Supplementary Materials

Appendix I: Multinucleotide Mutation Caveat

Our SWS2a analyses identified a burst of positive selection along a branch near the base of the South American cichlid radiation, which was also supported by the BUSTED analysis. Reconstruction of the nonsynonymous amino acid substitutions along this branch revealed two codons with multiple differences (or multinucleotide mutations; Venkat et al. 2018). Sparsely sampled datasets may have codons with multiple differences along branches that are not a result of DNA translation error (Venkat et al. 2018), but rather reflect an absence of taxa that may possess the intervening codon change. Denser species sampling could mitigate spurious statistical conclusions arising from multinucleotide mutations, since codons with multiple differences are likely prevalent along longer branches in phylogenies with distantly related species. In the case of the ancestral cichlid SWS2a branch, our sampling between nodes i and ii is reflective of the contemporary species diversity, so the inclusion of additional species would likely not improve the incidence of codons with multiple differences. Another avenue for mitigating inflated estimates of selection along branches with MNMs is to simply remove the sites in question, and test if the result holds (e.g., Dapper and Peyseur 2019). When we excluded all MNMs along this ancestral branch, our results were consistent (Table S11).

Tables

Table S1. Species information and accession numbers (see Excel file)

Name	Sequence	Target	Target Size	Species used to design primer
FH_E1_F3	GGGCCTTTTACTTGCAAGCT	Exon 1	242	Apistogramma cacatuoides
FH_E1_R3	GGCAGCCTCCATAGCACA	Exon 1	242	Apistogramma cacatuoides
FH_E4_F1	TCGGCCTCCACCCAGAAG	Exon 4	100	Crenicara latruncularium
FH_E4_R1	GGTGACAAGTCGATGATCTTTGT	Exon 4	100	Crenicara latruncularium
MA_E2_F2	CGTGACTTCTTGGTCCTTGG	Exon 2	168	Mikrogeophagus altispinosus
MA_E2_R2	GCTCCAGCCAAAGAAAGGT	Exon 2	168	Mikrogeophagus altispinosus
MA_E3_F2	CTGAAGGTCTGGGCTGCT	Exon 3	150	Mikrogeophagus altispinosus
MA_E3_R2	GAGCACCAAGTAGCTGGGAGT	Exon 3	150	Mikrogeophagus altispinosus
MA_E3_R3	CTGGGAGTAGCAGTCAGAGG	Exon 3	153	Mikrogeophagus altispinosus
UF_E4_F1	TCGGCCTCCACCCAGAAG	Exon 4	162	Uaru fernandezyepezi
UF_E4_R1	TTTCATTTGCGGAGTAGGCG	Exon 4	162	Uaru fernandezyepezi
UF_E4_F2	TCGGCCTCCACCCAGAAG	Exon 4	150	Uaru fernandezyepezi
UF_E4_R2	TGGTGACGGTCGATAATCTTTG	Exon 4	159	Uaru fernandezyepezi
UA_E4_F3	TCGGCCTCCACCCAGAAG	Exon 4	156	Uaru amphiacanthoides
UA_E4_R3	TGGAATGGTGACGAGTCGAT	Exon 4	156	Uaru amphiacanthoides

Table S2. Exon-specific primers used to amplify putative stop codon-containing regions in Neotropical cichlid SWS1

PCR Conditions

Reactions were performed in a total volume of 50uL: 33.4 uL double distilled H₂0, 0.8uL Phusion polymerase (New England Biolabs), 5.0uL 10X Phusion buffer (New England Biolabs), 2.5uL of each primer (20uM), 5uL template DNA, 0.8uL dNTPs (12.5 uM each)

Thermocycling conditions were as follows: 95°C (3m); 35 cycles of 95°C (30s), 50°C (30s), 72°C (1m 45s); 72°C (10m). Amplified products were visualized on a 2% agarose gel stained with RedSafe and fragments were extracted using a QUIAquick Gel Extraction Kit (QIAGEN). Sequencing in the forward and reverse direction was performed by the Centre for Genome Evolution and Function (CAGEF) and chromatograms were examined in 4Peaks.

