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Abstract: In this paper, a decentralized power dispatch in a charging station serving electric vehicles (EVs) is discussed. The
power dispatch problem is solved through a Stackelberg game in real time. In this game, the leader is the EV charging station
(EVCS) while the followers are EVs. The preferences of the EVCS are designed as being self-sufficient, providing charging ser-
vices to the EVs, and maintaining the energy level of the battery energy storage system which are described through different
utility functions. In addition, the preferences of followers are to maximize their EV charging powers. The learning algorithm uti-
lizes the consensus network to reach the generalized Stackelberg equilibrium as the power dispatch among EVs in an iterative
decentralized manner. Both the static and dynamic case studies in the simulation verify the successfully implementation of the
proposed strategy, the flexibility to uncertainties, and the reconfigurability to the number of EVs. It also has an excellent perfor-
mance compared with the centralized benchmark strategy with criteria, i.e., the average EV charging time, the number of charge
and discharge rate of the battery energy storage system, and energy exchange to the grid. Finally, a down scaled experiment
implementation is set up to validate the functionality and the effectiveness of the game theory based strategy.

1 Introduction

With the interests in the distributed renewable energy sources and the
concerns on air pollution, electric vehicles (EVs) have been inten-
sively investigated in recent years [1, 2]. As a promising solution
for the urban transportation, EVs have been widely applied in both
public buses [3] and private passenger cars [4]. Considering the lim-
ited capacities of the batteries in EVs, EVs have to be charged at
the service stations if the energy levels of the batteries are below
the allowed ones. To this end, developing public EV charging sta-
tions is becoming an important demand for these concerns [5]. On
the other hand, an EV charging station itself can be a potential threat
for the stability of the main grid because of the irregular charging
schedules of EVs, i.e., charging EVs simultaneously [6]. One of the
possible solutions to stabilize the power flow of the charging stations
is to utilize renewable energy such as photovoltaic (PV) energy to
support charging EVs, namely, a PV-based electric vehicle charging
station (EVCS) [7]. Usually, the PVs are utilized together with bat-
tery energy storage systems (BESSs) because of the unpredictable
solar irradiation. The BESS here can smoothen the PV power, pro-
vide a continuous charging service to EVs, and be the backup energy
source. With the help of PVs and BESSs, the EVCS may work under
the islanded state, i.e., the main grid does not need to provide energy
to the EVCS until it becomes a necessity. One of the questions here
is the sizing and placement design problem of an EVCS which have
been widely discussed [8–10]. In an EVCS, numbers of heteroge-
neous energy sources, with different preferences, are required to
support the EV charging together where uncertainties in PVs and
system configuration may exist. These concerns indicate that a com-
prehensive and flexible strategy should be designed to fulfill the
above requirements.

The existing EV charging systems can be categorized into
three levels [11], i.e., slow charging (the charging power is lower
than 3.7kW ), quick charging (the charging power ranges between
3.7kW and 22kW ), and fast charging (the charging power is higher
than 22kW ) [12]. Due to the public charging requirement, only the
quick and the fast charging is considered in this paper. In addition,
the incoming EVs may have different battery capacities, state of
charges (SoCs), and arriving time. These uncertainties are all related
to the satisfaction levels of the EVs and thus designing an strategy

becomes a critical problem. The present strategies can be catego-
rized into centralized and decentralized ones. Centralized strategies
in EVCSs are popular and can be classified into rule based strategies
and prediction based ones. For the rule based strategies, a classical
rule based strategy implemented in an EVCS focuses on reducing
the battery switch time and provide battery switch service in all
working hours [13]. [13] designs a strategy with pre-defined rule
where heuristic structure is utilized. The objective is designed to
minimize the threat to the main grid. Similarly, [14] provides an
online scheduling strategy with the same objective, i.e., minimizing
the threat to the main grid . For the prediction based strategy, [15]
gives a cooperative strategy among EVs.

