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Abstract: This is a discussion of Liu & Zhu (2021), which develops a novel statistical disease mapping
framework for neuroimaging data analysis. The Canadian Journal of Statistics 49: 35–38; 2021 © 2021
Statistical Society of Canada
Résumé: C’est la discussion de Liu & Zhu (2021), qui propose un nouveau outil de cartographie pour les
maladies basé sur des approches statistiques permettant l’analyse de données en neuroimagerie. La revue
canadienne de statistique 49: 35–38; 2021 © 2021 Société statistique du Canada

We would like to congratulate the authors for their excellent work on developing a novel
statistical disease mapping (SDM) framework that delineates imaging heterogeneity at both the
individual and group levels. The proposed method is general and useful for different neuroimaging
studies. The proposed SDM model-fitting procedure consists of two major components. The first
component fits an individual-level image-on-scalar regression model based on a multivariate
varying coefficient model (MVCM), where a hidden Markov random field model (HMRFM)
estimates a set of voxel-wise latent diseased region indicators for each individual. The second
component fits a spatial zero-inflated Poisson regression model (SZIPM) to characterize the
disease map at the group level.

We thank the Editor for the opportunity to discuss this work. Our discussion will focus on
the following four aspects: the Potts model for labelling diseased regions, alternative modelling
strategies for the two model components, the computational complexity of the estimation method,
and several possible future directions.

1. THE POTTS MODEL FOR LABELLING DISEASED REGIONS

In the HMRFM, for each individual, a Potts model is adopted to specify the joint distribution
of the diseased region indicators across all voxels, where a spatial smoothness parameter and
a definition of a neighbourhood both control the flexibility of estimated diseased regions in
terms of region size and spatial distribution. In this work, the individual-specific diseased region
indicators are assumed to have a common smoothness parameter across all individuals. As the
authors have pointed out that “diseased regions can significantly vary across subjects and/or time
in terms of their number, size, and location,” it is of interest to learn whether individual-specific
smoothness parameters can increase flexibility in model fitting. It seems feasible to estimate
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individual-level smoothness parameters using a pseudo-likelihood approach. On a related note,
it may be worth investigating the statistical efficiency of this pseudo-likelihood approach to
estimation relative to the full-likelihood approach. In addition, one may also consider modelling
individual-level smoothness parameters as random effects, that is,

p(bi|𝜏i) = exp
{
−U(bi)𝜏i − log C(𝜏i)

}
, 𝜏i ∼ Gamma(a, b), (1)

where bi represents the voxel-wise disease indicators, 𝜏i represents the random smoothness
parameter for individual i, and the definitions of U(⋅) and C(⋅) are as given for Equation (2) of
the paper. Some relevant methods have been discussed for the problem of image reconstruction
and segmentation (Storath et al., 2015), as well as for Bayesian hierarchical modelling (Song
et al., 2020).

There are several alternative modelling strategies for detecting diseased regions. One simple
strategy is to directly threshold the absolute value of the estimated spatially varying coefficients
in the MVCM or the derived statistical parametric maps. For example, one may use a Z-statistic
map to identify abnormal regions, as in other neuroimaging studies. One important issue is how
to control the false discovery rate. Some related methods have been developed for the linear
regression model. It is of interest to explore extensions to the MVCM. This method avoids
modelling bi in the MVCM.

To adopt a model-based approach, we may consider the soft-thresholded Gaussian process
(Kang et al., 2018, STGP) for modelling the sparse and piecewise smooth, spatially varying
functions in the paper. As a potential advantage, STGPs can select diseased regions and estimate
voxel-specific effect sizes simultaneously, providing a more systematic modelling approach
relative to the Potts model. The STGP may also be more flexible in modelling the spatial
smoothness of the spatially varying functions as long as appropriate kernel functions are chosen.

2. ALTERNATIVE MODELLING STRATEGIES FOR BOTH MODEL COMPONENTS

To construct the group-level disease map, in the second component of the SDM framework,
the estimates of the individual-level diseased region indicators bi from the first component are
collected as “raw data” to construct the “spatially-varying response variables” qk and fit the
disease regression SZIPM. Here, the spatial locations sk are “predictors," and the spatially varying
regression coefficients 𝜉𝜆(⋅) and 𝜉𝜋(⋅) are used to represent the group-level disease map. We
would like to point out that different distributional assumptions are made for the individual-level
diseased region indicators bi in the two model components.

In the first component, where bi is assumed to follow a Potts model, the distribution of
the estimator b̂i is completely determined by the data and this model assumption. Thus, the
distribution of qk =

∑n
i=1 b̂i(sk)𝜁i is also determined given the subgroup indicators 𝜁i ∈ {0, 1}.

