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Abstract: A multi-stage variable selection method is introduced for detecting association signals in struc-
tured brain-wide and genome-wide association studies (brain-GWAS). Compared to conventional single-
voxel-to-single-SNP methods, our approach is more efficient and powerful in selecting the important signals
by integrating anatomic and gene grouping structures in the brain and the genome, respectively. It avoids
resorting to large number of multiple comparisons while effectively controlling the false discoveries. Valid-
ity of the proposed approach is demonstrated by both theoretical investigation and numerical simulations.
We apply our proposed method to a brain-GWAS using ADNI PET imaging and genomic data. We con-
firm previously reported association signals and also uncover several novel SNPs and genes that either are
associated with brain glucose metabolism or have their association significantly modified by Alzheimer’s
disease status. The Canadian Journal of Statistics xx: 1–25; 20?? © 20?? Statistical Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it
themselves. La revue canadienne de statistique xx: 1–25; 20?? © 20?? Société statistique du Canada

1. INTRODUCTION

Human brain structures are highly heritable (Braber et al., 2013; Peper et al., 2007). The asso-
ciation patterns between the brain and the genome furnish important information about devel-
opment and progression mechanisms of chronic cognitive diseases such as Alzheimer’s disease
(AD) (McKhann et al., 2011). Modern technologies such as the neuroimaging scan and next
generation sequencing enable us to look at such association patterns at the resolutions of single
voxel and single-nucleotide polymorphism (SNP) scales. However, given the enormous num-
bers of variables in both imaging data (∼ millions of voxels) and genotype data (∼ millions of
SNPs), it is extremely challenging to detect the true association signals immersed in the ultrahigh-
dimensional noise. Many current brain-GWAS studies look at a single-voxel-to-single-SNP pair
at a time (Stein et al., 2010a). Such single-voxel-to-single-SNP (or pairwise) approaches suffer
from very limited power in detecting the true signals, mostly due to the astronomical number
of multiple comparisons needed to control the false positive discoveries (Stein et al., 2010a; Ge
et al., 2012).

Marginal pairwise approaches treat different voxel-to-SNP pairs as independent. A joint
model with all voxels and all SNPs considered simultaneously is often of more scientific interest.
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(a) (b) (c) 

FIGURE 1: : Illustration of mapping Brodmann atlas of ROIs onto segmented PET images. ROIs
are highlighted with colors. (a) Sagittal slice at midline. (b) Coronal slice at midline. (c) Axial
slice at midline.

Compared to marginal pairwise approaches, joint modelling has enormous potential to improve
the power of detecting association signals. Multivariate linear regression is a common technique
for jointly modelling multiple responses and multiple predictors. However, such a model is ill-
posed when the dimensions of responses and predictors are both greater than the sample size,
as the solution is not unique. Another limitation of marginal pairwise approaches is that they
fail to incorporate the intrinsic biological grouping structures, such as anatomical regions of in-
terest (ROI) in the brain and genes in the genome, respectively. Figure 1 illustrates an atlas of
anatomical ROIs and their positions in the brain.

Li, Nan, & Zhu (2015) introduced a multivariate sparse group lasso (MSGLasso), a regu-
larization method for high-dimensional multivariate-response and multiple-predictor linear re-
gression with grouping structures on both the responses and the predictors. They show that the
power to detect the true association signals can be significantly increased by incorporating the
grouping structures. However, it is computationally infeasible to fit the MSGLasso directly with
ultrahigh-dimensional neuroimaging and genomic data, where the numbers of responses and pre-
dictors are of exponential orders of the sample size. As in our brain-GWAS, each response image
consists of Q ≈ 350, 000 voxels and each genome consists of P ≈ 560, 000 SNPs, while we
only have n = 373 samples. Furthermore, conditions that guarantee selection consistency for the
MSGLasso may fail to hold for ultrahigh-dimensional cases (Li, Hong, & Li, 2019).

To address these challenges, we propose a multi-stage variable selection method for settings
with ultrahigh-dimensional responses and ultrahigh-dimensional predictors, both with group-
ing structures. The proposed method consists of two selection stages. The first selection stage
aims to remove unimportant response-to-predictor group pairs. The second stage then selects
important individual-level signals only within the selected group pairs. Stability selection (Mein-
shausen & Bühlmann, 2010) is used in both stages to enhance the stability of the selection and
control false positives.

The contribution of our proposed method to variable selection is two-fold. First, it is a
joint modelling approach that involves both ultrahigh-dimensional responses and ultrahigh-
dimensional predictors. It avoids resorting to a huge number of downstream hypothesis tests
and multiple comparisons. Second, it is a structured approach that takes into consideration the
grouping structures of both the responses and the predictors. These unique characteristics enable
our proposed method to significantly increase the power to identify true signals and, at the same
time, to reduce the number of false discoveries.

