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Abstract 
 
Zero tillage has become more popular among smallholder farmers and understanding patterns of 
adoption is crucial for evaluating the financial, agricultural and environmental impact of tillage 
practices on agroecosystems. However, detecting tillage practices is still challenging in 
smallholder fields (<2 ha) because historically-available satellite data are too coarse in spatial 
resolution to map individual smallholder fields. In this study, we used newer, higher-resolution 
satellite data from Sentinel-1, Sentinel-2, and Planet to map tillage practices in northeast India. We 
specifically tested the classification performance of single sensor and multiple sensor random 
forest models, and the impact of spatial, temporal, or spectral resolution on classification accuracy. 
We found when considering a single sensor, Planet imagery (3 m) had the highest classification 
accuracy (86.55%) and radar Sentinel-1 data (10 m) did little to improve classification accuracy 
(62.28%). When considering sensor combinations, combining three sensors achieved the highest 
classification accuracy (87.71%), though this was only marginally better than the Planet only 
model. We also found that high levels of accuracy could be achieved by using imagery only 
available during the sowing period. Considering the impact of improved spatial, temporal, and 
spectral resolution, we found that improved spatial resolution from Planet contributed the most to 
improved classification accuracy. Overall, it is possible to use readily-available, high spatial 
resolution satellite data to map tillage practices of smallholder farms, even in heterogeneous 
systems with small field sizes. 
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Using Sentinel-1, Sentinel-2, and Planet Satellite Data to Map Field-
Level Tillage Practices in Smallholder Systems 

1. Introduction 

Conventional tillage (CT) is used to control weeds, incorporate crop residue, and prepare 
lands for planting, but minimizing soil disturbance, reducing soil erosion, and maintaining soil 
cover are critical to improving soil health. Over the last few decades, many studies have shown 
that zero tillage (ZT) has agronomic and economic benefits compared to CT (Keil et al. 2020), 
(Mondal et al. 2020; Nyborg and Malhi 1989). The amount of land area under ZT has increased 
steadily since the 1990s (Derpsch et al. 2010), yet quantifying the exact area under ZT has been 
challenging given that typical methods used to collect such information, such as censuses, are not 
implemented in all regions of the world due to financial, accessibility, and labor constraints 
(Kubitza et al. 2020). This is particularly true in smallholder systems, where small-scale studies 
have suggested that ZT adoption rates have increased steadily in recent years (Kassam, Friedrich, 
and Derpsch 2019). Understanding ZT adoption in smallholder systems is critically important 
given that is has been shown to be an important way to sustainably intensify cereal grains in these 
systems. Remote sensing can offer an alternative and low-cost way to quantify ZT adoption at 
large spatial and temporal scales.  

Numerous detection techniques have been developed to map tillage practices at broad 
spatial scales (Obade and Gaya 2020; Zheng et al. 2014), yet these approaches may not be suitable 
for detecting tillage practices in smallholder systems (Azzari et al. 2019; Beeson, Daughtry, and 
Wallander 2020). This is largely because the size of smallholder fields (< 2 ha) is typically smaller 
than the spatial resolution of historically-available satellite imagery, such as Landsat (30 m) and 
MODIS (250 m) (Azzari et al. 2019; Jain et al. 2013), that have typically been used in previous 
tillage mapping studies. Over the last five years, new low-cost and higher-spatial resolution 
satellites, such as Sentinel-1 (10 m), Sentinel-2 (10 m) and Planet (3 m), have become available, 
and studies have shown that these sensors are better able to capture field-level variation of 
smallholder farms (Jain et al. 2016, 2019; Jin et al. 2019). It is possible that these higher resolution 
sensors may be able to effectively map tillage practices in smallholder systems, yet to date, no 
studies currently exist that have used these higher resolution satellite datasets to map tillage 
practices in smallholder systems.   