In the mean time, decentralized strategies are considered as
another possible solution toward the strategy problem in the EVCSs.
In real applications, there could be unpredictable and changing num-
ber of the EVs in an EVCS. The types and the characteristics of
EVs may also be quite different. Synergy, flexibility, and scalability
are required when discussing a proper power dispatch strategy for
the EVCS. This further adds difficulty in the power dispatch prob-
lem among EVCS and EVs. In this case, comparing with centralized
strategies, decentralized strategies are more flexible in communica-
tion, reconfigurable in system topology, and robust to single point of
failure. Due to the uncertainties existed in the EVCS system, decen-
tralized control can fulfill the satisfaction level of EVs better. [12]
provides a decentralized strategy to achieve efficient charging ser-
vices through regulating the voltage of the DC-link. [16] utilizes a
decentralized fuzzy logic control to the keep a stable power balance
between EVs and EVCS. To the best knowledge of the authors, there
is no literature modeling the EVs to be selfish, i.e., maximize its
preference without caring other EVs, and taking the non-cooperative
characteristics into EVs charging strategy. In terms of decentralized
decision making, game theory is a well known way to deal with the
non-cooperative situations among selfish agents [17]. This aspect is
especially useful to autonomously update the strategy when a system
is reconfigured. In the game theory, the Stackelberg game is one of
the famous games where one of the player is the "leader" and oth-
ers are the "followers". This aspect well matches the decentralized
nature of the present power dispatch problem among EVCS and EVs.
In this regard, a Stackelberg game is utilized to model the power dis-
patch problem among EVCS and EVs and then solves the power
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dispatch problem through reaching the Stackelberg equilibrium in a
decentralized manner.

This paper solves the power dispatch problem through a decen-
tralized strategy utilizing game theory. This strategy should be fully
decentralized and be adapted to uncertainties, i.e., various EV capac-
ities, SoCs, arriving times, and weather conditions. In this paper,
an EVCS with twenty charging places has been discussed in sim-
ulation and EVCS with three places in a down scaled experimental
real world implementation. In addition, the power dispatch problem
is represented as a Stackelberg game, in which the EVCS and EVs
are treated as players. Since players are treated as selfish and indi-
vidual ones, each player maximizes its utility function. Based on
the learning algorithm, the players will communicate and negotiate
with each other and then finalize to a Stackelberg equilibrium uti-
lizing consensus network. This can be utilized as a solution for the
power dispatch problem. This equilibrium can be reached under dif-
ferent uncertainties and system typologies. Finally, the performance
and functionality of the proposed strategy is validated through both
simulations and experiments.

• The strategy is fully decentralized and thus can avoid single point
of failure;
• The strategy can reserve player’s local information, e.g., SoC of
EV battery;
• The strategy is flexible to uncertainties and reconfigurable to the
system topology;
• The strategy is compared with centralized strategy to verify the
performance;
• The strategy has been validated in a down scaled real-time
experiment test bench;

2 Components and Preferences

2.1 EVCS

Fig. 1: System configuration of an example EVCS with multiple
EVs.

As an extension of the previous work, [18], in this paper, an EVCS
possessing N charging places (N=20) is utilized as an example to
facilitate the following discussions. The EVCS shown in Fig. 1 con-
sists of PV panels, a BESS, a commercial load, and multiple EVs.
There is a shared dc-link connecting all the major sub-systems. For
security enhancement, a power management system can reach the
power flows and voltages while the private data of the EVs, such
as SoCs of their on-board batteries are not available. Applying the
proposed strategy, it sends commands to the converters and invert-
ers to implement the power management, namely a real-time power
dispatch.

• PV panels: The PV panels can work in one of the three modes,
current control mode, voltage control mode, or standby mode.
They are the main power sources for the present example EVCS.
Therefore, the PV panels are designed to work in the current con-
trol mode during daytime. The well-known maximum power point
tracking (MPPT) is usually applied through the dc-dc converter con-
trol. It should be especially noted that the power generation from

them highly depends on weather conditions, namely a source of
uncertainty in the system.
• BESS: Similar to the PV panels, the BESS can work in either cur-
rent control mode, voltage control mode, or standby mode. Except
when its SoC is too low or high, the BESS is expected to mostly work
in the voltage control mode in order to stabilize the dc-link voltage
and smoothen the active power generated by PV panels. With this
BESS control mode, the EVCS will be under islanded state. If the
SoC of the BESS reaches its lower limit, the BESS will switch to the
standby mode or current control mode for being charged by the main
grid. On the other hand, with this BESS control mode, the EVCS will
be under grid connected state.
• Main grid: The EVCS is expected to mostly operate under its
islanded state. However, the EVCS can be reconnected back to the
main grid. With well designed sizing and proper power dispatch
strategy, the EVCS can be in a standby mode in most cases, while, as
a backup generator, it can switch to current control mode or voltage
control mode.
• Commercial load: A typical office load is considered to be a typi-
cal commercial company profile in this paper. The station load here
only receives power according to the load profile and thus no control
variable is designed for the load.