The proposed method is particularly useful in conducting structured brain-wide and
genome-wide association studies (brain-GWAS). In this article, we applied it to Fluorine-
uorodeoxiglucose positron emission tomography (FDG-PET) neuroimaging data and DNA geno-
typing data collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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for detecting association signals between voxel-level neuroimaging phnotypes and genetic vari-
ants. FDG-PET images measure brain glucose metabolism, and can reflect changes in the brain
metabolic pattern as diagnostics of AD progression (Mosconi, 2005). We emphasize that the
proposed method is applicable to a wide range of brain-GWAS studies with different imaging
modalities or molecular data types, such as functional magnetic resonance imaging (fMRI),
methylation, copy number variation and mitochondrial DNA profiles, or with different group-
ing structures, such as neuroimages grouped by functional regions, cortices and genomic profiles
grouped by gene pathways, protein networks, etc. To the best of our knowledge, our work is the
first report to conduct a structured brain-GWAS at voxel and SNP levels using a joint model.
Compared to the pairwise approaches (Stein et al., 2010a; Ge et al., 2012) and other marginal
approaches such as gene-based analysis (Hibar et al., 2011) that regress each single voxel on
a set of SNPs within a gene, our approach is able to identify more genetic signals that either
are associated with brain glucose metabolism or have their association significantly modified by
AD status. Computationally, our proposed method is in general more efficient compared to the
pairwise approaches (Stein et al., 2010a). The major computational cost saving comes from the
dimension reduction in the first selection stage and the fact that we only focus on the selected
ROI-to-gene pairs in the downstream analyses.

2. MODEL AND METHOD

Details of our proposed model and method are provided in this section as background prior
to conducting a structured brain-GWAS for the ADNI PET imaging and genomic data. The
main procedure consists of two selection stages in a multivariate linear regression model with
the ultimate goal being to efficiently and jointly select the important association signals linking
ultrahigh-dimensional neuroimaging responses and genetic DNA predictors.

Let Y be the n×Qmatrix of voxel-level neuroimaging responses and X be the n× P matrix
of SNP genotypes. We consider the following multivariate linear regression model

Y = IβT
0 + XBX + Iadβ

T
ad + Imciβ

T
mci + (X× Iad)BXad + (X× Imci)BXmci +

AgeβT
age + SexβT

sex + E, (1)

where I is a length-n vector with entries 1, Iad and Imci are length-n indicators for AD and mild
cognitive impairment (MCI) subjects, respectively, X× Iad and X× Imci are n× P matrices of
interaction terms between genetic predictors and disease status, and Age and Sex are length-n
covariate vectors encoding age and sex, respectively. Here β0 is a length-Q grand intercept vec-
tor; βad = IQβad, βmci = IQβmci, βage = IQβage, and βsex = IQβsex are coefficient vectors
for AD indicator, MCI indicator, age and sex, respectively, where IQ is a length-Q vector with
entries 1; B, BXad, and BXmci are P ×Q regression coefficient matrices for genetic, genetic-AD
interaction and genetic-MCI interaction effects, respectively. The symbol E represents an n×Q
matrix of noise terms arising from a Q-dimensional multivariate normal distribution with zero
means. The superscript T represents transpose of a matrix or vector.

When the variables in X and Y are centered, β0 is zero and the model specified in Equation
(1) reduces to

Y = XB + E (2)

with X = (X, Iad, Imci,X× Iad,X× Imci,Age,Sex) being the grand predictor matrix and B =
(BT
X ,βad,βmci,B

T
Xad,B

T
Xmci,βage,βsex)T being the grand coefficient matrix. Here we do not

require the selection to respect the model hierarchy, i.e., an interaction term can be selected into
the final model even if the corresponding genetic main effect is not selected.
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When the imaging responses Y and genetic predictors X are grouped into ROIs and genes,
respectively, the groups automatically induce a block grouping structure on BX , with row blocks
corresponding to gene groups and column blocks corresponding to ROI groups. These same
groups also induce the same gene grouping structures on X× Iad and X× Imci, and the same
block grouping structure on BXad and BXmci. We assume that association signals are sparse
at both the group and individual levels. That is, (i) each response group only associates with at
most a few predictor groups, and (ii) each important voxel only associates with a small number
of SNPs (SNP-disease interactions) compared to the sample size. In the following analyses, we
assume that the variables Iad, Imci, Age and Sex belonging to the model specified in Equation
(2) each form a group in their own right.

2.1. First stage: Selecting important ROI-to-gene blocks
In the first stage, we use the multivariate group lasso (Li, Nan, & Zhu, 2015; Yuan & Lin, 2006) to
select the important ROI-to-gene pairs. This stage serves as a screening step, ruling out the unim-
portant ROI-to-gene pairs by shrinking the corresponding association blocks to zero. To reduce
the dimensionality of the input variables while keeping the ROI and gene grouping structures,
we use the major principle components (PC) within each ROI or gene group instead of using
the voxel intensities and SNP genotypes. Note that PCs are linear combinations of the original
variables, therefore a zero association block between the original variables implies a zero block
between corresponding PCs. We interpret the selected PC association blocks as evidence of the
associations between their representative ROIs and genes. The advantage of using the PCs is
two-fold. First, it helps to reduce the input dimensionality while keep the grouping structure and
essential information within each group, and therefore improves the efficiency of group-level
selection. Second, since PCs are orthogonal (independent) to each other, using them avoid the
complications arising from collinearity between predictors or from overlapping grouping struc-
tures, since genes are often overlapping with each other.