Previous studies that have used satellite data to map tillage practices have found that using 
multiple sensors in classification algorithms can improve accuracy. For example, Beeson et al. 
(2016) found that combining multi-temporal Landsat 5, Landsat 7 and Landsat 8 resulted in 
increased accuracies compared to using individual sensors. In addition, Azzari et al. (2019) found 
that combining optical Landsat satellite data and radar Sentinel-1 data led to higher classification 
accuracies of tillage practices across the United States Midwest, although the contribution of 
Sentinel-1 data was small. In smallholder systems, it is possible that combining Planet, Sentinel-
1, and Sentinel-2 satellite data may improve classification accuracies. Sentinel-1 has the advantage 
of being insensitive to water vapor and cloud cover, providing data more regularly through time 
than optical sensors. This is important in smallholder systems given that the majority of 
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smallholder systems are found throughout the tropics with periods of high rainfall and cloud cover 
(Jin et al. 2019). Sentinel-2 imagery has multiple spectral bands that cover the visible, near-infrared 
(VNIR), shortwave-infrared (SWIR), and red-edge wavelengths; red-edge spectral bands are 
particularly critical for mapping vegetation characteristics (Delegido et al. 2011; Sun et al. 2020). 
Planetscope imagery has higher spatial resolution, which may reduce the effect of mixed pixels at 
field edges (Li et al. 2019).   

Though previous studies have shown that classification accuracy of mapping agricultural 
characteristics, including crop type and yield, can be improved by using images throughout the 
growing season (Jain et al. 2016; Sun et al. 2019; Van Niel and McVicar 2004; Wei et al. 2019), 
it is possible that only using images during the early part of the growing season may result in high 
classification accuracies for mapping tillage practices. This is because most spectral and 
phenological differences are likely to occur at the start of the growing season as fields are prepared 
and seedlings germinate. Producing accurate maps of tillage practices using only early season 
imagery could allow for within season mapping of ZT areas; such information could be important 
for policy makers and decision-makers who could use such maps in real time to target low adoption 
areas with increased extension services and government services (Marenya et al. 2017). 

 This study examines the ability of PlanetScope, Sentinel-1, and Sentinel-2 imagery to map 
field-level ZT and CT of smallholder farms. We focus our study in the state of Bihar in eastern 
India, which is a region where zero tillage adoption has increased over the last decade (Keil 2017) 
and where field sizes are very small (< 0.3 ha on average) (Jain et al. 2019). We aim to answer the 
following questions in this study: 

1. How effectively can single sensor and multiple sensor combinations of Planet, Sentinel 1, 
Sentinel 2 map field-level tillage practices of smallholder farms? 

2. Does improved spatial, temporal, or spectral resolution lead to greater increases in accuracy?  
3. Can we use only early season imagery to effectively map tillage practices, which can be 

used to provide within-season maps of ZT adoption? 

This study is one of the first to examine how well tillage practices can be mapped in 
smallholder systems using newer high-resolution satellite imagery. While the analyses presented 
in this paper are specific to our study area in India, it is likely that the broad findings found in our 
study can be used to inform the most effective ways to map tillage practices in other smallholder 
systems across the globe. 

 

2. Method 
2.1 Study area  

The study was conducted in Arrah district, Bihar, India (25.47°N, 84.52°E) during the 
winter growing season in 2017 (Figure 1). Bihar is endowed with good soil and a high amount of 
rainfall, but its agricultural productivity is one of the lowest among Indian states (Bihar 2008). 
Although the adoption of ZT technology in Bihar is increasing through time, it is still limited 
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because many farmers lack awareness of ZT and do not have access to machinery required for ZT 
(Keil, D’souza, and McDonald 2017).  

We focused on a 30 by 70 km2 region where there was variation in tilling practices, and we 
collected ground truth data from 20 villages distributed across the study area. This region is 
predominantly comprised of smallholder agriculture (< 2 ha), with farms covering over 80% of 
land area and with over 80% of the region’s population taking part in farming (Salam, Anwer, and 
Alam 2013). There are two main cropping seasons in this region, the monsoon (kharif) season, 
which spans from June to October and is when most farmers plant rice, and the winter (rabi) season, 
which spans from November to April and is when most farmers plant wheat (Jain et al. 2016). Our 
study only focused on wheat fields planted during the winter cropping season. The sowing dates 
of wheat vary widely across the study region from mid-November to late December, and harvest 
dates largely occur in early to mid-April (Newport et al. 2020).  

