
1 
 

 
 

 

 

Biodiversity does not enhance algal feedstock production when exposed to fungal infection: 

An experimental test in outdoor ponds using a before-after-control-impact (BACI) design. 

 

Spenser L.R. Widin  

School for Environment and Sustainability, University of Michigan, 1556 Dana Building, 440 

Church Street Ann Arbor, Michigan 48109-1041, USA 

 

 



 
 

 
 

  



1 
 

 
 

Contents 
Abstract ........................................................................................................................................................ 1 

1. Introduction ............................................................................................................................................. 2 

2. Materials and Methods ........................................................................................................................... 5 

2.1 Microalgal Species Selection .............................................................................................................. 5 

2.2 Experimental Units ............................................................................................................................. 6 

2.3 Experimental Design ........................................................................................................................... 7 

2.4 Raceway Sampling and Processing .................................................................................................. 10 

2.5 Data Analysis .................................................................................................................................... 11 

2.5.1 Data Analysis- BACI Analysis ................................................................................................... 13 

3. Results .................................................................................................................................................... 14 

3.1 Physical and Chemical Conditions of Ponds .................................................................................... 15 

3.2 Areal Productivity ............................................................................................................................. 16 

3.3 Biomass Stability ............................................................................................................................... 17 

3.4 Maximum Biomass Yield ................................................................................................................... 17 

4. Discussion .............................................................................................................................................. 20 

5. Supplemental Figures ............................................................................................................................ 24 

6. References .............................................................................................................................................. 27 

 

 

  

 



1 
 

 
 

Abstract 
For outdoor cultivation of algal feedstocks to become a commercially viable and sustainable 

option for biofuel production, algal cultivation must maintain high yields and temporal 

stability in environmentally variable outdoor ponds.  One of the main challenges is 

mitigating disease outbreaks that leads to culture crashes.  Drawing on predictions from the 

‘dilution effect’ hypothesis, in which increased biodiversity is thought to reduce disease risk 

in a community, I tested whether algal polycultures would reduce disease risk and improve 

feedstock production efficiencies compared to monocultures.  While the positive benefits of 

biodiversity on disease risk has been demonstrated in various systems, to the best of my 

knowledge this is the first test in an algal biofuel system.  Here, I present the results a 

before-after-control-impact (BACI) experimental design comparing mean monoculture 

(control) and polyculture (impact)  yield, stability, and productivity before and after fungal 

infection when grown in 400-L outdoor raceway ponds. I found that polycultures did not 

experience a reduction in disease risk compared to monocultures or differ in production 

efficiencies throughout the course of the 43-day experiment.  These results show that 

polyculture feedstocks can maintain similar levels of productivity, stability, and disease 

resistance to that of a monoculture.  Determining whether these results are generalizable or 

represent one case study requires additional outdoor experiments using a larger variety of 

host and pathogen species.   
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1. Introduction 
Over the last several decades, renewable microalgal derived biofuels have begun to 

show increased promise as a replacement for petroleum-based transportation fuels as a way 

to curb global CO2 emissions.  Compared to conventional terrestrial crops (e.g. corn, 

switchgrass, oil palm) microalgal feedstocks have potential to achieve higher lipid yields per 

unit area than conventional crops without the need for arable land that could be used for 

food production Borowitzka and Moheimani [1], [2-4].  Like terrestrial crop production, the 

predominant approach to large scale cultivation of algae has largely focused on genetic 

engineering and strain selection to identify single species that maximize lipid production 

when grown in monoculture under laboratory settings [1, 2, 5].  However, the high yields 

achieved by genetically or strain selected species in the lab rarely hold under field 

conditions, such as in large-scale open pond outdoor raceways that are the most 

economically viable method for generating large feedstock quantities [1, 6].  Indeed, algal 

feedstocks grown in outdoor raceway ponds have proven more difficult to maintain because 

of invasion by unwanted species of competing algae or cyanobacteria[7], invasion by 

herbivores that consume the crop[8], invasion by parasites and diseases that kill the focal 

algae[6] or environmental conditions that fluctuate beyond the tolerance limits of the focal 

species[9]. 