For the power management in the EVCS, its major purposes are
to

1. be self-sufficient within an EVCS;
2. meet the charging needs from EVs;
3. maintain a proper SoC of the BESS.

In this paper, the EVCS is modeled as one single player. Its first
objective is to be self-sufficient, i.e., to minimize the power flow
between the EVCS and the main grid. The reasons for this objective
is: 1) to fully utilize the renewable energy, and thus realize a "green
energy" based EVCS; 2) to reduce the dynamic power influence from
the renewable energy sources to the main grid. The second objective
is to provide EV charging services as much as possible which is the
basic function of the EVCS. At last, the third objective is to keep
the BESS SoC in a proper range in order to provide the EV charging
services when there is no PV power. Thus the utility function of the
EVCS, namely a quantification of its preference, can be defined as
follows:

us(j) = −

∣∣∣∣∣ptotal,j −
n∑
i=1

pev,i,j

∣∣∣∣∣ , (1)

and
0 ≤ ptotal,j ≤ ppv,j + pb,j + pg,j − pl, j, (2)

where ptotal,j is the total available charging power for EVs at time
j. The symbols, ppv,j , pb,j , and pg,j are the supplied powers from
the PV panels, BESS, and main grid; pl,j is the power consumed by
the commercial load; n is the current EVs count in charging places.
Note that pg,j is expected to be zero in the most cases. It could also
become negative when the BESS SoC reaches the upper limit.

2.2 EVs

As discussed above, there is usually a constraint on the total avail-
able charging power, ptotal,j . It may be imposed by the system
sizing, unfavorable weather conditions, and capacity of the main grid
connection. Therefore, in the present EVCS, each EV may not be
charged following its preferred charging profile. Compromises must
be made to properly share the limited total charging power among all
the plugged in EVs, which may have different capacities and SoCs
of the on-board batteries. For an effective charging power manage-
ment, it is important to quantify the preferences of plugged in EVs.
The satisfaction level for charging could be enhanced by improving
battery cycle life [19, 20], saving charging cost [21], and increasing
the sum of battery SoCs of all the plugged in vehicles. In this paper,
the utility functions of the EVs are defined to maximize their dis-
tributed charging power and be weighted by SoCs and capacities of
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the on-board batteries:

ui,j =
P ∗
i

SoCi,j
ln(pi,j + 1), (3)

and

n∑
i=1

pi,j ≤ ptotal,j , (4)

0 ≤ pi,j ≤ P ∗
i , (5)

where P ∗
i is the maximum charging power determined by battery

type and capacity of the i-th EV. The lower and upper bounds of
ptotal,j are pmin,s = CmaxVbusN and pmax,s = 2CmaxVbusN ,
respectively. Cmax is the maximum allowed EV battery capacity
while Vbus is the nominal voltage of the EV battery.

3 Problem Formulation and Solution

3.1 A Leader-follower Game

The two types of players, i.e, the EVCS and EVs, have quite differ-
ent utility functions (i.e., preferences) to maximize [refer to (1)(3)].
The EVCS is the single provider of the charging power, namely
a dominant role. Thus, in this paper, the EVCS is treated as the
leader in the game while the EVs are designated to be the followers.
The power dispatch problem then becomes a leader-follower game,
i.e., the Stackelberg game [22]. The solution of the charging power
distribution is divided into two stages:

1. The 1st stage: The EVCS determines a virtual limitation on
the total available charging power, ptotal,j , which is a common
constraint for the EVs [refer to (4)];
2. The 2nd stage: The plugged in EVs negotiate to determine a
balanced charging power dispatch, i.e., pi,j ’s, in a decentralized
manner.

