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Abstract 

In movement disorders such as Parkinson’s Disease (PD), cholinergic signaling is disrupted by 

the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic 

interneurons. Several lines of evidence suggest that gait imbalance, a key disabling symptom of 

PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more 

typically associated with cognitive dysfunction. Here we describe the cortico-striatal circuitry that 

mediates the cognitive-motor interactions underlying such complex movement control. The ability 

to navigate dynamic, obstacle-rich environments requires the continuous integration of 

information about the environment with movement selection and sequencing. The cortical-

attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity 

to guide striatal movement control. Cue-derived information is “transferred” to striatal circuitry 

primarily via fronto-striatal glutamatergic projections. Evidence from parkinsonian fallers and from 

a rodent model reproducing the dual cholinergic-dopaminergic losses seen in these patients, 

support the main hypotheses derived from this neuronal circuitry-guided conceptualization of 

parkinsonian falls. Furthermore, in the striatum, cholinergic interneurons constitute a particularly 

critical node for the integration of cortical with midbrain dopaminergic afferents, and thus for cues 

to control movements. Pro-cholinergic treatments that enhance or rescue cortical and striatal 

mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in 

older persons suffering from gait disorders and a propensity for falls.  

 

Key Words: cortex, striatum, acetylcholine, dopamine, attention, gait, balance falls, Parkinson’s 

disease 
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Attentional control of movements 

As a healthy person, you rarely think much about your every-day movements. Getting up, going 

up or down the stairs, biking or walking to work - all these actions feel automatic and habitual, 

and they typically do not disrupt your ongoing mental activity. Occasionally, however, a stepping 

or balancing error, perhaps while traversing a dynamic surface or stepping onto a stable surface 

that was expected to have dynamic properties (e.g., onto a broken escalator), disrupts the regular 

rhythm of movement and evokes an attentional shift toward initiating corrective action. Such an 

attentional shift is an effect as well as a causal agent:1 The attentional shift is triggered by a 

mismatch between pre-programmed movement sequences and performed actions. As a causal 

agent, such a shift facilitates the evaluation of extero- and proprioceptive stimuli to identify the 

mismatch between planned movements and behavior. To ensure corrective action, this shift in 

attention prioritizes the modification of motor programs over other cognitive or behavioral activity.2-

6  

In subjects with diminished capacities for such attentional shifts, as in older persons or patients 

with Parkinson’s disease (PD), movement errors are less likely to trigger an effective analysis of 

mismatches between exteroceptive cues (e.g., stair height and tread dimensions), programmed 

movements (e.g., lower limb cyclic pattern 7), and interoceptive cues indicating, for example, 

reduced gait rhythmicity and poor trunk orientation. 8 As a result, movement errors can rapidly 

accumulate, thereby increasing the risk for a fall. 9-19  

This review will evaluate the evidence supporting an essential neuronal circuit for complex 

movement control (see Footnote1) and discuss how age- and disease-related dysfunction and 

degeneration of multiple nodes within this circuit lead to gait dysfunction, imbalance, and falls. 

This circuit (depicted in Figure 1) consists mainly of the cortical cholinergic processing of 

movement-related cues, the transfer of the results of such processing to the striatum and, in the 

striatum, the integration of cortico-striatal glutamatergic with midbrain-dopaminergic signaling, 

primarily by striatal cholinergic interneurons (ChIs). It needs to be noted that in PD patients who, 

in addition to the disease-defining symptoms, also exhibit gait dysfunction and a propensity for 

                                                 
1Complex movement control conceptualizes the collective interactions between cognitive, specifically 
attentional processes and the selection and sequencing of movements. Such interactions are needed, for 
example, to circumvent obstacles, move over unfamiliar or unstable surfaces or, in the rodent model, 
traverse rotating straight and zigzag rods or make cued turns. In these cases, the regular frequency-
based patterning of limb movements that defines gait is challenged and often disrupted, involving 
changes in the direction of travel, the rapid development of torque and postural muscle activity to correct 
for imbalance, imperfect limb placements, or stepping errors. Complex movements involve shifting the 
attentional spotlight toward the processing of errors in gait and posture and the orchestration of corrective 
action.  
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falls, not all falls result from a breakdown of cognitive-motor interactions. Some falls, particularly 