 
Figure 1. Maps showing (A) the location of our study area in India, (B) our study polygons plotted in Arrah district, 

Bihar and (C) a zoom in of our polygons overlaid on Planet imagery  
 

2.2  Field Data Collection and Polygon Digitization 

Ground truth data were collected during October 2017 by field staff from the Cereal 
Systems Initiative of South Asia (CSISA). The survey collected information on tillage practices, 
including whether the field was CT or ZT, and residue for each field (See Appendices Table 1). In 
addition, we collected GPS locations at the four corners and at the center of each field which were 
later used to manually digitize field boundaries. We did this by overlaying all GPS points on high-
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resolution imagery in Google Earth Pro and manually drew polygons that connected the four 
corner GPS locations. We then adjusted these polygons to match visible field boundaries that we 
could see in the high-resolution imagery. We selected the image date within Google Earth Pro that 
was closest to our time of survey to ensure that visible field boundaries in the imagery were 
consistent with the field boundaries that we surveyed on the ground. Our survey data were 
collected from a total of 160 fields, with 65 fields representing ZT and 95 fields representing CT. 

 
2.3  Satellite Data and Pre-processing 

We selected the time period for our analysis by considering the timing of cropping cycles 
in this region as well as the phenologies of ZT and CT fields (Figure 2). Considering the timing of 
cropping cycles, wheat was planted in our study area from November 11 to December 31, with 
tillage occurring from mid-October to early November. To ensure that we captured the full range 
of when the field was fallow prior to planting wheat, we used October 1st as the first date of our 
study period. Considering NDVI (normalized difference vegetation index) phenologies, we 
observed that NDVI values became very similar after mid-February for fields that used the two 
tillage practices (Figure 2). Thus, we used March 1st, 2018 as the last date of our study period. We 
defined the sowing season as October 1 to December 31, since this time period spanned the full 
range of sowing dates in our dataset.  

 
Figure 2. Phenology curves generated from averaged NDVI values of all ZT and CT fields for the 2017-18 growing 

season using Sentinel-2 imagery. 
 

 To analyze the how effectively higher-resolution, readily-available satellite imagery could 
map smallholder tillage practices, we used images from three different satellite sensors: 1) 
Synthetic Aperture Radar (SAR) Sentinel-1 (Torres et al. 2012), 2) multi-spectral Sentinel-2 
(Drusch et al. 2012), and 3) multi-spectral PlanetScope (Marta 2018). We obtained Sentinel-1 and 
Sentinel-2 data through Google Earth Engine (GEE) (Gorelick et al. 2017) and PlanetScope 
imagery through the Planet API (Marta 2018).  

We obtained 13 Sentinel-1 C-band Level-1 Ground Range Detected images during our 
study period (Table 1). They were acquired on a descending orbit in Interferometric Wide swath 
mode (IW). Prior to ingestion into GEE, the data were preprocessed using the Sentinel-1 Toolbox 
(Luis et al. 2014). Since speckle filtering was not done prior to ingestion, we implemented speckle 
filtering using the Refined Lee speckle filter code developed by Guido Lemoine 
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(https://code.earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5) and converted 
backscatter values to decibels using a logarithmic transformation. The bands and indices we used 
from Sentinel-1 are shown in Table 2. The intensity cross-ratio (CR) VV/VH was included as 
previous studies have shown that it is helpful for differentiating vegetation types (Vreugdenhil et 
al. 2018). We resampled all Sentinel-1 images to 3 m resolution to match fine-scale PlanetScope 
data using bilinear interpolation in GEE.  

Table 1. List of acquisition dates of satellite images used in our study  

Dataset   Sentinel-1 Sentinel-2 PlanetScope 
 
 
 
 
Sowing season 
 
 
 
 
 
 
 
 
 

  10/03/2017 
10/15/2017 
10/27/2017 
11/08/2017 
11/20/2017 
12/02/2017 
12/14/2017 
12/26/2017 
  

10/08/2017 
10/23/2017 
10/28/2017 
11/12/2017 
11/22/2017 
12/02/2017 
12/12/2017 
 
 
 

10/08/2017 
10/13/2017 
10/15/2017 
10/24/2017 
11/01/2017 
11/04/2017 
11/07/2017 
11/13/2017 
11/18/2017 
12/08/2017 
12/14/2017 