Let R = {1, . . . , R} be the index set of ROI groups, and G = {1, . . . , G} the index set of
generic predictor groups – i.e., gene, disease indicator, gene-disease interaction and other covari-
ate groups. For ease of notation, when no confusion is introduced, we will simply refer hereafter
to each generic predictor group as a “gene group”. Denote byR⊗ G the induced block grouping
structure on the regression coefficient matrix. For each r ∈ R, denote by Pr

Y the major PCs of
the responses in the rth group. Let PY = (P1

Y , . . . ,P
R
Y ) be the new response matrix of PCs.

Similarly, for each g ∈ G, denote by Pg
X the major PCs of the predictors in the gth group. Let

PX = (P1
X , . . . ,P

G
X) be the new predictor matrix of PCs. We apply the multivariate group lasso

to the PC matrices to select important ROI-to-gene associations by solving the optimization prob-
lem:

arg min
Γ

1

2n
‖PY − PXΓ‖22 + λ1

∑
rg∈R⊗G

ω1/2
rg ‖Γrg‖2, (3)

where ‖ · ‖2 denotes the l2 norm. Here Γ is the regression coefficient matrix between the PC
matrices and Γrg is a submatrix block between rth ROI and gth gene group. The group lasso
penalty

∑
rg∈R⊗G ω

1/2
rg ‖Γrg‖2 aims to shrink the unimportant Γrg blocks to zero, and ωrg is a

non-negative weight assigned to Γrg , r = 1, . . . , R, g = 1, . . . , G. In our brain-wide GWAS, we
use ωrg =

√
v × s (Yuan & Lin, 2006; Silver, Montana, & ADNI, 2012), where v is the number

of PCs in the rth ROI group and s is the number of PCs in the gth gene group. We set ωrg = 0 if
we do not want to penalize the group with label rg. The tuning parameter λ1 controls the sparsity
of the selected ROI-to-gene blocks.
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2.2. Second stage: Selecting important voxel-to-SNP signals
For each nonzero Γrg selected at the first stage, the corresponding ROI-to-gene pairs are passed
to the second stage. In the second stage, we narrow our focus to the associations for those same
pairs at voxle-to-SNP levels. For each selected ROI-to-gene pair, we solve the following multi-
variate lasso problem (Li, Nan, & Zhu, 2015; Kohannim et al., 2012; Friedman, Hastie, & Tib-
shirani, 2010),

arg min
Brg

1

2n
‖Yr − XgBrg‖22 + λ2

∑
βjk∈Brg

ωjk|βjk|, (4)

where the response variables Yr are voxel-level intensity scores in the selected rth ROI, the pre-
dictors Xg are SNP genotypes (or SNP-disease interactions) belonging to the selected associated
gth gene group and Brg is the corresponding regression coefficient block. Here λ2 is a tuning
parameter controlling the within-group individual-level sparsity, and ωjk is a pre-assigned non-
negative weight corresponding to βjk. If ωjk = 0, then βjk will not be penalized. In our ANDI
data analysis, we set ωjk = 1 for all βjks that corresponds to either a SNP main effect or a
SNP-to-disease interaction effect.

2.3. Stability selection and control of false discoveries
Stability selection (Meinshausen & Bühlmann, 2010) is employed in both stages. We fit the
models identified in Equations (3) and (4) multiple times, say K, on randomly resampled (boot-
strapped or subsampled) datasets using pre-fixed tuning parameters. Then an important signal
(either group-level or individual-level) is eventually selected if its frequency of being selected
among the total K times of selections exceeds a certain specified threshold.

The advantages of stability selection are three-fold. First, it can reduce the random variation
in the data that arises from sampling or measurement error. Second, it saves the computing cost
associated with choosing the tuning parameters λ1 and λ2. Instead of using cross-validation
to select optimal tuning parameters, stability selection prescribes using a fixed set of tuning
parameter values on re-randomized datasets. As long as the proposed fixed tuning parameter
values belong to a reasonable range, i.e., they are neither too large so that they shrink almost
everything to zeros nor too small so that they barely shrink anything, the corresponding variable
selection results are quite stable. Figure S.3 in the online Supplementary Materials illustrates that
the top signals identified in the analysis of the ADNI PET imaging and genetic data are robustly
selected when using bootstrapped samples and different values of the tuning parameters. Stability
selection can be easily implemented and run on multi-core computing clusters and therefore is
much more efficient computationally. Third, stability selection provides a quantitative way to
govern the number of false discoveries, an issue that we will discuss in detail in Section 4.

2.4. Selection properties
We show that the proposed structured brain-GWAS method achieves certain oracle bounds for
selection, which are the selection bounds one could obtain as if the true model were given
(Bickel, Ritov, & Tsybakov, 2009).

