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30 ABSTRACT 

31  At local scales, it has been suggested that high levels of resources lead to increased tree 

32 growth via trait optimization (highly peaked trait distribution). However, this contrasts with 
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33 (i) theories that suggest that trait optimization and high growth occur in the most common 

34 resource level and (ii) empirical evidence showing that high trait optimization can be also 

35 found at low resource levels. This raises the question of how are traits and growth optimized 

36 in highly diverse plant communities? Here, we propose a series of hypotheses about how 

37 traits and growth are expected to be maximized under different resource levels (low, the most 

38 common, and high) in tree seedling communities from a subtropical forest in Puerto Rico. 

39 We studied the variation in the distribution of biomass allocation and leaf traits and seedlings 

40 growth rate along four resource gradients: light availability (canopy openness) and soil K, 

41 Mg, and N contents. Our analyses consisted of comparing trait kurtosis (a measurement of 

42 trait optimization), community trait means, and relative growth rates at three resource levels 

43 (low, common, and high). Trait optimization varied across the three resource levels 

44 depending on the type of resource and trait, with leaf traits being optimized under high N and 

45 in the most common K and Mg conditions, but not at any of the light levels. Also, seedling 

46 growth increased at high light conditions and high N and K but was not related to trait 

47 kurtosis. Our results indicate that local-scale variability of soil fertility and understory light 

48 conditions result in shifts in species ecological strategies that increase growth despite a weak 

49 trait optimization, suggesting the existence of alternative phenotypes that achieve similar 

50 high performance. Uncovering the links between abiotic factors, functional trait diversity and 

51 performance is necessary to better predict tree responses to future changes in abiotic 

52 conditions.

53

54 Keywords: biomass allocation traits, canopy openness, kurtosis, leaf area, specific leaf area, 

55 Puerto Rico, soil nutrients

56 INTRODUCTION

57 Understanding how abiotic factors drive functional trait distributions and growth of local 

58 communities is important for determining community responses to future changes in 

59 environmental conditions (Violle et al. 2007, Estrada et al. 2016, Sakschewski et al. 2016). 

60 Trait distributions of plant communities are assumed to be the outcome, to some degree, of 

61 environmental conditions exerting selective forces and favoring species that make a good fit 

62 for given conditions. In other words, traits are assumed to reflect optimal or, at least, 

63 optimized ecological strategies for any given environment (although this set of optimal traits 

64 may change due to temporal changes in conditions) (Southwood 1977, Grime 1979, Keddy 

65 1992, McGill et al. 2006). As a result, local species composition should cover a relatively 

66 narrow range of trait values that fit the requirements of the environment there. However, this 
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67 expectation contradicts the often-observed pattern of a wide diversity of forms and functions 

68 in tropical plant communities and suggests the existence of alternative phenotypes with 

69 equivalent performance (Marks and Lechowicz 2006, Worthy et al. 2020). 

70 At local scales, the distribution of a given resource is typically unimodal, with some 

71 resource values being more frequent than values located at the tails of the distribution (Fig. 1, 

72 Appendix S1: Fig. S1) (Abrams 1995, Brigatti et al. 2007). For example, levels of canopy 

73 openness (used as a proxy for understory light availability) are often around 10% in tropical 

74 forests. However, light availability values, even in a closed forest, can range between < 1% 

75 and 35%, with these extreme values being less frequent than mean values (Chazdon and 

76 Fetcher 1984). Similarly, soil resources may exhibit a similar peaked hump-shaped 

77 distribution, with soils showing low and high levels of fertility towards the tails of the 

78 distribution (Appendix S1: Fig. S1). As traits reflect the interaction between the organisms 

79 and their environment, local variation in abiotic factors is expected to have an impact on trait 

80 distributions in plant communities and on growth. There are at least three potential scenarios 

81 describing trait distributions at the community level, and plant growth in response to resource 

82 gradients:

83 Scenario 1: Peaked trait distributions towards common conditions. In the first 

84 scenario, uncommon conditions are too rare to lead to peaked trait distributions –trait 

85 optimization– given that resources are not suitable and abundant enough to maintain stable 

86 populations that represent a good fit for those conditions, while common conditions represent 

87 suitable areas and allow trait optimization (Fig. 1A) (McGill et al. 2006, Violle et al. 2007). 

