between brain regions 

after accounting for variance related to evoked task activity (Summerfield et al., 2006; Turk-

Browne, 2013). Our experimental sample comprised healthy older and younger adults who 

participated in an adaptive verbal WM training study with three functional MRI scanning 

sessions. Sessions 1 and 2 were two weeks apart (Time1 and Time2) and preceded a 10-day 
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adaptive WM training intervention. The third scanning session (Time3) was conducted 

immediately after training, approximately two weeks after Time2. This within-subject design 

enabled us to dissociate the effects of task-exposure (Time1 vs. Time2) from the effects of 

training (Time2 vs. Time3).  

We employed graph theory metrics to assess functional brain network reorganization at 

three levels, specifically (1) at the level of the whole-brain, (2) at the level of individual 

networks, and (3) at the level of pairwise relations between brain regions. We focused on 

modularity to assess whole-brain segregation/integration and followed-up with measures of 

within-network and between-network communication, i.e. global efficiency and the participation 

coefficient, respectively. Global efficiency is a graph measure that indexes integration of 

information within a network, whereas the participation coefficient indexes the propensity of 

nodes within a network to form links with nodes outside of their own network. Finally, at the 

level of pairwise relations between regions, we employed the network-based statistic (NBS) 

method, a univariate approach that tests links between regions individually and controls for 

familywise error at the network level (Zalesky et al., 2010).  

Based on previous evidence, we made the following predictions: First, we expected 

overall lower modularity in older compared to younger adults, lower modularity during task 

performance compared to resting-state, and progressively lower modularity with increasing WM 

load. It remains an open question, however, whether older adults would also show a greater 

decrease in modularity when switching from resting-state to task mode and a steeper decrease in 

modularity with increasing task load, compared to younger adults. Second, regarding WM 

training, we expected that network reorganization would be elicited by the training intervention 

and not by simple task-exposure and that task-related functional connectivity would be more 
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sensitive to the training effects than resting-state recordings. A related open question is whether 

younger adults would show a greater enhancement in modularity with training, compared to 

older adults. Finally, at the level of individual brain networks, we expected that WM training 

would be linked to reconfigurations primarily at the level of associative brain networks, in 

particular the fronto-parietal and default-mode networks. 

Materials and Methods 

Participants 

A sample of 23 healthy, cognitively normal older and 23 younger adults was recruited 

from the University of Michigan campus and community surrounding Ann Arbor, Michigan. The 

initial sample size was based on prior work examining age and load effects in WM (Cappell et 

al., 2010). Detailed sample characteristics are presented elsewhere (Iordan et al., 2020). Briefly, 

all participants were right-handed, native English speakers with normal or corrected-to-normal 

hearing and vision and were screened for history of head injury, psychiatric illness, or 

alcohol/drug abuse. Data from 2 older and 2 younger adults were excluded due to technical 

errors in the administration of the training (1 older adult) or fMRI (1 younger adult) protocols, 

inability to perform the fMRI task (1 younger adult did not provide responses to >50% of the 

trials), and attrition (1 older adult failed to return for the last scan). Thus, the behavioral sample 

consisted of 21 older adults (age range: 63-75; 10 women) with a mean age of 67.81 (± 3.31) 

years and 21 younger adults (age range: 18-28; 12 women) with a mean age (±S.D.) of 21.33 (± 

2.65) years. In addition, 1 younger and 3 older adults were excluded from the fMRI analyses due 

to technical issues related to scan acquisition that affected different phases of the scan, i.e. task (2 

older adults) and resting-state (1 younger and 1 older adults), and thus the fMRI sample 

consisted of 18 older and 20 younger adults. The University of Michigan Institutional Review 
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Board approved all procedures, and all participants provided informed consent prior to 

participating. 

Experimental Design and Procedure 

fMRI WM task  

During each of the 3 fMRI scanning sessions (Fig. 1a), participants performed a delayed 

match-to-sample verbal WM task (Sternberg, 1966) with span and supraspan loads (Fig. 1b). At 

the beginning of each trial, a set of letters was displayed during encoding (4 s), followed by a 

fixation cross during the maintenance interval (7 s). At retrieval, a probe letter was displayed on 

the screen (2 s), and participants indicated by a button-press whether or not the probe was part of 

the memory set. The memory sets varied in size from 4 to 8 letters for older adults and from 5 to 

9 letters for younger adults. These age-specific ranges of loads were chosen based on pilot data 

to minimize ceiling and floor effects on WM performance, and to allow comparisons of both 

baseline performance and training-induced improvement. Both groups also completed a control 

condition (set size of 1) that served as a “task mode” condition here, specifically a WM task with 

a minimal load. During each fMRI session, participants completed 6 blocks of 24 trials (one 

older and one younger adult completed 5 runs at Time1), with each block comprising 4 trials of 

each set size, displayed in random order. Prior to the first scanning session, all participants 

practiced the task in a mock scanner, for a total of 12 trials, with 2 trials per load. Participants 

were monitored for understanding of the task and accurate responding, and prior to each 

scanning session participants were reminded about the task instructions.  

Behavioral WM Training Task 

The training task was an adaptive verbal WM task, similar to the fMRI task in terms of 

the type of stimuli employed (i.e., letters) but different with respect to the set sizes and timing 
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(Iordan et al., 2018). All participants started the first training session with a set size of 3 letters. 

The number of letters in each memory set remained constant for each block and was determined 

by the participant’s performance in the previous block. The set size increased by one letter if the 

participants’ accuracy was >86% on the preceding block and decreased by one letter if their 

accuracy was <72%. The set size attained in the last session of each day was used as the starting 

set size the subsequent day. For each trial, the memory set was displayed for a duration weighted 

by its size (325 ms × set size) at encoding, followed by a 3 s maintenance interval, and a 2 s 

retrieval period. Participants completed 6 blocks of 14 trials during each of the 10 training 

sessions. All training sessions occurred in our laboratory at the University of Michigan, lasted 

approximately 15 minutes each, and were scheduled on consecutive days (except weekends). 

Both the fMRI and the training tasks were presented using E-Prime 2.0 (Psychology Software 

Tools, Pittsburgh, PA). 

Imaging Protocol 

Imaging data were collected using a 3 T General Electric MR750 scanner with an eight-

channel head coil. Functional images were acquired in ascending order using a spiral-in 

sequence, with MR parameters: TR = 2000 ms; TE = 30 ms; flip angle = 90°; field of view = 

220×220 mm2; matrix size = 64×64; slice thickness = 3 mm, no gap; 43 slices; voxel size = 

3.44×3.44×3 mm3. After an initial ten seconds of signal stabilization, 168 volumes were acquired 

for each of the 6 WM task runs and 235 volumes were acquired for the resting-state run, 

respectively. A high-resolution T1-weighted anatomical image was also collected following the 

WM task and preceding resting-state acquisition, using spoiled-gradient-recalled acquisition 

(SPGR) in steady-state imaging (TR = 12.24 ms, TE = 5.18 ms; flip angle = 15°, field of view = 

256×256 mm2, matrix size = 256×256; slice thickness = 1 mm; 156 slices; voxel size = 1×1×1 
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mm3). Images were produced using a k-space de-spiking of outliers, followed by image 

reconstruction using an in-house iterative algorithm with field-map correction (Sutton et al., 

2003), which has superior reconstruction quality compared to non-iterative conjugate phase 

reconstruction. Initial images and field-map estimates were inspected for distortions and when 

present, the field maps were re-estimated using maps from adjacent runs. 

Preprocessing 

Preprocessing was performed using SPM12 (Wellcome Department of Cognitive 

Neurology, London) and MATLAB R2015a (The MathWorks Inc., Natick, MA). Functional 

images were slice-time corrected, realigned, and co-registered to the anatomical image using a 

mean functional image. A study-specific anatomical template was created (younger and older 

adults together; Iordan et al., 2018), using Diffeomorphic Anatomical Registration Through 

Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007), based on segmented grey matter and 

white matter tissue classes, to optimize inter-participant alignment (Klein et al., 2009). The 

DARTEL flowfields and MNI transformation were then applied to the functional images, and the 

functional images were resampled to 3×3×3 mm3 voxel size. Additional spatial smoothing was 

not applied, based on evidence that it negatively affects network properties and graph measures 

(see Alakorkko et al., 2017; Fornito et al., 2013; Korhonen et al., 2017; Stanley et al., 2013; 

Triana et al., 2020; van den Heuvel et al., 2009; Zalesky et al., 2012). (See Supplementary 

Results for a control analysis using smoothed data.) Identification of outlier scans was performed 

using Artifact Detection Tools (ART; www.nitrc.org/projects/_artifact_detect/), as follows. Scans 

were classified as outliers if frame-to-frame displacement exceeded 0.5 mm in composite motion 

(combination of translational and rotational displacements) or 3 standard deviations in the global 

mean signal. On average, the proportion of outliers was at or below 5% in both older (task: 
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4.33%, resting-state: 3.4%) and younger adults (task: 5.08%, resting-state: 3.6%). Scan-nulling 

regressors (i.e., 1 for the outlier volume and 0 everywhere else) were added to the time-series 

denoising step (Whitfield-Gabrieli & Nieto-Castanon, 2012) in the linear regression to address 

outlier volumes (see below). Overall, there was more motion during task than during rest. 

Mixed-model Group×Time×DataType ANOVAs indicated more outliers (F1,36=4.26, p=0.046, 

ηp
2=0.11), as well as more motion (i.e., max frame displacement) both before (F1,36=12.29, 

p=0.001, ηp
2=0.25) and after “scrubbing” (F1,36=21.03, p<0.001, ηp

2=0.37), for task compared to 

resting-state acquisition. This was not surprising, given that participants provided motor 

responses during the WM task and the task data acquisition lasted substantially longer than the 

resting-state. Critically, though, there were no differences in motion between the two groups 

(ps>0.3), and no other significant main effects or interactions (ps>0.05).  

Graph Construction 

Brain-wide functional connectivity analyses were performed using the Connectivity 

Toolbox (CONN; Whitfield-Gabrieli & Nieto-Castanon, 2012). To construct a brain-wide graph, 

we employed a commonly used functional atlas (Power et al., 2011) shown to provide good 

homogeneity across younger and older participants (Geerligs et al., 2017). The Power et al. atlas 

comprises 264 cortical and subcortical coordinates defined meta-analytically, across a variety of 

tasks, from a large participant sample (N>300). (For robustness analyses, we also employed 

another parcellation by Schaefer et al., (2018), derived from resting-state data; see 

Supplementary Results.) A 5 mm-radius sphere was centered at each of the Power et al. atlas 

coordinates. To ensure that the graph comprised regions that were not susceptible to fMRI signal 

drop-out, each sphere was filtered through a sample-level signal intensity mask, calculated as 

follows. First, binary masks were calculated for each participant’s resting-state and task data, at 
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each time point, thresholded at >70% mean signal intensity (Cohen & D'Esposito, 2016; Geerligs 

et al., 2015; Iordan et al., 2018), computed over all voxels, using ART. Then, a sample-level 

mask was calculated, across all participants, using logical “AND” conjunction. Regions with 

fewer than 8 voxels (~50% volume) overlap with the sample-level mask were excluded, leaving 

221 regions of interest (ROIs). Of note, this procedure eliminated mostly nodes affiliated with 

the “Uncertain” module in the Power et al. atlas (i.e., 68% of the “Uncertain” nodes were 

eliminated), which includes brain regions typically susceptible to fMRI signal drop-out (Power et 

al., 2011).  

