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Abstract

In order to obtain a metasurface structure capable of filtering light of a specific

wavelength range in the visible band, the traditional methods usually traverse

the space consisting of possible designs, searching for a potentially satisfactory

structure by performing iterative calculations to solve Maxwell's equations.

In this article, we propose a systematic method based on neural networks that

can complete an inverse design process to solve the problem. Compared with

the traditional methods, our method is much faster while competent to encom-

pass a high degree of freedom to generate device structures, which can ensure

that the spectra of generated structures resemble the desired ones.
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1 | INTRODUCTION

Metasurfaces, which are constructed of 2D artificial
material structures in the subwavelength scale, have
received great attention due to its ability of unprecedented
control over the intrinsic properties of light, including the
amplitude,1,2 phase,3,4polarization,5,6 and the orbital angu-
lar momentum.7 The most critical feature of metasurfaces is
that the spatially varying patterns or material compositions
provide high degrees of freedom in designing spatial inho-
mogeneity over an optically thin surface. The degree of free-
dom refers to the number of optimizable variables during
the design process. A number of planar optics such as
filters,1,2 lenses,3,4polarizers,5,6 and absorbers8,9 have been
enabled by a variety of reflective or transmissive meta-
surfaces, featuring high optical performance as well as com-
pact structures. Two central problems arise in the process of

designing the metasurfaces. The first one is to obtain an
accurate prediction of the optical spectrum for a given struc-
ture, named “Forward Simulation”. This problem is gener-
ally addressed by solving Maxwell's equations using
different methods, including rigorous coupled-wave analysis
(RCWA), finite-difference time-domain method, finite-
element modeling, and so on. The second core problem is
to find an optimal structure based on actual demands (eg,
desired optical responses), named “Inverse Design”. Inverse
design of photonic structures is conventionally demon-
strated using adjoint sensitivity analysis.10-15 However, these
methods are still time-consuming and not universal in most
cases, so that researchers have to find a near-optimal solu-
tion from a limited database, which contains a finite param-
eter space and corresponding simulated spectra.

In different fields, modern machine learning algo-
rithms have shown advantages in a wide range of appli-
cations needing identifications and optimizations. Deep
learning allows computational models composed of mul-
tiple processing layers to learn representations of data
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with different levels of abstraction. These methods have
significantly improved the state-of-the-art in computer
vision, natural language processing, speech signal
processing, and other applications.16 Deep learning has
also been successfully applied to conventional science
and engineering fields outside of computer science, such
as condensed matter,17 particle physics,18 chemical
syntheses,19 microscopy,20 and proteomics.21,22 Further-
more, deep neural networks have also drawn interests
from the optical community thanks to their robust fitting
ability. Particularly, remarkable progresses based on deep
learning techniques have been made in the inverse
design of optical devices.23-33

Feedforward neural network architecture is the typi-
cal and widely used structure in most deep learning
applications. To go from one layer to the next, a set of
units compute a weighted sum of their inputs from the
previous layer and pass the result through a nonlinear
function.16 Fully connected layers, convolutional layers,
and transpose convolutional layers are the most basic
components of the feedforward neural network. A fully
connected network (FC), which is composed of several
fully connected layers, is the simplest neural network
structure and capable of handling one-dimensional vec-
tors. A convolutional neural network primarily consists
of convolutional layers, which is often used in feature
extraction tasks of multidimensional data. The transpose
convolution can be considered as an upsampling process
opposed to the convolution process, and the transpose
convolutional layer is often embedded in networks associ-
ated with the tasks on generating patterns, such as genera-
tive adversarial networks (GAN)34 and fully convolutional
networks.35