In the EVCS stage, the EVCS would first check the SoCb,j . If the
SoCb,j is out of the boundary, the EVCS will reconnect to the main
grid. Otherwise, the EVCS will work under islanded state. Note that
the EVCS would work under Islanded state for most of the time in
order to satisfy the first objective of the EVCS. Then, the ptotal,j can
be determined based on the current SoC of the BESS. This is because
the second objective of the EVCS is designed to give charging power
services to the EVs and the third objective is to keep the SoC of the
BESS in a proper range. Meanwhile, the ptotal,j is utilized to reflect
the current SoC status of the BESS. If the ptotal,j is large, it means
the EVCS has enough energy so that it can provide more energy
to the charging services, and vice versa. To this end, a rule based
strategy, i.e., ptotal,j is proportional to SoCb,j , i.e., the SoC of the
BESS, is applied as follows,

ptotal,j =

{
+∞, SoCb,j < SoCb,min or > SoCb,max

pmin,s(1 + SoCb,j), otherwise
(6)

where maximum number of the charging places is represented as N .
Cmax is the upper boundary of the C rate among batteries of EVs
allowed in this EVCS. SoCb,min and SoCb,max are the minimum
and maximum boundary of the SoC of the BESS.

Once ptotal,j is determined, the EVs start to seek a balanced
power dispatch at the second stage. Through Karush-Kuhn-Tucker
(KKT) conditions, the solution that maximizes the ui,j can be
found [23]. Combining ui,j and constraint in (4) gives Lagrangian

function Li,j ,

Li,j(pi,j , λi,j) = ui,j + λi,jG(pi,j ,p−i,j), (7)

where

G(pi,j ,p−i,j) =

n∑
i=1

pi,j − ptotal,j . (8)

p−i,j represents the power dispatch of the other followers’ decision
variables. λi,j is the Lagrange multiplier. Note that the constraint
(5) will be reflected in the following consensus network approach.
Because of the concavity of (7), the existence and uniqueness of the
so-called generalized Nash equilibrium is proofed by the KKT con-
ditions. At the Nash equilibrium, no single player can benefit from
unilaterally changing its decision while the other players maintain
their previous decisions [19]. The KKT conditions of the i-th EV
can be written as,

∂Li,j
∂pi,j

=
ai,j

pi,j + 1
+ λi,j = 0, (9)

ai,j =
P ∗
i

SOCi,j
, (10)

G(pi,j ,p−i,j) ≤ 0. (11)

It is known that for the most socially stable GNE, the KKT con-
ditions should satisfy the below relationship among the Lagrange
multipliers [21, 24],

λ1,j := λ2,j := ... := λn,j := λj . (12)

3.2 Consensus Network Approach

From (9), it can be seen that each EV needs a common λj to
determine its shared charging power. In the conventional central-
ized control scheme, there is a controller to collect all the necessary
information, both local (P ∗

i and SOCi,j ) and global ones (ptotal,j ,
pi,j , and n), and calculate the optimized charging power distribution
under the KKT conditions.

However, in real applications, it is usually advantageous to pro-
tect the local information and provide flexibility and scalability when
operating in a dynamic environment. Consensus network is applied
to determine the common λj in a decentralized manner [25]. As
shown in the Algorithm 1 below, this approach only requires global
information. In order to protect the privacy and avoid single point
failure, a consensus network technology is applied into learning
algorithm. Thus, through utilizing λj , the local charging power solu-
tion can be assigned. To this end, the consensus variable is suggested
to be λi,j for the ith EV through which the EV can access the global
information. λi,j will be shared with nearby players based on con-
sensus network learning algorithm. Due to the common constraint
(4), another consensus variable, i.e., δpj , is utilized to guarantee that
each player will follow the constraint. Note that due to the leader-
follower relationship, the pi,js are available to the EVCS and thus
δpj can be directly sent to each follower.

The proposed consensus algorithm is shown in Algorithm 1. In
the initialization phase, λi,j(0)s and ∆pj(0) are determined as,

λi,j(0) = −
ai,j

P ∗
i + 1

, (13)

∆pj(0) =
∑

pi,j(0)− ptotal,j(0). (14)

Note that only λi,j(0), instead of P ∗
i and SoCi,j , is being pub-

licized among the players, i.e., the EVs. The second step is the
consensus phase where the EVCS and each EV updates δpj and λi,j
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Algorithm 1 Learning Algorithm

1. Initialization
λi,j(0) =

ai,j
P∗

i +1

∆pj(0) =
∑
pi,j(0)− ptotal,j

2. Consensus phase
while max(|λx,j(k)− λy,j(k)|) > ε2, ∀x, y ∈ n
δpj(k) =

∑n
i=1 pi,j(k)− ptotal,j

λi,j(k) = λi,j(k) +
∑n
m=1 wim,j(λm,j(k)− λi,j(k)) +

ηδpj(k)
pi,j(k) =

ai,j
λi,j(k)