To remove physiological and other sources of noise from the fMRI time series we used 

linear regression and the anatomical CompCor method (Behzadi et al., 2007; Chai et al., 2012a; 

Muschelli et al., 2014), as implemented in CONN. Each participant’s white matter and 

cerebrospinal fluid masks derived during segmentation, eroded by 1 voxel to minimize partial 

volume effects, were used as noise ROIs. The following temporal covariates were added to the 

model: undesired linear trend, signal extracted from each participant’s noise ROIs (5 principal 

component analysis parameters for each), motion parameters (3 rotation and 3 translation 

parameters, plus their first-order temporal derivatives), regressors for each outlier scan (i.e., 

“scrubbing”; one covariate was added for each outlier scan, consisting of 0’s everywhere but the 

outlier scan, coded as “1”). For the task-based functional connectivity analyses, additional task 

regressors were added as covariates of no interest (Cole et al., 2014; Hearne et al., 2017), as 

follows. Separate regressors were added for the encoding and probe onsets, respectively, for each 

condition (loads 1, 4-8 for older adults/5-9 for younger adults; total 12 regressors), modeled as 

boxcar functions convolved with a canonical hemodynamic response function (HRF). An 

additional regressor modeled the maintenance intervals of incorrectly answered trials. The 
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residual fMRI time series were band-pass filtered (0.01 Hz < f < 0.15 Hz) at a low frequency 

component sensitive to both resting-state and task-based functional connectivity (Hearne et al., 

2017; Sun et al., 2004). (See Supplementary Results for a control analysis using high-pass 

filtering.)  

For the resting-state data, functional connectivity was estimated using a Pearson 

correlation between each pair of time series, resulting in a 3 (time points) × 221 × 221 

connectivity matrix for each participant. For the task-based functional connectivity analyses, we 

employed the regression approach described above to account for variance associated with task-

related coactivation (Cole et al., 2014; Hearne et al., 2017); see Supplementary Results for a 

control analysis using finite impulse response task regression (Cole et al., 2019). Then, the 

residual time series from each 7 s maintenance interval (accounting for hemodynamic delay by 

convolving the boxcar regressor for each maintenance interval with a rectified HRF; Whitfield-

Gabrieli & Nieto-Castanon, 2012) were concatenated to form condition-specific time series for 

each brain region. This enabled us to compare directly connectivity between resting-state and 

task modes (Hearne et al., 2017). An HRF-weighted Pearson correlation was calculated for the 

resulting regional time series, resulting in a 3 (time points) × 6 (conditions) × 221 × 221 

connectivity matrix for each participant. (See Supplementary Results for a control analysis 

equating resting-state and WM condition durations.) 

 Finally, the correlation coefficients were Fisher-z transformed, and the diagonal of the 

connectivity matrix was set to zero. Unless stated otherwise (see Pairwise Connectivity Analyses 

below), we retained only positive connectivity values for further analyses, consistent with prior, 

related studies (Chan et al., 2014; Cohen & D'Esposito, 2016; Finc et al., 2020; Hearne et al., 

2017). Setting negative connectivity values to zero prior to proportional thresholding (see below) 
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prevents inclusion of negative values in the thresholded matrices. Here, thresholding signed and 

positive-only matrices yielded identical results. Negative edge weights are often set to zero when 

analyzing fMRI connectivity data due to continuing debates regarding their interpretation (see 

Chai et al., 2012b; Murphy et al., 2009; Schölvinck et al., 2010). Matrices were then thresholded 

based on connection density (preserving connection weights), which equates the number of 

edges across graphs and allows proper comparisons (Garrison et al., 2015; Wijk et al., 2010). To 

ensure that results were not due to any specific threshold, calculations were performed for a 

range comprising 10% – 30% of the strongest connections, in 2% increments. Thresholding is 

generally recommended because inclusion of false-positive connections is more detrimental to 

network measure computations than exclusion of false-negative connections (van den Heuvel et 

al., 2017; Zalesky et al., 2016). This threshold range satisfied several established criteria for 

graph connectedness and small-worldness (see Chong et al., 2019), as follows: (1) the average of 

number of edges per node was larger than the total number of nodes (Wang et al., 2009), (2) at 

least 80% of the nodes were fully connected (Bassett et al., 2008), and (3) small-worldness of the 

network was >1 (Watts & Strogatz, 1998). (See Supplementary Results for details.) In addition, 

this threshold range has been shown to provide robust functional brain-network characterizations 

(Garrison et al., 2015) and is similar to that used in previous work assessing connectivity 

reconfigurations as a function of task demands (e.g., Cohen & D'Esposito, 2016; Cole et al., 

2014; Hearne et al., 2017), thus enabling comparison of the results. Graph construction and 

analyses were performed using tools from the Brain Connectivity Toolbox (BCT) (Rubinov & 

Sporns, 2010). 
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Analysis Overview 

We assessed age differences in functional network reorganization with WM training at 

three levels of progressively increased granularity. First, at the whole-brain level, we derived 

community partitions for resting-state and each task condition, separately at each time point, and 

assessed network modularity. Task-exposure effects were identified by comparing the two time 

points preceding training (i.e., Time1 vs. Time2), whereas training effects were identified by 

comparing pre- vs. post-training (i.e., Time2 vs. Time3). Then, significant training effects at the 

whole-brain level were followed-up at the individual-network level, separately within each 

group. Here, we focused on measures of within- and between-network communication, 

specifically global efficiency and the participation coefficient. To avoid circularity, node-module 

assignments independently derived at Time1 were used for pre- vs. post-training comparisons 

(Time2 vs. Time3). Finally, we examined training effects at the level of pairwise relations 

between brain regions, using network-based statistics (NBS; Zalesky et al., 2010). 

Whole-Brain Network Analyses 

Modularity Calculations. To assess the strength of network segregation at the whole-brain level, 

we employed the Louvain algorithm (Blondel et al., 2008). The algorithm optimizes a modularity 

quality function (Q) comparing the observed intra-module connectivity with that which would be 

expected by chance (Newman, 2006; Newman & Girvan, 2004). Higher modularity values 

indicate more segregation whereas lower modularity values indicate less segregation between 

modules or subnetworks. The modularity index is formally defined as follows: 

𝑄 =
1

2𝐸
∑[𝐴𝑖𝑗 − 𝛾𝑒𝑖𝑗]𝛿(𝑚𝑖, 𝑚𝑗)

𝑖𝑗

 

where E is the number of graph edges, A is the adjacency matrix, γ is the resolution parameter, e 

is the null model [here, e = kikj/2E, where ki and kj are the degrees of the nodes i and j], and δ is 
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an indicator that equals 1 if nodes i and j belong to the same module and 0 otherwise. Because 

the Louvain algorithm is non-deterministic, modularity was calculated as the average over 1000 

runs of the algorithm. In addition, because differences in total connectivity strength between 

groups may influence the results, modularity scores for each participant and condition were 

normalized by dividing them by the average modularity of a null distribution, calculated by 

randomly rewiring each original network 1000 times (Maslov & Sneppen, 2002). This approach 

has been previously validated in the context of working memory training (Finc et al., 2020), thus 

enabling comparison of the results. Of note, age differences in mean connectivity did not occur 

during resting state, but were driven by within-group differential responses to changing task 

demands and were modulated by training (see Supplementary Results). Because such differences 

cannot be simply attributed to physiological noise, regression of mean connectivity was not 

applied (for a discussion, see Geerligs et al., 2017). (See Supplementary Results for a control 

analysis using regression of mean connectivity.)  

We ran the Louvain algorithm over a range of the resolution parameter gamma (γ) from 1 

to 2 in increments of 0.1, based on previous evidence (Hughes et al., 2020) that gamma values in 

this range are adequate for comparing community structure in younger and older adults. 

Robustness analyses showed overall consistent results over this gamma range (see 

Supplementary Results and Table S1). For subsequent analyses, the resolution parameter was set 

to γ = 1.3, a value that generated resting-state community structures with the following 

properties: (1) high similarity with the Power et al. (2011) canonical networks, (2) comparable 

number of detected networks for younger and older adults, and (3) low number of singletons 

(i.e., nodes with unclear network affiliation; for details, see Supplementary Results). Of note, this 

gamma value is similar to those employed by other related investigations (e.g., Cohen & 
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D'Esposito, 2016; Iordan et al., 2018), allowing comparison of the results. In addition, we 

replicated the results using a different parcellation, by Schaefer et al. (2018) (see Supplementary 

Results and Fig. S1).  

Modularity scores for each participant, condition, and time point were exported to SPSS 

(IBM Corp., Armonk, NY) and analyzed within the ANOVA framework. A Greenhouse-Geisser 

correction for violation of sphericity was applied as needed, for all ANOVA models. Effect-sizes 

are reported as partial eta squared (ηp
2). First, we focused on the switch between resting-state and 

task mode (i.e., load of 1) and examined effects on modularity across all three time points, using 

a Group×Time×Mode mixed-effects ANOVA. Then, we focused on the WM loads common to 

both groups (i.e., loads 5-8) and examined the effects on modularity across all three time points 

using a Group×Time×Load mixed-effects ANOVA. Significant effects of Load were followed-up 

with linear trend analyses, whereas significant effects of Time were followed-up by separately 

assessing task-exposure (Time1 vs. Time2) and training effects (i.e., Time2 vs. Time3) between 

and within groups. Of note, between-group comparisons were performed using 

Group×Time×Load ANOVAs across WM loads common to both groups (i.e., loads 5-8), whereas 

within-group comparisons were performed using Time×Load ANOVAs across group-specific 

loads (i.e., loads 4-8 for older and loads 5-9 for younger adults). Matching on load provided us 

with a set of reliable parameters for analyzing WM performance across the different time points. 

Specifically, whereas nominal load was fixed over time, the difficulty associated with a specific 

load was assumed to vary, i.e. decrease with training. 

Individual and Group-Level Consensus Partitions. To achieve a community structure 

representative of each group, for every experimental condition, we used consensus clustering 

(Lancichinetti & Fortunato, 2012). This capitalizes on the consistency of each node’s module 
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affiliation across a set of partitions, thus circumventing the known degeneracy of the Louvain 

algorithm (Good et al., 2010). To account for potential differences in network configuration due 

to age or experimental condition, we used a “purely” data-driven approach (i.e., no node-

community affiliation priors were employed). Consensus clustering was applied first at the 

individual level, to generate a robust partition for each participant, and then at the group level, to 

generate a representative partition for each group. First, to generate a robust partition for each 

participant, the Louvain algorithm was run 1000 times. For each participant, we constructed an 

agreement matrix representing the fraction of runs in which each pair of nodes was assigned to 

the same module. The Louvain algorithm was then iteratively run on the agreement matrix (1000 

Louvain runs at each step), to generate a consensus partition for each participant. For each 

iteration, the agreement matrix was recalculated and thresholded, until a single representative 

partition was obtained for each participant. Second, to generate a group-level representative 

partition, an agreement matrix was calculated based on the consensus partitions of all 

participants in one group. The Louvain algorithm was then run on the agreement matrix to obtain 

a consensus partition for each group, as described above. The thresholding parameter for the 

agreement matrix was set to τ = 0.4, a value similar to those used in other investigations (e.g., 

Cohen & D'Esposito, 2016; Iordan et al., 2018); a range of commonly employed values, τ = [0.3, 

0.4, 0.5] (Lancichinetti & Fortunato, 2012), yielded broadly similar results (see Supplementary 

Results).  