Optimization problems in the field of optics can be
modeled in a simpler way by using several one-
dimensional parameters, regardless of the number of
dimensions. Liu et al.23 used an FC to learn electromag-
netic scattering of alternating dielectric thin films with a
combination of variable thicknesses and materials. They
proposed a tandem architecture combining forward sim-
ulation and inverse design together in pursuit of over-
coming the issue of data inconsistency and slow training
process, which has become a feasible architecture for
solving similar problems. Peurifoy et al.26 adopted an FC
having four hidden layers with 100 neurons in each to
approximate light scattering of core-shell nanoparticles
made of SiO2 and TiO2. Malkiel et al.25 expounded the
relationship between the spectral complexity and design
feasibility, then provided an FC with around a dozen
layers and multiple input entries. Their method can be
applied to direct on-demand engineering of plasmonic
structures and metasurfaces. Tahersima et al.28 built a
robust deeper network based on FC to inversely design

integrated photonic devices, whose design space is con-
siderably larger. They also utilized intensity shortcut
from deep residual networks (ResNet)36 to allow smooth
backward propagation of the gradients. Recently, the
revised neural tensor network37 adopted by An et al.30

overcame three key challenges that perplexed the previ-
ous neural-network-based (NN-based) design schemes:
input/output vector dimensional mismatch, inaccurate
EM-wave phase prediction, as well as the inability to
adapt to 3-D dielectric structures. Later on, An et al. pro-
posed an NN-based simulator to model meta-atoms with
free-form 2D patterns and different lattice sizes, material
refractive indices and thicknesses, achieving competitive
results for wide spectrum prediction in the microwave
band.33

Additionally, some methods with a higher degree of
freedom that focus on multidimensional representations
have been proposed to obtain the desired spectra. Asano
and Noda27 provided a four-layer neural network includ-
ing a convolutional layer for the prediction of the quality
factor in two-dimensional photonic crystals. Liu et al.29

proposed an approach combining a GAN and a simula-
tion neural network that can efficiently discover and opti-
mize unit cell patterns of metasurfaces in response to
user-defined, on-demand spectra at the input. In order to
automatically design and optimize three-dimensional chi-
ral metamaterials, Ma et al.24 reported a multitask model
dividing the task into a primary task and an auxiliary
one, which comprises two bidirectional neural networks
assembled by a partial stacking strategy. Jiang et al.32

showed that GAN can be trained from image-based, peri-
odic and topology optimized metagratings to produce
high-efficiency, topologically complex devices, which can
perform over a broad range of deflection angles and wave-
lengths. Jiang and Fan31 also transformed a GAN into a
global optimizer by replacing the traditional discriminator
by an adjoint-based optimization algorithm followed by
gradient estimation method for backpropagation, and then
incorporated them as a physics-driven, data-free neural
network.

In this article, we primarily focus on the design of fil-
ters in the visible band based on 2D periodic structures,
as shown in Figure 1A. The parameters of the device
structure involving the choice of materials, shapes, unit
cell size, and layered permutations23 offer various design
freedom. Under the same output requirements as well as
the same input constraints, a higher degree of freedom in
terms of the unit cell structure enhances the probability
of generating a desired spectrum. Enlightened by previ-
ous research,25,29,30 we improve the degree of freedom
significantly by describing the shape of the structure in a
unit cell as an arbitrary binary pattern, rather than a reg-
ular one (circle, rectangle, and so on). However, both the
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requirements on network performance and the computa-
tional cost grow at the same time, as illustrated in
Figure 1B. Our target is to implement the inverse design
by maintaining a higher degree of freedom and less com-
putational cost. For this purpose, we exploit two dedi-
cated networks working in series, which are referred as
the simulator and the generator. The previous works typi-
cally deal with a wide range of wavelength to obtain
devices having satisfactory spectra.23,25,29,30 In contrast,
we focus on the visible band that has a remarkable
narrower range of wavelength. In this case, previous
methods are prone to miss the optimal solution due to
the limited searching space provided to the network.
Moreover, in many applications of inverse design, how to
correctly describe human demands without knowing the
exact value of each point of the desired spectrum is an
inevitable problem. For instance, during the inverse
design of the metasurface filter, the position, depth, and
width of the peaks/valleys in the spectra are the primary