in patients with relatively severe, advanced disease, may primarily reflect major motor or 

biomechanical, including proprioceptive deficiencies (e.g., 20). Falls not reflecting the disruption of 

cognitive-motor integration, and which cannot be mapped onto the cortico-striatal neuronal 

circuitry proposed to mediate such integration, are not the subject of this review. As such, this 

review assumes a reductionist, biopsychological account of this particular category of falls (for a 

clinically comprehensive description of falls and a discussion of a range of behavioral and 

neuronal risk factors see, e.g., 12, 21, 22).  However, it also needs to be noted that overtly kinematic 

risk factors for falls, such as reduced step lengths prior to turning, freezing of gate (FOG), and 

alterations in trunk control 23-27 can reflect the breakdown of cognitive-motor interactions, 28, 29 as 

opposed to solely reflecting motor or biomechanical impairments. Although the proposed circuitry 

model (Fig. 1) maps the relative contributions of attentional and motor variables to gait dysfunction 

and a heightened propensity for falls onto separate nodes of this circuitry, such a segregation of 

attentional versus motor function likely is primarily of heuristic significance (see, e.g., 30). This 

view is underlined by contemporary theories about striatal dopamine (DA) function that have 

increasingly employed cognitive concepts to explain the dopaminergic contributions to motor 

control (below). 

Attending to movement-related cues: cortical cholinergic signaling  

The organization and diverse behavioral functions of the basal forebrain, cholinergic projection 

system to the cortex have been extensively reviewed in recent years. 31-34 Therefore, the review 

of this component of the neuronal circuit mediating complex movement control is limited to a brief 

discussion of key findings relevant for the present neuro-behavioral model of complex movement 

control (Figure 1). 

The detection of cues requires cholinergic signaling in cortex. ‘Detection’ concerns a 

psychological process that elevates the processing of a signal or cue so that this cue evokes a 

response in accordance with a previously established stimulus-response rule. 35 While any salient 

cue may trigger an orienting response, only selected cues will be processed to the degree that 

they evoke or influence behavior. For example, while standing at the luggage carousel scanning 

bags, a red bag in a sea of black bags may elicit an orientation response but, unless this is your 

bag, will not evoke approach behavior. You may miss your bag despite scanning over it because, 

for example, a distraction (a sniffer dog at your feet) or a weak representation of your (new) bag 

in memory interfered with the detection process.  
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In rodents performing cue detection tasks, cues that will evoke a behavior trained to report the 

presence of a cue evoke a fast, transient cholinergic signal in the prelimbic cortex (termed a 

"cholinergic transient"; see Fig. 2b and associated legend for methods used to measure 

cholinergic transients). 36, 37 As illustrated in Fig. 1, cue-evoked glutamatergic activity from 

thalamic afferents is necessary for evoking cholinergic transients, and complex bidirectional 

cholinergic-glutamatergic interactions appear to promote cholinergic transient generation in 

cortex. 38-42 However, the cortical circuitry and the synaptic mechanisms responsible for cues 

failing to generate, or suppressing, cholinergic transients, and thus yielding misses, has yet to be 

explained (but see Cholinergic top-down control, below). 

Consistent with the demonstration that cholinergic transients are evoked by detected cues, 

removal of cholinergic inputs to the cortex, 43-45 or optogenetic suppression of cholinergic 

transients, 46 reduces detection rates. Moreover, optogenetic generation of transients enhances 

detection rates (Figure 2). Perhaps an even more significant demonstration of the behavioral 

significance of cortical cholinergic transients is based on the effects of optogenetically generated 

transients in non-cued trials where such transients normally are not observed. Even if restricted 

to the prefrontal cortex, such cholinergic transients evoked a high rate of false alarms. 46 In other 

words, in the absence of a cue, artificially generated transients are sufficient to force a false 

reporting of a cue. 