We wonder if this distribution is consistent with the SZIPM. What if we simply summarize
the results from the first component? For example, for each voxel sk, we use the frequency (or
the kernel-smoothed frequency) of subjects for which the voxel sk is marked as being within a
diseased region as an estimate of the group level probability of disease, that is,

𝑓n(sk) =
qk∑n
i=1𝜁i

and 𝑓n(s) =
m∑

k=1

K(||s − sk||)𝑓n(sk), (2)

where K(⋅) represents a kernel function. Can we define the group-level disease probability based
on the limit of the frequencies, that is,

Pr
(
sk belongs to the diseased region

)
= lim

n→∞
𝑓n(sk)?

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11603



2021 HETEROGENEOUS NEUROIMAGING STUDIES 37

As an alternative modelling strategy, one may introduce the group-level disease indicators
b= {b(sk)} to which the Potts model prior is assigned and specify the conditional probability
mass of bi(sk) given b(sk). For example, one simple choice is

Pr
(
bi(sk) = 1|b(sk) = l

)
= 𝜅l(sk), (3)

for l= 0, 1, where 𝜅0(⋅) (𝜅1(⋅)) represents the probability that the voxel sk belongs to a diseased
region for individual i given that sk belongs to (does not belong to) a group-level diseased region.
Under a Bayesian modelling framework, we can assign spatially dependent functional priors
on 𝜅l(⋅), for example, the Gaussian process priors, and make posterior inferences on b and bi.
Suppose we obtain the posterior samples of bi and b, denoted as {bh

i }h=1,…,H and {bh}h=1,…,H ,
respectively. Then, the posterior probabilities of interest are given by

P̂r(sk belongs to the diseased region for individual i) = 1
H

H∑
h=1

I{bh
i (sk) = 1}, (4)

P̂r(sk belongs to the group level diseased region) = 1
H

H∑
h=1

I{bh(sk) = 1}, (5)

where I(⋅) is an indicator function.
On the other hand, in the second component, the author assumes that the group-level

summation over bi(sk), that is, qk, follows an SZIPM. In the alternative modelling strategy above,
for the first component, can we specify a conditional distribution of bi given qk accordingly? For
example, we may assume, with a specific zero-inflated probability 𝜋0

k , that all of the bi(sk)= 0
and, with probability 1 − 𝜋0

k , that each bi(sk) independently follows a Bernoulli distribution with
probability 𝜋k. Furthermore, we can link 𝜋k and 𝜋0

k to qk and impose spatial smoothness. In this
model specification, the summation over bi(sk) well approximates the SZIPM as the Poisson
distribution is a limiting case of the binomial distribution. However, it is unclear if this estimation
procedure is still feasible from both the frequentist and Bayesian perspectives.

3. COMPUTATIONAL COMPLEXITY

The parameter estimation procedure includes three steps. The first step is weighted least
squares (WLS) for the n0 subjects considered normal controls. In a common high-dimensional
neuroimaging problem, the number of voxels m is much larger than the number of individuals
n or n0, and the number of individuals is also usually larger than the number of covariates p.
The number of imaging features J is moderate. Thus, the computational complexity of the WLS
method is O(Jmn0). In the second step, an iterative algorithm is developed to estimate B and
b. Denote by R the total number of iterations. From Equation (10) in the paper, the second
step has a complexity of O(RmnJ2). The third step is an EM algorithm for SZIPM parameter
estimation for which the complexity is negligible compared to the first two steps as the bis have
been summed over individuals. In summary, the total time complexity is of a linear order in the
number of voxels and the number of individuals and is of a quadratic order in the number of
imaging features. Thus, the computation can be scaled up to a large number of individuals for
high-resolution images.
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4. FUTURE DIRECTIONS

From this insightful work, some potential future directions can be pursued in mapping the
heterogeneous diseased regions. First, it may be useful to combine the two model components
with consistent model assumptions and theoretical guarantees. The key step is to model the
group-level and individual-level diseased regions simultaneously. For example, we can borrow
some ideas from factor analysis or independent component analysis and decompose bi into
group component(s) and individual component(s). Second, as we discussed before, Bayesian
hierarchical models can be constructed to make posterior inferences on the parameters of interest,
such as the probability that a specific voxel sk belongs to the diseased region at the individual
level. Bayesian models can be more flexible in specifying different activation region shapes and
can be more accurate in quantifying the uncertainty of diseased region selection. A key challenge
in developing Bayesian methods for SDM is an efficient posterior computation algorithm.
Some existing, scalable MCMC algorithms and variational Bayesian methods can potentially be
extended or modified for the proposed model. Third, it is also interesting to perform subgroup
analysis to accommodate heterogeneity among individual images, especially when there is a
lack of prior knowledge regarding group partitions. In particular, we may consider clustering
individuals’ brain activity patterns and/or associating brain activity with other covariates. This
is a more complicated problem as we do not only summarize individual information into the
group-level disease map but also determine individual group assignments for which a mixture
model can be adopted. How to make a valid inference on the number of subgroups is also worth
investigating.
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