considerations, while the value of each point of the
desired spectrum is of less interest and even may not
be known precisely. Input spectra represented by
mathematical functions have the tendency to lead to
unsatisfactory results because most of these spectra are
idealized so that cannot be generated in the limited
given space. Thus, the input should better reflect our
subjective requirements so as to narrow the gap
between practical conditions and human demands.
To solve this problem, we propose a novel encoding
method using a contrast vector extracted from the
desired spectrum to reflect the key features of the filter.
The qualitative comparison of the traditional approach
and our proposed method is shown in Figure 1C.
To address the issue of very limited data for training
the network, we use RCWA to generate training
data and make it as the benchmark for comparing
the performance of our NN-based simulator. RCWA
is an exact solution to Maxwell's equations for the
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FIGURE 1 (A) Schematic diagram of the structural color filters based on the two-dimensional (2D) grating. (B) The tradeoff

between the degree of freedom and computational cost for different methods. (C) The comparisons between the three methods discussed

in this article
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diffraction of electromagnetic waves by the grating
structures, which is a relatively straightforward, non-
iterative, deterministic technique.38,39 Once sufficient
training data are obtained, our simulator can replace
RCWA to an acceptable level in the training process,
yielding higher efficiency in the tradeoff of accuracy.

2 | METHODS

Our purpose is to acquire an optimized structure having
the specified response in the visible band, which impels
us to expand the search space by increasing the degrees
of freedom, such as the complexity of the pattern within
the unit cell. In our approach, a generative model named
generator is realized elaborately to distill the input spec-
trum as guidance information to generate a structure sat-
isfying the expected response. Additionally, we define
contrast vectors as well as another neural network named
simulator to educate the generator. The simulator

extracts information from the input structure and then
produces regression estimation of the spectrum. These
two neural networks can respectively solve forward simu-
lation and inverse design problems efficiently with minor
error in the design space for arbitrary input.

The physical structure of the metasurface that can
realize the spectrum filtering function consists of 2D peri-
odic patterns of polycrystalline silicon (Poly-Si) (with a
fixed thickness of 500 nm) on a silica substrate. Poly-Si is
chosen to take the advantage of its high refractive index,
and hence strong scattering efficiency. Considering prior
knowledge and actual fabrication requirements, the
period of the 2D patterns ranges from 200 to 400 nm, and
the shape of the pattern in a unit cell is described by a
64 × 64 pixelated binary image. Besides, 29 points are
used to quantify a transmittance spectrum where the
wavelength ranges from 400 to 680 nm. The direction of
the incident light is perpendicular to the metasurface.
These limitations do not affect the universality of
our method, which will be discussed later. For the sake

FIGURE 2 (A) Schematic of constructing contrast vector. (B) General scheme of the proposed approach: (1) Obtain data using RCWA.

(2) Train the simulator using these data. (3) Train the generator with the frozen simulator together by the same data. (4) Use the fully

trained simulator and the generator to conduct forward simulation and inverse design, respectively. (C) The simulator consists of

convolutional layers to extract information from images and fully connected layers to convert images into vectors. (D) The generator consists

of the transpose convolutional layers to generate images from sequences and the fully connected layers to extract features from images. For

the blocks shown in C, D, the mapping relationships between color and function are described in Table S2 of the Supporting Information
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of convenience, each pair of TE and TM responses at
400-680 nm, represented by TTE and TTM with
29 points, respectively, can be spliced into a spectrum
T = {t1, t2, � � �, t58}. Therefore, the problem is formu-
lized as following: given a specified T, how to use algo-
rithms to generate a structure described by a binary
image S and a period P, whose response T̂ is
argminT̂Distance T, T̂

� �
. In other words, the generated

structure is required to have the response T̂ that makes
the similarity between T and T̂ maximum.