In response to the challenges of algal monoculture production, particularly in 

outdoor open raceway ponds, researchers have begun to consider how ecological 

engineering of diverse algal feedstocks can alleviate the challenges faced by monoculture 

feedstock production [10, 11].  Several studies have shown that when compared to the 

average monoculture, algal polycultures composed of multiple species can be designed to 

improve the total production of biomass, the temporal stability of feedstock production in 
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variable environments, and desirable biochemical properties of feedstocks that are upgraded 

to biocrude [12-16].  For example, Shurin et al. [14] , found that particular polycultures were 

able to achieve high algal biomass yield than their most productive monocultures.  Similarly, 

diverse algal feedstocks have shown to be on par or exceed nutrient use efficiencies of the 

average monocultures [13, 17, 18].  Additionally, Godwin et al. [17] demonstrated that 

biodiverse algal cultures were able to maintain higher levels of multifunctionality 

(simultaneously maintain high levels of yield, stability, invasion resistance, etc.) than any of 

the component species grown in monoculture.  However, it is important to note that most of 

the aforementioned studies have been performed in laboratory settings. As such, it remains 

unclear whether the benefits that are sometimes conferred by biodiversity will hold under 

commercial scale outdoor cultivation where the risk of pests, parasites, and pathogens are 

more substantial than they are in the safety of the lab [6, 19, 20].  

One of the greatest risks to outdoor cultivation of algal feedstocks is their 

susceptibility to invasion by unwanted pathogens, particularly pathogens such as chytrid 

(phylum Cryptomycota) and aphelid (phylum Aphelida) fungi [6, 21].  These fungal 

pathogens penetrate host cells, consume intracellular contents so as to produce large 

quantities propagules that are released through the ruptured host cell wall, causing host cell 

mortality [22].  As they do so, the fungi are able to quickly proliferate through algal cultures, 

often leading to culture crash and complete loss of feedstock productivity [21].  Currently, 

two main strategies are used to mitigate the impact of infection.  One involves a salvage 

harvest of the culture, followed by subsequent disinfection of the culture tanks, prior to 

reestablishing the outdoor pond operation [6].  This approach leads to yield reductions in 

addition to increased operational costs, making the strategy economically infeasible.  A 
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second strategy of fungal control involves the application of chemical fungicides to reduce 

the risk of disease spread [6, 10, 23, 24].  While chemical fungicides have proven to be 

effective in the short term, they can be expensive, have the potential for target species to 

develop resistance, can pose certain human health risks, and can have unintended 

environmental impacts [25, 26].  Given these limitations, there has been recent interest in 

developing better methods of fungal control in algal feedstock systems [27, 28]. 

A recently proposed method for fungal control utilizes a concept from the field of 

Disease Ecology called the “dilution effect”[28].  The dilution effect occurs when an 

increase in host diversity leads to a reduction in the risk of disease within a community [29, 

30].  One proposed mechanism for disease dilution occurs when less susceptible host species 

reduce the abundance of more susceptible host through interspecific competition [31].  That 

is, the presence of less susceptible hosts ‘dilute’ the risk of disease establishment and spread 

throughout the community. If the dilution effect were to operate in algal feedstocks, then it 

might be possible to ecologically engineer the composition of feedstocks to have species that 

have differential fungal resistance, niche complementarity, and measures of productivity 

(e.g. temporal stability, yield, etc.). In turn, one might be able to simultaneously safeguard 

against disease outbreaks while enhancing feedstock yields through time [28].   But while 

many studies have shown the operation of dilution effects in natural systems, the idea has 

not been tested using algal feedstock cultivation [32, 33]. 

In this study, I asked whether ecologically engineered multi-species consortia of 

algae would be more resistant to crop failure caused by fungal pathogens that single species 

monocultures.  I hypothesized that due to a dilution effect, ecologically engineered algal 

polycultures would maintain higher measures of feedstock production compared to 
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monocultures of the most productive species when both were simultaneously exposed to a 

fungal pathogen.  I tested this hypothesis by conducting a statistically rigorous, well 

replicated BACI experiment (before vs. after fungal infection, monocultures as controls vs. 

polycultures as the impact treatment) in outdoor raceway ponds.  I grew replicate raceways 

of algal monocultures and polycultures that were subjected to routine harvests, intentionally 

challenged with a fungal pathogen, and sampled regularly to estimate feedstock production 

metrics and fungal infection.  The results show that polycultures did not offer the dilution 

effect to fungal disease as hypothesized, and that monocultures and polycultures performed 

similarly in terms of feedstock production metrics. 

2. Materials and Methods 
2.1 Microalgal Species Selection 
 From a three-phase series of prior experiments I identified the best monoculture and 

multi-species consortia to pit together in outdoor ponds to test the effect of biodiversity of 

feedstock production in field conditions.   Below is an outline of the details of the three prior 

phases: I) biculture comparisons of yield from 55 species pool, II) laboratory comparison of 

yield, temporal stability, and nutrient use efficiency monocultures and polycultures best six 

species from Phase I in laboratory, and III) field comparison of yield, stability, and pest 

invasability between single best monoculture and polyculture from Phase II in field 

experiment.    

