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We would like to congratulate the authors for their excellent work on developing

a novel statistical disease mapping (SDM) framework that delineates imaging hetero-

geneity at both the individual and group levels. The proposed method is general and

useful for different neuroimaging studies. The proposed SDM model-fitting proce-

dure consists of two major components. The first component fits an individual-level

image-on-scalar regression model based on a multivariate varying coefficient model

(MVCM), where a hidden Markov random field model (HMRFM) estimates a set of

voxel-wise latent diseased region indicators for each individual. The second compo-

nent fits a spatial zero-inflated Poisson regression model (SZIPM) to characterize the

disease map at the group level.

We thank the Editor for the opportunity to discuss this work. Our discussion will

focus on the following four aspects: the Potts model for labelling diseased regions,

alternative modelling strategies for the two model components, the computational

complexity of the estimation method, and several possible future directions.

The Potts model for labelling diseased regions

In the HMRFM, for each individual, a Potts model is adopted to specify the

joint distribution of the diseased region indicators across all voxels, where a spatial

smoothness parameter and a definition of a neighbourhood both control the flexibility
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of estimated diseased regions in terms of region size and spatial distribution. In

this work, the individual-specific diseased region indicators are assumed to have a

common smoothness parameter across all individuals. As the authors have pointed

out that “diseased regions can significantly vary across subjects and/or time in terms

of their number, size, and location”, it is of interest to learn whether individual-

specific smoothness parameters can increase flexibility in model-fitting. It seems

feasible to estimate individual-level smoothness parameters using a pseudo-likelihood

approach. On a related note, it may be worth investigating the statistical efficiency of

this pseudo-likelihood approach to estimation relative to the full likelihood approach.

In addition, one may also consider modelling individual-level smoothness parameters

as random effects, i.e.,

p(bi|τi) = exp {−U(bi)τi − logC(τi)} , τi ∼ Gamma(a, b), (1)

where bi represents the voxel-wise disease indicators, τi represents the random smooth-

ness parameter for individual i, and the definitions of U(·) and C(·) are as in Equation

(2) of the paper. Some relevant methods have been discussed for the problem of im-

age reconstruction and segmentation (Storath et al. 2015) as well as for Bayesian

hierarchical modelling (Song et al. 2020).

There are several alternative modelling strategies for detecting diseased regions.

One simple strategy is to directly threshold the absolute value of the estimated

spatially-varying coefficients in the MVCM or the derived statistical parametric maps.

For example, one may use a Z-statistic map to identify abnormal regions, as in other

neuroimaging studies. One important issue is how to control the false discovery rate.

Some related methods have been developed for the linear regression model. It is of

interest to explore extensions to the MVCM. This method avoids modelling bi in the

MVCM.

To adopt a model-based approach, we may consider the soft-thresholded Gaussian

2



process (Kang et al. 2018, STGP) for modelling the sparse and piecewise smooth

spatially-varying functions in the paper. As a potential advantage, STGPs can select

diseased regions and estimate voxel-specific effect sizes simultaneously, providing a

more systematic modelling approach relative to the Potts model. The STGP may also

be more flexible in modelling the spatial smoothness of the spatially-varying functions

as long as appropriate kernel functions are chosen.

Alternative modelling strategies for both model components

To construct the group-level disease map, in the second component of the SDM

framework, the estimates of the individual-level diseased region indicators bi from

the first component are collected as “raw data” to construct the “spatially-varying

response variables” qk and fit the disease regression SZIPM. Here, the spatial locations

sk are “predictors” and the spatially-varying regression coefficients ξλ(·) and ξπ(·) are

used to represent the group-level disease map. We would like to point out that

different distributional assumptions are made for the individual-level diseased region

indicators bi in the two model components.

In the first component, where bi is assumed to follow a Potts model, the dis-

tribution of the estimator b̂i is completely determined by the data and this model

assumption. Thus, the distribution of qk =
∑n

i=1 b̂i(sk)ζi is also determined, given

the subgroup indicators ζi ∈ {0, 1}. We wonder if this distribution is consistent with

the SZIPM. What if we simply summarize the results from the first component? For

example, for each voxel sk, we use the frequency (or the kernel-smoothed frequency)

of subjects for which the voxel sk is marked as being within a diseased region as an

estimate of the group level probability of disease, i.e.,

fn(sk) =
qk∑n
i=1 ζi

and fn(s) =
m∑
k=1

K(‖s− sk‖)fn(sk), (2)

where K(·) represents a kernel function. Can we define the group-level disease prob-
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ability based on the limit of the frequencies, i.e.,

Pr (sk belongs to the diseased region) = lim
n→∞

fn(sk)?