First, we introduce some notation. Let J1(B) = {jk : |βjk| 6= 0} be the index set of
nonzero elements in B, and let J2(B) = {rg ∈ R⊗ G, ‖Brg‖2 6= 0} be the index set of nonzero
groups. Define M1(B) =

∑
jk I(βjk 6= 0) = |J1(B)| and M2(B) =

∑
rg∈R⊗G I(‖Brg‖2 6=

0) = |J2(B)|. Denote by qr the number of voxels in the rth ROI group and denote by pg the
number of predictors in the gth gene group. We assume that the predictors have a common
marginal variance σ2.

Next, we provide assumptions for the results summarized in Theorem 1.
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(i) Group-level generalized sparse condition (gGSC): For any η1 ≥ 0, there exists a non-empty set
A ⊂ R⊗ G, such that

∑
rg∈A ‖Brg‖2 ≤ η1.

(ii) Sparse Riesz condition (SRC): There exist spectrum bounds 0 < c∗ < c∗ <∞, such that
for any A1 ⊂ {1, . . . , G} with rank q∗ and any nonzero vector ν ∈ R

∑
g∈A1

pg , let XA1 =
(Xg, g ∈ A1) be the submatrix of X with its group indices in A1, the following inequalities
hold

c∗ ≤
‖XA1

ν‖22
n‖ν‖22

≤ c∗ (5)

(iii) Individual-level restricted eigenvalue condition (iREC): For any Brg ∈ J2(B), suppose that
Brg ∈ Rpg×qr . Let J ⊆ {jk : 1 ≤ j ≤ pg, 1 ≤ k ≤ qr} be any index set that satisfies |J | ≤ s
for some 0 < s ≤ pg × qr. Then for any nontrivial matrix ∆ ∈ Rpg×qr that satisfies |∆J c |1 ≤
3|∆J |1, we have the following:

κ = min
J ,∆ 6=0,g∈G

‖Xg∆‖2
n1/2‖∆J ‖2

> 0.

Here ∆J is the projection of ∆ on an index set J , that is, ∆J is the matrix with the same
elements of ∆ on coordinates J and zeros on the complementary coordinates J c.

(iv) Let d∗ = maxrg∈R⊗G ωrg, d∗ = minrg∈R⊗G ωrg for ωrgs in (3). Define d = d∗/d∗. Define
η2 = maxA⊂R⊗G ‖

∑
rg∈A XgBrg‖2,

r1 =

(
nc∗
√
d∗η1

λ1d∗M2

)1/2

, r2 =

(
nc∗η2

2

λ2
1d∗M2

)1/2

, c̄ = c∗/c∗ and

C2 = 2 + 4r2
1 + 4

√
dc̄r2 + 4dc̄.

Let σ∗ = σ
√

maxg∈G pg . Assume that the tunning parameter, λ1, in the model specified in
Equation (3) satisfies

λ1 ≥ max{λ0, λn,G},

where λn,G = 2σ∗
√

8(1 + c0)d∗d2q∗c̄nc∗ log(Nd ∨ an) with Nd =
∑
rg∈R⊗G ωrg , c0 ≥ 0

and an ≥ 0 satisfying d∗G/(Nd ∨ an)1+c0 ≈ 0, and λ0 = inf{λ : C2M2(B) + 1 ≤ q∗} with
inf ∅ =∞. Here a ∨ b = max{a, b}.
Let q̄ = max{q1, . . . , qR} and p̄ = max{p1, . . . , pG}. Assume that the tuning parameter, λ2,
in the model specified in Equation (4) satisfies

λ2 = 2σA{log(q̄p̄)/n}1/2

for some constant A >
√

2.

Theorem 1. Let B∗ be the true coefficient matrix. Assume that each of the X variables has
mean 0 and marginal variance σ2 = 1. Let ψmax be the largest eigenvalue of XTX/n and
M∗1 (B∗) = maxrg∈R⊗GM1(B∗rg). Assume gGSC, SRC, iREC and the conditions specified in
(iv) hold. Then with probability converging to 1 as n→∞, we have the following oracle selec-
tion bounds for group- and individual-level signals:

M2(B̂) ≤ C2M2(B∗), (6)

M1(B̂) ≤ 64ψmaxC2M2(B∗)M∗1 (B∗)/κ2. (7)
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When gGSC, SRC and the conditions specified in (iv) hold, Wei & Huang (2010) showed
that the group-level selection bound holds for the univariate-response group lasso. The proof of
the inequality specified in Equation (6) follows Theorem 2.1 in (Wei & Huang, 2010), execpt
that we need to show that SRC holds for PX , as in our method the group lasso is applied to PX
instead of X in the first stage. In fact, since each PC is a linear combination of the orignal X
variables, we can write PX,A1

= XA1
W, where W is a P ×R weight matrix, R ≤ P , consist-

ing of the eigenvectors of the covariance matrix of X. Then we have ‖PX,A1
ν‖22/{n‖ν‖22} =

‖XA1Wν‖22/{n‖ν‖22} = ‖XA1Wν‖22/{nνTWTWν} = ‖XA1ν
′‖22/{n‖ν′‖22}, where ν′ =

Wν. Therefore the SCR holds for PX if it holds for X. The individual-level oracle selection
bound identified in Equation (7) follows directly from the bound indicated in Equation (6) and
the multivariate lasso oracle selection bound introduced in Theorem 2 in Li, Nan, & Zhu (2015).