88 These two different levels of trait optimization would imply better performance (e.g., growth) 

89 for individuals present in the most common conditions and lower performance of those 

90 individuals in places with uncommon resource levels.

91 Scenario 2: Peaked trait distributions towards rare conditions. Uncommon 

92 conditions that represent extremes of the resource distribution (characterized by either low or 

93 high resource levels) could lead to trait optimization due to strong selective forces that 

94 operate under these conditions (Fig. 1B). For example, in high-light conditions species that 

95 acquire resources fast and efficiently outcompete other species leading to optimization in leaf 

96 traits. Similarly, in nutrient-poor soils only a handful of specialized species may persist, 

97 representing a (relatively) narrow range of traits. Empirical evidence has shown that trait 

98 values are more strongly selected at the extremes of the resource distribution characterized by 

99 either low or high resource levels, with trait optimization occurring at these extremes rather 

100 than at most common ones (Weiher et al. 1998, Cornwell and Ackerly 2009, de Bello et al. 
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101 2009, Kraft and Ackerly 2010, Swenson et al. 2011, Bernard-Verdier et al. 2012, Bruelheide 

102 et al. 2018). For instance, a previous study found that open sites (i.e., treefall gaps) exert 

103 strong selective forces on tree communities allowing only light-demanding species to 

104 successfully colonize these forest gaps (trait optimization), while intermediate and low light 

105 level sites exhibit greater diversity of life-forms (lower trait optimization) (Hubbell 2005). 

106 Other studies have also shown that across environmental gradients, low soil nutrient levels 

107 tend to favor stress-tolerant species, resulting in trait optimization towards lower extremes of 

108 the resource distribution (Pinho et al. 2018). These patterns in trait distributions have been 

109 well documented at the landscape and regional scales (Cornwell and Ackerly 2009, Enquist 

110 et al. 2015, Šímová et al. 2015). At local scales, similar trends are expected if extreme abiotic 

111 conditions select for particular traits that maximize organisms’ performance (e.g., high 

112 growth) (Fig. 1B). 

113 Scenario 3: Low peaked trait distributions occur in both common and rare resource 

114 levels. Alternatively to these two scenarios, traits might not be strongly optimized towards a 

115 single or a narrow range of values. Instead, plants may display contrasting phenotypes that 

116 constitute alternative solutions for the given local conditions (Marks and Lechowicz 2006, 

117 Muscarella and Uriarte 2016, Worthy et al. 2020). For example, Hirose and Werger (1995) 

118 found that in a tropical forest different species of trees exhibit contrasting strategies for 

119 capturing light that result in similar performance. In this case, we should observe a lack of 

120 trait optimization across different resource levels, yet species may still achieve high 

121 performance anywhere along the local gradient of conditions. 

122 Here, we examine both biomass allocation and non-biomass allocation traits. Biomass 

123 allocation traits represent a group of traits that have shown great variation within species and 

124 reflect the amount of biomass that plants allocate to a particular organ depending on the 

125 resources that are the most limiting for plant growth (Bloom, Chapin, & Mooney, 1985; 

126 Poorter et al., 2012; Umaña, Zhang, Cao, Lin, & Swenson, 2018). For example, according to 

127 optimal allocation theory, strong limitation in soil nutrient content should result in increased 

128 biomass allocation to roots at the expense of lower biomass allocation to leaves and stems 

129 (Bloom et al. 1985). Another group includes non-biomass allocation traits, such as specific 

130 leaf area or leaf area, which have shown strong responses to shifts in a variety of abiotic 

131 factors (Chapin, 1980; Craine, Froehle, Tilman, Wedin, & Chapin, 2001; Oksanen, Fretwell, 

132 Arruda, & Niemela, 1981; Reich, Walters, & Ellsworth, 1997; Wright et al., 2004). For 

133 example, environments with low resource levels tend to be dominated by species with 

134 conservative traits such as low specific leaf area and low leaf area (Le Bagousse-Pinguet et 
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135 al. 2017). Combined, biomass allocation and non-biomass allocation traits capture a wide 

136 range of species responses to local-scale resource variation.