− 1

pi,j(k) = min(max(pi,j(k), P ∗
i ), 0)

end while
3. Check phase

if |δpj(k)| < ε then
Terminate

else
Continue k + +

end if
4. Go back to step 2

following the rules,

δpj(k) =
∑

pi,j(k) − ptotal,j(k), (15)

λi,j(k) = λi,j(k) +
n∑

m=1

wim,j(λm,j(k) − λi,j(k)) + ηδpj(k), (16)

where wim,js are connectivity strengths and η is the step size for
the δpj(k)s. In order to guarantee that δpj and λi,j can converge
to the average values of all the nodes, wim,js are designed as 1/n.
Note that the communication network among EVCS and EVs are
assumed to be a group in which any two players are connected with
a bidirectional path. Firstly, the EVCS will tune its δpj(k) accord-
ing to the difference between the

∑
pi,j(k) and ptotal,j(k), shown

in (15). Then EVs will update λi(k) according to (16) with which
pi,j(k)s can be calculated as follows,

pi,j(k) =
ai,j(k)

λi,j(k)
− 1, (17)

pi,min ≤ pi,j(k) ≤ pi,max. (18)

where pi,min and pi,max are lower and upper boundaries of the EV
charging powers. pi,j(k)s will be bounded according to pi,min and
pi,max. Finally, it returns to the beginning of step two unless the
variation of λi,j(k)s is less than a user defined threshold value.

The third step is the check phase, it would check whether the∑
pi,j(k)s are close enough to the ptotal,j(k). If

∑
pi,j(k)s and

ptotal,j(k) satisfy the terminating condition, the algorithm would
stop and each EV can update its charging power based on the λi,j(k)
and its charging power boundaries. Otherwise, the algorithm would
jump back to step 2 and continue.

Note that if the charging power reached in (17) is larger or smaller
than the boundary values, the EVs will choose the boundary value
as the solutions. The proposed strategy will determine the power
dispatch once any EV joins or leaves the EVCS. If there is no EV
joining or leaving the EVCS, the strategy will start every ten minutes.

4 Simulation Results

4.1 Example Scenario

Here, a scenario with twenty charging places is taken as an example.
A proper sizing is the base for discussing any strategy scheme. As
listed in Table 1, since the EVCS is designed to work under islanded
state, the size of the BESS and the PV panel system is designed
based on the number of total incoming EVs, average capacity and
SoCs of the EV battery. As shown in Table. 2, the uncertainties of
both EVs and PV panels are given. Here battery capacities of EVs
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Fig. 2: A typical summer day (left) and a typical winter day (right).

follow normal distributions ranging from 65kWh to 85kWh con-
sidering the ageing issue of the batteries. Again, the SoC of the EV
batteries when the EVs stop at the charging place are designed as
normal distributions with boundary from 0.2 to 0.5 and EVs will
leave the EVCS when their BESSs are fully charged. The total num-
ber of the EVs which will stop at the charging station in a working
day is designed as 100 to 130 depending on different scenarios. In
addition, the EV charging power is determined from 1C to 2C since
a quick or fast charging technology is utilized, where C is the charg-
ing current rate to fully charge the battery in one hour. The incoming
EVs are assumed to join the EVCS following Poisson distributions
considering a 12 hours EVCS working time and the total incoming
EVs number. Note that the proposed game theory based strategy can
be implemented with any sizing of the EVCS. The selected EVCS
specification can be treated as an example. In addition, the PV output
power profile is calculated based on the PV irradiation data from [26]
and model from [13]. Then the profile is scaled with the maximum
power of the PV panel system listed in Table 1. The uncertainties
of the PV panel system are modeled by the white noise to emulate
the sampling errors and weather uncertainties. Two example summer
day and winter day PV output power profiles are shown in Fig. 2.