3. A SIMULATION STUDY

We investigated the empirical selection performance for our proposed two-stage method via sim-
ulations. Assume that both Y and X have 50 groups with each group containing 200 variables.

The coefficient matrix B assumes a block diagonal structure, i.e., the 1st Y group is associ-
ated with only the 1st X group, the 2nd Y group is associated with only the 2nd X group, etc.
Coefficients within off-diagonal blocks were set to be zeros. Half of the coefficients within di-
agonal blocks were randomly generated from Unif([−5,−3] ∪ [3, 5]) and the other half were set
to equal zero (therefore, the sparsity within important coefficient blocks was 0.5). Once B was
generated, it remained fixed in all the experiments.

We assumed the X groups were uncorrelated. Within-group X variables were generated from
a multivariate normal distribution with zero means and a first-order auto-correlation structure
with a correlation coefficient 0.5, denoted by AR1(0.5), and unit marginal variances.

We generated the noise variables E from a multivariate normal distribution with one of the
following three correlation structures and unit marginal variances:

I. Independent Y groups: The variables within each Y group followed an AR1(0.5) correlation
structure.

II. Weakly correlated Y groups: The variables within each Y group followed an AR1(0.5) cor-
relation structure. The variables from different Y groups were correlated with a compound
symmetry (CS) correlation structure with a coefficient 0.1, denoted by CS(0.1). Therefore, the
overall Y correlation structure was CS(0.1)⊗AR1(0.5), where ⊗ is the Kronecker product.

III. Moderately correlated Y groups: The variables within each Y group followed an AR1(0.5)
correlation structure. The variables from different Y groups followed a CS(0.5) correlation
structure. The overall Y correlation structure was CS(0.5)⊗AR1(0.5).

The response matrix was then generated according to Y = XB + E. For each scenario, we
generated datasets with one of three different sample sizes n = 200, 500 and 1000.

For each simulated dataset, our proposed method was applied at each stage, followed by
stability selections. In the first stage, we used major PCs in each response/predictor group that
explained more than 80% of the total within-group variation. Each stability selection was carried
out on 100 bootstrapped datasets. Optimal tuning parameters were selected by five-fold cross-
validation for each stage of selection. Tuning parameters were then fixed in the stability selection.
The selection frequency threshold was set to be 80% for both stages. One hundred independent
experiments were repeated for each setting. We report means and empirical standard deviations
for the Sensitivity (SE) and Specificity (SP) in Table 1. The first stage group-level SE and SP
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correspond to

SE(1) =
|{rg : 1 ≤ r ≤ R, 1 ≤ g ≤ G, ‖Γ̂rg‖2 6= 0 and ‖B∗rg‖2 6= 0}|

|{rg : 1 ≤ r ≤ R, 1 ≤ g ≤ G, ‖B∗rg‖2 6= 0}| and

SP(1) =
|{rg : 1 ≤ r ≤ R, 1 ≤ g ≤ G, ‖Γ̂rg‖2 = 0 and ‖B∗rg‖2 = 0}|

|{rg : 1 ≤ r ≤ R, 1 ≤ g ≤ G, ‖B∗rg‖2 = 0}| ,

where the superscript ∗ indicates the true values. The second stage individual-level SE and SP
equal

SE(2) =
|{jk : 1 ≤ j ≤ P, 1 ≤ k ≤ Q, β̂jk 6= 0 and β∗jk 6= 0}|

|{jk : 1 ≤ j ≤ P, 1 ≤ k ≤ Q, β∗jk 6= 0}| and

SP(2) =
|{jk : 1 ≤ j ≤ P, 1 ≤ k ≤ Q, β̂jk = 0 and β∗jk = 0}|

|{jk : 1 ≤ j ≤ P, 1 ≤ k ≤ Q, β∗jk = 0}| .

For comparison, we also carried out pairwise marginal linear regressions followed by Bon-
ferroni correction for multiple comparisons. The β̂jks with p-values less than the Bonferroni
corrected threshold (5e-12) were selected as important signals. The results for the pairwise ap-
proach are summarized in the final two columns of Table 1.

The simulation results demonstrate that our two-stage method combined with stability selec-
tion renders very good selection results for group structured ultrahigh-dimensional multivariate
responses and multiple predictors data. It was far more powerful than the pairwise approach.
Especially for the first-stage group-level selection, our approach provided almost perfect selec-
tion performance even when the sample size is very small. For the second-stage individual-level
selection, the selection performance improved significantly as the sample size increased. The se-
lection performance was similar across all three different correlation structures for the simulated
responses.