To assess between- and within-subject differences in community structure across rest/task 

conditions and time points (i.e., network reconfiguration), we calculated variation of information 

(VIn), which is a metric of the distance between two partitions (Meilă, 2007). Low VIn values 

indicate greater similarity, whereas high VIn values indicate less similarity between two 
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partitions. Similar to the approach employed for the modularity analyses presented above, first 

we assessed between-groups differences in network reconfiguration from resting-state to task 

mode. Specifically, we calculated VIn between each participant’s resting-state and task mode 

(i.e., load of 1) partitions, separately for each time point, and then examined between-group 

differences in VIn across all three time points, using a Group×Time mixed-effects ANOVA; for a 

similar approach, see Gallen et al. (2016b). Second, we assessed within-group differences in 

network reconfiguration across WM loads and time, separately for older and younger adults. We 

used a repeated-measures permutation procedure to compare the observed variation of 

information with null models, similar to procedures previously employed by Dwyer et al. (2014) 

and Hearne et al. (2017). Specifically, for each contrast of interest, half of the participants’ 

condition labels were randomly switched, resulting in two new sets of individual-level module 

structures. Then, these shuffled module structures were run through the previously described 

partitioning pipeline, to generate randomized group-level module partitions. For computational 

efficiency, we iteratively ran the Louvain algorithm on the agreement matrix 100 times at each 

step. Finally, the difference between these partitions was calculated using VIn. To build a null 

distribution, the procedure was repeated 1000 times for each contrast of interest, and statistical 

significance was ascribed by comparing the actual data with the null distribution.  

Network-Level Analyses 

Training effects at the whole-brain level were followed-up at the individual-network 

level, separately within each group. We specifically targeted the fronto-parietal and default-mode 

modules due to these networks’ sensitivity to both aging and training effects (Salmi et al., 2018; 

Spreng et al., 2010). To avoid circularity, node-module assignments independently derived at 

Time1 were used for pre- vs. post-training comparisons (Time2 vs. Time3); see Iordan et al. 
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(2020) for a similar approach. Furthermore, to enable comparability across conditions, each 

module was represented only by those nodes that were consistently assigned to the same module, 

across all loads (i.e., logical “AND” conjunction of affiliations across all loads), based on the 

Time1 group-level consensus partitions (Geerligs et al., 2015; Iordan et al., 2018). We focused on 

two commonly used network measures indexing within-network and between-network 

communication, namely global efficiency and the participation coefficient. Training effects on 

these network measures were tested using Time×Load ANOVAs performed separately, within 

each group, for each targeted brain network. 

Global Efficiency. To assess within-network communication, we calculated global efficiency 

within each module. Global efficiency (Latora & Marchiori, 2003) is formally defined as 

follows:  

𝐸𝑔𝑙𝑜𝑏 =
1

𝑁(𝑁 − 1)
∑

1

𝐿𝑖𝑗
𝑖≠𝑗

 

where N is the number of nodes in the graph and Lij is the shortest path length between nodes i 

and j. At the level of functional brain networks, global efficiency is thought to index the capacity 

for parallel information transfer and integrated processing among all components part of a 

network (Achard & Bullmore, 2007; Rubinov & Sporns, 2010). Here, we used global efficiency 

to examine training effects on network communication within modules, based on previous 

evidence linking high global brain-network efficiency with enhanced cognitive performance 

(e.g., Bassett et al., 2009; Meunier et al., 2014; Shine et al., 2016; van den Heuvel et al., 2009). 

Global efficiency was separately calculated for each individual network by creating a sub-graph 

containing only the nodes part of that specific network. 

Participation Coefficient. To assess between-network communication, we calculated the 

participation coefficient for each module. The participation coefficient (Guimerà & Amaral, 
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2005) indexes inter-network connectivity by quantifying the distribution of each node’s 

connections across different modules. The participation coefficient of a node i is defined as 

follows: 

𝑃(𝑖) = 1 − ∑ [
𝑘𝑖(𝑚)

𝑘𝑖
]
2𝑀

𝑚=1

 

where M is the number of modules in the graph, and ki(m) is the degree of node i within its own 

module m, and ki is the degree of node i regardless of module membership. Participation 

coefficients of all nodes within a module were averaged to provide an estimate of mean 

participation for a module. 

Pairwise Connectivity Analysis 

To identify training effects at a sub-network level, we employed the network-based 

statistic approach (Zalesky et al., 2010), a procedure that tests for differences in pairwise 

connectivity between brain regions while controlling for family-wise error (FWE) at the network 

level. Using a general linear model, we tested for differences due to training and load, separately 

within each group. For simplicity of interpretation, we limited these analyses to the lowest vs. 

highest loads within each group (i.e., loads 4 vs. 8 for older adults, and loads 5 vs. 9 for younger 

adults). We ran the following contrasts: Time3 > Time2, to identify increased connectivity with 

training; Time2 > Time3, to identify decreased connectivity with training; High Load > Low 

Load, to identify increased connectivity with load; Low Load > High Load, to identify decreased 

connectivity with load. Analyses were performed on unthresholded functional connectivity 

matrices (positive and negative values) and links between any two regions were independently 

tested against the null hypothesis using paired t-tests. The threshold was set to p<0.002 (one-

tailed) within each group, a value that enabled detection of medium-sized network components 

while eliminating small and/or spurious effects; see e.g., (Finc et al., 2017) and (Hearne et al., 
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2017) for a similar approach. Robustness analysis for a range of thresholds, 0.001 < p < 0.005, 

yielded broadly similar results (see Supplementary Results and Tables S2 and S3). Permutation 

tests (5000 permutations) were employed to calculate p-values for the detected components and 

only components that survived p<0.05, FWE-corrected at the whole-network level, were 

reported. This analysis allowed identification of training effects at the level of network 

components and thus provided results complementary to the graph analyses described above.  

Results 

Behavioral Analyses 

Behavioral results showed that WM performance improved with training for both groups, 

and were presented elsewhere (Iordan et al., 2020). Briefly, effects of task-exposure and training 

on WM performance were examined with loads 5-8, which were common to both groups, using 

Group×Time×Load ANOVAs on WM accuracy scores. The main effect of Load was significant 

at p<0.001 for all ANOVA models. First, the task-exposure analysis (Time1 vs. Time2) showed 

that, while younger adults performed overall better than older adults (Group: F1,40=5.91, p=0.02, 

ηp
2=0.13), this group difference was reduced with task exposure (Group×Time: F1,40=6.17, 

p=0.017, ηp
2=0.13). The main effect of Time was not significant (F1,40=0.26, p=0.611, ηp

2=0.01). 

Second, analysis of training effects (Time2 vs. Time3) showed that performance improved with 

training for both groups (Time: F1,40=13.04, p=0.001, ηp
2=0.25). The main effect of Group was 

not significant (Group: F1,40=2.34, p=0.134, ηp
2=0.06). Similar results were obtained when 

including only participants who had complete fMRI data. Specifically, the task-exposure analysis 

showed that younger adults performed overall better than older adults (Group: F1,36=5.5, 

p=0.025, ηp
2=0.13) and that this group difference was reduced with task exposure (Group×Time: 
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F1,36=4.5, p=0.041, ηp
2=0.11), whereas analysis of training effects similarly showed that 

performance improved with training for both groups (Time: F1,36=10.57, p=0.003, ηp
2=0.23). 

Here, we assessed age differences in functional network reorganization with WM training 

at three levels. First, we examined task-exposure and training effects on brain-wide modularity 

and community structure. Then, we examined training effects at the level of individual brain 

networks, focusing on within- and between-network communication, and using the network 

metrics of global efficiency and participation coefficient. Finally, we examined training effects at 

the level of pairwise relations between brain regions, using network-based statistics.  

Brain-Wide Effects of Task-Exposure and Training 

Exposure and Training Effects on Brain-Wide Modularity 

Modularity is a measure of network segregation, indexing the extent to which a graph is 

organized into separable modules with dense connections within and sparse connections between 

modules. Here, we tested whether age and training influence the decrement in modularity 

typically observed when (1) switching between resting-state and task mode and (2) operating 

under increased task demand. To allow between-groups comparisons, each modularity score was 

normalized relative to a null distribution (see Materials and Methods section). First, we focused 

on the switch between resting-state and task mode (i.e., load of 1) and examined the effects on 

modularity across all three time points (Fig. 2a). A Group×Time×Mode ANOVA on estimates of 

modularity indicated greater overall modularity in younger than older adults (Group: F1,36=31.99, 

p<0.001, ηp
2=0.47) and greater modularity during resting-state than task mode (Mode: 

F1,36=141.51, p<0.001, ηp
2=0.8). In addition, results showed greater decrement in modularity 

when switching from resting-state to task mode, in older compared to younger adults 

(Group×Mode: F1,36=19.14, p<0.001, ηp
2=0.35). No other effects were significant (ps>0.17). 
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Second, we focused on WM loads common to both groups (i.e., loads 5-8) and examined 

the effects on modularity across all three time points (Fig. 2b). A Group×Time×Load ANOVA on 

estimates of modularity (loads 5-8) again indicated greater overall modularity in younger than 

older adults (Group: F1,36=37.38, p<0.001, ηp
2=0.51), as well as a main effect of Load 

(F3,108=5.89, p=0.001, ηp
2=0.14), qualified by a significant linear trend (F1,36=13.52, p=0.001, 

ηp
2=0.27), indicating lower modularity with increasing load. Furthermore, a significant 

Group×Load interaction (F3,108=3.21, p=0.026, ηp
2=0.08) indicated that modularity had a steeper 

decrease as a function of Load in older compared to younger adults. Finally, there was a 

significant Group×Time interaction (F2,72=4.64, p=0.013, ηp
2=0.11), which we followed-up as 

planned, by separately assessing task-exposure (Time1 vs. Time2) and training effects (Time2 

vs. Time3). Both analyses showed greater modularity in younger compared to older adults 

(ps<0.001) and no main effects of Time (ps>0.08). Critically, a significant Group×Time 

interaction was obtained with training (F1,36=7.97, p=0.008, ηp
2=0.18) but not with task-exposure 

(F1,36=1.14, p=0.293, ηp
2=0.03), indicating greater training-related gains in brain-wide 

modularity for younger compared to older adults. Furthermore, analyses of task-exposure and 

training effects performed across group-specific loads (i.e., loads 4-8 in older and loads 5-9 in 

younger adults), separately within each age group, showed greater modularity with WM training 

only for younger adults (see Supplementary Results).  

Overall, these results suggest that training increases brain-wide modularity specifically in 

younger adults. Of note, the results reported here used the brain parcellation by Power et al. 