						Parameters [†]					
Opsin	Model	np	InL	k	<i>ω</i> ₀/p	<i>ω</i> ₁/q	ω_2/ω_p	Null	LRT	df	Р
SWS1	MO	115	-5334.0	3.0		0.20		n/a			
	M1a	116	-5292.3	3.0	0.12 (87%)	1 (13%)		MO	83.4	1	0.00
	M2a	118	-5292.0	3.0	0.12 (86%)	1 (12%)	1 (2%)	M1a	0.6	2	0.74
	M3	119	-5287.8	3.0	0.09 (79%)	0.7 (20%)	4.5 (0%)	MO	92.5	4	0.00
	M7	116	-5293.7	3.0	0.48	1.74		n/a			
	M8a	117	-5290.6	3.0	1.1	6.4	1 (9%)	n/a			
	M8	118	-5289.8	3.0	0.54	2.02	4.3 (0%)	M7	7.9	2	0.02
								M8a	1.7	1	0.31
SWS2b	MO	109	-4893.9	2.4		0.25		n/a			
	M1a	110	-4758.6	2.3	0.04 (81%)	1 (19%)		MO	270.6	1	0.00
	M2a	112	-4752.2	2.3	0.04 (80%)	1 (19%)	3.3 (1%)	M1a	13.0	2	0.00
	M3	113	-4752.1	2.4	0.04 (80%)	1 (19%)	3.3 (1%)	MO	284.0	4	0.00
	M7	110	-4763.4	2.3	0.1	0.3		n/a			
	M8a	111	-4759.4	2.3	0.44	9.5	1 (18%)	n/a			
	M8	112	-4753.8	2.4	0.12	0.46	2.8 (2%)	M7	19.2	2	0.00
								M8a	11.2	1	0.00
SWS2a	MO	121	-5313.2	3.4		0.3		n/a			
	M1a	122	-5034.7	2.7	0.02 (85%)	1 (15%)		MO	557.0	1	0.00
	M2a	124	-4987.5	3.0	0.03 (85%)	1 (8%)	3.1 (7%)	M1a	94.4	2	0.00
	M3	125	-4987.5	3.0	0.03 (85%)	1 (8%)	3.1 (7%)	MO	651.4	4	0.00
	M7	122	-5052.5	2.9	0.01	0.3		n/a			
	M8a	123	-5034.7	3.1	2.3	99	1 (16%)	n/a			
	M8	124	-4988.9	3.0	0.09	0.82	2.9 (8%)	M7	127.2	2	0.00
							. ,	M8a	91.6	1	0.00

Table S3. Results of PAML random sites analyses on each SWS opsin

NOTE.—np, number of parameters; lnL, ln likelihood; *K*, transition/transversion ratio; df, degrees of freedom; n/a, not applicable.

t ω values of each site class are shown for models M0–M3 ($\omega_0 - \omega_2$) with the proportion of each site class in parentheses. For M7–M8, the shape parameters, p and q, which describe the beta distribution are listed. In addition, the ω value for the positively selected site class (ω_p , with the proportion of sites in parentheses) is shown for M8a (where ω_p is constrained to equal one) and M8.

Dataset	Model	np	InL	k		Pa	rameter	s	Null	LRT	df	р
Central	MO	37	-1801.1	2.7	ω:	0.20			n/a			
America	M1a	38	-1799.6	2.7	p:	0.87	0.13		MO	3.0	1.0	0.08
					ω:	0.08	1.00					
	M2a	40	-1799.5	2.7	p:	0.87	0.10	0.03	M1a	0.2	2.0	0.90
					ω:	0.08	1.00	1.00				
	M3	41	-1799.3	2.6	p:	0.65	0.35	0.00	MO	3.6	4.0	0.46
					ω:	0.00	0.55	999.00				
	M7	38	-1799.4	2.6	p:	0.21	q:	0.85	n/a			
	M8	40	-1799.3		p:	0.20	q:	0.88	M7	0.2	2.0	0.90
					p1:	0.00	ω:	999.00				
South	MO	79	-4791.0	3.1	ω:	0.20			n/a			
America	M1a	80	-4753.7	3.1	p:	0.87	0.13		MO	74.7	1.0	0.00
					ω:	0.11	1.00					
	M2a	82	-4751.2	3.1	p:	0.87	0.13	0.00	M1a	4.9	2.0	0.09
					ω:	0.11	1.00	5.44				
	M3	83	-4748.6		p:	0.78	0.21	0.00	MO	84.8	4.0	0.00
					ω:	0.09	0.65	5.09				
	M7	80	-4754.8	3.0	p:	0.44	q:	1.57	n/a			
	M8a	81	-4752.3	3.0	p:	0.96	q:	5.58	n/a			
					p1:	0.09	ω:	1.00				
	M8	82	-4750.0	3.0	p:	0.50	d:	1.88	M7	9.6	2.0	0.01
					p1:	0.00	ω:	4.96	M8a	4.6	1.0	0.03