137 We study trait optimization in response to local-scale resource variation and how that 

138 results in differences in seedling growth in a subtropical forest. We use growth and trait 

139 information collected from all individuals present in 200 seedling plots (~1800 individuals) 

140 in combination with local-scale abiotic information on soil nutrient content (K, Mg, and N) 

141 and canopy openness (a proxy for light availability in the forest understory) (Appendix S1: 

142 Fig. S1). While most trait-based studies have used species' mean traits values, which assumes 

143 that all individuals within a species are identical in their traits, here, we have trait and 

144 seedling growth information for all individuals. With this information, we can accurately 

145 study trait and growth distributions across local-scale resource gradients. Specifically, we ask 

146 the following questions: 

147

148 1. How does trait optimization differ in extreme vs. common resource levels? We propose to 

149 examine the three alternative scenarios described above by quantifying trait optimization 

150 under different resource levels.

151

152 2. How do community mean trait values change across resource levels? We expect changes in 

153 trait means across different resource levels depending on the type of trait. Specifically, we 

154 expect biomass allocation traits to vary according to the optimal allocation theory (i.e., higher 

155 allocation towards most limiting resources), while non-biomass allocation traits will be more 

156 conservative (e.g. low SLA and LA) towards the most limiting extremes of resource levels. 

157

158 3. How does seedling growth vary between extreme vs. common resource levels? Does trait 

159 optimization lead to high seedling growth?  We predict variation in seedling growth across 

160 common and extreme levels of soil nutrient and light conditions, with at least two potential 

161 and non-exclusive outcomes: 1) at high resource levels, seedling growth rates are high; 2) 

162 seedling growth rates are high in resource levels that show high trait optimization. 

163

164 METHODS

165 Field surveys and trait data collection 

166 The study was conducted in El Yunque National Forest, in Puerto Rico (65°47′ W, 18°19′ N). 

167 This forest, classified as a subtropical wet forest, has a mean annual rainfall of 3548 mm and 

168 an average temperature of 23ºC (Ewel and Whitmore 1973). The vegetation is dominated by 
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169 the tree species Dacryodes excelsa (Burseraceae) and the palm Prestoea acuminata 

170 (Arecaceae). In 2013, 200 1x1m seedling plots were established to monitor seedling growth 

171 for one year. Seedling plots were arranged in a regular grid separated by 10 m. All tree 

172 seedlings 50 cm in height (n = 1771) were measured, tagged, and identified to species ≤
173 (Umaña et al. 2015). Between June and July 2014, all surviving individual seedlings were 

174 collected for trait measurements. We measured fresh leaf area (LA in cm2) for 1-3 fully 

175 expanded leaves. The leaves were then dried and weighed to calculate specific leaf area (SLA 

176 = LA/dry mass; cm2/g). Roots were cleaned and separated from the main stem. Leaves and 

177 roots were dried in an oven for 72 hours at 70ºC and measured for dry mass (g) to calculate 

178 traits related to biomass allocation. Leaf mass fraction (LMF) was calculated as: LMF = leaf 

179 dry mass/total plant dry mass. Root mass fraction (RMF) as: root dry mass/total plant dry 

180 mass. Leaf area ratio (LAR) was calculated as: LAR = leaf area/total plant dry mass (Poorter 

181 et al. 2012). Leaf traits included leaf area (LA) and specific leaf area (SLA). LA reflects the 

182 area displayed to capture light (Rozendaal et al. 2006), while SLA describes a range of 

183 strategies (conservative to acquisitive) for carbon assimilation (Reich et al., 1997; Wright et 

184 al., 2004).  

185

186 Relative growth rate 

187 We defined seedling relative growth rate (RGR) as the change in log-transformed total height 

188 (cm) from 2013 to 2014. The total height of each seedling was measured from the base to the 

189 most distant part of the main stem. We standardized relative growth values by subtracting the 

190 mean of each species and dividing by the standard deviation per species. This allows 

191 comparisons across species with different inherent growth rates, as those involved in the 

192 survival-growth trade-off (Arellano et al. 2019).