(2011). For robustness tests, we performed the same analyses using the Schaefer et al. (2018) 

parcellation, and obtained similar results (see Supplementary Results and Fig. S1). Finally, an 

ancillary analysis employing a recently proposed measure of network segregation (Chan et al., 
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2014; Wig, 2017) provided results that were overall consistent with the modularity findings (see 

Supplementary Results and Fig. S2). However, as expected, the effects of training on segregation 

were relatively less specific when employing the Power et al. (2011) intrinsic (i.e., resting-state) 

node-module affiliations, instead of the data-driven community structure detected for each 

individual condition. This suggests that differences in community structure, such as those that 

occur when shifting from resting-state to task mode (see below), may bias the segregation, but 

not the modularity, metric. 

Age and Rest-to-Task Shift Effects on Community Structure 

While the modularity index characterizes the segregation/integration quality of a network 

partition, it does not inform about its community structure (i.e., composition of the modules). 

Hence, we also examined the community structure at rest and during task performance, as well 

as potential effects of task exposure and training on module composition, in older and younger 

adults. Community detection analyses identified five major modules during resting-state, for 

both older and younger adults, which broadly correspond to the visual, sensorimotor, 

salience/cingulo-opercular, fronto-parietal, and default-mode networks (Power et al., 2011; Yeo 

et al., 2011). This is consistent with previous, related studies that employed a similar data-driven 

approach in older and younger adult samples comparable in size (e.g., Geerligs et al., 2015; 

Hearne et al., 2017; Vatansever et al., 2015). (See Fig. 3 for a depiction of community structure 

at Time1.) However, switching between resting-state and task mode (i.e., load of 1) led to a 

different module configuration, and this was more evident in older adults. Specifically, for older 

adults, task-mode was associated with the emergence of a module comprising mainly salience 

and sensorimotor nodes (i.e., a salience/sensorimotor module), whereas for younger adults, the 

reorganization from resting-state to task mode better preserved the distinction between these two 
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modules. To ascribe statistical significance to observed differences, we calculated the variation of 

information metric (Meilă, 2007), which indexes the distance between two partitions; in this 

case, we estimated the distance between each participant’s resting-state and task mode partitions, 

separately for each time point. A Group×Time mixed-effects ANOVA on variation of information 

scores indicated greater rest to task network reconfiguration in older than younger adults (Group: 

F1,36=75.89, p<0.001, ηp
2=0.68), as well as a Group×Time interaction (F2,72=4.19, p=0.019, 

ηp
2=0.10). The main effect of Time was not significant (p>0.8). Together with the modularity 

results presented above, these findings indicate greater network reorganization supporting 

enhanced integration when transitioning from resting-state to task mode, in older compared to 

younger adults. 

Regarding network reorganization with WM load, the community structure attained by 

older adults for the task mode was largely preserved with increasing task load (loads 4-8). In 

contrast, for younger adults, a module emerged with increased WM load (loads 5-9), which 

conjoined the fronto-parietal and salience networks (i.e., a fronto-parietal/salience module). 

Given these descriptive results, we next tested for statistical differences in community structure 

as a function of Time and Load, separately for older and younger adults. First, permutation tests 

(see Materials and Methods section) identified differences in the community structure of resting-

state compared to all WM loads, for both groups (Fig. 4a); at the same time, there were no 

consistent differences in community structure between the different loads (i.e., loads 4-8 in older 

and loads 5-9 in younger adults). Second, comparing task-exposure (Time1 vs. Time2) and 

training effects (Time2 vs. Time3) for each load indicated no significant differences in 

community structure across time (Fig. 4b). Together, these results suggest that community 

structure varies mainly between resting-state and task mode, and once the task-specific 
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configuration is established, increasing WM load or task-exposure/training do not substantially 

alter community structure in older or younger adults.  

Training Effects at the Network Level 

The analyses of community structure presented above identified similar modules across 

time and WM loads within each group. Because brain-wide changes in segregation/integration 

may be driven by changes in communication within and between specific networks, we next 

examined training effects at the level of individual networks, in older and younger adults. To 

analyze training effects on brain networks while avoiding circularity, we employed the 

community structure independently identified at Time1 to compare network properties pre- vs. 

post-training (Time2 vs. Time3). Because graph measures depend on the number of nodes in a 

graph, each module was represented only by those nodes that were consistently assigned to the 

same module across loads at Time1 (Geerligs et al., 2015; Iordan et al., 2018) (see Fig. 5). We 

targeted two a priori associative networks critical for WM/executive function, i.e. the fronto-

parietal/salience and default-mode networks. Of note, because the emergence of a 

salience/sensorimotor module with WM load in older adults was not initially anticipated, 

analyses pertaining to this module were deemed exploratory. To assess within- and between-

network communication, we calculated global efficiency and the participation coefficient for 

each network.  

Training Effects on Network Efficiency 

For older adults, a Time×Load ANOVA indicated no training effects on global efficiency 

for the fronto-parietal or default-mode networks (ps>0.3); however, there were main effects of 

Load for both networks (fronto-parietal: F4,68=3.64, p=0.01, ηp
2=0.18; default-mode: F4,68=2.88, 

p=0.029, ηp
2=0.15), qualified by linear trends (fronto-parietal: F1,17=9.59, p=0.007, ηp

2=0.36; 
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default-mode: F1,17=6.46, p=0.021, ηp
2=0.28), indicating lower efficiency with increasing WM 

load in both networks. In contrast, training was associated with greater global efficiency within 

the combined salience/sensorimotor network (Time: F1,17=8.91, p=0.008, ηp
2=0.34) (Fig. 6a). For 

younger adults, results showed greater global efficiency with training in the default-mode 

network (Time: F1,19=11.11, p=0.003, ηp
2=0.37), whereas the training effect for the fronto-

parietal/salience network did not reach significance (Time: F1,19=3.53, p=0.076, ηp
2=0.16), 

although the general direction was increased efficiency with training (Fig. 6b).  

Training Effects on Network Participation 

For older adults, a Time×Load ANOVA indicated no significant effects for the fronto-

parietal network (ps>0.4), whereas for the default-mode network there was only a main effect of 

Load (F4,68=11.45, p<0.001, ηp
2=0.4), qualified by a linear trend (F1,17=26.72, p<0.001, 

ηp
2=0.61), indicating greater default-mode network participation with increasing load. In 

addition, there were no significant effects for the salience/sensorimotor module (ps>0.2) (Fig. 

7a). In younger adults, results showed lower participation coefficients with training for both the 

fronto-parietal/salience (Time: F1,19=7.74, p=0.012, ηp
2=0.29) and default-mode networks (Time: 

F1,19=20.73, p<0.001, ηp
2=0.52), consistent with the general trend of greater network segregation 

with training (Fig. 7b).  

Training Effects on Pairwise Connectivity 

To investigate training-related reconfigurations at a subnetwork level, we further assessed 

changes in pairwise connectivity between brain regions, separately within each group, using 

network-based statistics (Zalesky et al., 2010). For simplicity of interpretation, we included only 

the lowest and highest WM loads within each group (i.e., loads 4 and 8 in older adults, and loads 
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5 and 9 in younger adults), and tested for effects of WM training (Time2 vs. Time3) and load 

(see Materials and Methods section).  

First, regarding effects of training, results showed opposite changes in between-network 

connectivity for younger and older adults (Fig. 8a). Specifically, training decreased between-

network connectivity, further segregating the default-mode from the task-specific fronto-

parietal/salience and visual networks in younger adults. Results identified a network component 

comprising 97 nodes and 120 edges (p=0.001, FWE-corrected), with 78% of edges involving the 

default-mode network and out of these, 94% showing decreased connectivity of the default-mode 

with the fronto-parietal/salience and visual networks. In contrast, training diffusely increased 

functional connectivity between task-related brain networks in older adults, with results 

identifying a network component comprising 52 nodes and 55 edges (p=0.045, FWE-corrected) 

roughly evenly distributed across the main networks. 

Second, regarding effects of WM load, results showed similar patterns of increased vs. 

decreased connectivity for younger and older adults, although their magnitude differed with age 

(Fig. 8b). Specifically, for older adults, greater WM load strongly increased between-network 

connectivity of the default-mode with other networks. Results identified a network component 

comprising 112 nodes and 191 edges (p<0.001, FWE-corrected), with 86% of edges involving 

the default-mode network and out of these, 89% showing increased connectivity of the default-

mode with the salience/sensorimotor, sensorimotor, and visual networks. By comparison, 

younger adults showed a relatively weaker response to increased WM load (58 nodes and 64 

edges; p=0.021, FWE-corrected). However, younger adults showed a more extensive pattern of 

decreased connectivity under high vs. low WM load (90 nodes and 106 edges; p=0.001, FWE-

corrected), with 51% of edges involving the task-specific fronto-parietal/salience network. In 
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contrast, older adults showed relatively less decreased connectivity under high WM load (45 

nodes and 52 edges; p=0.023, FWE-corrected). 

Discussion 

The goal of the present study was to assess age differences in the reconfiguration of 

functional brain networks elicited by training on a demanding WM task. According to the Global 

Workspace Theory (Dehaene et al., 1998), whereas “lower-level” (e.g., perceptual, motor) or 

automated functions can be well supported by the operation of relatively segregated neural 

modules, “higher-level” or effortful cognitive processes, such as WM, require a more integrated 

neuronal workspace. This implies that performance of demanding cognitive tasks may be 

critically dependent on the reconfiguration of the functional brain networks from their canonical 

(i.e., resting) state, and that novice and expert performance of those tasks should differ in respect 

to this network (re)organization. Given previously reported age differences in network 

segregation or modularity, we hypothesized that younger and older adults would show different 

patterns of network reconfiguration with WM training. Our results identified such differences at 

the level of brain-wide modularity, at the level of individual network properties, and at the level 

of pairwise connections between different brain regions. These results are discussed, in turn, 

below, while emphasizing links between the different levels of analysis.  

Age and Training Effects on Brain-wide Modularity 

Lower Overall Network Modularity for Older compared to Younger Adults 

First, at the whole-brain level, our results showed lower network modularity in older 

compared to younger adults, across both resting-state and task performance. This finding is in 

line with an increasing body of evidence indicating a trend toward decreased segregation or 

modularity with increasing age (reviewed in Damoiseaux, 2017). Although the majority of 
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investigations so far have been based on resting-state data (Achard & Bullmore, 2007; Betzel et 

al., 2014; Cao et al., 2014a; Chan et al., 2014; Chong et al., 2019; Geerligs et al., 2015; Meunier 

et al., 2009; Onoda & Yamaguchi, 2013; Song et al., 2014; Varangis et al., 2019), emerging 

evidence points to lower modularity in older than younger adults also during cognitive task 

performance (Gallen et al., 2016b). For instance, using a visual N-back task, Gallen et al. 

(2016b) have shown lower modularity in older than younger adults during WM task 

performance, suggesting that global age differences in brain network organization are expressed 

not only during rest but also during cognitive task performance (see also Iordan & Reuter-

Lorenz, 2017). Thus, available functional evidence largely converges on the observation that 

older adults show generally lower within- and higher between-network connectivity, suggesting 

decreased segregation and loss of functional specificity of the brain networks with aging 

(Damoiseaux, 2017; Ferreira & Busatto, 2013; Naik et al., 2017).  