Table 1 Specifications of the EVCS

Parameters Value
Capacity of the BESS 3000 kWh
Maximum Power of PV panel system 1200 kW
Rated power of the grid-connected system 1 MW
Maximum number of charging places 20

Table 2 Uncertainty models in EVs and PV panel system

Uncertainty Model Mean Standard
Deviation

EV arriving Poisson 12:28p.m. 209.58 (min)
time distribution
SoC of EV Normal 0.35 0.075
battery distribution
Capacity of Normal 75 (kWh) 5 (kWh)
EV battery distribution
PV output Scaled profile 181.97 (kW) 258.69 (kW)
power and white noise

4.2 Static Power Dispatch

The static case study validates the performance of the proposed strat-
egy and learning algorithm in a static case. A static case where there
are six EVs in the EVCS is selected as an example, i.e., j=30 (min).
As shown in Fig. 3, with a given ptotal,j from the EVCS, the λi,js
from EVs can converge after several iterations which validate the
efficiency of the learning algorithm. After the λi,js stabilize, charg-
ing places are able to charge their connected EVs with the charging
power given by (17) and (18). The example power dispatch for six
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EVs case is listed in Table 3. Since the existing EVs need to deter-
mine the power dispatch within ptotal,j and the PV output power
is not sufficient, all EVs are charged according to their current SoC
and P ∗

i . In addition, the simulation results also suggest that the EV
with highest capacity is able to have the largest charging power, i.e.,
EV5.
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Fig. 3: λi,30 map at 30 (min).

Table 3 The power dispatch at 30 (min)

time (min)p1 (kW) p2 (kW) p3 (kW) p4 (kW) p5 (kW) p6 (kW)
30 154 141 153 160 156 144
pb (kW) SoC1 SoC2 SoC3 SoC4 SoC5 SoC6
704 0.52 0.37 0.52 0.29 0.30 0.32
ptotal (kW)C1 (kWh)C2 (kWh)C3 (kWh)C4 (kWh)C5 (kWh)C6 (kWh)
908 76.9 70.4 76.7 80.1 78.1 71.9

4.3 Dynamic Power Dispatch

Further to the static case study, a complete procedure of the charging
responses in a sunny summer day is presented here. According to
the PV profiles, no radiation can be observed after 7 p.m., the EVCS
will stop acquiring power from PV after 7 p.m.. The power supply
can only be acquired from BESS and grid.

As designed in Table 1, there are totally 100 incoming EVs, the
entire power dispatch is over complicated and the dynamic responses
are also over complicated to be shown in one figure. In this case, the
entire power dispatch during charging of the first five EVs are picked
up to verify the performance of the proposed strategy.

It can be observed in Fig. 4 (a) that when EVs come in or leave
the EVCS, the power dispatch will be re-arranged according to the
preferences of the existing EVs in the EVCS like the example given
in static case study. This result verifies that the proposed game theory
based strategy can be implemented with different system topology
and uncertainties. In addition, with different initial EV SoC, all EVs
will be fully charged before leaving the EVCS.

The power dispatch and SoC response of the BESS in the EVCS
is shown in Fig. 4 (b). During the entire simulation, the BESS has
absorbed most of the dynamic power while the SoC of the BESS
stays within the defined working range. This verifies that the utility
function of the EVCS is well fulfilled and the capacity of the BESS is
well designed. In addition, the ptotal,j , is proportional to SoCb, fol-
lowing the pre-defined solution of the EVCS. Besides, Fig. 4 (b) also
verifies that the existing EVs in the EVCS can be any number less
than 20 (the number of the charging places) which verifies that the
dynamic case study has covered different cases including the EVCS
has empty charging place and non-empty charging place cases.

4.4 Comparison with centralized based strategy

In order to verify the performance of the proposed game theory based
strategy, the proposed strategy is compared with an strategy that only
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Fig. 4: (a) The charging power and SoC responses of five selected
EVs. (b) Power response of the BESS, SoC response of BESS,
ptotal,j response, and number of coming EVs to the EVCS.

maximizes the charging power of EVs, i.e., pi = P ∗
i . This compar-

ison is designed to verify that the GT-based strategy can provide a
balanced EV charging power solution. The criteria in this compari-
son are Egrid, i.e., the energy exchange from the main grid, nrate,
i.e., the number of rate change from charge to discharge and from
discharge to charge, pb,charg , i.e., the average charge power of the
BESS, pb,discharg , i.e., the average discharge power of the BESS,
and tEV , i.e., the average charging time for EVs, shown as follows,