193

194 Soil nutrient content and canopy openness 

195 Soil samples were extracted below the organic litter layer (0-10 cm depth) in July 2014. Each 

196 soil sample consisted of mixed soil from each of the plot corners and from the center of the 

197 seedling plots, and we collected a total of 200 soil samples. Soil samples were sent to 

198 Brookside Laboratories Inc. (Ohio, USA) for chemical analyses. Magnesium and potassium 

199 (Mg, mg/kg; and K, mg/kg) were extracted using the Mehlich-III solution. Magnesium is an 

200 essential macronutrient found in the chlorophyll of green plants and potassium is essential for 

201 photosynthesis and protein synthesis as well as carbohydrate transport and storage (Maathuis 

202 2009). Potassium has been found to limit seedling growth in tropical and temperate forests 
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203 (Tripler et al. 2006, Wright et al. 2011). Total soil N concentration was obtained using the 

204 total combustion method. Nitrogen is an essential constituent of proteins found in chlorophyll 

205 and is needed in substantial amounts (Maathuis 2009). While soil P is an important limiting 

206 resource for tropical forests, most of the P concentrations in our samples fell below the 

207 detection threshold for the method and we could not use it for the present study.

208  

209 To assess light conditions, we took hemispherical photographs using a camera Nikon 

210 Coolpix5000 with an FC-E8 Nikon fisheye lens. The photographs were taken at 1m height in 

211 the center of each seedling plot at uniform light conditions at dawn with homogeneous light 

212 conditions (Glatthorn and Beckschäfer 2014). The photographs were analyzed using the Gap 

213 Light Analyzer software (GLA) (Frazer et al. 2000) (available at 

214 https://www.caryinstitute.org/science-program/our-scientists/dr-charles-d-canham/gap-light-

215 analyzer-gla). Appendix S1: Table S1 reports ranges and mean values for all the studied 

216 abiotic variables.

217

218 Plot selection at different resource levels

219 Our approach consisted of classifying plots into three resource levels (low, common, and 

220 high) and then calculating trait kurtosis per each resource level. This approach allows us to 

221 use seedling communities large enough at each resource level in order to have robust 

222 measurements of kurtosis, otherwise, our plots are too small to have a high number of trait 

223 values (seedling abundance range: [1, 39]; mean = 9). Prior to the analyses, we examined 

224 correlations between abiotic variables across the 200 plots (Appendix S1: Table S2) and their 

225 distribution. All abiotic variables showed unimodal distribution with the most common 

226 resource level around the average resource value (Appendix S1: Fig. S1). 

227 Next, we calculated the relative frequency of each resource level using a kernel 

228 density estimation for each abiotic variable using the R function "density" from package 

229 "stats" (R Development Core Team 2017). Given that the density estimation is affected by 

230 the bandwidth, we used two methods to select the appropriate bandwidth. The first method is 

231 based on a linear diffusion process (Botev et al. 2010), a non-parametric density estimator 

232 independent of a normal model and less sensitive to outliers (Botev et al. 2010). This method 

233 was implemented by using the function "botev" from the package "provenance" in R 

234 (Vermeesch 2020). The second method uses the asymptotic mean integrated squared method 

235 error (AMISE) and consists of evaluating the mean integrated squared error of a density 

236 estimate based on a normal distribution (see Appendix S2).
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237 We classified subsets of plots into “low resource” plots, “high resource” plots, and 

238 “the most common resource” plots, for each environmental variable (hereafter referred to as 

239 low, high, and common, respectively). The low resource plots corresponded to the 10% with 

240 the lowest level of the resource. The high resource plots corresponded to the 10% with the 

241 highest level of the resource. The most common resource plots corresponded to the 10% 

242 closest to the most frequent conditions, inferred from the location of the peak in the unimodal 

243 estimation of density. Since we have some plots with repeated values for the different 

244 resources studied, the number of plots selected per resource level varied between 10-16% of 

245 the total number of plots; Appendix S1: Table S3 contains the specific number of plots 

246 selected per resource level, and Appendix S1: Figure S1 indicates the plots that were selected 

247 in each resource level (of the 200 plots established, some were excluded from the analyses to 

248 focus on the most extreme and common values). To determine whether our results were 

249 sensitive to the number of selected plots for each resource level, we repeated all the analyses 

250 using the p% plots with the lowest, highest, or the most common levels of the resource, p in 

251 {5, 6, …, 14, 15}. The results (Appendix S3) were not sensitive to the value of p, except in 

252 low ranges (likely due to the low sample size, the inherent variability in the tails and/or the 

253 skewed distribution of some of the resources studied).