Lower Modularity with Increasing Task Demand for Younger and Older Adults  

Furthermore, the present results showed that modularity decreased when shifting from 

resting to task mode, as well as with increasing task demands during WM task performance, for 

both younger and older adults. This is consistent with previous evidence in younger adults, 

showing lower modularity during cognitive task performance than during resting-state, as well as 

lower modularity with increasing task demand (Bola & Sabel, 2015; Braun et al., 2015; Cohen & 

D'Esposito, 2016; Cole et al., 2014; Finc et al., 2020; Finc et al., 2017; Godwin et al., 2015; 

Hearne et al., 2017; Kitzbichler et al., 2011; Lebedev et al., 2018; Liang et al., 2016; Shine et al., 

2016; Vatansever et al., 2015; Westphal et al., 2017; Yue et al., 2017). Although relevant studies 

so far have been based mainly on young adult samples, more recent investigations (Gallen et al., 

2016b; Lebedev et al., 2018) have confirmed this pattern for both young and older adults. These 
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findings complement previous results showing load-dependent alterations in between- and 

within-network connectivity in younger and older adults (Grady et al., 2016; Huang et al., 2016; 

Nagel et al., 2009; Salami et al., 2018). Thus, available evidence indicates that modularity 

decreases with increasing cognitive demand and suggests that this reconfiguration is necessary 

for task performance. 

Greater Cost for Switching from Rest to Task in Older Adults  

Critically, we report here for the first time that, compared to younger adults, older adults 

show greater decrement in modularity when switching from rest to task mode. From a network 

perspective, brains are thought to minimize wiring costs and metabolism by favoring a small-

world structure with dense short-range connections and sparse long-range connections, because 

the latter are more costly (Achard & Bullmore, 2007; Bullmore & Sporns, 2009). The present 

results suggest that, in order to switch from resting-state to task mode, older brains need to 

expend a higher cost for integrating multiple modules, putatively via long-range connections. 

Thus, the present results suggest that aging affects not only network integration and segregation 

but also the balance between these two neural processes (Damoiseaux, 2017). It should be noted, 

however, that wiring costs can only be approximated in functional networks, because two 

functionally connected regions do not necessarily share a direct structural link (Rubinov & 

Sporns, 2010; Zalesky et al., 2012).  

The present results also extend previous evidence in older adults based mainly on binary 

load manipulations (i.e., low vs. high load) and block designs (e.g., Gallen et al., 2016b) in two 

more ways. First, we have demonstrated parametric effects on modularity over a larger range of 

loads, comprising both span and supra-span loads (Reuter-Lorenz & Iordan, 2018). Our results 

showed an overall steeper decrease in modularity with increasing load in older compared to 
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younger adults, suggesting that the negative linear trend is more evident in older adults. 

However, this difference was likely driven by network modularity being substantially more 

responsive to the training intervention in younger compared to older adults, as we elaborate 

below. Interestingly, though, even with supra-span loads, modularity did not asymptote but 

continued to descend in older adults, suggesting that participants remained engaged in the task 

even at high WM loads (i.e., they did not revert to more rest-like states). Second, in contrast with 

the N-back task, which has a block design, the event-related format of the Sternberg task is able 

to differentiate between different phases of a WM trial (i.e., encoding, maintenance, and 

retrieval). Here, we show that effects reported during N-back blocks (e.g., Gallen et al., 2016b) 

replicate when focusing on the maintenance interval, which is relatively free of sensory and 

motor demands, enabling us to compare directly connectivity between resting-state and task 

modes.   

Age Differences in the Effects of Training on Modularity 

Regarding WM training, our results showed increased modularity post- relative to pre-

training for younger but not for older adults. Critically, this effect was observed during WM 

performance under load and was not observed during either resting-state or task mode (i.e., load 

of 1), suggesting demand-related plasticity. Furthermore, the effect was specific to the training 

intervention and was not observed with simple task exposure. Our findings replicate recent 

results by Finc et al. (2020) in a sample of young adults. Using a dual N-back task, in 

conjunction with adaptive training and multiple fMRI sessions, Finc et al. (2020) identified a 

gradual increase in modularity with training, suggesting more segregated, and thus less costly, 

cognitive processing with increasing task automation. Also in line with Finc et al. (2020), we 

showed that cognitive training leads to increased baseline network segregation, extending their 
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results to a parametric context. Specifically, although segregation increases with training, a 

certain level of modularity breakdown with increasing load is still preserved, as illustrated by 

consistent negative trends in modularity with increasing load, both pre- and post-training.  

In contrast to the effects of training on modularity in younger adults, we did not observe 

similar trends in older adults. This suggests that, despite training-related gains with WM training 

(see Supplementary Results), information processing per se remains costly for older adults. 

Taken together, these different effects of training for younger and older adults suggest a potential 

age-related dissociation, whereby a mastered cognitive task could be supported by a more 

segregated network (i.e., via operation of specialized brain modules) for younger adults, but 

would still require a more integrated workspace for older adults, which is functionally costly and 

behaviorally effortful (see Finc et al., 2020).  

The present results also have further implications for assessing the value of modularity as 

a biomarker of intervention-related plasticity in older adults (Gallen & D'Esposito, 2019). 

Specifically, whereas high pre-training modularity, particularly during resting-state, may reflect a 

more “optimal” functional network organization that promotes cognitive improvements with 

training (e.g., Gallen et al., 2016a; Iordan et al., 2018), older adults may be less able to increase 

network segregation with training, as an expression of overall diminishing neural plasticity (Park 

& Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). Another possibility is that modularity 

may be beneficial for older adults’ cognitive functioning, and local declines in brain function 

may be compensated by a more integrated workspace. However, correlations between changes in 

modularity and WM gains with training (during fMRI task performance) were not significant. 

Alternatively, it is possible that the lack of training effects on modularity in older adults could be 

related to the relatively short intervention employed (i.e., 10 training days over ~2 weeks). For 
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instance, using a longer WM training intervention (20 sessions over ~4 weeks), Lebedev et al. 

(2018) have recently reported increased modularity with training in older adults. The increase in 

older adults’ network segregation may be sensitive to varying the duration and/or intensity of 

training. Thus, future training studies with longer/more intensive interventions should further 

clarify whether network modularity can be influenced by cognitive training in older adults. 

Elucidation of these aspects is critically important for designing future cognitive training 

interventions to prevent or alleviate age-related cognitive decline.  

A main goal of the present investigation was to compare the community structure 

between age groups and across different network states/configurations (i.e., “resting-state”, 

“task-mode”, and “increased task demand”). Therefore, we adopted a data-driven approach 

where the community structure was independently calculated for each experimental condition. 

This was achieved by optimizing a modularity quality function (i.e., Q; see Materials and 

Methods), which also provided the estimate of network segregation (i.e., higher/lower 

modularity values indicate more/less segregation). A similar estimate can be provided by a 

recently proposed measure (i.e., “segregation”; Chan et al., 2014; Wig, 2017) which simply 

calculates the difference in within- versus between-network connectivity, relative to within-

network connectivity, given a predetermined community structure. However, using a 

predetermined community structure (e.g., the Power et al. canonical networks, which were 

derived based on young adult and resting-state data) would not have been ideal because here we 

show that (1) community structure differs between younger and older adults and (2) community 

structure changes between rest and task mode (see also Geerligs et al., 2015; Hearne et al., 

2017). Indeed, we show in the Supplementary Results that segregation analyses using the Power 

et al. canonical networks yield less specific training effects, whereas segregation analyses using 
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data-driven communities based on modularity maximization yield training effects consistent with 

the modularity findings. We posit that modularity is the preferable metric for comparing brain 

network integration/segregation balance across distinct states, particularly when differences in 

community structure between states might occur. Together with the converging results using a 

different parcellation scheme (Schaefer et al., 2018) (see Supplementary Results), these findings 

demonstrate that the present results hold across different measures of network 

segregation/integration, as well as across different brain parcellations.  

Age Effects on Rest-to-Task Reconfiguration 

Regarding topological changes in network configuration, we identified distinct patterns 

of rest-to-task network reorganization in younger and older adults, as well as preserved within-

groups modular architecture with increasing demand and training. First, for younger adults, 

increasing WM load led to the emergence of a conjoined fronto-parietal/salience module. This is 

consistent with evidence for an “executive meta-system” formed via enhanced communication 

between fronto-parietal and salience/cingulo-opercular regions under high-demand task 

conditions (Cocchi et al., 2013). Specifically, whereas the fronto-parietal network, anchored in 

the dorsolateral PFC and lateral parietal cortex, has been implicated in phasic aspects of 

cognitive control (e.g., moment-to-moment adjustments of behavior) the salience/cingulo-

opercular network, anchored in the dorsal ACC and frontal operculum/anterior insula, has been 

implicated in stable set-maintenance and multimodal sensory integration (Bressler & Menon, 

2010; Dosenbach et al., 2008; Dosenbach et al., 2007; Dosenbach et al., 2006; Menon, 2011; 

Power & Petersen, 2013; Seeley et al., 2007). Thus, the present findings are in line with 

accumulating evidence that functional connectivity within this executive meta-system is dynamic 

and depends on task processing demands (Cocchi et al., 2013; Liang et al., 2016).  
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In contrast, for older adults, switching from rest to task mode led to the emergence of a 

salience/sensorimotor module, formed by enhanced communication between cortical and 

subcortical components of the salience/cingulo-opercular and sensorimotor networks identified 

during rest. Sensorimotor reconfiguration during WM task performance is consistent with 

evidence showing that parts of the motor system are implicated in (internal) information 

processing that parallels (external) object manipulation (here, covert rehearsal of the memory 

set), and may play a role in WM gains with training (for a recent discussion, see Simmonite & 

Polk, 2019). While not initially anticipated during task performance, these findings are in line 

with recent evidence showing greater participation coefficients at rest for older than younger 

adults (Geerligs et al., 2015; Iordan et al., 2018), probably reflecting age-related dedifferentiation 

of the salience and sensorimotor networks (Cassady et al., 2020; Cassady et al., 2019; Corte et 

al., 2016; He et al., 2014; Meier et al., 2012; Onoda et al., 2012). 

The present results showing steeper modularity decline, greater network reorganization, 

and higher number of subnetworks when switching from rest to task, for older compared to 

younger adults, are consistent with recent evidence showing that older adults’ network 

organization is more diffuse (i.e., less distinct) during task than during rest (Hughes et al., 2020). 

Together with the results of the network segregation analysis (see Supplementary Results), these 

findings provide converging evidence that older adults show a disproportionately weaker 

network configuration during task. Specifically, older adults show not only lower overall 

segregation across both rest and task, but also steeper segregation decrement with shifting from 

rest to task mode, compared to younger adults. Thus, although the task-related community 

structure for older adults may comprise more modules than for younger adults, overall 
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segregation is weaker in older adults, consistent with the modularity results (see also Hughes et 

al., 2020).  

Training Effects at the Network Level 

Our results also showed that, once the resting-state networks achieve the configuration 

characteristic of task performance, further changes in connectivity with increased WM load or 

training do not significantly alter this task-related modular structure (see also Hearne et al., 

2017). Nevertheless, we identified changes with increasing WM load and training at the level of 

individual brain networks, and for younger adults, these paralleled the changes in whole-brain 

modularity discussed above, which further highlights the links across the two different levels of 

analysis. First, younger adults showed both increased default-mode network efficiency and 

decreased default-mode and fronto-parietal/salience network participation with training. These 

results suggest that enhanced modularity with training in younger adults may be driven by (1) 

strengthening of information exchange within the default-mode network and (2) further 

segregation of the fronto-parietal/salience and default-mode networks from other functional brain 

modules. This is not surprising, given that the fronto-parietal and default-mode networks are 

frequently described as being anti-correlated (Fox et al., 2005) and their competitive relationship 

is thought to be important for attention-demanding task performance (e.g., Kelly et al., 2008). 