Cholinergic transients appear to have the capacity to exert complex behavioral responses in part 

by generating oscillations in the gamma range and orchestrating theta-gamma cross-frequency 

coupling. 47 Such coordinated synchrony across multiple frequency bands suggests that 

cholinergic transients can organize the cooperation of multiple populations of neurons, 

synchronize cue-bound action, and broadcast this cooperation across cortical and subcortical 

regions to generate complex, cue-oriented behavior. Stimulation of M1 muscarinic acetylcholine 

receptors (mAChRs) is essential for such effects of ACh. These receptors are expressed by 

cortical interneurons 48 and cortical output neurons 49 (see green dots in Fig. 1). Consistent with 

the view that M1 stimulation is necessary for the generation of high-frequency oscillations and 

cross-frequency coupling, and thus for cues to control behavior, 34, 47, 50-52 administration of a M1 

positive allosteric modulator (PAM) partly rescued the detection rates of rats with partial removal 

of cholinergic inputs to the cortex 53 and, in a rodent model of parkinsonian falls (see below), 

reduced the rates of falls. 54 

Cholinergic top-down control. Above, we discussed evidence indicating a necessary role of 

cholinergic signaling for the detection of cues. However, studies in humans and rodents have also 

pointed to cholinergic influences over attentional performance across multiple trials, lasting 
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several minutes. Collectively, these studies indicate that higher levels of cholinergic activity 

mediate superior top-down or goal-directed attention. 55-60 For example, persons expressing a 

subcapacity variant of the neuronal choline transporter (CHT), or patients with (partial) 

degeneration of the forebrain cholinergic system, are more distractible when performing sustained 

attention tasks than wild type (WT) humans. 61-64 Rats performing a sustained attention task (SAT) 

respond to a distractor challenge by further increasing cholinergic activity, and higher levels of 

cholinergic activity – over blocks of trials - are correlated with greater distractor resistance. 65, 66  

The timescale of such supra-trial-based cholinergic control of attention may suggest the presence 

of a relatively slow mode of cholinergic signaling when compared with fast cholinergic transients 

described above. However, cholinergic transients produce relatively lasting post-synaptic 

neurophysiological effects, mentioned above, and such modulation of intrinsic and efferent 

cortical networks can serve to maintain the rules of stimulus-response mappings relevant to the 

current context and goal (“task-sets”) over longer periods. 52 Thus, the postsynaptic effects of 

cholinergic transients may sufficiently explain the cholinergic mediation of attentional control. 33 

As we will see next, given the complementary roles of cortical cholinergic activity in maintaining 

high levels of attentional control and high cue detection rates, the impact of losses of ACh for gait 

control, postural stability, and fall rates can be conceptualized. 

Cholinergic control of movement cues. Just as cues in attentional tasks require cholinergic 

signaling to be detected, exteroceptive and proprioceptive cues are hypothesized to require 

cortical cholinergic processing to guide complex movements and trigger corrections. As relatively 

high cholinergic signaling levels mediate relatively better attentional control, including higher cue 

detection rates over extended periods of time, disruption of cholinergic signaling would be 

predicted to deprive the orchestration of complex movements from attentional supervision and 

effective error detection. For example, parkinsonian fallers, who exhibit cholinergic losses and 

attentional control deficits, 64, 67-69 differ from non-fallers by showing impairments in cued turning 

behavior. 11, 70-72 While walking, cued turning requires the detection of exteroceptive cues, 

including the cue that commands the turn and spatial cues (where is the wall, the corner, what is 

the nature of the surface, are there potential obstacles, etc.). Moreover, turning involves the 

disruption of regularly patterned, automatic movement and the execution of complex shifts in gait, 

posture, and balance. 73 Attention to such proprioceptive information fosters the detection of 

deviations in gait, posture and balance and thus is necessary for triggering corrective action. In 

the presence of cholinergic-attentional deficits, failures to detect such cues contribute to turning 

errors, and a failure to execute corrective actions increases the risk for falls (see also 74-76). 
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Despite the finding that, in parkinsonian fallers, cholinergic-attentional losses, but not striatal DA 

losses, are associated with higher fall rates, 68 the impact of the former necessarily results from 

interactions with the disease-defining DA losses. Even in older persons not suffering from PD but 

exhibiting gait abnormalities and an enhanced risk of falls, 77 the age-related decline in cholinergic 

function and associated limitations of attentional capacities 17-19, 78, 79 likely interact with age-

related losses of basal ganglia DA 80 to yield impairments in gait and balance. Consistent with this 

view, rats with combined (or dual) cortical cholinergic and dorsomedial striatal DA losses (“DL 

rats”), modeling the combined cholinergic-dopaminergic degeneration seen in parkinsonian 

fallers, exhibit heightened fall rates while traversing dynamic surfaces and fail to execute cued 

turns. In contrast, rats with only cholinergic losses 45, 81, 82 or only with dorsomedial striatal DA 

losses do not produce elevated fall rates. 83 However, falls associated with more complete striatal 

DA loss are associated with major sensory-motor impairments and freezing behavior, reflecting 

the falls in severe, advanced PD. 84 Such falls belong to a category separate from our focus on 

the impact of disruption of the cognitive-motor interface.  