 Table S4. PAML random sites results for Central and South American cichlid subsets of the SWS1 opsin

Dataset	Model	np	InL	k		Para	meters		Null	LRT	df	Р
Central	MO	21	-1526.4	1.9	ω:	0.21			n/a			
America	M1a	22	-1522.1	1.8	p:	0.84	0.16		MO	8.5	1.0	0.00
					ω:	0.00	1.00					
	M2a	24	-1521.3	1.9	p:	0.91	0.00	0.09	M1a	1.6	2.0	0.45
					ω:	0.00	1.00	2.40				
	MЗ	25	-1521.3	1.9	p:	0.44	0.47	0.09	M0	10.1	4.0	0.04
					ω:	0.00	0.00	2.40				
	M7	22	-1522.3	1.8	p:	0.05	q:	0.02	n/a			
	M8	24	-1521.3	1.9	p:	0.05	q:	2.20	M7	2.0	2.0	0.37
					p1:	0.09	ω:	2.42				
South	MO	87	-4631.3	2.4	ω:	0.25			n/a			
America	M1a	88	-4508.3	2.3	p:	0.80	0.20		MO	246.0	1.0	0.00
					ω:	0.04	1.00					
	M2a	90	-4501.7	2.3	p:	0.79	0.20	0.01	M1a	13.2	2.0	0.00
					ω:	0.04	1.00	3.82				
	M3	91	-4501.7	2.3	p:	0.79	0.20	0.01	MO	259.3	4.0	0.00
					ω:	0.04	0.97	3.70				
	M7	88	-4510.3	2.3	p:	0.09	q:	0.33	n/a			
	M8a	89	-4507.7		p:	0.40	q:	6.70	n/a			
					p1:	0.19	ω:	1.00				
	M8	90	-4502.5	2.3	p:	0.10	q:	0.40	M7	15.6	2.0	0.00
					p1:	0.01	ω:	3.15	M8a	10.4	1.0	0.00

 Table S5. PAML random sites results for Central and South American cichlid subsets of the SWS2b opsin

Dataset	Model	np	InL	k		Par	ameters		Null	LRT	df	р
Central	MO	33	-1873.7	4.1	ω:	0.32			n/a			
America	M1a	34	-1854.4	3.6	p:	0.81	0.19		MO	38.6	1.0	0.00
					ω:	0.00	1.00					
	M2a	36	-1844.2	3.7	p:	0.85	0.12	0.02	M1a	20.4	2.0	0.00
					ω:	0.04	1.00	8.70				
	MЗ	37	-1844.1	3.7	p:	0.74	0.23	0.02	MO	59.2	4.0	0.00
					ω:	0.00	0.66	8.54				
	M7	34	-1854.4	3.6	p:	0.01	q:	0.02	n/a			
	M8a	35	-1854.4	3.6	p:	0.01	q:	1.68	n/a			
					p1:	0.19	ω:	1.00				
	M8	36	-1844.1	3.7	p:	0.09	q:	0.45	M7	20.5	2.0	0.00
					p1:	0.02	ω:	8.59	M8a	20.5	1.0	0.00
South	MO	87	-4722.4	3.2	ω:	0.31			n/a			
America	M1a	88	-4493.2	2.7	p:	0.84	0.16		MO	458.4	1.0	0.00
					ω:	0.02	1.00					
	M2a	90	-4454.2	2.9	p:	0.85	0.08	0.07	M1a	78.0	2.0	0.00
					ω:	0.03	1.00	3.15				
	M3	91	-4454.2	2.8	p:	0.85	0.08	0.07	MO	536.4	4.0	0.00
					ω:	0.03	1.00	3.15				
	M7	88	-4501.0	2.6	p:	0.01	q:	0.03	n/a			
	M8a	89	-4491.3	2.6	p:	2.30	q:	99.00	n/a			
					p1:	0.16	ω:	1.00				
	M8	90	-4455.6	2.9	p:	0.09	q:	0.82	M7	90.8	2.0	0.00
					p1:	0.08	ω:	2.90	M8a	71.4	1.0	0.00

 Table S6. PAML random sites results for Central and South American cichlid subsets of the SWS2a opsin