Egrid =

T∑
j=1

(pb,j + pPV,j +

n∑
i=1

pi,j + pl,j), (19)

pb,charg = −
T∑
j=1

pb,j , for pb,j < 0 (20)

pb,discharg =

T∑
j=1

pb,j , for pb,j > 0 (21)

tEV =

∑
tEV,i
n

, (22)

where tEV,i is the charging time for ith EV and n is the number of
EV, and T is the total simulation time. Note that these two criteria
are directly related to the utility functions of the EVCS and EVs
respectively.
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The simulation results are shown in Table 4 with different total
incoming EVs cases, i.e., n. Due to the existing uncertainties, i.e.,
EV SoC, capacity, and arriving time, the simulation is run one thou-
sand times for each case. After one thousand times of simulation
run, tEV for EVs utilizing the proposed strategy is comparable
against the centralized one while the Egrid is much smaller under
n = 110, n = 120 and n = 130 cases. In addition, the pb,charg for
the GT-based strategy is almost the same as that for the centralized-
based strategy while the pb,discharg for the GT-based strategy is
larger than that for the centralized-based strategy under all three
cases. These results suggest that 1) the centralized based strategy
have a larger energy exchange than the GT-based one which ver-
ifies the result from Egrid; 2) with centralized-based strategy, the
BESS will be out of power earlier than the BESS with GT-based
strategy. Besides, the nrates for two strategies are almost the same
which proves the randomness for the uncertainties of both PVs and
EVs. The nrates also increase with larger n which means the more
EVs come to EVCS the more frequently the BESS will change from
charge to discharge and vice versa. These comparison results sug-
gest that the GT-based strategy provides two benefits against the
centralized based strategy: 1) the GT-based strategy provides a more
balanced solution among the preferences of EVs and EVCS; 2) the
GT-based strategy does not share the local information of EVs to the
EVCS through using consensus network approach.

Table 4 The simulation comparison results.

Cases n = 100 n = 110 n = 120 n = 130
[GT-based:]
Egrid (MJ) 0 0 1932 6403
nrate 30.51 31.81 32.63 32.95
pb,charg (MW) 0.24 0.22 0.21 0.20
pb,discharg (MW) 0.21 0.23 0.24 0.25
tEV (min) 18.56 18.80 18.52 20.02
[Centralized-based:]
Egrid (MJ) 0 492 2409 8776
nrate 30.4 31.72 32.08 32.51
pb,charg (MW) 0.24 0.22 0.21 0.20
pb,discharg (MW) 0.22 0.23 0.25 0.26
tEV (min) 18.48 18.47 18.45 18.43
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Fig. 5: The relationship between iterations of the learning algorithm
and number of EVs.

4.5 Scalability Analysis

Because of the decentralized manner of the proposed strategy, the
convergence speed of the learning algorithm with more and more
EVs involved becomes a considerable problem. Thus, it is neces-
sary to have a scalability analysis for the game theory based power
dispatch strategy. Based on the proposed the simulation system,
the maximum number of EVs is 20. In the scalability analysis, the

number of iterations needed to converge is recorded with different
number of EVs ranged from three to one hundred. As shown in Fig.
5, the computation burden is proportional to number of EVs. Since
there is no exponential increase or other specific increase for the iter-
ations toward the number of EVs, it can be concluded that when the
number of EVs increases, the proposed power dispatch strategy is
scalable [25].

As shown in Fig. 5, the threshold value for the stop condition of
the learning algorithm, i.e., q ranges from 0.1 to 0.001. It can be
observed that there is a trade-off between the convergence accuracy
and the number of iterations. The q can be designed as different value
based on the calculation ability of the controller where the proposed
power dispatch strategy is implemented.

5 Experimental Results and Analysis

Fig. 6 and Table 6 show the down scaled test bench and specifications
of the experimental system. An EVCS with three charging places is
utilized to verify the functionality and effectiveness of the proposed
game theory based strategy. Note that from the strategy point of view,
there is no difference between an EVCS with three charging places
and an EVCS with twenty charging places. The EVs and charging
places are emulated through three electronic loads and buck con-
verters. Note that the electronic load is working in constant voltage
mode in order to model a real EV battery while the buck converter
is implemented to control the charging power. The charging power
is controlled by an individual NI-myRIO which samples the charg-
ing power and performs the pulse-width-modulation (PWM) wave
to the buck converter. Three PI controllers are implemented in the
NI-myRIOs to control the charging powers. The PV-panels and sta-
tion load are emulated through a power supply and an electronic load
programmed by LabVIEW in a host PC. Note that the power supply
and electronic loads are connected to the host PC through RS-232
port. A NI-CompactRIO is utilized to sample the power flow of the
BESS. Thus the NI-CompactRIO together with the host PC can be
treated as the EVCS strategy center. Since the BESS with converter
works in voltage mode, it is emulated through a real battery directly
connected to the DC-bus for simplicity proposes. Five 0.01Ω high-
accuracy sampling resistors are utilized to measure the currents of
the EVs, station load, and PV panels.