In DL rats, analyses of the relationships between cholinergic and dopaminergic losses and their 

fall rates indicated a correlation between fall rates and DA, but not cholinergic losses. 45 This 

finding suggested that cortical cholinergic loss unmasks the impact of striatal DA losses: larger 

striatal DA losses yield greater behavioral impairments once the attentional (compensatory) 

supervision of the impaired striatum is no longer available (the impact of striatal loss will be 

discussed further below). To illustrate this interpretation: Approaching the end of a moving 

walkway you would normally plan your steps for transitioning and attend to the execution of these 

steps by adjusting posture and balance. A stepping mistake, or a balancing error following a 

stepping mistake, will be effectively corrected. In parkinsonian fallers, such planning of 

movements is thought to be drastically slower and less effective, owing to striatal DA loss, 85-88 

and therefore requires substantially greater attentional monitoring, including the detection of 

multiple movement errors and the initiation of corrections of movement, posture and balance. In 

interaction with cholinergic-attentional limitations, such supporting and compensatory attentional 

control is deficient, revealing gait disorders and a high risk for falls.  

Evidence from studies in PD patients is consistent with this conceptualization. During walking and 

obstacle negotiation, PD patients exhibit greater activation than healthy older adults in right frontal 

regions considered to be part of the visuo-spatial attention network. However, frontal activation 

was insufficient to fully compensate for the impaired gait control in PD patients. 89, 90 Assuming 

that a portion of the right frontal activation reflects cholinergic signaling, 62 these findings support 

the interpretation of the cortico-striatal interactions derived from the rodent model above. 



8 
 

Specifically, frontal attention systems are recruited to supervise complex movement control but, 

in the vulnerable subjects, the efficacy of such compensatory recruitment remains limited, 

revealing the impact of (striatal) impairments in gait and balance control.  

Directly comparable evidence from parkinsonian fallers appears unavailable, perhaps due in part 

to the challenges of recruiting such patients to imaging studies, but would be expected to indicate 

attenuated (cholinergic) activation of such regions, and thus the loss of attentional control over 

striatal functions. 91-94 In PD patients with a history of freezing of gait, which is major risk factor for 

falls and potentially a behavioral expression of disrupted cortico-striatal control, 29, 95 attenuated 

functional connectivity within the right-hemispheric attention network may in part reflect loss of 

cortical cholinergic mediation of attentional control. 96  

Cortico-striatal transfer of movement cues 

Following the cholinergically-mediated detection of movement-related cues in the cortex, this 

information is transferred to the striatum to guide the selection and sequencing of movement and 

movement corrections and to maintain postural stability and balance (Fig. 1). Glutamatergic 

projections from frontal regions to the dorsomedial striatum 97, 98 are a major constituent of the 

fronto-striatal cognitive loop. 99 In addition, cortico-thalamic-striatal circuitry forms a parallel 

network via which the frontal cortex exerts top-down control over striatal functions, with both direct 

cortico-striatal and thalamo-striatal projections seemingly “importing” overlapping information 100, 

101 and equally influencing striatal cholinergic interneurons (ChIs). 102, 103 ChIs will be discussed 

below as essential attentional-motor integrators. 104, 105 

There is substantial evidence indicating the role of cortico-striatal information transfer for, in broad 

terms, adapting to changing action outcomes or switching between behavioral alternatives. 91, 106-

110 However, exactly what aspects of movement-related cues are imported into striatal circuitry 

awaits to be addressed by, for example, recording glutamate signaling 111 in rats performing 

complex movements and committing errors, such as while traversing complex beams or executing 

cued turns. 45, 112-114 Understanding the glutamatergic coding of movement cues would then also 

allow to directly assess the impact of cortical cholinergic denervation on the cortico-striatal 

transfer of cues. The finding that enhanced cortico-striatal connectivity in PD patients is 

associated with increased severity of FOG 29 may reflect the impact of cortical cholinergic losses 

on cortico-striatal transfer of movement cues.  