Opsin	Test (foreground) branches	Reference (background) branches	Model	InL	Np	AIC	k	LR	р	Relaxation or Intensification of selection
	Decuderance	Interest and wanters	Null	-5261.3	132	10788.7	1			
	Pseudogenes	Intact sequences	Alternative	-5255.4	133	10778.8	0.23	11.9	0.001	Relaxation
	South American	Central	Null	-5261.2	132	10788.5	1			
	Cichlids	American Cichlids	Alternative	-5258.0	133	10884.1	0.33	6.45	0.011	Relaxation
	Dim/turbid water-	Clear water-	Null	-5261.3	132	10788.7	1			
	dwelling cichlids	dwelling cichlids	Alternative	-5259.0	133	10785.9	0.65	4.79	0.03	Relaxation
	Geophagini/	All other lineages	Null	-5261.3	132	10788.7	1			
	Astronotini clade	All other lineages	Alternative	-5256.6	133	10781.3	0.55	9.46	0.002	Relaxation
SWS1	Branch leading to		Null	-5261.3	132	10788.7	1			
	major Neotropical cichlid tribes (i)	All other lineages	Alternative	-5261.3	133	10790.7	1.02	0.0	0.94	n/s
	Branch leading to		Null	-5261.3	132	10788.7	1			
	Geophagini/ Astronotini (ii)	All other lineages	Alternative	-5261.1	133	10790.3	0.0	0.39	0.53	n/s
	Branch leading to		Null	-5261.3	132	10788.7	1			
	Heroini/Cichlaso matini (ii)	All other lineages	Alternative	-5261.1	133	10790.3	0.0	0.39	0.53	n/s
	Branch leading to	All other lineages	Null	-5261.3	132	10788.7	1			
	Geophagini (v)	All other lineages	Alternative	-5261.2	133	10790.5	1.37	0.26	0.61	n/s
	Dim/turbid water	Clear water-	Null	-4837.0	124	9923.9	1			
	dwelling cichlids	dwelling cichlids	Alternative	-4835.4	125	9922.6	0.65	3.33	0.07	n/s
SWS2b	South American	Central	Null	-4837.0	124	9923.9	1			
	Cichlids	American Cichlids	Alternative	-4837.0	125	9925.9	0.97	0.01	0.93	n/s
	Dim/turbid water	Clear water-	Null	-5232.3	138	10742.0	1			
	dwelling cichlids	dwelling cichlids	Alternative	-5232.0	139	10743.9	0.91	0.14	0.71	n/s
			Null	-5232.3	138	10742.6	1			
SWS2a	South American cichlids	Central American Cichlids	Alternative	-5232.3	139	10742.6	1	0	1.0	n/s

Table S7. Results of RELAX analyses on Neotropical cichlid SWS opsins

NOTE—InL = In likelihood; np = number of parameters; AICc = akaike information criterion corrected for sample size; k=1 is the null hypothesis while k<1 indicates relaxed selection and k>1 indicates an intensification of selection. LR = likelihood ratio of alternative model relative to null model. For SWS1, test branches leading to major cichlid clades are denoted with a letter, and correspond to the branches marked in Figure 1.

Table S8. Results of HYPHY BUSTED analyses on the SWS2a opsin branch under episodic selection (per CMC analyses)

 Analysis	Test branch	Model	InL	Np	AICc	LRT	р
 BUSTED	Branch leading to	Null	- 5235.0	142	10756.1		
DUCIED	Chaetobranchini clade (ii)	Alternative	- 5266.1	143	10740.2	33.3	0.00

Table S9. All SWS2a codon changes occurring along the

Astronotini/Chaetobranchini/Geophagini ancestral branch (branch ii, Figure 2) under episodic selection

Site	Codon change	Amino acid change	Type of change (nonsynonymous or synonymous)	Multi- nucleotide mutation?	Under divergent selection? (CMC)	Increased hydrophobicity?
49	GTA → ATA	$\lor \rightarrow I$	NS	no	yes	Yes
88	TGT → GTT	$C \to V$	NS	yes	yes	No
99	TCA → GCA	$S \rightarrow A$	NS	no	yes	Yes
166	GCT → ATT	$A \not \to I$	NS	yes	yes	Yes
194	ACA → TCA	T→S	NS	no	yes	No
207	CTT → CTG	L→L	S	no	no	n/a

Table S10. SWS2a CMC and BUSTED results with multinucleotide mutations along the Geophagini/Astronotini/Chaetobranchini branch removed