Note that the rated power and capacity are also scaled down to the
test bench level. The total incoming EV number is scaled down to 10
while the total simulation time is scaled down to 1440s. Since there is
nearly no energy exchange in the last 440s, the experimental results
only show the responses within the first 1000s. The PV power profile
will also be scaled down accordingly. Following the power profile of
the PV-panels system and station load, the reference power can be
directly sent to the power supply and electronic load. The communi-
cation among EVs and charging station is designed utilizing shared
variables in LabVIEW program through Wifi communication. Sim-
ilar to the simulation, the EVs will leave the EVCS when they are
fully charged.

As shown in Fig. 7 (a), the power dispatch of ten EVs with three
charging places verify the effectiveness of the proposed strategy,
i.e., the power dispatch follows the P ∗

i and SoCi given in Table 5.
For example, the charging powers of EV1 and EV2 are higher than
the charging power of EV3 due to the higher P ∗

i and lower SoCi.
When the total available charging power is sufficient, e.g., only two
EVs are in the EVCS and ptotal is high enough at 600s, EVs can
be fully charged. The fluctuations in the charging power responses
are caused by the sampling errors and response time of the PI cur-
rent controllers. It can be observed that EVs come to the EVCS in
sequence following the Poisson distribution. The initial SoCs of EVs
are determined through normal distribution, shown in Fig. 7 (b) and
Table 5. All EVs are fully charged when they leave the charging sta-
tion. As shown in Fig. 7 (c), the power response of the BESS shows
a similar dynamic response which verify the smooth and stabilizing
function of the BESS. As shown in Fig. 7 (c), the SoC response of
BESS verifies the sizing of the EVCS, i.e., the BESS has never been
over charged or over discharged. Similar to the simulation results,
the ptotal follows the same track of the SoC response of the BESS.
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Table 5 The Parameters of EVs.

EVi 1 2 3 4 5 6 7 8 9 10
P ∗
i (W) 12 12 10.75 11.5 12.75 10.75 10.75 10.75 13.75 13
SoCi 0.34 0.31 0.44 0.23 0.31 0.29 0.21 0.20 0.35 0.41

Fig. 6: Down scaled test bench.

Table 6 Specifications for Major Components

BESS Lishen LP2770102AC,

Four cells 12.5 Ah/cell

EVs Lishen LP2770102AC

Two cells 12.5 Ah/cell

(Emulated through electronic loads)

Power Supply Takasago ZX-800L

Max Power: 800 W (0–80 V, 0–80 A)

Electronic Load Kikusui PLZ-50F/150U,

Max Power: 600 W 4 PLZ150Us with 1.5–150 V, 0–30 A

DC-DC Converters Design/fabricate in house

Switch Frequency: 20 kHz Efficiency: > 90%

High-accuracy Sampling Resistor PCN Corporation RH series

Five RH250M4 0.01 Ω (±0.02%)

6 Conclusions

This paper designs and develops a decentralized power dispatch
strategy in EVCSs. The power dispatch problem is converted into a
Stackelberg game, in which the EVCS and EVs are modeled as indi-
vidual players. Each player possesses a utility function representing
its preference, i.e., being self-sufficient, providing charging power
services to the EVs, maintaining the SoC of the BESS, and maximiz-
ing the EV charging power. Through a learning algorithm utilizing
consensus network, the generalized Stackelberg equilibrium is itera-
tively reached as a solution for the charging power dispatch problem.
The simulations in both static and dynamic case studies give an
improved performance, re-configurablility, and scalability with the
game theory based strategy. Finally, a down scaled real world test
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Fig. 7: (a) EV charging power response. (b) EV SoC response.
(c) Battery power response, SoC response of BESS, and ptotal in
experiment.

bench is utilized to validate the real world implementation and the
effectiveness of the proposed decentralized strategy.
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