Attentional-motor integration in the striatum: ChIs as essential integrators 

Cortical and thalamic glutamatergic projections converge onto ChIs (see Fig. 1). 104, 105, 115 ChI-

derived cholinergic signaling in turn modulates the activity of these glutamatergic inputs and 
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enforces inhibitory control on striatal output neurons. 116 This anatomical organization has been 

interpreted as reflecting the capability of Chls to select among cortico-striatal inputs for influencing 

movement shifts and triggering movement corrections. 117 Moreover, the interactions between 

ChIs, cortico, thalamo- and nigro-striatal afferents appear to be reciprocal (Fig. 1), 118-122 further 

supporting the view that ChIs serve as an essential striatal integrator that orchestrates complex 

movements and error-triggered corrections. 123-126 

A recent series of experiments was designed to test the general hypothesis that ChIs are essential 

attentional-motor integrators. 114 In addition to the beam-traversal task previously used to 

demonstrate a heightened propensity for falls in rats modeling the combined cortical cholinergic 

and striatal DA losses of parkinsonian fallers (DL, rats), these studies assessed the ability to 

execute cued turns and cued stops in rats walking a treadmill that paused and reversed direction 

following turn cues, and stopped and resumed in the same direction following a stop cue. The 

development of this task was inspired by the finding that parkinsonian fallers exhibit (cued) turning 

deficits relative to non-fallers. 70, 71 Turning rates of DL rats were robustly reduced, signifying 

impairments in the capacity to detect movement cues or utilize such cues to initiate shifts from 

forward walking to turning. In DL rats, the extent and location of striatal dopamine depletion, but 

not the degree of cortical cholinergic deafferentation, were correlated with impaired turning 

performance, mirroring previous observations about the relationships between deafferentation 

patterns and performance, 45 This finding again supports the view that loss of cortical cholinergic 

inputs unmasks the impact of striatal DA losses. These results extend the usefulness of DL rats 

as a model of the disrupted attentional-motor interface of parkinsonian fallers. 

The essential role of ChIs for these behaviors was demonstrated by transfecting ChIs in the 

dorsomedial striatum of otherwise intact rats with an inhibitory Designer Receptor Exclusively 

Activated by Designer Drug (DREADD). Activation of this DREADD fully reproduced the cued turn 

deficits and partially replicated the high fall rates of DL rats (Fig. 3). These findings suggest that 

upon inhibition of these neurons, cue-guided modification of behavior was disrupted, 127 consistent 

with the hypothesis that ChIs integrate cortico-striatal input with striatal functioning. 

In addition, ChIs in DL rats were transfected with an excitatory DREADD. Chemogenetic 

stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. 

Importantly, stimulation of ChIs was relatively more effective in rats with viral transfection spaces 

situated lateral to the DA depletion areas in the dorsomedial striatum, suggesting that the benefits 

of ChI stimulation required the interplay with DA afferents, and therefore also with glutamatergic 

afferents from cortex and thalamus. Consistent with such bidirectional interactions between ChIs 



10 
 

and striatal afferent systems, ChI inhibition per se was previously demonstrated to impair the 

selection of cortico-striatal input for further processing 128, 129  and to suppress the regulation of 

striatal DA. 120, 130 Furthermore, striatal DA denervation causes diminished ChI function. 131  Thus, 

ChI inhibition disrupts the reciprocal interactions between ChIs, cortico- and thalamo-striatal and 

nigrostriatal activity. These considerations also begin to illustrate how ChI inhibition can 

reproduce, at least in part, the effects of dual cholinergic-dopaminergic losses on complex 

movement control.   

The results from experiments on the effects of chemogenetic stimulation of ChIs in DL rats further 

support the view that ChIs integrate cortico-striatal with nigro-striatal activity. In these rats, 

stimulation of ChIs in intact striatal tissue rescued performance more robustly than in cases where 

transfected ChIs were partly situated within DA-depleted areas. This finding is expected given 

that ChI stimulation also activates DA signaling. 120, 121, 130 Furthermore, ChIs are characterized by 

relatively large dendritic and axonal spaces 132 and broad responsiveness to sensory cues. 133 

Therefore, the specific region in which stimulation of striatal ChIs produce beneficial performance 

effects may be less crucial than preservation of their connectivity, particularly with midbrain DA 

neurons.  