								Paramete	rs	_			
Analysis type	Model/Foregr ound	np	InL	AIC	ΔAI C	k	ω	ω	ω/ωd	Null	LRT	df	p
				10989.		3.							
	M2a_rel	136	-5358.7	4	5.0	0	0.03(84%)	1(9%)	3.0(6.5%)				
CMC (PAML)	Geo/Astro/Cha			10984.		2.			3.0(6.5%) G/A/C_branch:	M2a_			
(. /)	eto branch (ii)	137	-5355.2	4	0	9	0.03(84%)	1 (9%)	999	rel	7.0	1.0	0.01
							Test:0.0(8.9 6%)	0.0 (89.8%)	1 (1.19%)				
	Constrained			11554.		n/	BG: 0.0	0.15(16.		-			
BUSTED	model	154	-5622.3	9	9.5	а	(76.2%)	9%)	3.86 (6.94%)				
(HYPHY)							Test:0.0(8.9	0.0					
	Unconstrained						6%)	(89.8%)	456.3 (1.19%)				
	(G/A/C test			11544.		n/	BG: 0.0	0.15(16.		-			
	branch (ii))	155	-5616.0	4	0	а	(76.2%)	8%)	3.63 (7.05%)	n/a	12.6	1.0	0.002

Table S11. IDs for photographs in Figure 2 (top to bottom)

Genus and species (where applicable

Retroculus sp. Astronotus ocellatus *Crenicara punctatum* Satanoperca sp. *Geophagus dicrozoster* Acarichthys heckelii Crenicichla wallacii Crenicichla lugubris Aequidens sp. Acaronia nassa Andinoacara rivulatus *Pterophyllum scalare* Symphysodon sp. Rocio octofasciata *Caquetaia spectabile* Herichthys sp. Petenia splendida Parachromis sp. Amphilophus cintrinellus

Table S12. SWS1 Amino acid alignment and spectral tuning sites (Excel file)Table S13. SWS2b Amino acid alignment and spectral tuning sites (Excel file)Table S14. SWS2a Amino acid alignment and spectral tuning sites (Excel file)

Figures

a) Apistogramma cacatuoides – premature stop codon

b) Apistogramma panduro - deletion. Dotted line indicates position of the 25bp deletion

>C_Nannacara_bimaculata_T12641
>G_Acarichthys_heckelii_T06757
>G_Mazarunia_charadrica_T06044 >G_Guianacara_dacrya_T06410 >G_Geophagus_harreri_T11823 >A_Apistogramma_panduro

205 270 CTCGTCAACATCTCCTT-----TCTGTCAGTCAGGTGTTTTTTGCC

c) Crenicara latruncularium - premature stop codon in exon 4

71	.5 750
<pre>>C_Aequidens_tetramerus_T11731</pre>	GCAGAGAAGGAGGTATCGAGGATGATCATTGTGATG
>C Krobia petitella T08034	GCAGAGAAGGAGGTATCGAGGATGATCATTGTGATG
<pre>>C_Nannacara_anomala_T13932</pre>	GCGGAGAAGGAGGTATCGAGGATGATCATTGTGATG
<pre>>C_Nannacara_bimaculata_T12641</pre>	GCGGAGAAGGAGGTATCGAGGATGATCATTGTGATG
<pre>>G_Mazarunia_charadrica_T06044</pre>	GCAGAAAAGGAGGTATCGAGGATGATCATTGTGATG
>G_Crenicara_latruncularium_PG	GCAGAAAAGGAGGTA TAG AGGATGATCATTGTGATG

d) Mikrogeophagus altispinosus - premature stop codon

e) Uaru fernandezyepezi - premature stop codon

Figure S1. Nonsense mutations and/or indels identified in Neotropical cichlid SWS1 opsin genes

Figure S2. Neotropical cichlid species tree used for SWS2b analyses. Abbreviations denote major Neotropical cichlid tribes: Ci = Cichlini; R = Retroculini; A = Astronotini; C = Chaetobranchini; G = Geophagini; C = Cichlasomatini; H = Heroini. Numbers denote Royal Ontario Museum tissue vouchers.

References

- Dapper AL, Payseur BA (2019) Molecular evolution of the meiotic recombination pathway in mammals. *Evolution*, **73**, 2368–2389.
- Venkat A, Hahn MW, Thornton JW (2018) Multinucleotide mutations cause false inferences of lineage-specific positive selection. *Nature Ecology & Evolution*, **2**, 1280–1288.