Phase I involved 55 species of freshwater green algae that are included in the U.S. 

Department of Energy’s Aquatic Species Program and were identified in U.S. EPA’s 2007 

National Lakes Assessment as being the most widespread and abundant species across North 

America (so they would not pose a risk to natural habitats in the event of a release).  Using 

these species, an initial set of laboratory experiments compared the yield of species 
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bicultures to that of monocultures to screen for increased biomass production in cultures 

with co-occurring algal species [34].  Results from this work lead to the selection of six 

species that were found to routinely be involved in increased biomass production of algal 

polycultures.  During Phase II, laboratory experiments were used to evaluate whether 

polycultures of these six species would increase biomass production and temporal stability 

compared to each species grown alone in monoculture [16, 17, 35].  Phase III transitioned to 

field-based experiments in which the single best monoculture and polyculture consortia from 

Phase II were compared for production of algal biomass and biocrude yield, temporal 

stability, risk of invasive algae, potential for culture crash, and ability to maintain more of 

these functions at higher levels [12].  Based on the results of Phases I-III I selected the 

single best monoculture (Selenastrum capricornutum) identified for algal feedstocks from 

prior work, and single best algal polyculture (Selenastrum capricornutum, Chlorella 

sorokiniana, and Scenedesmus obliquus) to pit against each other in outdoor raceway 

cultivation that is more realistic to that of commercial scale production. 

2.2 Experimental Units 
The study site was located at the Arizona Center for Algae Technology and 

Innovation (AzCATI) at Arizona State University’s Polytechnic campus in Mesa, AZ (Fig. 

1).  I utilized six identical raceway ponds measuring 3.5m by 1.5m (approximately 4.2m2 

surface area) filled to a depth of 10cm to produce a 400-L capacity.  Each pond at AzCATI 

was equipped with a mechanical paddle wheel to constantly mix the algal cultures (flow rate 

of 9.3 cm s-1), an air stone to bubble CO2 into solution (5 L min-1 based on pH), and a YSI 

5200A-DC (YSI Inc., Yellow Springs, OH, USA) probe to measured physical and chemical 

conditions of the ponds (temperature, salinity, conductivity, dissolved oxygen, oxygen 

saturation, and pH) at 15 minute intervals.  Each 400-L raceway was initiated with the 2X 
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concentration of BG-11 growth media [36], which is a common media for growth of algal 

feedstocks.  As I will show (Section 3.1) physical and chemical conditions among replicates 

were statistically similar between Control-monoculture and Impact-polyculture treatments. 

 

Figure 1.  Photographs of 400 L experimental outdoor raceways located at Arizona Center for Algal 
Technology and Innovation (AzCATI) in Mesa, Arizona.  Inset text summarizes experimental 
design. 

 

2.3 Experimental Design  
This experiment used a statistically rigorous BACI design (Before, After, Control, 

Impact) to determine if algal polycultures (the ‘Impact’ group) increase the production and 

stability of algal feedstock relative to algal monocultures (the ‘Control’ group) when they 

are exposed to an infectious fungal parasite (‘Before’ vs. ‘After’ infection). The Control 

treatment consisted of a monoculture of S. capricornutum, while the Impact treatment 
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consisted of a polyculture of S. capricornutum, C.  sorokiniana, and S. obliquus (Fig. 1).  

The Control and Impact treatments were each replicated in 3 raceway ponds.  

Prior to their inoculation in the 400-L raceway ponds, each algal species was scaled 

up individually in laboratory cultures, first in 800-mL sterile glass columns containing BG-

11 growth media, which were then transferred into 15-L plexiglass panels containing BG-11 

growth media that were exposed to continuous light and a constant delivery of gaseous CO2 

(Supplemental Fig S2). Once adequate cell densities were reached in laboratory cultures, 

each of the 400-L raceways was inoculated with the same starting concentration of dry algal 

biomass (0.084 g L-1). This resulted in 0.084 g L-1 of S. capricornutum being added to each 

of the three Control (monoculture) raceway ponds, and 0.028 g L-1 of each of the three 

species into the Treatment (polyculture) raceway ponds. 