As an alternative modelling strategy, one may introduce the group-level disease in-

dicators b = {b(sk)} to which the Potts model prior is assigned and specify the

conditional probability mass of bi(sk) given b(sk). For example, one simple choice is

Pr (bi(sk) = 1 | b(sk) = l) = κl(sk), (3)

for l = 0, 1, where κ0(·) (κ1(·)) represents the probability that the voxel sk belongs to a

diseased region for individual i, given that sk belongs to (does not belong to) a group-

level diseased region. Under a Bayesian modelling framework, we can assign spatially-

dependent functional priors on κl(·), for example, the Gaussian process priors, and

make posterior inferences on b and bi. Suppose we obtain the posterior samples of

bi and b, denoted as {bhi }h=1,...,H and {bh}h=1,...,H , respectively. Then the posterior

probabilities of interest are given by

P̂r(sk belongs to the diseased region for individual i) =
1

H

H∑
h=1

I{bhi (sk) = 1}, (4)

P̂r(sk belongs to the group level diseased region) =
1

H

H∑
h=1

I{bh(sk) = 1}, (5)

where I(·) is an indicator function.

On the other hand, in the second component, the author makes the assumption

that the group-level summation over bi(sk), i.e., qk, follows a SZIPM. In the alterna-

tive modelling strategy above for the first component, can we specify a conditional

distribution of bi given qk accordingly? For example, we may assume, with a specific

zero-inflated probability π0
k, that all of the bi(sk) = 0, and with probability 1 − π0

k,

that each bi(sk) independently follows a Bernoulli distribution with probability πk.

Furthermore, we can link πk and π0
k to qk and impose spatial smoothness. In this
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model specification, the summation over bi(sk) well-approximates the SZIPM since

the Poisson distribution is a limiting case of the binomial distribution. However, it

is unclear if this estimation procedure is still feasible from both the frequentist and

Bayesian perspectives.

Computational complexity

The parameter estimation procedure includes three steps. The first step is weighted

least squares (WLS) for the n0 subjects considered normal controls. In a common

high-dimensional neuroimaging problem, the number of voxels m is much larger than

the number of individuals n or n0, and the number of individuals is also usually

larger than the number of covariates p. The number of imaging features J is mod-

erate. Thus, the computational complexity of the WLS method is O(Jmn0). In the

second step, an iterative algorithm is developed to estimate B̄ and b. Denote by R

the total number of iterations. From Equation (10) in the paper, the second step has

a complexity of O(RmnJ2). The third step is an EM algorithm for SZIPM parameter

estimation for which the complexity is negligible compared to the first two steps as

the bis have been summed over individuals. In summary, the total time complexity

is on a linear order in the number of voxels and the number of individuals and is on

a quadratic order in the number of imaging features. Thus, the computation can be

scaled up to a large number of individuals for high-resolution images.

Future directions

From this insightful work, some potential future directions can be pursued in map-

ping the heterogeneous diseased regions. First, it may be useful to combine the two

model components with consistent model assumptions and theoretical guarantees.

The key step is to model the group-level and individual-level diseased regions simul-

taneously. For example, we can borrow some ideas from factor analysis or indepen-

dent component analysis and decompose bi into group component(s) and individual
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component(s). Second, as we discussed before, Bayesian hierarchical models can be

constructed to make posterior inferences on the parameters of interest, such as the

probability that a specific voxel sk belongs to the diseased region at the individual

level. Bayesian models can be more flexible in specifying different activation region

shapes and more accurate in quantifying the uncertainty of diseased region selection.

A key challenge in developing Bayesian methods for SDM is in an efficient posterior

computation algorithm. Some existing, scalable MCMC algorithms and variational

Bayesian methods can potentially be extended or modified for the proposed model.

Third, it is also of interest to perform subgroup analysis to accommodate hetero-

geneity among individual images, especially when there is a lack of prior knowledge

regarding group partitions. In particular, we may consider clustering individuals’

brain activity patterns and/or associating brain activity with other covariates. This

is a more complicated problem as we do not only summarize individual information

into the group-level disease map but also determine individual group assignments for

which a mixture model can be adopted. How to make valid inference on the number

of subgroups is also worth investigating.
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