254

255 Measurement of trait optimization at each resource level

256 To examine how trait distribution varied with different resource levels (question 1), we 

257 compared trait kurtosis values using information from seedlings located in the low, high, and 

258 the most common resource plots. Very peaked distributions (high kurtosis) indicate strong 

259 trait optimization, while very flat distributions (low kurtosis) indicate weak trait optimization 

260 (Enquist et al. 2015, Le Bagousse-Pinguet et al. 2017). We calculated kurtosis for individual 

261 traits per resource level. We choose kurtosis over variance because we are interested in 

262 detecting a pointed peak (or lack of it) in trait distributions beyond the information about how 

263 spread is the data (Figure S2 in Appendix S1 shows that the degree to which a given 

264 distribution is peaked is independent of the spread of the data) (Enquist et al. 2015). 

265 Given that kurtosis values are difficult to compare with each other, at least in terms of 

266 how much they differ from the expected by chance, we used a more interpretable metric than 

267 raw kurtosis, by calculating the Standardized Effect Sizes (SES) for the kurtosis values 

268 obtained in all resource level classes, for all environmental variables and traits. To calculate 

269 the SES for kurtosis, we created null models where each trait value per individual within a 

270 community matrix (including all 200 plots) was randomized 999 times and we re-calculated 
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271 kurtosis for each resource level for each randomized dataset. We then obtained a mean null 

272 value and standard deviation from the null distribution that were used to calculate the kurtosis 

273 SES: 

274

275 ��� �������� =

�������� �������� ― ���� ���� ���������� ���� ��������
276

277  SES kurtosis values > 1.96 indicate higher than expected kurtosis in a certain trait 

278 given the number of seedlings present in plots at each resource level and SES kurtosis values 

279 < -1.96 values indicate a lower than expected kurtosis for a certain trait given the number of 

280 seedlings present in plots at each resource level.

281

282 Change in mean trait values in each resource level

283 To determine how community mean trait values change across resource levels (question 2), 

284 we calculated and compared mean community trait values at each resource level. When 

285 calculating mean trait values, we used all individual seedlings present at each resource level. 

286 To allow comparisons between traits measured in different units, we used standardized trait 

287 values at the community level (mean = 0, standard deviation = 1). Next, to determine whether 

288 trait means at each resource level differ from zero, we performed a bootstrap sampling with 

289 replacement. To do this, we randomly selected seedlings (with different trait values) for each 

290 resource level 999 times and calculated the mean per trait. If 95% of the values of the 

291 bootstrap distribution overlapped zero, then it was considered not significant. In other words, 

292 this test examines whether the trait mean at a given resource level differs from the expected 

293 for the species.

294

295 Variation in seedling growth rates at each resource level 

296 To address how seedling growth varies across resource levels (question 3), we performed a 

297 similar analysis from the one used for mean traits, but instead of using functional traits, we 

298 used RGR (see raw RGR distributions at each resource level in Appendix S1: Fig. S3). We 

299 also performed a bootstrap sampling with replacement to assess the significance of changes 

300 in RGR at each resource level (i.e. deviations in RGR from the expected for the species). 

301 Furthermore, we evaluated if kurtosis was related to mean RGR at each resource level 

302 (question 4) using a linear mixed-effects model (function "lmer", package "lme4" (Bates et 

303 al. 2015) in R (R Development Core Team 2017)). In these models, the response variable was 
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304 mean RGR at each resource level. The independent variable was trait kurtosis per resource 

305 level; abiotic factors (canopy openness, soil N, Mg, and K) and resource levels (high, low and 

306 the most common) were included as intercept-specific random effects, to account for the 

307 effects of variation of both variables on growth. The sample size for this model was n = 60. 

308 To calculate the marginal and conditional coefficients of determination described by 

309 Nakagawa and Schielzeth (2013), we used the function "r2" in the package "performance" 

310 (Lüdecke 2020).

311

312 RESULTS 

313 Variation in trait distributions with different resource levels (question 1)

314 Observed kurtosis patterns based on different traits showed a variation across the different 

315 studied resource levels (low, common, and high), but the patterns were resource- and trait-

316 specific (Appendix S1: Fig. 2). For canopy openness, observed kurtosis values for all traits 

317 did not differ from a random expectation, but there was a generalized trend for higher SES 

318 kurtosis in the most common light conditions, except for RMF (Fig. 2). For soil K content, 

319 SLA had higher than expected kurtosis at high resource values while LAR had higher than 

320 expected kurtosis at the most common level, the rest of the traits had kurtosis that was not 

321 significantly different than expected by the null model. For soil Mg content, LAR had higher 

322 than expected kurtosis at the most common resource level, indicating trait optimization and 