The Before and After portion of the study represented sampling periods before and 

after a fungal parasite was intentionally introduced to the ponds. Raceway ponds were 

monitored for 23 days before a fungal parasite was introduced (sampling is described later in 

section 2.3). During this time period, there was no significant sign of fungal infection 

detected in any of the raceway ponds.  Then, on day 23 and again on day 25, each raceway 

pond was inoculated at less than 1% of total cell density with Desmodesmus armatus nearly 

100% infected with a local fungal parasite that is a common pest at AzCATI.As I will show, 

D. armatus successfully introduced the fungal pathogen, without becoming established in 

the cultures.  Initial morphological characteristics identified the fungus as an Aphelida (class 

Aphelidea) [22].  Subsequent samples of infected algae from AzCATI, were cultured in the 

lab and later identified as Ameobophelidium occidentale  analysis of rDNA. Since these 

were from separate cultures outside of the experiment were are not certain that this is the 
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same species, however the morphology and life cycle observed during the experiment are 

very similar to those identified for various Aphelida species [21, 22, 37].  Additionally, 

because the D. armatus inoculum was from an open-air pond and could have contained other 

pathogenic agents.  However, the dominant signs of disease within the cultures presented 

morphologically as Aphelid fungus in each of the algae species as those described in Section 

2.4.  This led me to believe that an Aphelid fungus was the main pathogenic stressor in the 

feedstock cultures. 

I intentionally introduced the fungal parasite using a non-focal species of algae 

because (1) cultures of infected D. armatus are routinely maintained at AzCATI for study of 

the fungus, making it a readily available and controlled source of infection, and (2) D. 

armatus is a morphologically distinct, competitively inferior species (based on prior field 

experience and observations) that can be used as a ‘tracer’. As a tracer species, I was able to 

introduce a known, and equal amount of infection to all ponds, after which, I was able to 

monitor the ponds to show that the source of infection (D. armatus) was successful at 

initiating disease in other algal species; yet, D. armatus did not establish itself in the ponds 

or alter the intended species composition of algae (as I will show later). 

On day 27, five days after the introduction of the fungus, each raceway pond was 

dosed with 1-ppm of Secure ® with the active ingredient fluazinam, which is a pesticide that 

is commonly used to control fungal pathogens during algal feedstock cultivation at AzCATI 

(U.S. Patent Application No. 14/351,540; Publication No. 20140378513; Published Dec. 25, 

2014; Sapphire Energy Inc., Applicant).  By applying a pesticide that is normally used to 

control fungal proliferation during feedstock production, this study was intended to test 

whether algal polycultures offer any additional benefits for pest control above and beyond 
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the traditional controls that are applied during feedstock growth. For the remaining 20 days 

after fungal infection (After period), the raceways were sampled and harvested utilizing the 

same methods as during the Before period (described next).  

2.4 Raceway Sampling and Processing 
Starting on day 25 after inoculation of algae in the raceway ponds, samples were 

collected from each pond every 2-days using a sterile 50-mL polypropylene centrifuge tubes 

by submerging the tube in same well mixed portion of each raceway. From these samples, 

two sub-samples were taken. One 15-mL subsample was used to determine daily estimates 

of feedstock biomass by measuring ash free dry weight (AFDW). AFDW was measured 

utilizing the methodology described in McGowen, Knoshaug [37], which involved vacuum 

filtering the 15-mL subsample through a pre-weighed 0.2µm glass microfiber filter, dried at 

105℃, ashed at 500 ℃ leaving an inorganic compound residue and then re-weighed.  The 

difference in weight before and after ashing gives AFDW in g of biomass L-1. For each 

sample, three separate measures of AFDW were averaged to produce one estimate per 

sampling event. A second 1-mL subsample was fixed with a 1% phosphate-buffered 

formalin solution to preserve the sample for quantification of algal cell densities and the 

proportion of cells with fungal infection using manual counts of individual species cell 

density (healthy and infected cells) using light microscopy and a hemocytometer.  Following 

each sampling event, fresh water was added to the raceway ponds to maintain their original 

volumes at 400-L and compensate for evaporative losses.   

 In addition to sampling the ponds every 2-days, the feedstock of algae in each 

raceway pond was harvested weekly to measure areal productivity.  Harvesting was 

performed using a sump pump placed directly into the raceway while the raceway was 
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actively mixed by the mechanical paddle wheel.  With exception of the first harvest, for 

which only 70% of the volume was removed due to the fact that biomass was still 

increasing, all subsequent harvests were performed by pumping out 90% of the volume of 

the raceways, which is a more standard harvest.  Immediately after each harvest, raceways 

were filled back to their starting volumes of 400-L with fresh water replenished with 

nutrients to produce the same initial concentrations of BG-11 growth media. 

2.5 Data Analysis  
I used the aforementioned data collection (section 2.3) to calculate four response 

variables for each pond – areal productivity of feedstock, the stability of feedstock biomass 

through time, maximum biomass yield achieved immediately prior to harvest, and the 

proportion of algal cells infected with fungus. Areal productivity is a measure of the average 

daily biomass production (g of Biomass m-2 day-1) based on the surface area of each raceway 

pond.  To calculate areal productivity, the average daily volumetric AFDW was converted to 

the mean daily areal productivity by dividing by 4.2 m2 (the surface area of the 400-L 

raceways).  Average daily productivity of each raceway was calculated for the time frame 

between harvests, which resulted in two average daily productivity measures of each 

raceway for the Before fungal infection period and two measures for the After period.   