These experiments 114 did not speak to the important question as to how  chemogenetic inhibition 

or stimulation of ChIs modify their neurophysiological characteristics during complex movements. 

ChIs typically exhibit autonomous, tonic firing patterns interspersed with pauses. 126, 133-135 

Following striatal DA loss, ChI firing rates are reduced and the firing and pausing patterns become 

uncorrelated. 131 Chemogenetic inhibition may likewise have suppressed these patterns of ChI 

activity (see also 116). The performance effects of stimulation of ChIs are more difficult to map onto 

ChI firing patterns. In vitro, chemogenetic stimulation increases in ChI firing rates and reduces 

pausing. 123, 136 The function of pauses currently does not seem to be sufficiently understood to 

explain how the absence of pauses could benefit the integrational function of ChIs and rescue the 

behavior of DL rats (see also 137).  

Our focus on the role of ChIs in integrating cortico-striatal with nigro-striatal input does not account 

for a role of non-cholinergic populations of striatal interneurons, 115, 138-140 or additional 

complexities within circuitry linking cortico-striatal with nigro-striatal input to multiple types of 

striatal output neurons. 128, 141, 142 Furthermore, the precise impact of DA losses on complex 

movement control remains undefined. Contemporary theories of striatal DA function have focused 

on movement-energizing effects of DA, suggesting that slowed and disorganized movement 

selection reflects an amotivational motor state, including a loss of attention to movement cues. 88, 
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143-145 Although such a view of striatal DA function amplifies the dependency of a DA-depleted 

striatum on cortico-striatal transfer of information about movement cues, and thus is consistent 

with the “unmasking” effects of cortical cholinergic deafferentation discussed above, the precise 

impact of DA losses on the striatal information processing remains unclear. Clarification of this 

issue may require monitoring of striatal circuitry in rodents performing complex movement in the 

presence and absence of striatal DA innervation.  

Status of ChIs in parkinsonian fallers. Above, ChIs are conceptualized as a major integrator of 

cortico-striatal information about movement cues with the movement-energizing function of nigro-

striatal, dopaminergic activity. The integrational capacity of ChIs is considered compromised as 

a result of striatal DA and cortical-cholinergic losses that characterize parkinsonian fallers 

(references above). However, ChI function may independently decline in parkinsonian fallers as 

well. Using a PET ligand ([18F]FEOBV) to visualize the Vesicular Acetylcholine Transporter 

(VAChT), lower striatal FEOBV binding was observed in parkinsonian fallers showing freezing of 

gait when compared with fallers not showing freezing of gait. 146 Loss of striatal FEOBV binding 

was also observed in healthy, aged controls. 78 Loss of FEOBV binding may indicate a loss of 

cholinergic neurons 147-149 or reflect compensatory effects in neurons with elevated firing rates 150 

which, in the striatum, have been thought to result from DA loss. 151 Regardless of these 

interpretational complexities, the evidence indicates robust alterations in ChIs in PD patients with 

gait dysfunction and heightened fall risk. Thus, the disruption of the integrational capacity of ChIs 

in parkinsonian fallers may not only be secondary to a functional loss of cortico-striatal input and 

degeneration of nigral afferents, but also a decline in their own integrity. Among the numerous 

nodes constituting the larger circuit mediating complex movement control (Figure 1), such a direct 

and indirect disruption of ChI function therefore may represent a key neuronal mechanism 

responsible for gait disorder and falls. The finding that, in otherwise intact rats, ChI inhibition alone 

causes falls and complex movement deficits 114 is consistent with this conclusion.  