323 RMF had higher than expected kurtosis at the low resource level. The rest of the traits had 

324 kurtosis levels that were not significantly different from the null expectation for soil Mg. For 

325 soil N content, SLA, LAR, and LMF had a higher than expected kurtosis at the high resource 

326 level indicating trait optimization at high N levels. The rest of the traits had kurtosis that was 

327 not significantly different than expected by the null model for soil N. Results obtained using 

328 the AMISE method were largely consistent with the results described above, especially for 

329 results based on canopy openness and soil N (Appendix S2). For Mg and K, kurtosis values 

330 of LAR, LMF, and SLA were less consistent (Appendix S2). 

331

332 Variation in mean trait values with different resource levels (question 2)

333 In addition to the kurtosis analyses, we also examined shifts in mean trait values across the 

334 three resource levels. For canopy openness, LA and LAR were significantly higher at high 

335 light levels, and LAR, RMF, and SLA were significantly lower at the most common resource 

336 level. The means of the rest of the traits were not significantly different from their 

337 community-wide means at any level of canopy openness (Fig. 3). For soil K content, LA was 
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338 significantly higher at low and high resource levels but it was significantly lower at the most 

339 common resource level. Also, LAR was significantly higher when soil K was high. The rest 

340 of the traits showed means that were not significantly different from the mean community 

341 value for soil K (Fig. 3). For soil Mg content, RMF and LA were significantly higher, while 

342 SLA was significantly lower at the most common resource level. The rest of the traits showed 

343 means that were not significantly different from the mean community value for soil Mg (Fig. 

344 3). For soil N content, LAR and LMF were significantly higher at the low resource level, 

345 while LMF and LAR were significantly lower and RMF was significantly high at the most 

346 common resource level, and LA, RMF, and LAR were significantly higher at the high 

347 resource level. The rest of the traits showed means that were not significantly different from 

348 the mean community value for soil N (Fig. 3).

349

350 Community growth rates in three resource levels (question 3)

351 Mean seedling relative growth rate (RGR) was significantly higher at high levels of canopy 

352 openness, soil N, and K content (Fig. 4). For the rest of the resource levels, standardized 

353 RGR showed no significant differences. In addition, in the linear mixed-effects model 

354 relating trait kurtosis and growth, the kurtosis had virtually no effect on RGR (coefficient = 

355 0.01, 95% CI: [-0.01, 0.03]); the model had a low fit (marginal R2 = 0.02 and conditional R2 

356 = 0.53).

357

358 DISCUSSION

359 Understanding how resource variation at local scales determines trait distributions and plant 

360 performance remains a major question in ecology. To examine this question, we combined 

361 individual trait and growth information collected from tropical seedling communities along 

362 local-scale light and soil fertility gradients. We found that trends in trait optimization are not 

363 generalizable across soil and light gradients. Specifically, trait optimization was observed for 

364 the most common levels of K and Mg as well as in high soil N sites, while traits were not 

365 particularly optimized at any level of canopy openness. Variation in growth rates was also 

366 resource-specific, with seedling growth being the highest when canopy openness and soil K 

367 and N content were high but was not related to trait optimization. Overall, these findings 

368 suggest that peaked trait distributions do not necessarily match the most common resource 

369 levels nor lead to an increase in growth as it is commonly assumed for local-scales studies. 

370 Further, we show that seedling growth can increase despite a lack of trait optimization. 

371 Below, we discuss in more detail our findings.
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372

373 Traits are optimized under low, high and common resource levels 

374 We observed a strong variation of trait optimization across three resource levels. However, 

375 these shifts in trait optimization were highly dependent on the type of resource and studied 

376 trait. For instance, LA, LMF, and LAR showed peaked distributions when soil N content was 

377 high supporting the scenario showed in Fig. 1B. Similar results have been reported in studies 

378 including broader environmental gradients than the one included in this study, in which high 

379 soil fertility leads to high trait kurtosis (Enquist et al. 2015, Le Bagousse-Pinguet et al. 2017). 

380 However, when considering soil Mg or K content, peaks in trait distributions (for LAR) were 

381 found at sites with the most common resource level, supporting the scenario showed in Fig. 

382 1A and suggesting strong selecting forces on trait distributions under the most common 

383 conditions. These results are concordant with previous theoretical studies predicting a high 

384 frequency of trait values under the most common conditions (Austin 1986, McGill et al. 