I quantified the temporal stability of feedstock biomass by calculating the inverse of 

the coefficient of variation (mean divided by standard deviation) for daily AFDW (g 

biomass L-1 day-1) for each growth phase between harvests.  To quantify the overall stability 

for each treatment (Control-mono vs. Impact-polyculture), I averaged individual estimates 

of the CV-1 for growth phases within each period (Before vs. After infection). This allowed 

to examine whether there were any significant differences in stability of daily biomass 
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production between Treatments (control vs. impact) and Periods (before vs. after fungal 

infection).   

The maximum biomass yield achieved in a raceway pond was taken to be the peak 

algal biomass (g biomass L-1) achieved immediately before harvesting each raceway.  

Samples taken immediately before each harvest event were used to calculate AFDW, 

providing me an estimate of total amount of biomass by volume produced between each 

harvest event. Using these measurements, I was able to determine if there were any 

differences between Treatments (control-mono vs. impact-polyculture) and Periods (before 

vs. after fungal infection in the average maximum biomass yield achieved between harvest.  

Fungal infection and community composition (polycultures only) were measured to 

evaluate any difference in response to infection between Treatments.  Fungal infections were 

quantified by calculating the proportion of algal cells infected with the fungal parasite for 

each species (the total healthy and infected cell density divided by the density of infected 

cells) for each sampling event to plot a time-series of infection proportions. Algal cells were 

categorized as infected if they had any of the following signs of infection: fungal zoospore 

attached to the cell wall, cellular contents displaced by the growing parasite, and/or any 

remaining unconsumable cellular contents of the host algal cell called a residual body 

(Supplemental Fig. S1) [21, 38, 39].  Community composition for the Impact treatment was 

quantified as the proportion of total cell density represented by each algal species. 

When calculating the four response variables, data collected prior to the initial 70% 

harvest on day 8 were not used so that comparisons between each subsequent harvest 

represent a response in the algal cultures to the same magnitude of a routine disturbance 

(i.e., 90% harvest). In addition, data collected between infection (day 23) and the first post 
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infection harvest (day 30) were not used in the analysis.  These data were excluded because 

the fungal pathogen was initially introduced 2 days after a harvest which allowed the algal 

cultures to experience 2 days of growth without the potential stress of infection.  Including 

this particular set of dates (days 23-30) in the After-infection period would include a portion 

of the culture’s response to harvest without stress from a fungal pathogen, which is more 

characteristic of the Before-infection period.  Thus, to ensure that the data included in the 

After-infection period is accurately indicative of the response of infected algal cultures to 

routine harvesting,  only included measurements from the first sampling event after the day 

30 harvest. 

2.5.1 Data Analysis- BACI Analysis 
 I used BACI analyses to determine if the four aforementioned response variables 

(section 2.4) showed significant differences between the Control (monoculture) and Impact 

(polyculture) treatments, as well as the response of those two treatments to introduction of 

the parasitic fungus. I utilized the BACI approach describe in Smith, Orvos [40], which 

involved running linear mixed models for each of the response variables with treatment 

(Control - monoculture vs. Impact - polyculture), infection period (Before introduction of 

fungus vs After infection), and Treatment × Period interaction as fixed effects, and 

individual raceways as a random effect to account for random variation among experiment 

units (“lmer function” within R package lmerTest).  To examine whether fungal infection 

has a differential effect between Treatments (control-monoculture vs. impact-polyculture), 

results of the linear models were subjected to an analysis of variance (ANOVA).  A 

significant Treatment × Period interaction for each response variable was taken as evidence 

that each Treatment responded differently to infection from a fungal pathogen.  These 

results, in conjunction with the time-series estimates of infection proportions and 
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community composition, provided insight into the biological cause for differential response 

the various algal production metrics between treatments.  

In addition to using BACI to compare the biological response variables, I performed 

similar analyses that compared the physical and chemical conditions of the raceway ponds to 

confirm homogeneity of conditions between treatments (See Supplemental Information).  

No data transformations were needed as assumptions of homogeneity of variance and 

approximate normality were met. 

3. Results  
 Physical and chemical conditions among replicates were statistically similar (Section 

3.1) thus I reasonably attribute the results to differences in biodiversity among treatments 

(control-monoculture vs. impact-polyculture).  As expected, the fungus uniformly reduced 

feedstock yield, productivity, and temporal stability across both treatments (Fig. 2).  