Furthermore, these findings are in line with recent evidence that segregation of the default-mode 

and fronto-parietal systems supports WM task performance improvements in younger adults 

(Finc et al., 2020).  

In contrast, older adults showed increased efficiency only within the task-related 

salience/sensorimotor network with training. Of note, the identification of the 

salience/sensorimotor module, emergent only during task performance, was independent of the 
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analysis of training effects. Specifically, identification of network (re)configuration with 

increasing task demand was performed based on Time1 data, whereas the analysis of training 

effects compared Time2 vs. Time3 data. For this reason, we interpret the present training results 

as providing converging evidence that network reorganization leading to the emergence of this 

module under increasing task demand supports WM performance in older adults. However, 

because the emergence of the salience/sensorimotor module was not considered a priori, these 

findings should be interpreted with caution. Finally, regarding the effects of WM load, older 

adults also showed lower efficiency in the fronto-parietal and default mode networks, as well as 

greater participation of the default-mode network, with increasing WM load. This suggests that 

load effects on within- and between-network communication involving the fronto-parietal and 

default-mode networks likely drive the load effects on brain-wide modularity in older adults 

discussed above.  

Training Effects on Pairwise Connectivity 

Finally, pairwise connectivity analyses identified group-specific subnetworks whose 

connectivity patterns changed with training and high demand, suggesting that the global and 

network-level changes discussed above are supported by both increases and decreases in 

functional connectivity, which span multiple brain networks. First, regarding WM training, 

results showed opposite changes in between-network connectivity for younger and older adults. 

Specifically, while training decreased between-network connectivity in younger adults, 

amplifying segregation of the default-mode from other networks, it diffusely increased between-

network connectivity in older adults. These results suggest that increased network segregation 

with training is more specific to younger adults, consistent with more automated processing with 

enhanced expertise (Finc et al., 2020). In contrast, older adults seem to persist in, and potentially 
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amplify, a more integrated and costly global workspace. This suggests that, despite training-

related performance gains regardless of age, younger and older adults may exhibit different 

trajectories in functional network reorganization with WM training. Future investigations, 

comprising lengthier, more extensive training interventions are needed to clarify whether this is a 

specific pattern or whether older adults eventually show increased modularity with training (cf. 

Lebedev et al., 2018).  

Second, while the response to high vs. low WM load showed similarities across age, the 

magnitude of effects differed between younger and older adults. Specifically, while younger 

adults showed greater decreases in connectivity between the task-specific fronto-parietal/salience 

and sensory networks under high load, older adults showed greater increases in connectivity 

between default-mode and sensory networks. These age differences at a sub-network level are 

consistent with the brain-wide results showing overall steeper drop in modularity with increasing 

load in older adults, and with the network-level results indicating decreased efficiency and 

increased participation of the default-mode network with higher WM load in older adults. 

Together, they suggest that decreased segregation of the default-mode with increasing demand 

may be a hallmark of functional dysregulation in older adults during cognitive task performance 

(e,g., Sambataro et al., 2010). 

Finally, while we acknowledge the integration between different levels of analysis (i.e., 

brain-wide community structure, individual networks, pairwise connections), we also recognize 

that there are important distinctions between these levels, and thus they are not simply reducible 

to one-another (for a similar perspective, see Hearne et al., 2017). For instance, first we show 

that community structure differs with age and changes with switching from rest to task. That is, 

no single community structure explains these different contexts/states, which are characterized 
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by large differences in connectivity patterns. Second, once the resting-state networks reconfigure 

to their task-specific state, changes with WM load and with training occur within specific 

networks, without substantially altering the gross task-related community structure. 

Conclusion 

In sum, we provide novel evidence for age differences in functional network 

reconfiguration with increasing task demand and WM training. Modularity is a fundamental 

property of brain network organization, thought to support the brain’s functional segregation and 

integration. While modularity generally decreases with aging, it has been linked with better 

training outcomes and shown to be responsive to cognitive training. Our results showed that, 

while modularity decreases with greater task demand regardless of age, older adults are more 

sensitive to increasing demand and less sensitive to training, at least with the relatively low 

number of training sessions used here, compared to younger adults. Furthermore, changes in 

modularity were accompanied by age differences in functional network reconfiguration with 

training. In particular, whereas younger adults showed increased segregation of the fronto-

parietal/salience and default-mode networks, accompanied by increased efficiency within the 

default-mode network, older adults showed increased efficiency within a task-related 

salience/sensorimotor network and diffusely increased between-network connectivity, with WM 

training. The present findings advance our understanding of the effects of aging and training on 

large-scale functional organization and provide evidence for different trajectories of functional 

network reconfiguration with WM training in younger and older adults.  
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Fig. 1. Experimental design. a, The present within-subjects design enabled the dissociation of 

task-exposure (Time1 vs. Time2) from training (Time2 vs. Time3) effects. b, During each fMRI 

session, participants performed a delayed match-to-sample verbal WM task, with varying 

memory sets. OA, older adults; YA, younger adults; WM, working memory. 
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Fig. 2. Training effects on brain-wide modularity for older and younger adults. Each line 

represents an fMRI session. Sessions 1 and 2 (Time1 and Time2) preceded the training 

intervention, whereas session 3 (Time3) was conducted immediately after training. a, Effect of 

switching between resting-state and task mode (i.e., WM load of 1) on modularity. Although 

modularity decreased when shifting from rest to task for both groups, older adults showed lower 

modularity overall and greater decrement with the rest-to-task shift. b, Modularity as a function 

of WM load (L). Only younger adults showed increased modularity with training. Error bars 

display standard error of the mean. OA, older adults; YA, younger adults; WM, working 

memory.  
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Fig. 3. Community structure across conditions for older (a) and younger adults (b). The 

alluvial diagram illustrates the flow of node-module affiliations across conditions (RS, resting-

state; L, WM load) at Time1. Each individual streamline represents a node in the network, 

colored by its original resting-state affiliation. Labels on the left identify main functional 

networks at rest, whereas labels on the right identify main functional networks during task 

performance. Results are shown for 20% network density, but statistics were performed across 

multiple thresholds (see Materials and Methods section). DMN, default-mode network; FPN, 

fronto-parietal network; Sal, salience network; SMN, sensorimotor network; Vis, visual network; 

Sal/SMN, emerging salience-sensorimotor network in older adults; FPN/Sal, emerging fronto-

parietal/salience network in younger adults; WM, working memory. Figure displayed using 

Alluvial Generator (http://mapequation.org).  
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Fig. 4. Differences in community structure as a function of time and load. Heat maps reflect 

variation of information between any two partitions, averaged across network density thresholds 

(see Materials and Methods section). a, Differences in community structure across conditions, 

for each scanning session (i.e, time point). Only resting-state (RS) was systematically different 

from working memory load conditions (L). b, There were no significant differences in 

community structure across time for any condition. *p<0.05; **p<0.01; ***p<0.001. OA, older 

adults; YA, younger adults.   
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Fig. 5. Group-level community structure across WM loads, for older (a) and younger adults 

(b). Anatomical projections identify nodes consistently assigned to modules across loads 4-8 in 

older adults (a) and loads 5-9 in younger adults (b) at Time1. Nodes are colored depending on 

their module affiliation. Dark shades identify nodes that were assigned to the same module 

across all loads (i.e., logical “AND” conjunction of affiliations across all WM loads; see 

Materials and Methods section). Light shades identify nodes that were assigned to a module 

across most loads (i.e., mode of the set of affiliations). Two singletons (i.e., nodes with uncertain 

module affiliation) for older adults are displayed in grey. FPN, fronto-parietal network; DMN, 

default-mode network; Sal/SMN, salience/sensorimotor network; SMN, sensorimotor network; 

Vis, visual network; FPN/Sal, fronto-parietal/salience network; L, left; R, right. Figure displayed 

using BrainNet Viewer (Xia et al., 2013).   

FPN          DMN          Sal/SMN          SMN          Vis FPN/Sal          DMN          SMN          Vis

Older Adults Younger Adultsa b

L LR RLateral

Medial

Lateral

Medial



NETWORK RECONFIGURATION WITH TRAINING 47 

 

 

Fig. 6. Training effects on network global efficiency for older (a) and younger adults (b). 

Older adults showed increased global efficiency within Sal/SMN with training, whereas younger 

adults showed increased global efficiency within DMN with training. Error bars display standard 

error of the mean. FPN, fronto-parietal network; DMN, default-mode network; Sal/SMN, 

salience/sensorimotor network; FPN/Sal, fronto-parietal/salience network; OA, older adults; YA, 

younger adults; WM, working memory.  
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Fig. 7. Training effects on network participation for older (a) and younger adults (b). 

Younger adults showed lower participation of FPN and DMN with training. There were no 

significant training effects for older adults. Error bars display standard error of the mean. FPN, 

fronto-parietal network; DMN, default-mode network; Sal/SMN, salience/sensorimotor network; 

FPN/Sal, fronto-parietal/salience network; OA, older adults; YA, younger adults; WM, working 

memory.  
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Fig. 8. Differences in pairwise connectivity with training (a) and load (b) in older (top) and 

younger adults (bottom). a, With training, older adults showed diffusely increased functional 

connectivity between brain networks, whereas younger adults showed greater decreased 

connectivity, further segregating DMN from FPN/Sal and Vis networks. b, Older and younger 

adults showed similar patterns of increased vs. decrease connectivity under high load, though the 

magnitude of load-related changes in connectivity differed between age groups. Circular 

diagrams identify nodes consistently assigned to modules across loads 4-8 in older adults and 

loads 5-9 in younger adults, at Time1. Nodes are colored depending on their module affiliation. 

Dark and light shades identify nodes with stable and variable affiliation across WM loads, 

respectively (see legend of Fig. 5 for details). Two singletons (i.e., nodes with uncertain module 

affiliation) for older adults are displayed in grey. Each line identifies a significantly increasing or 

decreasing connection between two regions. Lines are color-coded according to the color bars on 

the right (t-values). Results are displayed at an initial threshold of p=0.002 and p<0.05, FWE-

corrected at the whole-network level (see Materials and Methods section). FPN, fronto-parietal 

network; DMN, default-mode network; Sal/SMN, salience/sensorimotor network; SMN, 

sensorimotor network; Vis, visual network; FPN/Sal, fronto-parietal/salience network. 
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Supplementary Materials 

Supplementary Results 

Age Differences in Mean Connectivity Strength 

We calculated mean (positive) connectivity strength by averaging links between any two 

regions. A mixed-model Group×Time ANOVA on mean connectivity during rest, across all three 

time points, yielded no significant effects (Group: F1,36=0.45, p=.508, ηp
2=0.01; other effects 

ps>0.3), suggesting no age or time differences in connectivity strength at rest. Importantly, 

stronger connectivity for younger than older adults emerged only with shifting from rest to task 

performance and this difference was alleviated with training. Indeed, a Group×Time×Mode 

ANOVA on estimates of mean connectivity pre- vs. post-training (Time2 vs. Time3) showed 

greater overall connectivity in younger than older adults (Group: F1,36=5.94, p=0.02, ηp
2=0.14) 

and a significant Group×Time×Mode interaction (F1,36=8.15, p=0.007, ηp
2=0.19), and follow-up 

t-tests showed stronger task-mode connectivity for younger than older adults before (t36=4.15, 

p<0.001) but not after training (t36=0.52, p=0.608). In addition, a similar pre- vs. post-training 

Group×Time×Load ANOVA on mean connectivity, across loads common for both groups (i.e., 

loads 5-8), showed greater overall connectivity for younger compared to older adults (Group: 

F1,36=10.43, p<0.001, ηp
2=0.23) and greater overall connectivity with training (Time: F1,36=5.13, 

p=0.03, ηp
2=0.13). 