385 2006, Enquist et al. 2015), yet empirical evidence has remained scarce. Surprisingly, we also 

386 found a lack of trait optimization for any of the studied traits when considering canopy 

387 openness that can be related to high temporal variability in light conditions. Overall, the 

388 discrepancies in trait distributions across different resource levels suggest that selective 

389 forces operate with variable intensity at different resource availabilities and may even result 

390 in a prevalence of low peaked trait distributions. These results are consistent with another 

391 study of tree communities across the entire island of Puerto Rico that examined the variation 

392 in community weighed mean trait values with shifts in species occurrence to test for trait 

393 optimization (Muscarella and Uriarte 2016). Their results showed that while some traits 

394 support the optimization hypothesis (LMA, wood density, and maximum height), there were 

395 many other cases where trait optimization was not found. 

396

397 Mean trait values are more acquisitive under high resource levels

398 We expected a variation in mean trait values in response to different resource levels (Fig. 3). 

399 Specifically, we predicted acquisitive strategies (i.e., high SLA and LA) to be predominant at 

400 high resource levels and increased biomass allocation to organs involved in the acquisition of 

401 limited resources (low resource levels). For leaf allocation traits, our results did not follow 

402 the expected trend and instead, showed that seedlings tend to allocate a greater area to leaves 

403 (LAR) rather than allocating biomass to roots in habitats experiencing high light levels. 

404 These findings contradict the optimal allocation theory in which plants are expected to 

405 allocate greater leaf biomass in low light conditions than at higher light availability (Mooney 
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406 1972, Bloom et al. 1985). However, for non-biomass allocation leaf traits, our results were 

407 consistent with our expectations with LA increasing with high understory light availability 

408 and indicating that seedling communities located in more open environments are 

409 characterized by acquisitive traits. These findings are concordant with previous studies 

410 conducted at a Neotropical forest where species displayed high leaf sizes values at high light 

411 levels contributing to their carbon gain (Lambers and Poorter 1992, Poorter and Rozendaal 

412 2008). It is important to note that similar trends observed for LAR and LA can be also 

413 explained by the correlation between both traits (Fig. S4, Appendix S1).

414 By taking together results of mean and kurtosis trait values for variable light 

415 conditions, we infer that trait distributions across the three light levels show to some degree 

416 shifts in mean functional strategies, yet under each light level, there is no evidence of trait 

417 optimization. This indicates that trait selection operates differently across low, most common, 

418 and high light levels but within each resource level there is a substantial variation in 

419 phenotypes that result in platykurtic trait distributions. This agrees with results from a 

420 previous study from the El Yunque forest that showed that during the seed-to seedling 

421 transition, functional divergence tends to be higher than expected by chance (Umaña et al., 

422 2016). 

423 Mean trait values also varied in response to soil resource levels. We expected greater 

424 biomass allocation to roots in poor soil conditions as suggested by the optimal allocation 

425 theory (Bloom et al., 1985; Garnier, 1991; Marschner, Kirkby, & Cakmak, 1996; Santiago et 

426 al., 2012; Wright et al., 2011) and an increase in SLA as soils become more fertile (Ordoñez 

427 et al. 2009). However, these expectations were not supported in this study as we found no 

428 general trends for patterns of biomass allocation or distribution of leaf-related acquisitive 

429 strategies. One potential explanation is that patterns of biomass allocation and trait variation 

430 depend on the interaction of multiple abiotic factors (Blonder et al. 2018). For example, root 

431 biomass responds to both soil fertility and water availability that does not always covary at 

432 the local scales included here and may result in conflicting trait responses. Another potential 

433 explanation is that trait-trait correlations may potentially mask plant responses to variation in 

434 resource availability. For example, the significant correlation between leaf and root mass 

435 fractions may limit the ability to identify and separate the responses of below and 

436 aboveground traits (Fig. S4). 

437

438 Seedling growth increases under high light and high soil N and K content but is not related to 

439 trait optimization
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440 We expected that seedling growth would increase in areas of high resource levels and/or in 

441 areas of high trait optimization (high trait kurtosis). Our results show that high light 

442 availability and soil N and K content resulted in high seedling growth rates (Fig. 4); however, 

443 growth was not related to trait optimization. Our findings related to light suggest that 

444 understory light conditions are a key limiting factor in this forest and that at high understory 

445 light availability, plants might enhance their growth in the absence of a trait optimization. 