Additionally, I found no significant effect of biodiversity on the response measured in 

feedstock production metrics to fungal infection (Sections 3.2, 3.3, and 3.4).  This can be 

seen in Fig. 2, in which both before and after fungal infection there was no significant 

difference between monoculture and polyculture yield, productivity, and temporal stability.  

No difference between treatments is likely due to the species used for the monoculture 

treatment (S. capricornutum) being both competitively dominant and least susceptible to 

infection causing the polyculture treatment to rapidly become entirely composed of S. 

capricornutum (Section 3.5).   
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Figure 2.  Mean for productivity (a), stability (b), and maximum biomass achieved immediately 
prior to harvest (c).  Central data point represents overall mean for each treatment.  Distributed data 
points represent mean for each replicate pond. Error bars represent the standard error of the grand 
mean. 

 

3.1 Physical and Chemical Conditions of Ponds 
 Over the 43-day course of the experiment, the mean physical and chemical 

conditions of the replicate ponds were comparable between treatments (Control-monoculture 

vs. Impact-polycultures) and between time periods (Before vs. After fungal infection).  

Supplemental Fig. S3 shows the time-series for average daily water pH, salinity, 



16 
 

 
 

conductivity, oxygen saturation, dissolved oxygen, and water temperature.  These time-

series data are represented as treatment and time period means in Fig. S4, and a statistical 

comparison of treatment and period means is given in Tables S1 and S2.  Fig. S4 and the 

two supplemental data tables show that the daily mean physical and chemical conditions of 

the ponds did change between time periods (e.g. water temperature increased, and oxygen 

saturation declined through time).  However, there was no evidence that the 

physical/chemical conditions changed differently through time among treatments.  

Therefore, raceway ponds were homogenous with respect to each other in their 

physical/chemical conditions.   

3.2 Areal Productivity 
 I found no significant difference in areal productivity, feedstock stability, or 

maximum biomass yield between the Control (monoculture) and Impact (polyculture) 

treatments.  Areal productivity averaged 12.66 ± 0.44 g m-2 day-1 prior to infection in the 

Control (monoculture), and a nearly identical 12.50 ± 0.29 g m-2 day-1 in the Impact 

(polyculture) treatment (Fig. 2A). After introduction of the parasitic fungus, areal 

productivity declined in both treatments to 9.72 ± 0.07 g m-2 day-1g m-2 day-1 in the Control 

(monoculture) and 10.39±0.40 g m-2 day-1 in the Impact (polyculture) treatment (Fig. 2A). 

BACI analysis revealed no significant differences in areal productivity between treatments, 

and no difference in response of the treatments between the two time periods (Table 1). 

Thus, the means of the replicate ponds were the same among treatments and declined by the 

same magnitude after fungal infection. 
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Table1.  Analysis of Variance Effects Test Results  
 

   Mean Productivity Mean Stability Mean Maximum 
Biomass 

Effect df  MS F p MS F p MS F p 

Treatment 1  0.194 0.589 0.465 0.508 0.497 0.501 0.0003 0.080 0.785 

Period 1  19.165 58.289 <0.000 34.919 34.1793 <0.000 0.069 18.290 0.003 

Trmt:Period 1  0.531 1.6159 0.239 0.491 0.481 0.508 0.003 0.716 0.422 

 

3.3 Biomass Stability 
 The mean feedstock biomass stability (inverse CV) prior to infection averaged 

3.50 ± 1.09 for the Control (monoculture) and 4.34 ± 0.39 for the Impact (polyculture) 

treatments (Fig. 2B).  After fungal infection, mean feedstock stability decreased in both 

treatments to 0.50 ± 0.15 in the Control (monoculture) and 0.52 ± 0.10 in the Impact 

(polyculture) treatment (Fig. 2B).  BACI analysis showed no significant differences in either 

feedstock stability between treatments or response of the treatments between periods (Before 

vs. After infection).  Therefore, the mean feedstock stability did not differ between 

treatments, and decreased by the same magnitude after fungal infection. 

3.4 Maximum Biomass Yield 
 The maximum biomass yield achieved prior to a harvest for the time-frame before 

fungal infection was 0.99 ± 0.04 g L-1 for the Control treatment, which was virtually equal to 

the 0.95 ± 0.04 g L-1 for the Impact treatment (Fig. 2C).  During the after-infection period, 

maximum biomass yield declined for both treatments to 0.81 ± 0.03 g L-1 for the Control 

verses 0.83 ± 0.04 g L-1 for the Impact treatment.  The BACI analysis showed no significant 

difference in maximum biomass yield between treatments or a differential response to 

fungal infection (Table 1).  Thus, both maximum biomass yield between treatments was the 
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same for each period (Before vs. After infection) and decreased by the same magnitude after 

fungal infection.   