To avoid missing the optimal solution due to the
limited wavelength range, we use a novel encoding
method to extract the spectrum information, which
benefits network training as well. We define the con-
trast of a certain range in a spectrum as the ratio of the
maximum transmittance within this range to the maxi-
mum value outside this range. After that, a contrast
vector of the particular spectrum can be obtained by
sequentially concatenating contrast values of different
ranges together. As shown in Figure 2A, the contrast
vectors defined in this way highlight the peaks and val-
leys in the spectra, while ignoring minor fluctuations
in the spectra, thus helping the network emphasize the
filter property. In essence, this approach weakens the
strong correlation between the expected spectrum and
the network input in an intelligent way, such that a
great quantity of spectra can correspond to one defi-
nite network input. By this approach, for a given spec-
trum TTE for TE polarized light, let ci be the value of
the ith contrast, contrast vector CTE is obtained
according to the following algorithm 1. Then, we cal-
culate CTM similarly and splice CTE, CTM in the same
way that splices TTE, TTM to get C.

Referring to the network structure of deep con-
volutional GAN (DCGAN),40 the conditional inputs of
conditional GAN (cGAN)41 and the shortcut of the

residual network (ResNet),36 the generator can turn a
noise input (random seed for generation) into a qualified
structure (ie, a 2D binary image with an integer)
according to different conditions (eg, desired spectrum or
desired contrast vector). Pytorch42 is chosen as our deep
learning framework. In order to simplify the training
process, we use the structural similarity index (SSIM)43

to evaluate the similarity between two images instead
of a discriminator. As illustrated in Figure 2B, we
transform the routine GAN training into a supervised
and non-alternating one. Detailed network configura-
tions and training methods are presented in the first
section of the Supporting Information.

The simulator is trained by the data produced by
RCWA.44 Aiming at better performance and higher
generalizability, we implement a data augmentation
for more available spectra. This data augmentation is
completed by rotating the shapes by 90�, 180�, and
270�, respectively, following by exchanging the TE and
TM responses. The training dataset contains the shapes
of the patterns in each unit cell, the periods, as well as
the corresponding spectra. In other words, the inputs
of the simulator are the period P, the shape S, and the
output is the predicted spectrum T̂ . The loss function is
the mean square error (MSE) between the predicted spec-
trum T̂ and real spectrum T as below, where N equals
to 58.

Simulator loss =MSE T̂,T
� �

=
1
N

XN

i=1

t̂i− ti
� �2

: ð1Þ

The generator produces the patterns based on the
desired spectrum. The inputs of the generator are a con-
trast vector C (calculated from the desired spectrum) and
a random noise Z. The outputs are the generated shape Ŝ
and the generated period P̂. It is worth noting that Ŝ must
be refined into a binary image, where 0 and 1 represent
air and Poly-Si, respectively, in the RCWA code. Follow-
ing the generator, Ŝ and P̂ are the inputs of the simulator,
which can predict the spectrum of the generated device
and guide the generator accordingly. Data augmentation
is not applied in the training process of the generator,
because it can bring difficulty to the convergence of the
generator.23 Spectrum loss is the MSE between the real
spectrum T from training data and the simulated spec-
trum T̂ from simulator; the shape loss is taken to be the
SSIM between the real shape S and the generated shape
Ŝ ; the period loss is the MSE between the real period
P and the generated period P̂ . The generator loss com-
prises these three parts, as shown below. α and β are two
hyperparameters describing the relative importance of
the three.