4. ANALYSIS OF THE ADNI FDG-PET AND SNP DATA

The ADNI data used in our structured brain-GWAS analysis consists of three parts: imaging
data, genetic data and clinical data, all from the ADNI database. Samples with both imaging and
genotype data are included in the analysis, resulting in a dataset with 373 samples including 86
AD patients, 188 MCI patients and 99 normal controls (NC). The clinical data involve the disease
status (AD, MCI or NC), demographic information (e.g. age and sex) and ε4 allele information
for the apolipoprotein E (APOE) gene. We fit the model specified in Equation (1) to the ADNI
PET imaging and genomic data using our proposed method.

4.1. PET images and ROI’s
The images used in our analysis are FDG-PET images, which have been widely used in neu-
roimaging studies for over 20 years. FDG-PET images measure cerebral glucose metabolic ac-
tivities. From year 2003 to 2011, a total of 403 FDG-PET scans were acquired at approximately
50 different participating sites in ADNI-1 and ADNI-GO studies, including 95 AD subjects, 206
MCI subjects and 102 NC subjects. Due to missing genetic information, only 373 individuals
were included in our study. Each image contains 349,182 voxels embedded in a 160×160×96
3D array. All these images were preprocessed to produce a uniform isotropic resolution.

To incorporate the brain anatomic structures, the PET images were segmented according
to the Brodmann atlas (Brodmann, 2010). As a result, the voxels in each image were grouped
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TABLE 1: : Selection results for the simulation study; the numbers in parenthesis are empirical
standard deviations.

Correlation Proposed Pairwise

structure First stage Second stage

& Direct Stability Direct Stability

Setting Selection Selection Selection Selection

n SE(1) SP(1) SE(1) SP(1) SE(2) SP(2) SE(2) SP(2) SE SP

I

200 0.98 0.98 1 0.98 0.75 0.77 0.82 0.84 7e-4 0.999

(2e-3) (2e-3) (0) (1e-3) (2e-3) (8e-4) (3e-3) (2e-3) (1e-4) (1e-6)

500 1 1 1 1 0.95 0.87 0.98 0.97 0.024 0.999

(0) (0) (0) (0) (1e-3) (3e-4) (3e-4) (5e-4) (4e-4) (1e-5)

1000 1 1 1 1 0.98 0.93 1.00 0.99 0.14 0.999

(0) (0) (0) (0) (1e-3) (2e-4) (7e-5) (4e-4) (1e-3) (3e-5)

II

200 0.98 0.97 1 0.98 0.74 0.77 0.81 0.83 7e-4 0.999

(2e-3) (2e-3) (0) (1e-3) (2e-3) (8e-4) (3e-3) (2e-3) (1e-4) (1e-6)

500 1 1 1 1 0.95 0.86 0.99 0.97 0.024 0.999

(0) (0) (0) (0) (2e-3) (4e-4) (5e-4) (6e-4) (4e-4) (1e-5)

1000 1 1 1 1 0.98 0.93 0.99 0.99 0.14 0.999

(0) (0) (0) (0) (1e-3) (1e-4) (1e-4) (3e-4) (1e-3) (2e-5)

III

200 0.98 0.96 1 0.98 0.74 0.77 0.81 0.83 7e-4 0.999

(2e-3) (2e-3) (0) (1e-3) (2e-3) (8e-4) (3e-3) (2e-3) (1e-4) (1e-6)

500 1 1 1 1 0.94 0.87 0.99 0.97 0.024 0.999

(0) (0) (0) (0) (2e-3) (3e-4) (4e-4) (5e-4) (4e-4) (1e-5)

1000 1 1 1 1 0.98 0.93 0.99 0.99 0.14 0.999

(0) (0) (0) (0) (1e-3) (1e-4) (1e-4) (4e-4) (4e-4) (3e-5)

into 106 Brodmann ROIs. Voxels not indexed by the Brodmann atlas were not considered in
the analysis. The regions on the left hemisphere are a symmetric mirror reflection of the ones
located on the right hemisphere. In the following, we use “(L)” to denote the regions on the left
hemisphere and “(R)” to denote the regions on the right hemisphere. For example, “Temporal
cortex BA20(L)” refers to the temporal cortex region named “BA20” on the left hemisphere and
“Temporal cortex BA20(R)” refers to the corresponding symmetric region found on the right
hemisphere.

4.2. Genotypes
The ADNI SNP data were genotyped using an Illumina 610 Quad array with more than
620,000 tag SNPs. Genotyping was performed by Polymorphic DNA Technologies. We grouped
the SNP genotypes into genes using the UCSC known genes list of NCBI36 assembly
(http://genome.ucsc.edu), with each gene containing the SNPs within its physical range plus
a flanking region of 100 KB both upstream and downstream. This resulted in a total of 29,458
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genes in the 22 autosomes. For isoform genes, we took the joint regions of all the isoforms to be
the same gene.