3.5 Fungal Infection 

The lack of any differences in response variables between treatments (Control - vs. 

Impact) was most likely due to S. capricornutum being both a competitively dominant 

species and being least susceptible to the fungal parasite.  Prior to the intentional 

introduction of the fungal parasite on Day 23, no significant signs of infection were 

observed in any algal species.  Prior to fungal infection, S. capricornutum maintained the 

highest proportion of total cell density in the Impact-polyculture treatments and C. 

sorokiniana and S. obliquus maintained a lower, but relatively similar proportional cell 

density to one another (Fig. 3A).  However, within five days of fungal infection, the average 

Impact (polyculture) treatment pond became dominated by S. capricornutum (>90% of total 

cell density), and these ponds were almost entirely composed of S. capricornutum by the 

end of the experiment (Fig. 3A).   
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Figure 3.  Time series showing the mean proportion of total cell density that is composed of each 
species in polyculture (A), and the proportion of the of each species infected with the fungus in both 
polycultures and monocultures (B).  Data shown is the mean across all replicate ponds for each 
treatment.  Highlighted yellow section of both graphs represents the experimental period post 
infection.  Vertical light-grey dotted lines indicate harvest days.  Data collected on harvest days are 
pre-harvest. Vertical red dashed line represents the day of infection (day 23).  Error bars represent 
the standard error. Proportion infected for days 0-24 not shown because infection was not detected 
prior to inoculation on day 23. 

 

S. capricornutum dominating the polyculture treatments after infection is likely 

attributed to S. capricornutum being least susceptible to the fungal pathogen and C. 

sorokiniana and S. obliquus both being highly susceptible.  The average proportion of S. 

capricornutum becoming infected in either monoculture or polyculture was maintained at 

less than 0.03 (Fig. 3B).  In contrast, both C. sorokiniana and S. obliquus demonstrated high 

susceptibility to infection, and within 2 days after introducing fungus the proportion of cells 

infected of each species increased rapidly (Fig. 3B).  Throughout the remainder of the 
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experiment C. sorokiniana and S. obliquus maintained high average infection proportions 

(~0.49 and ~0.32, respectively).  The high susceptibility to infection of C. sorokiniana: and 

S. obliquus in conjunction with very low susceptibility of S. sorokiniana likely explains why 

the Impact-polyculture treatments quickly became dominated by S. sorokiniana, in effect 

transitioning to a monoculture.  Thus, this rapid shift in community composition within the 

Impact-polyculture treatment after infection reasonably accounts for Treatments (Control-

monoculture vs. Impact-polyculture) not differing with respect to productivity, stability, and 

maximum biomass yield within the period After infection. 

4. Discussion 
Many prior studies have shown that diverse algal cultures can enhance certain 

properties that are desirable in algal biofuel feedstock production. For example, polycultures 

relative to monoculture feedstocks have been shown improve temporal stability in variable 

temperature environments, delay invasion from unwanted algae species, and  improve 

nitrogen and phosphorus use efficiencies [12, 16, 17].  Additionally, polycultures have 

demonstrated the ability to perform more functions at a higher levels compared to the 

component species grown in monoculture [12, 17].  However, to my knowledge, no study 

has tested whether diverse algal cultures help feedstocks resist the impacts of disease.  

Invasion from pest species in outdoor algal cultivation can rapidly result in culture crashes 

and complete loss of feedstocks, which presents one of the main limiting factors for 

successful cultivation [6, 20, 41].  Thus, developing effective disease mitigation strategies 

will improve the feasibility of large-scale algal biofuel cultivation. 

Here I provide the first empirical test of whether multi-species feedstocks increase 

resistance to a fungal pathogen. Fungal pathogens, especially aphelid and chytrid fungal 

strains, represent one of the greatest challenges to algal cultivation, as they can quickly 
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proliferate through cultures and result in high host mortality [21, 22].  In this study, I 

hypothesized that more diverse algal cultures would reduce the prevalence of fungal disease 

by generating a dilution effect. The dilution effect occurs when an increase in host species 

diversity leads to a reduction in the risk of disease within an entire community [31]. 

Contrary to my hypothesis, I found that polycultures and monocultures did not differ in their 

disease risk, thus biodiversity did not confer greater disease resistance through a dilution 

effect.  Because the competitively dominant species (S. capricornutum) was also the most 

resistant to the parasite it quickly dominated the monocultures after infection.  