Within-group Effects of Task-Exposure and Training 

We assessed task-exposure (Time1 vs. Time2) and training effects (Time2 vs. Time3) 

separately within each group, using Time×Load ANOVAs across group-specific loads (i.e., loads 

4-8 in older and loads 5-9 in younger adults) and targeting effects of Time. For older adults, there 

were no task-exposure or training effects on modularity (ps>0.2). In contrast, while younger 



NETWORK RECONFIGURATION WITH TRAINING 65 

 

adults showed no task-exposure effects on modularity (ps>0.3), they showed greater modularity 

post- compared to pre-training (Time: F1,19=25.88, p<0.001, ηp
2=0.58). These results are in line 

with effects reported in the main text and suggest that training increases brain-wide modularity 

specifically in younger adults. 

Exposure and Training Effects on Intrinsic Network Segregation 

We performed an ancillary analysis examining the effects of age and exposure/training on 

network segregation (Chan et al., 2014; Wig, 2017), using the Power et al. (2011) intrinsic 

networks. Network segregation was defined as the difference between within- and between-

networks connectivity expressed as a proportion of within-network connectivity [i.e., 

Segregation = (�̅�𝑤 − �̅�𝑏) �̅�𝑤⁄ , where �̅�𝑤 is the within-networks connectivity and �̅�𝑏 is the 

between-networks connectivity]. Because the Power et al. node-module affiliations were derived 

based on young adult and resting-state data, we expected overall similar but potentially less 

specific effects, due to ignoring age and task-related changes in network topology (see main 

text). Indeed, we identified lower network segregation for older than younger adults across all 

time points, for both the rest/task shift (Group: F1,36=28.81, p<0.001, ηp
2=0.45) and across WM 

loads common to both groups (i.e., loads 5-8) (Group: F1,36=28.87, p<0.001, ηp
2=0.45), as well as 

greater segregation decrement with shifting from rest to task mode in older compared to younger 

adults (Group×Mode: F1,36=8.75, p=0.005, ηp
2=0.2) (see Fig. S2-a,b). Critically, we confirmed a 

Group×Time interaction with training (i.e., Time2 vs. Time3) (Group×Time: F1,36=5.63, p=0.023, 

ηp
2=0.14), indicating more segregated networks with training in younger than older adults. 

Finally, within groups and across group-specific loads (i.e., loads 5-9 in younger adults and 4-8 

in older adults), younger adults showed a trend for greater segregation with training (Time: 

F1,19=3.13, p=0.093, ηp
2=0.14), whereas older adults showed a trend for lower segregation with 
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training (Time: F1,17=4.39, p=0.052, ηp
2=0.21). We posit that using the canonical resting-state 

community structure for analyses of task-related connectivity is not ideal because it does not 

account for potential differences in community structure between rest and task. (A similar case 

can be made for analyses comparing older vs. younger participants because the canonical 

networks are typically derived based on younger adult data and the community structure may 

differ between younger and older adults; see Discussion in the main text.) Indeed, when we 

calculate segregation using the data-driven community structure detected for each individual 

condition within groups (see Fig. S2-c), younger adults show increased segregation with training 

(Time: F1,19=8.59, p=0.009, ηp
2=0.31) whereas older adults do not (Time: F1,17=2.21, p=0.156, 

ηp
2=0.12), consistent with our modularity results. For these reasons, we contend that modularity 

is the preferable metric for comparing brain network integration/segregation balance across 

conditions, particularly when differences in community structure might occur. 

Robustness Analyses 

Modularity Calculations. First, based on evidence that gamma () values in the range from 1 to 

2 are adequate for comparing community structure in younger and older adults (Hughes et al., 

2020), we ran the Louvain algorithm over this range in increments of 0.1, and the results were 

overall consistent (see Fig. S3 and Table S1). Then, we assessed distances between our group-

level communities and the Power et al. (2011) canonical networks, using variation of information 

(Meilă, 2007). (For this step, we sampled the threshold density range in increments of 10%, for 

computational efficiency.) In addition, we calculated the number of modules and the number of 

singletons in each network, using a cutoff of N=4 nodes to distinguish between biologically 

meaningful subnetworks and “orphan” fragments or singletons. We focused primarily on the 

community structure in younger adults during resting-state because the Power et al. node-module 
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affiliations were determined based on similar data. For  = 1.3, younger adults showed (1) low 

distance from the Power et al. canonical networks, while (2) the number of modules was equal 

between younger and older adults (i.e., 5 modules for each) and (3) the number of singletons was 

low (i.e., ≤2 singletons) (see Fig. S4). 

Finally, to ensure that results were not due to a specific brain parcellation, we repeated 

the analysis using a different atlas, and the results were again similar. We employed the brain 

atlas by Schaefer et al. (2018), which was generated based on resting-state data from a large 

participant sample (N = 1,489), using a gradient-weighted Markov Random Field model. To 

enable comparability with our main analysis, we employed the 300 ROIs version of the atlas. We 

fitted 5 mm-radius spheres around the centroids of each of the Schaefer et al. ROIs and similarly 

retained only regions showing >70% mean signal intensity (265 ROIs). We used the same 

processing pipeline and parameters as those described in the Materials and Methods section. A 

Group×Time×Mode ANOVA on estimates of modularity indicated greater overall modularity in 

younger than older adults (Group: F1,36=25.06, p<0.001, ηp
2=0.41), greater modularity during 

resting-state than task mode (Mode: F1.36=132.59, p<0.001, ηp
2=0.79), and greater decrement in 

modularity when switching from resting-state to task mode, in older compared to younger adults 

(Group×Mode: F1,36=10.63, p=0.002, ηp
2=0.23) (Fig. S1a). Similarly, a Group×Time×Load 

ANOVA on estimates of modularity (loads 5-8) indicated greater overall modularity in younger 

than older adults (Group: F1,36=38.26, p<0.001, ηp
2=0.52), a main effect of Load (F3,108=4.16, 

p=0.013, =0.83, ηp
2=0.1), qualified by a significant linear trend (F1,36=6.26, p=0.017, ηp

2=0.15), 

and a trending Group×Time interaction (F2,72=2.92, p=0.06, ηp
2=0.08) (Fig. S1b). Separately 

assessing task-exposure (Time1 vs. Time2) and training effects (Time2 vs. Time3) between 

groups showed greater modularity in younger compared to older adults (ps<0.001) and a 
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significant Group×Time interaction with training (F1,36=5.16, p=0.029, ηp
2=0.13) but not with 

task-exposure (p=0.3), indicating a greater effect of WM training on brain-wide modularity for 

younger compared to older adults. Within groups, older adults showed no task-exposure or 

training effects on modularity (ps>0.3), whereas younger adults showed greater modularity post- 

compared to pre-training (Time: F1,19=13.07, p=0.002, ηp
2=0.41). In sum, we replicated our main 

results using different values of the Louvain resolution parameter, as well as a different brain 

atlas, confirming that results are robust and likely independent of particular analysis settings.  

Consensus Partitions. We also repeated the consensus clustering analysis (set parameter γ = 1.3 

for the Louvain algorithm) using different values for the thresholding parameter that covered a 

range of commonly employed values, τ = [0.3, 0.4, 0.5], and the results were similar. For all tau 

values, we identified similar major modules during resting-state, broadly corresponding to the 

visual, sensorimotor, salience/cingulo-opercular, fronto-parietal, and default-mode networks. In 

addition, we observed the same tendencies for both groups when switching from rest to task 

performance. Specifically, for older adults, a salience/sensorimotor module emerged when 

switching from rest to task modes, and for younger adults, the conjoined fronto-parietal/salience 

module emerged with increased WM load. Unsurprisingly, module separation (across time and 

loads) was relatively less consistent for τ = 0.3, whereas the number of singletons (i.e., 

communities composed of a single node) increased for τ = 0.5. Similar to other analyses 

presented above, these results confirm that that the observed differences in community structure 

are robust. 

Pairwise Connectivity Analyses. Finally, to ensure that results were not due to a specific 

threshold value for pairwise connectivity, we repeated the analyses using a range of thresholds, p 
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= [0.005, 0.004, 0.003, 0.002, 0.001], and the results were broadly similar (see Tables S2 and 

S3).  

Control Analyses 

Spatial Smoothing. Because the main concern with using unsmoothed data is that misalignment 

of functional regions between older and younger adults may inflate group differences between 

participants (Geerligs et al., 2017), we ran a control analysis using a smoothing kernel of twice 

the voxel size (i.e., 6 mm). Modularity values were not additionally normalized to mitigate the 

effect of smoothing on null networks’ properties. We again identified lower modularity for older 

than younger adults across all time points, for both the rest/task shift (Group: F1,36=17.11, 

p<0.001, ηp
2=0.32) and across WM loads common to both groups (i.e., loads 5-8) (Group: 

F1,36=33.62, p<0.001, ηp
2=0.48), as well as greater decrement in modularity with shifting from 

rest to task in older than younger adults (Group×Mode: F1,36=17.14, p<0.001, ηp
2=0.32). These 

results indicate that the initial group differences in modularity are meaningful, and not simply an 

artifact of normalization inaccuracies. Of note, in our study we also took a number of additional 

measures to limit potential misalignment between participants: (1) we used Diffeomorphic 

Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007), 

which is one of the best performing inter-participant registration and normalization approaches, 

recommended for both healthy and special/clinical populations (Bergouignan et al., 2009; 

Cuingnet et al., 2011; Klein et al., 2009; Yassa & Stark, 2009; Youssofzadeh et al., 2017); (2) we 

used a brain parcellation (i.e., Power et al., 2011) shown to provide superior homogeneity across 

younger and older participants (Geerligs et al., 2017) and successfully replicated our results 

using a different parcellation (Schaefer et al., 2018); and (3) we used 5 mm radius ROIs with a 
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practical outcome of employing a smoothing level proportional to the size of the ROIs (Triana et 

al., 2020). 

Graph thresholding. We checked our density thresholding cutoffs (i.e., 10% – 30% of the 

strongest connections) and they satisfied all the criteria mentioned by Chong et al. (2019). 

Specifically, (1) the average number of edges per node varied in the range from 22 to 66 and was 

larger than the log of the total number of edges, which varied in the range from 7.8 to 8.89; (2) 

99.3% and 98.5% of the nodes were fully connected in older and younger adults, respectively 

(thus, all >80%), for the most stringent threshold (i.e., 10% connection density); (3) small 

worldness of the network varied in the range from 2.41 to 1.4 in older adults, and in the range 

from 2.83 to 1.5 in younger adults (thus, all >1). 