 
Conclusions 
Attentional impairments in PD patients have long been documented and have more recently been 

attributed to cholinergic deficiencies in telencephalic regions and associated with complex 

movement control deficits. 17, 18, 94, 152, 153 This review identifies the key nodes of the cortico-striatal 

circuitry integrating the cognitive-motor functions which are at the core of complex movement 

control (Fig. 1). The available evidence in support of this circuit also suggests potential treatments 

aimed at reducing fall rates in PD patients and perhaps also in the non-parkinsonian elderly. Given 

the limitations of acetylcholinesterase inhibitors to improve or rescue transient cholinergic 



12 
 

signaling, 154 such signaling may be more effectively enhanced or restored by modulating 

postsynaptic, specifically M1-mediated mechanisms. As already mentioned, we found that an M1 

PAM improved the attentional performance of rats with partial losses of the cortical cholinergic in 

put system. 53 More recently, we also observed that such a treatment benefits the complex 

movement control of DL rats (see above for a description of these rats as a model of the dual 

cortical cholinergic – striatal dopaminergic losses which characterize PD fallers). The M1 PAM 

was particularly effective in testing conditions that interfered with the execution of relatively 

rhythmic, stable walking patterns and thus required nearly continuous re-programming of gait and 

balance. 54 Such testing conditions may model real-life situations, such as encountering 

unexpected obstacles or an unstable surface, which provoke gait and balancing errors and falls 

and thus which require the continuous monitoring of dynamic environmental and proprioceptive 

cues. However, such monitoring is de-prioritized over walking even in healthy people 2, 6 and thus 

is likely to be drastically impaired in patients with gait disorders and a history of falls, as well as 

with cholinergic-attentional losses. Therefore, it will be important that the clinical efficacy of such 

a potential therapeutic treatment be assessed using behaviors that tax the capacity for cognitive-

motor interactions. Other treatments may be designed to enhance the functions of the striatal 

nodes of the cognitive-motor interface, 81, 82 particularly ChI function, although the latter target 

involves neurophysiological complexities that require careful evaluation to avoid worsening of the 

primary motor symptoms of PD. 118 
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Figure Legends 

Figure 1 

Basal forebrain cholinergic cortical, and cortico-striatal circuitry essential for integrating attentional 

and motor functions. This circuitry diagram reflects the main framework and concepts discussed 

in this review and is not intended to describe comprehensively the circuitry and synaptic 

connectivity mediating cortico-striatal interactions essential for complex movement control (for 

key references see main text). Basal forebrain (nbM, nucleus basalis of Meynert; SI, substantia 

inominata; HDB, horizontal nucleus of the diagonal band) cholinergic projections to cortex (red), 

and phasic cholinergic signaling in cortex, are necessary for the detection of task and movement 

cues. Post-sensory information about cues is inserted into the frontal cortex via dorsomedial 

thalamic (MD) glutamatergic (GLU) inputs (blue). Cholinergic stimulation of a4ß2* nicotinic 

acetylcholine receptors (nAChRs; pink symbols) on these inputs amplify cue-evoked GLU 

responses which are necessary to evoke cholinergic signaling and cortical gamma oscillations. 

These oscillations mediate the broadcasting cue information across cortical and subcortical 

regions. Moreover, postsynaptic muscarinic receptors, particularly M1 AChR subtypes (green 

symbols) on cortical interneurons (black) and output cells, contribute to the cortico-striatal 

glutamatergic transfer of information about cues (blue). Silencing or generating cortical cholinergic 

activity disrupt and benefit, respectively, the processing of task- and movement cues, thereby 

influencing complex movement control. In addition to the essential role of cholinergic transients 

for the detection of movement-related cues, cholinergic signaling also maintains top-down, or 

goal-directed, attention over complex movements, specifically in response to gait errors and 

imbalance (see main text for discussion). As a result of loss of cholinergic input to the cortex, as 

is the case in parkinsonian fallers, the detection of movement cues is impaired and thus the 

cortico-striatal glutamatergic transfer of information about movement cues is disrupted. In 

interaction with slowing and de-energizing effects of striatal dopamine loss (DA; yellow), impaired 

cortico-striatal transfer fails to guide movement selection and correction of movement errors, 

thereby yielding gait dysfunction and increasing the risk for falls. Striatal cholinergic interneurons 

(ChIs) are positioned to integrate cortico-striatal signaling with dopaminergic (DA) modulation. 

ChIs are lost or are hypoactive in PD fallers, and inhibition of ChIs in rodents causes falls and 

related movement deficits.  