The lack of a dilution effect in this study contrasts with a body of literature from the 

field of disease ecology that has shown that more diverse communities are often less 

susceptible to disease than are less diverse communities [27, 42-44].  Biodiversity can 

‘dilute’ the prevalence of disease via several mechanisms. One proposed mechanism for 

disease dilution occurs when less susceptible host species reduce the relative abundance of 

more susceptible host species in a community [31].  In turn, a greater relative abundance of 

less susceptible host species ‘dilute’ the risk of disease establishment and spread throughout 

the community. In my study system, this mechanism did not operate because its assumptions 

were not met. To the contrary, I found that the competitively dominant algae (S. 

capricornutum) was also least susceptible to fungal disease. Therefore, when S. 

capricornutum came to dominate the algal polycultures, it increased the relative abundance 

of less susceptible hosts, and decreased the relative abundance of more susceptible host 

species (C. sorokiniana and S. obliquus). In turn, there was no reduction in disease risk in 

the algal polycultures compared to a monoculture of S. capricornutum (Fig. 3).  Essentially, 
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the polycultures behaved as a monoculture with disease resistance driven by the biology of 

S. capricornutum. 

Of course, these results are limited in scope because I used a limited species pool of 

algae and exposed them to just one type of pathogen. I chose the species that were the focus 

of this study based on several years of prior work that specifically sought to identify the 

most productive and stable species monoculture (S. capricornutum) and polyculture from a 

species list that started with 55 Chlorophycean and Charophycean green algae that are 

commonly used in biofuel research [12, 16, 17, 34, 35].  My goal was to pit the single best 

mono- verses polyculture against each other in a test of disease resistance to determine if 

species consortia have advantages over traditional monoculture feedstocks that are exposed 

to and treated for common fungal infections. However, because the species pool was 

limited, this experiment should be interpreted as a single case study, rather than as general 

evidence against the operation of dilution effects in algal feedstocks. It is quite possible, 

perhaps even likely, that dilution effects will be identified in future studies that use different 

species pools that conform more to the assumptions of models of dilution effects. 

Accordingly, it may still be possible to identify algal species that have complimentary levels 

of disease susceptibility spanning a range of pathogens that might improve temporal yields 

and stability in outdoor cultivation ponds.   

In addition to finding no benefit of algal diversity for disease resistance, I found no 

evidence that algal polycultures outperform monocultures in terms of algal production and 

stability. Such results also contrast with certain prior studies, such as those by Shurin et al. 

[10, 14] and Stockenreiter et al. [15, 18], which have found that the best performing 

polyculture obtains higher biomass yields than that of the component species grown in 
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monocultures.  However, I emphasize that most prior work has been performed in highly 

controlled laboratory conditions, and it is presently unclear if such results can be replicated 

in the less controlled, more variable conditions of outdoor production. My results are more 

comparable to those of Godwin et al. [12], who found that under outdoor cultivation, 

polycultures obtained lower biomass yield and stability compared to the best performing 

component species grown in monoculture. This one case study emphasizes that diverse algal 

polycultures can maintain similar levels of productivity and have equal disease resistance to 

that of certain monoculture. Whether or not this study represents a generality will require 

that additional outdoor pond experiments using a greater variety of species are performed. 
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5. Supplemental Figures 
 

 

Figure S1.  Compound microscope image at 400x of characteristic infection properties in 
Scenedesmus obliquus. 

 

 

Figure S2.  Photographs demonstrating the scale up process of the algal cultures prior 
to inoculation in large experimental raceways. 
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Figure S3:  Mean daily measurements for physical and chemical conditions of ponds. 
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Figure S4.  Overall mean physical and chemical conditions for ponds before and after 
infection. 

 

Table S1: ANOVA Results for Physical and Chemical Conditions 

   Salinity pH Oxygen Saturation 

Effect df  MS F p MS F p MS F p 

Treatment 1  0.004 1.098 0.325 .0006 1.231 0.329 1.23 0.007 0.936 

Period 1  0.028 6.920 0.030 .002 2.939 0.161 2675.70 15.954 0.016 

Trmt:Period 1  0.0004 0.089 0.774 .002 4.670 0.097 149.19 0.890 0.400 

Table S2: ANOVA Results 

   
Temperature Conductivity Dissolved Oxygen 

Effect df  MS F p MS F p MS F p 

Treatment 1  0.369 1.774 0.254 17627 1.422 0.267 0.053 0.057 0.823 

Period 1  27.065 130.460 0.0003 109883 8.862 0.018 25.148 27.139 0.007 

Trmt:Period 1  0.300 1.446 0.295 1825 0.147 0.711 0.764 0.825 0.415 
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