Algorithm 1

Calculating contrast vector according to the
transmittance spectrum

Data: TTE = {t1, t2,…, t29}
Result: CTE

Γ = {1, 2,…, 7}
Θ = {1, 2,…, 29}
for i ∈Γ do

Ω = {4i − 3, 4i − 2,…, 4i + 1}

maxin = max(tk), k ∈ Ω;
maxout = max(tl), l =2 Ω ^ l ∈ Θ
ci = maxin

maxout
end
CTE = {c1, c2,…, c7}
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Generator loss = Spectrum loss

+ α× Shape loss + β× Period loss

=
1
N

XN

i=1

t̂i− ti
� �2

+ α× SSIM Ŝ,S
� �

+ β× P̂−P
� �2

: ð2Þ

If we feed the shape as a 2D pixel array and the
period as an integer, the simulator architecture becomes
complex to handle two data structures with different
dimensions. Thus, the period is duplicated and expanded
to a 2D array in the same size as the input binary image,
then concatenated with the counterpart of the image
after one respective convolution operation to constitute
multiple channels, which provide convenience to the
simultaneous convolution. In terms of the generator, to
help it extract higher-dimensional features, the noise vec-
tor, as well as the contrast vector, is also expanded and
concatenated. Inside the generator, the shape is produced
by the transpose convolutional layers first, after which
the period is generated by the fully connected layers. Our
generator is not designed to obtain the shape and period
simultaneously with a single network module, because
obtaining these two properties of the metasurface involves
two different tasks, that is, generation and regression.
Thanks to the initial network that can map the random
noise Z into the full design space, the probability of find-
ing the optimal solution is enhanced. For our metasurface
filter, the 1D parameter considered is the period of the unit

cell, but it can generally involve any combination of design
parameters in the design problems including the structure
thickness, refractive index, or the polarization of light, and
so forth.

3 | RESULTS AND DISCUSSION

To evaluate the performance of the simulator, we feed it
with randomly generated polygons. The real spectra from
the validation set and the predicted spectra are plotted in
Figure 3A. Statistically, the average error rate for each
point between the real spectrum and the generated spec-
trum is 4-5% when we feed 5200 paired shapes and
periods (quadrupled by data augmentation) selected from
the validation set. We also experiment the time efficiency
to demonstrate the computational advantage of our simu-
lator and summarize in Table 1. On average, for simula-
tion of the single structure, the time consumed by a
simulator with the same CPU is about 5 × 10−4 of that of
RCWA, and this trend will be reinforced significantly
with the increase in batch size and the involvement of
GPU. As for the generator, we feed it with contrast vec-
tors calculated from the real spectra. The real and gener-
ated shapes, as well as the periods, are shown in
Figure 3B. Likewise, the average error rate for each point
between the desired spectrum and the simulated spec-
trum of the generated structure is approximately 5%
when we test the validation set containing 1300 real

(A)

(B)

FIGURE 3 Several test results of the simulator and the generator. The blue curves in (A) and (B) are the real spectra in the

validation set. The predicted spectra from the simulator and the simulated spectra of the devices generated by the generator are

shown by the red curves in (A) and (B), respectively. The simulated spectra in (B) are obtained by rigorous coupled-wave

analysis (RCWA)
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spectra (without data augmentation). All the simulated
results of the generator are conducted by RCWA rather
than an NN-based simulator in order to measure the per-
formance of the generator more precisely.

To illustrate the universality and superiority of our
method when the precise value of each point of the
desired spectrum is unknown, we also carry out several
comparative experiments. We take whether the contrast
is high/low enough in the range of interest (575-625 nm
in this case) as the evaluation indicator, because a high/
low contrast can represent a good filter in a specific range.
First, we use an inverse Gaussian function (mean = 600,
variance = 40, amplitude = 0.9) as the desired spectrum T
(representing a reflective filter in the yellow band) to
express our idealized demand, which cannot be realized in
the design space due to the loss of Poly-Si for blue light.
The spectrum and the corresponding device pattern found
by traversing the whole data set with the smallest MSE are
shown in Figure 4A, which are on behalf of the result of
the traditional method. To test the effectiveness of using
contrast vectors as the input, we first acquire another
benchmark generator trained by spectra while fixing all
other training hyperparameters. Then we feed in the same
Gaussian-like desired spectrum T for this benchmark
generator. The generated device and the corresponding
simulated spectrum are shown in Figure 4B, which
shows that idealized input for NN can lead to a disap-
pointing result worse than that of the traversing
method. In the following step, we calculate a contrast
vector C converted from T and feed it into another gen-
erator trained by contrast vectors. The generated
device and the spectrum are plotted in Figure 4C.
Thanks to the ability of the contrast vectors to describe
subjective demands, we can see that they alleviate the
strict limitation brought by the idealized input to some
extent, thus helping the model to generate better
results. However, in order to meet practical conditions
based on the property of the material, we adjust C slightly
by applying minor jitter to every single value while