446 Our results are concordant with results from other plant community studies that have shown 

447 species exhibiting contrasting phenotypes that increase plant performance and conform 

448 alternative phenotypes under particular resource conditions (Hirose and Werger 1995, Pistón 

449 et al. 2019, Worthy et al. 2020). Our results also agree with previous studies conducted in the 

450 studied forest showing light as a key factor influencing performance at early ontogenetic 

451 stages (Comita et al. 2009, Uriarte et al. 2018). 

452

453 For soil nutrients, the direct effects of soil N and K should be carefully interpreted as both 

454 variables were significantly correlated making it difficult to determine the independent 

455 contribution of each factor to seedling growth (r = 0.56, p < 0.001, Table S2 in Appendix S1). 

456 Although it has been suggested that soil N should not be considered as a limiting factor for 

457 tropical forests (Hedin et al. 2009), previous studies in tropical regions have found that soil N 

458 may have positive significant effects on plant biomass accumulation and productivity 

459 (Vitousek and Sanford 1986, Mirmanto et al. 1999, LeBauer and Treseder 2008, Graefe et al. 

460 2010, Santiago et al. 2012). Similarly, soil K has shown significant effects on seedling 

461 growth, as found in our study (Santiago et al. 2012, Wright 2019). 

462

463 Conclusion

464 Our findings suggest that high plant growth does not necessarily result from trait 

465 optimization. Furthermore, we did not find support for the expectation that the most common 

466 resource level translates into highly peaked trait distributions and high seedling growth. 

467 Instead, we found that seedling growth at the Luquillo forest is limited by light, soil K, and N 

468 content and that increase in growth can be the outcome from co-occurring contrasting 

469 phenotypes. Overall, our study suggests that the high functional diversity found in tropical 

470 forests partially results from a variety of phenotypic designs that perform well under given 

471 resource levels. Also, an important portion of the trait variation observed in our study comes 

472 from within species and highlights the need to incorporate this level of information in future 
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473 studies to gain a better understanding of community responses to local-scale resource 

474 gradients.
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692 FIGURE LEGENDS

693 Figure 1. Conceptual diagram depicting changes in trait distributions (kurtosis) between rare 

694 and the most common resource levels. In the center, the plot depicts the variation in a given 

695 resource that describes a unimodal distribution with values at the two extremes being less 

696 frequent than the values in the central section. Based on these three resource levels, we show 

697 two scenarios (A and B) of how trait distribution is expected to vary between rare and 

698 common resource levels.

699

700 Figure 2. SES kurtosis of trait values for three resource levels (low, common, and high). 

701 Positive SES values above indicate kurtosis values higher than expected by chance. Negative 

702 SES values below indicate significantly lower than the expected kurtosis in a given 

703 community. Dashed horizontal lines represent +/-1.96 indicating significantly higher/lower 

704 kurtosis than expected by chance. Color codes represent individual traits. LA– leaf area, 

705 SLA– specific leaf area, LAR–leaf area ratio, LMF–Leaf mass fraction, RMF– root mass 

706 fraction.

707

708 Figure 3. Differences in mean trait values for three resource levels (low, common, and high). 

709 All traits were standardized at the community level (mean = 0, standard deviation = 1) to 

710 make them comparable. Positive values indicate that for a given resource level, mean traits 
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711 are higher than the whole-community mean. Negative values indicate that for a given 

712 resource level, mean traits are lower than the whole-community mean. Triangles indicate 

713 95% confidence intervals not overlapping zero when estimating the distribution of the mean 

714 after 999 bootstrap resampling, while circles represent 95% confidence intervals that overlap 

715 zero. Color codes represent individual traits. Acronyms for traits are the same as in Fig. 2.

716

717 Figure 4. Differences in mean seedling relative growth rates (RGR standardized at the 

718 species level) for three resource levels (low, common, and high). Color codes represent 

719 resources (canopy openness and three soil nutrients). Positive values indicate that mean RGR 

720 at a given resource level is higher than the whole-community mean. Negative values indicate 

721 that mean RGR at a given resource level is lower than the whole-community mean. Triangles 

722 indicate that 95% confidence intervals of bootstrap sampling do not overlap zero, circles 

723 indicate that the 95% confidence intervals overlap zero. 
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