Figure 2 

Cortical cholinergic transients cause the detection of cues. a: The signal detection task used for 

these experiments consisted of a random order of visually cued and non-cued trials (middle 
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schematic illustration). Following either event, two nose-poke devices extended into the chambers 

and were retracted upon a nose-poke or following 4 s (schematic illustration in the middle). Hits 

and correct rejections (dark red and dark blue arrows) were correct responses in cued and non-

cued trials, respectively, and rewarded with water, whereas misses and false alarms (pink and 

light blue arrows) were incorrect responses and not rewarded. Following an intertrial interval of 

12 ± 3 s, the next cue or non-cue event commenced. The photographic inserts show a cue 

presentation with a mouse orienting toward the intelligence panel while positioned at the water 

port (upper row, left), a subsequent hit (upper row, right), a non-cue event (lower row, left), and a 

subsequent correct rejection (lower row, right). b: Prefrontal choline currents as a function of laser 

stimulation power in mice expressing channelrhodopsin-2 (ChR2) in basal forebrain cholinergic 

neurons. Top insert: Real-time currents indicating newly release acetylcholine (ACh) were 

recorded amperometrically and using choline-sensitive microelectrodes. The insert depicts the 4 

platinum (Pt) recoding sites fabricated onto ceramic bases and the approximate placement of the 

recording sites in the prelimbic (Prl) cortex. Choline oxidase was immobilized onto 2 out of 4 Pt 

sites and all sites were equipped with a Nafion layer to repel ascorbic acid and other electroactive 

interferents. Newly released ACh is hydrolyzed by endogenous acetylcholinesterase (AChE) and 

the resulting choline is oxidized by immobilized choline oxidase on the electrode. The resulting 

hydrogen peroxide is then detected amperometrically. Current from sites not equipped with 

choline oxidase were used for self-referencing (for more details see, e.g., 36, 155, 156). Bottom insert: 

The traces depict currents evoked by blue laser stimulation (5–25 mW; 1,000 ms). Increasing 

stimulation power resulted in higher transient amplitudes, with 10-15 mW-evoked currents 

mimicking the choline currents measured in rats in cued trials yielding hits. 36 c: Optogenetic 

generation of cholinergic transients (bilateral illumination of the basal forebrain; see insert) during 

cued trials increased hit rates, particularly the hit rates to shortest cues when compared to the 

absence of photostimulation (non-stim). d: In non-cue trials, cholinergic transients normally are 

not observed. 37 Therefore, cholinergic transients generated optogenetically during these trials 

caused an increase in false alarms (that is, false reports of cues). Bilateral stimulation of the basal 

forebrain (not shown) or generation of cholinergic transients in the right prefrontal cortex more 

than doubled the rate of false alarms (adapted from 46). 

Figure 3 

Chemogenetic inhibition of dorsomedial striatal cholinergic interneurons (ChIs) impairs cued 

turning behavior in otherwise intact rats (adapted from 114). The task used to train and test cued-

turning behavior in rats was inspired by evidence indicating that parkinsonian fallers also exhibit 
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turning deficiencies, thought to reflect a disrupted cognitive-motor interface (references in text). 

Rats were trained to walk on a treadmill and detect cues requiring either to turn (as the treadmill 

would stop and restart in reverse) or to merely stop (as the treadmill would re-start in the same 

direction). ChIs were then transfected either with an inhibitory DREADD (Designer Receptors 

Exclusively Activated by Designer Drugs; hM4Di) or a reporter molecule-expressing control 

construct (mCherry). To activate the inhibitory DREADD, clozapine-N-oxide (CNO) was 

administered. The effects of DREADD expression per se were controlled by assessing the effects 

of the vehicle for CNO. As illustrated in a, turning rates remained unaffected in mCherry and 

hM4Di-expressing rats following the administration of vehicle (left). CNO, however, robustly 

reduced turning rates in rats expressing the inhibitory DREADD (right). b shows results from an 

important control experiment that addressed the possibility that DREADD-induced inhibition of 

ChIs interfered with the rats’ turning ability per se, rather than with their ability to utilize the turn 

cue to execute a turn. Rats explored an open field and the effects of CNO on the rats’ preferred 

turning direction were determined. The color-coded symbols in b indicate rats with a significant 

preference. The results rejected the possibility that the effects of CNO on turning performance 

were due in part to disruption of their spontaneous and preferred turning behavior (for details see 
114). Together, these results indicate that dorsomedial ChIs are an essential node in circuitry 

mediating the cognitive-motor integration necessary from complex movement control.  
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