maintaining the overall tendency of the previous vector.
This contrast vector Ca is not converted from mathematical
functions and is designed to facilitate finding a spectrum
that better meets subjective demands. Slight jitters will not
seriously affect the nature of the filter, because we only
focus on the position of the peak/valley and the contrast.
We name the contrast vectors obtained by this method as
artificially designed contrast vectors. Figure 4D is the result
obtained by feeding Ca to the generator. This experiment
illustrates that the valley of simulated spectra has a low
contrast in the center and matches the desired valley as
well, thereby demonstrates the proposed method has the
ability to adapt to a more subjective input. Consequently,
the contrast vectors can circumvent the problem brought
by the unknown of the value of each spectrum point.

We need to point out again that such an idealized
spectrum T does not exist in our possible design space,
according to Figure 6, due to the high loss of Poly-Si at
the blue wavelength range. That is why results in
Figure 4B-D are not as satisfactory as those in Figure 3B.
An interesting phenomenon is the generated shape may
have a completely different style from the training data.
For example, in Figure 4C, the generated shape not only
has one part in the middle but also another isolated part
in the upper left corner, although all shapes in the training
set are single polygons. This example shows a fact: if the
desired spectrum cannot be realized by a physical structure
within the design space, the network understands the map-
ping between structures and spectra during the training
process and will not give false positive results. In contrast, if
the input spectrum can be physically realized under the
given restrictions, our model can provide a realizable device
whose simulated spectrum matches fairly well with the
desired spectrum. Figure 5 presents more examples of
the generated devices and their simulated spectra with
artificially designed contrast vectors as inputs. They
are meant to show examples of producing the band
pass (reflective) or band notch (transmissive) filters in
different color ranges.

TABLE 1 Time efficiency comparative experiment

Simulation tool Time (millisecond) Batch size (item) Efficiency (millisecond/item)

RCWA 78 992.319 1 78 992.319

NN-based simulator (CPU) 4.079 1 4.079

208.851 128 1.632

771.966 512 1.508

NN-based simulator (GPU) 4.945 1 4.945

4.668 128 0.036

4.281 512 0.008

Note: The CPU test is conducted on an Intel i5-6300HQ, while the GPU one on an NVIDIA GeForce GTX 960M. We take an average time
based on 100 results for each method. Fourier harmonics retained for the rigorous coupled-wave analysis (RCWA) computation is 11.
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As mentioned above, we transform the generated shape
into a binary image in the process of testing but not in train-
ing, since the mandatory binarization essentially yields a
piecewise constant function in the last layer. Binarization
for the generated shape makes the gradients too steep,
which is pointless in the training process. A previous work
trained a simulator with a noise similar to the generated
patterns to circumvent the binarization and smoothing dur-
ing the predicting process.29 It is less efficient but can
ensure that the input image of the simulator is binary and
not too complex to fabricate. We purposely conducted one
more study to find out how the binarization post-process
affects our results. We feed a generated nonbinary image
and its binary version to the simulator respectively. The
spectra produced by these two images in Figure 7 are both
very similar to the ground truth given by the RCWA simula-
tion. Statistically, after training the generator, the mean
Manhattan distance between ground truth shapes and
generated shapes is approximately 0.01. In other words, the
intensity of each pixel ranges from 0 to 0.01 or 0.99 to 1 on
average. Thus, the inaccurate input brought by the training

process without mandatory binarization can be ignored for
the frozen simulator.