The raw genotypes were screened by a series of quality control procedures. SNPs with miss-
ing rates greater than 1%, heterozygous haploid and markers with Hardy-Weinberg equilibrium
p-values less than 10−6 were removed, which left in a total of 564,636 SNPs in the analysis. The
missing genotypes with a missing rate under 1% were imputed by the average genotype scores
of the non-missing genotypes.

4.3. Data analysis
In the first-stage selection, we used the first five PCs in each brain ROI and the first twenty PCs or
the first several PCs that explained at least 80% of the variation, whichever was smaller, in each
gene. Most of the ROIs have more than 70% of their variations explained by their first five PCs.
Most of the genes have at least 80% of their variations explained by no more than 20 PCs. For
example, only seven out of 800 genes on chromosome 20 have less than 60% of their variations
explained by their first 20 PCs. Figure S.1 in the online Supplementary Materials shows the
percentage of total variation explained by the first five PCs in each ROI and the percentage of
variation explained by up to the first 20 PCs in each gene on chromosome 20. The ε4 allele of
the APOE gene (APOE-ε4) is the most common genetic risk factor for AD (Corder et al., 2004;
Strittmatter et al., 1993). However, the ADNI genetic dataset does not contain the genotypes for
the SNPs in the APOE gene. We extracted the APOE-ε4 allele information score from the ADNI
clinical data and combined it with the first 20 PCs on chromosome 19.

We used the R package MSGLasso (Li, Nan, & Zhu, 2016) to run the multivariate group
lasso on the PC matrices. Stability selection (Meinshausen & Bühlmann, 2010) was then carried
out on 100 bootstrapped datasets. ROI-to-gene pairs with a stability selection frequency of at
least 75% were selected as important ROIs and genes in the first selection stage. For the APOE
gene, we used APOE-ε4 allele score to fit the model specified in Equation (4) wherever APOE
was selected.

Meinshausen & Bühlmann (2010) showed that the expected number V of falsely selected
variables is bounded from above by

E(V ) ≤ 1

2πthr − 1

q2

P
, (8)

where πthr denotes the thresholding frequency used for the selection, which in our case was
75% for the first stage and 80% for the second stage, and q represents the average number of
selected variables. In our study, the typical numbers of selected variables ranged from tens to
hundreds out of tens of thousands of variables in total, which yielded q2/P � 1. Therefore the
error number per chromosome is controlled by� 1/(2× 0.75− 1) = 2. That is, for each ROI,
in the first stage, there will be just a few falsely discovered genes across all chromosomes.

In the second stage, we also used the MSGLasso (Li, Nan, & Zhu, 2016) to fit a multivariate
lasso regression on each of the selected ROI-to-gene pairs. Stability selection was then carried
out on 100 bootstrapped datasets for each ROI-to-gene pair. Voxel-to-SNP pairs with a selection
frequency greater than 80% were selected to be the important individual-level signals. Then
we applied a multiple linear regression for each selected voxel with its selected important SNP
predictors for post-selection estimation and inference. In our ADNI data analysis, the typical
number of important SNPs selected for a voxel ranged from a few to several dozens, which is
much smaller than the sample size.

In both stages, we did not penalize on Iad, Imci, Age and Sex by setting the corresponding
ωgr = 0 or ωjk = 0.
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4.4. Results
Table 2 provides a list of top signals that meet both criteria of having a p-value less than 10−6

and a selection frequency exceeding 80%. The selected brain regions and strength of the SNP
effects are also illustrated in Figure 2. Since there is no SNP-MCI interaction effect that satisfies
both criteria, we provide a list of top MCI interactions in Table S.1 in the online Supplementary
Materials. Table S.2 lists the top selected ROIs and voxels therein for the APOE-ε4 effects.

Some brain regions are identified as having either significant gene effects or gene-AD inter-
action effects. For example, regions such as BA40(L), BA39(R), BA39(L), BA7(R) and BA7(L)
in the superior parietal cortices were found to be significantly associated with certain genes or
with their associations significantly modified by the AD status. On the contrary, no genome-wide
significant SNP was found in the previous pairwise brain-GWAS studies (Stein et al., 2010a). We
have confirmed some brain regions associated with genetics that have appeared in the existing
literature. For example, Mills et al. (2013) reported associations between lipid metabolism in su-
perior parietal cortices and alternatively spliced isoforms in RNA transcriptome. Other identified
regions that were associated with genetics or with their genetic effects significantly modified by
AD status include BA18(R), BA18(L), BA19(R), BA19(L) in occipital cortices (Braskie, Ring-
man, & Thompson, 2011) and BA20(R), BA20(L), BA21(R), BA21(L), BA22(R) and BA22(L)
in temporal cortices (Stein et al., 2010b; Risacher et al., 2009; Braskie, Ringman, & Thompson,
2011).

Some genetic findings identified in previous studies were confirmed by our brain-GWAS.
For example, Wang et al. (2013) found that inhibiting IL8RB (CXCR2) can turn down amyloid-
β production and protect neural cells. Nakamura et al. (2006) found a similar effect for the
COLEC12 (SRCL) gene in AD samples. Other direct supports involving AD interactions include
Burns et al. (2011) on SAKCA (KCNMA1), Xie et al. (2010) on PRIMA, Nakamura et al. (2006)
on COLEC12 and Broer et al. (2011) on HSPA13.