Mean connectivity regression and high-pass filtering. First, we checked whether regression of 

mean connectivity would influence between-group differences in modularity (Geerligs et al., 

2017). For each pair of ROIs, we regressed mean connectivity strength—calculated as the mean 

connectivity strength across all connections in the unthresholded connectivity matrix, including 

absolute values of positive and negative values (Malagurski et al., 2020), and then averaged 

across all conditions—against the connectivity estimates of that pair, and retained the residuals. 

Similar to the results using modularity normalization (see main text), we identified lower 

modularity for older than younger adults across all time points, for both the rest/task shift 

(Group: F1,36=13.88, p=0.001, ηp
2=0.28) and across WM loads common to both groups (i.e., 

loads 5-8) (Group: F1,36=7.52, p=0.009, ηp
2=0.17), suggesting that differences in modularity 

between older and younger adults were not driven by group differences in mean connectivity. 

Second, we checked whether applying a high-pass filter (>0.01 Hz) instead of the band-pass 

filter (0.01–0.15 Hz) would influence the observed age effects. We similarly identified lower 
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modularity for older than younger adults across all time points, for both the rest/task shift 

(Group: F1,36=13.56, p=0.001, ηp
2=0.27) and across WM loads common to both groups (i.e., 

loads 5-8) (Group: F1,36=6.09, p=0.018, ηp
2=0.15). 

Resting-state and task durations. The scan period for resting-state (duration = 470 s) was longer 

than the concatenated time series for each of the working memory conditions (duration = 168 s, 

for each WM load). To check if differences in scanning time might account for differences 

between rest and task modes, we equated the duration of resting-state and WM conditions by 

focusing on the last 168 seconds of the resting-state series. The results were similar to our initial 

analysis. Specifically, a Group×Time×Mode ANOVA on estimates of modularity indicated 

greater modularity during resting-state than task mode (F1,36=62.89, p<0.001, ηp
2=0.64) and 

greater decrement in modularity when switching from resting-state to task mode, in older 

compared to younger adults (Group×Mode: F1,36=13.63, p=0.001, ηp
2=0.28) (see Fig. S5). 

Finite Impulse Response (FIR) task regression. To test whether our HRF-based task regression 

accounted effectively for task-evoked activations (Cole et al., 2019), we performed a control 

analysis using FIR task regression. Specifically, we fit a series of 10 regressors, one per time 

point, separately for encoding and retrieval, covering a time window of 20 s, to account for the 

likely duration of the HRF. Of note, it was not feasible to model separate FIRs also by condition 

(120 regressors total) given the length of our time series (168 TRs per run), because the 

connectivity measures would become too noisy to be useful (i.e., very low [~10] estimated 

remaining degrees of freedom and very high variability of the diagnostic voxel-to-voxel 

correlational histograms); this is a known limitation of FIR (Poline & Brett, 2012). Nevertheless, 

FIR task regression provided results similar to our initial approach employing HRF task 

regression. Specifically, we identified lower modularity for older than younger adults across all 
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time points, for both the rest/task shift (Group: F1,36=23.7, p<0.001, ηp
2=0.4) and across WM 

loads common to both groups (i.e., loads 5-8) (Group: F1,36=24.01, p<0.001, ηp
2=0.4), as well as 

greater modularity decrement with shifting from rest to task mode in older compared to younger 

adults (Group×Mode: F1,36=6.82, p=0.013, ηp
2=0.16). Critically, we confirmed a Group×Time 

interaction with training (i.e., Time2 vs. Time3) (Group×Time: F1,36=4.8, p=0.035, ηp
2=0.12), 

indicating increased modularity with training in younger than older adults. Finally, within groups 

and across group-specific loads (i.e., loads 5-9 in younger adults and 4-8 in older adults), 

younger adults showed increased modularity with training (Time: F1,19=10.89, p=0.004, 

ηp
2=0.36), whereas older adults showed no training effects on modularity (Time: F1,17=0.38, 

p=0.55, ηp
2=0.02). Thus, the consistent results across both types of task regression (i.e., HRF and 

FIR-based) suggest that HRF-based task regression can effectively account for task-evoked 

activations, at least for a Sternberg-like working memory task, when the analyses focus on the 

maintenance interval. 
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Table S1. Robustness analysis results for whole-brain modularity effects.  

 

Table S1. Continued. 

 

  

Analysis & Effects Statistic

1.0 1.1 1.2 1.3 1.4

Rest-to-task shift : Group×Time×Mode ANOVA

Group F1,36 32.46 (<0.001) 32.49 (<0.001) 32.57 (<0.001) 31.99 (<0.001) 31.13 (<0.001)

Mode F1,36 134.93 (<0.001) 130.21 (<0.001) 133.63 (<0.001) 141.51 (<0.001) 149.94 (<0.001)

Group×Mode F1,36 14.08 (0.001) 15.82 (<0.001) 17.48 (<0.001) 19.14 (<0.001) 20.63 (<0.001)

Working memory load : Group×Time×Load ANOVA

Group F1,36 34.17 (<0.001) 35.68 (<0.001) 36.2 (<0.001) 37.38  (<0.001) 38.38 (<0.001)

Time F2,72 N.S. N.S. N.S. N.S. N.S.

Load F3,108 3.96 (0.015) 4.27 (0.007) 4.94 (0.003) 5.89 (0.001) 6.9 (<0.001)

Linear trend F1,36 7.82 (0.008) 8.74 (0.005) 10.56 (0.003) 13.52 (0.001) 17.09 (<0.001)

Group×Load F3,108 3.28 (0.024) 3.42 (0.02) 3.42 (0.02) 3.21 (0.026) 2.86 (0.04)

Group×Time F2,72 4.85 (0.011) 4.92 (0.01) 4.79 (0.011) 4.64 (0.013) 4.4 (0.016)

Gamma

Analysis & Effects Statistic

1.5 1.6 1.7 1.8 1.9 2.0

Rest-to-task shift : Group×Time×Mode ANOVA

Group F1,36 30.57 (<0.001) 30.04 (<0.001) 29.81 (<0.001) 29.79 (<0.001) 29.72 (<0.001) 29.39 (<0.001)

Mode F1,36 158.49 (<0.001) 168.58 (<0.001) 176.67 (<0.001) 181.34 (<0.001) 181.47 (<0.001) 178.39 (<0.001)

Group×Mode F1,36 22 (<0.001) 23.11 (<0.001) 24.27 (<0.001) 25.4 (<0.001) 25.87 (<0.001) 25.9 (<0.001)

Working memory load : Group×Time×Load ANOVA

Group F1,36 39.4 (<0.001) 40.39 (<0.001) 41.25 (<0.001) 42.12 (<0.001) 43.09 (<0.001) 43.82 (<0.001)

Time F2,72 3.35 (0.041) 3.89 (0.025) 4.51 (0.013) 5.28 (0.007) 6.19 (0.003) 7.22 (0.001)

Load F3,108 7.78 (<0.001) 8.59 (<0.001) 9.08 (<0.001) 9.52 (<0.001) 9.9 (<0.001) 10.18 (<0.001)

Linear trend F1,36 20.89 (<0.001) 25.28 (<0.001) 27.75 (<0.001) 30.68 (<0.001) 33.44 (<0.001) 35.64 (<0.001)

Group×Load F3,108 N.S. N.S. N.S. N.S. N.S. N.S.

Group×Time F2,72 4.19 (0.019) 4.01 (0.022) 3.82 (0.026) 3.64 (0.031) 3.45 (0.037) 3.25 (0.044)

Gamma
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Table S2. Robustness analysis for pairwise connectivity for older adults.  

 

Note: P-values are family-wise error corrected at the network level.  

Threshold
t  = 2.9, 

p  = 0.005

t  = 3, 

p  = 0.004

t  = 3.14, 

p  = 0.003

t  = 3.33,

p  = 0.002

t  = 3.65,

p  = 0.001

Contrast

Training: Time3 > Time2

N networks 1 1 1 1 N.S.

P-value 0.028 0.038 0.043 0.045

N edges 232 180 122 55

N nodes 173 147 110 52

Load: High > Low

N networks 1 1 1 1 1

P-value <0.001 <0.001 <0.001 <0.001 <0.001

N edges 380 335 266 191 103

N nodes 162 156 137 112 81

Low > High

N networks 1 1 1 1 1

P-value 0.019 0.016 0.014 0.023 0.012

N edges 207 165 123 52 22

N nodes 139 120 99 45 21
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Table S3. Robustness analysis for pairwise connectivity for younger adults.  

 

Note: P-values are family-wise error corrected at the network level. 

  

Threshold
t  = 2.86, 

p  = 0.005

t  = 2.96, 

p  = 0.004

t  = 3.09, 

p  = 0.003

t  = 3.27,

p  = 0.002

Contrast

Training: Time2 > Time3

N networks 1 1 1 1 2

P-value 0.003 0.002 0.001 0.001 0.004 0.032

N edges 283 235 182 120 40 19

N nodes 166 150 128 97 41 16

Load: High > Low

N networks 1 1 1 1 1

P-value 0.046 0.031 0.03 0.021 0.032

N edges 179 147 108 64 19

N nodes 125 106 89 58 20

Low > High

N networks 1 1 1 1 1

P-value <0.001 0.001 <0.001 0.001 0.004

N edges 284 228 181 106 37

N nodes 160 146 131 90 35

t  = 3.58,

p  = 0.001
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Fig. S1. Robustness analysis for effects on brain-wide modularity, using the Schaefer et al. 

(2018) atlas. a, Effect of switching between resting-state and task mode (i.e., load of 1) on 

modularity. b, Effect of WM load on modularity. Results were overall similar to those obtained 

using the Power et al. (2011) atlas. Errorbars show standard error of the mean. OA, older adults; 

YA, younger adults; WM, working memory. 

 

 

a

b
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Fig. S2. Network segregation calculated using the canonical (i.e., resting-state) networks 

versus data-driven networks. Effects of (a) switching between resting-state and task mode (i.e., 

load of 1) and (b) WM load on segregation calculated using the Power et al. (2011) canonical 

networks. Results were overall similar to those obtained using the modularity metric, but the 

effects of training were relatively less specific. However, when segregation was calculated using 

the data-driven community structure detected for each individual condition (c), younger adults 

showed greater segregation with training whereas older adults did not, consistent with our 

modularity results. Error bars display standard error of the mean. OA, older adults; YA, younger 

adults; WM, working memory.  

a

b

c
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Fig. S3. Normalized modularity across gamma range. Line graphs display mean normalized 

modularity calculated across gamma values between 1 and 2 in increments of 0.1. Error bars 

display standard error of the mean. OA, older adults; YA, younger adults; WM, working 

memory. 

  

a

b
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Fig. S4. Variation of information relative to the Power et al. networks (a), number of 

modules (b), and number of singletons (c). Values are displayed for group-level partitions at 

different levels of gamma, for older (OA) and younger adults (YA). Vertical line identifies 

gamma = 1.3. Error bars are not drawn because line graphs are based on group-level partitions. 

 

 

 

Fig. S5. Normalized modularity calculated for full (RSFull) and shorter resting-state 

(RSShort) period, equal with the duration of WM conditions. The relevant comparison is 

between RSShort and Task (Load of 1). Errorbars display standard error of the mean. OA, older 

adults; YA, younger adults. 
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