Since SSIM is utilized in the training process, an
unsupervised learning task is changed into a supervised one
labeled with shape S. As shown in Figure 8, SSIM influ-
ences both the appearance and the image contrast of the
shape generated by the generator, so including SSIM helps
to expedite the network convergence toward a specific
direction. Considering that one spectrum can correspond
to multiple structures when the generator is in differ-
ent epochs, it is likely that different shapes can be gen-
erated for the same input spectrum. Without SSIM,
the same loss from distinct shapes will be given to the
network in such a case, so that the network will suffer
from this ambiguity leading to difficult convergence.

4 | CONCLUSIONS

In summary, taking the metasurface filter design as
an example, we propose a systematic method based on

(A) (B)

(C) (D)

FIGURE 4 Several comparative experiments for different methods when the desired spectrum cannot be described by the precise value

of each point. The desired spectrum is described by an inverse Gaussian function in (A) and (B). A contrast vector converted from the

inverse Gaussian function is used as the desired contrast vector in (C). An artificially designed contrast vector considering properties of

materials is used as the desired contrast vector in (D). The generator in (B) is a benchmark trained by spectra. The generators in (C) and

(D) are the same ones trained by contrast vectors. The simulated spectra in B-D are obtained by rigorous coupled-wave analysis (RCWA)
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NN and contrast vectors to achieve inverse design
with high degrees of freedom. For the “Forward Simu-
lation” problem, when the required precision (error
tolerance) is greater than the average error of the NN

model, our simulator can substitute the traditional
numerical electromagnetic simulation method with a
great improvement in efficiency. For the “Inverse
Design” problem, in the given design space which

(A) (B) (C)

(D) (E) (F)

FIGURE 5 Examples about the generated devices and their simulated spectra with artificially designed contrast vectors as inputs. The

red curves stand for the artificially designed contrast vectors, while blue ones stand for the spectra simulated by RCWA. A-C show three

peaks at the green band (492-577 nm), the yellow band (577-597 nm), and the red band (622-700 nm), respectively. D-F show three valleys at

the blue band (455-492 nm), the green band (492-577 nm), and the yellow band (577-597 nm), respectively

FIGURE 6 Visualization of the whole spectra in the entire

dataset. Each row represents a real spectrum (because the dataset of the

optical response of TM and TE polarization are similar for randomly

generated patterns, only the spectra of TE polarization are shown here)

FIGURE 7 Comparison between the results of rigorous

coupled-wave analysis (RCWA) and simulator's output with binary/

nonbinary image (only TE results are shown). The threshold of

image binarization is 0.5
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includes the arbitrary shapes and the periods within
a specific range, our generator can generate a roughly
optimal structure for the desired spectrum. Gener-
ally, the advantage of the proposed NN framework is
its competence to generate devices with high degrees
of freedom by means of optimizing the 2D shape and
the 1D parameter of the unit cell in a synchronous
manner. Compared with the traditional traversing
method, ours can generate a diversity of device struc-
tures while ensuring speed and accuracy. The meth-
odology presented here can be used in other
applications to obtain desired reflection and trans-
mission, which is essential to the metasurface design.
Our models can also be improved and simplified to
adapt to problems where multiple 1D parameters
work together.

In our future work, we intend to utilize semi-
supervised methods with prior knowledge in photonics
to decrease the demands on data. The architecture of
neural networks can also be further perfected and sim-
plified because we observe that the gradients disappear
under certain circumstances. Other possible extensions
are worth further explorations, such as applying our
models in other frequency bands and using more
descriptive ways to improve or replace contrast vec-
tors. Improvement on network performance can also
be implemented by the participation of other deep
learning methods, such as adopting the recurrent neu-
ral networks used in natural language processing to
extract sequential information from the spectrum, imi-
tating the attention mechanism in computer vision to
make the process of binary image generation more
explicable.
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