Some gene-to-AD interactions have also been identified in the literature as associated with
other cognitive-related diseases such as autism and hearing impairment. Such genes include
AK096399 (Cannon et al., 2010), GJB2 (Lingala, Sankarathi, & Penagaluru, 2009), SNX29 (Teas-
dale & Collins, 2012), MED1 (Giordano & Macaluso, 2011; Wong et al., 2013) and COL9A3
(Solovieva et al., 2006; Asamura et al., 2005).

We also confirmed some gene effects on brain metabolizing. For example, CDC42EP3 en-
codes a certain family of guanosine triphosphate metabolizing proteins and the gene is weakly
expressed in the brain. PACS2 plays a role in membrane traffic with tumour-necrosis-factor-
related apoptosis-inducing-ligand (TRAIL) induced apophasis (Aslan et al., 2009), which in turn
can cause human brain cell death (Nitsch et al., 2000).

Our findings also provided evidence about indirect genetic effects on certain chemical com-
pounds or protein translocation, which are reflected in the PET scans and may be associated with
AD. For example, Dai et al. (2013) and Sakamoto & Holman (2008) demonstrated that TBC1D4
plays a role in regulation of GluT4 traffic, which, on the other hand is associated with AD (Talbot
et al., 2012; Yang, Li, & Liu, 2013). Nolte et al. (2006) and Lu, He, & Zhong (2007) have given
a chain of relationships of HOXD4 gene to PAX6 protein to AD.

There are also several novel signals which have not previously been reported in the literature,
such as associations between BC007399 and BA39(R) in the superior parietal cortex, between
GALNT4 and BA19(L) in the occipital cortex and between RIN2 and CERHEM(L).

5. DISCUSSION

The overall computational cost of our two-stage approach is lower than that of the pairwise
approaches (Stein et al., 2010a; Ge et al., 2012), as our method removes the unimportant ROI-to-
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gene signal blocks first and only focuses on the selected ROI-to-gene blocks in the downstream
analysis stages. To further reduce the computational time, we parallelized the computational jobs
on multi-core computing clusters. Also, our approach has more power due to the integration of
the brain and genome grouping structures. In Stein et al. (2010a), no significant voxel-to-SNP
signals were found due to the huge number of multiple comparisons that were carried out.

We recognize that post-selection inference is biased. Simultaneous selection, estimation and
inference have been studied recently (van de Geer et al., 2014; Berk et al., 2013). Kuchibhotla
et al. (2020) also provide an upper bound for post-selection inference p-values when taking into
account the selection bias. These enhancements of our proposed method will be investigated in
future studies.
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Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane
anchor (PRiMA) in neurons. J Biol Chem., 285(15), 11537–11546.

Yaffe, K., Krueger, K., Cummings, S. R., Blackwell, T., Henderson, V. W., Sarkar, S., Ensrud, K., & Grady,
D. (2005). Effect of raloxifene on prevention of dementia and cognitive impairment in older women:
The multiple outcomes of raloxifene evaluation (MORE) randomized trial. Am J Psychiatry, 162, 683–
690.

Yang, J., Li, S., & Liu, Y. (2013). Systematic analysis of diabetes- and glucose metabolism-related proteins
and its application to Alzheimer’s disease. J. Biomedical Science and Engineering, 6, 615–644.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. R.
Statist. Soc. B., 68, 49–67.

Received 9 July 2009
Accepted 8 July 2010

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



16 YANMING LI AND BIN NAN AND JI ZHU Vol. xx, No. yy

TA
B

L
E

2:
:T

op
se

le
ct

ed
ge

ne
s,

th
ei

ra
ss

oc
ia

te
d

re
gi

on
s

an
d

w
ith

in
th

em
th

e
to

p
se

le
ct

ed
SN

Ps
.

ge
ne

in
fo

rm
at

io
n

to
p

se
le

ct
iv

e
SN

P
in

ge
ne

as
so

ci
at

ed
ef

fe
ct

ty
pe

re
fe

re
nc

e

na
m

e
ch

r
nu

m
.S

N
P

%
va

ri
an

ce
SN

P
m

os
ts

ig
.

R
O

I

in
ge

ne
by

20
PC

s
na

m
e

p-
va

lu
e

IL
8R

B
2

11
10

0%
rs

64
36

02
5

4.
8e

-1
2

Su
pe

ri
or

pa
ri

et
al

co
rt

ex
B

A
40

(L
)

G
×

A
D

L
iu

et
al

.(
20

10
),

V
al

lè
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Figure 2: The most significant SNPs’ effects, their − log10(p−values) on voxels
across the associated region, and their selective frequency pattern on the region.
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FIGURE 2: : The most significant SNPs’ effects, their − log10(p−values) on voxels across the
associated region, and their selective frequency pattern on the region.
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