  01/07/2018 
01/19/2018 
01/31/2018 
02/12/2018 
02/24/2018 

01/31/2018 
02/05/2018 
02/15/2018 
02/20/2018 
 

01/23/2018 
02/03/2018 
02/11/2018 
02/21/2018 
02/27/2018 

 

We obtained 11 Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) scenes from GEE during 
our study period (Table 1). We only selected images that had less than 10% cloud cover, and 
visually inspected all selected images to ensure that there was no cloud cover over our field 
polygons. We then applied surface reflectance (SR) correction to all tiles using the radiative 
transfer emulator Second Simulation of the Satellite Signal in the Solar Spectrum (6S) (Wilson 
2013). The 6S algorithm generates interpolated look-up tables (LUTs) under different atmospheric 
conditions, considering solar zenith, ozone, and surface altitude. These LUTs are then used to 
calculate atmospheric correction coefficients which convert TOA radiance to SR. The bands and 
indices that we used from Sentinel-2 are shown in Table 2. We did not consider bands B1, B9 and 
B10 because these bands represent atmospheric features, including aerosols, water vapor, and 
cirrus, and are not measures of the surface reflectance of land features. We computed eight spectral 
indices that were shown to help differentiate vegetation and/or tillage practices in the previous 
literature (Table 2). We resampled all Sentinel-2 images to 3 m resolution to match fine-scale 
PlanetScope data using bilinear interpolation in GEE. 

 We obtained 16 low-cloud Level-3B surface reflectance PlanetScope images (Table 1) that 
had been atmospherically corrected using the 6S radiative transfer model with ancillary data from 
MODIS (Anon n.d.). We defined low-cloud images as those with less than 5% cloud cover, and 
we further visually inspected all filtered images to ensure that there was no cloud cover over our 
field polygons. We mosaicked all individual image tiles from the same date using color matching 
of the overlapping regions using the raster package in R Project Software (Team 2013). Previous 
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studies have shown that there are still inaccuracies in SR correction in the Level-3B product 
(Houborg and McCabe 2018). Thus, we conducted additional SR correction by histogram 
matching PlanetScope data and Sentinel-2 imagery using methods from Jain et al (Jain et al. 2016). 
The bands and indices that we used from PlanetScope are shown in Table 2. We computed the 
same indices as those calculated from Sentinel-2 using the red, green, and NIR bands (Table 2). 

Table 2. Band and index information for the three sensors used in this study 

Sensor Spectral Index & 
Band 

Description (Mean Wavelength: µm) Reference 

 
Sentinel-1 

VV 
VH 

vertical transmit/vertical receive 
vertical transmit/horizontal receive 

 

CR Log ratio of (VV/VH) (Vreugdenhil et al. 
2018) 

 
 
 
 
 
 
 
 
 
 
 
 
Sentinel-2 

B1 – not used 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B8A 
B9 – not used 
B10 – not used 
B11 
B12 

Coastal Aerosols (0.443)  
Blue (0.490) 
Green (0.560) 
Red (0.665) 
Red Edge 1 (0.705) 
Red Edge 2 (0.740) 
Red Edge 3 (0.783) 
NIR (0.842) 
Red Edge 4 (0.865) 
Water Vapour (0.945)  
Cirrus (1.375)  
SWIR 1(1.610) 
SWIR 2 (2.190) 

 

NDTI 
CRC 
NDVI 
GCVI 
OSAVI 
NDI5 
NDI7 
STI 

(SWIR1 – SWIR2) / (SWIR1 + SWIR2) 
(SWIR1 – Green) / (SWIR1 + Green) 
(NIR - Red) / (NIR + Red) 
(NIR / Green) − 1 
(NIR - Red) / (NIR + Red + 0.16) 
(NIR - SWIR1) / (NIR + SWIR1) 
(NIR – SWIR2) / (NIR + SWIR2) 
 SWIR1 / SWIR2 

(Peña-Barragán et 
al. 2011) 
(Sullivan et al. 
2006) 
(S. Fletcher 2016) 
(Gitelson et al. 
2003) 
(Steven 1998) 
(Peña-Barragán et 
al. 2011) 
(Peña-Barragán et 
al. 2011) 
(van Deventer et al. 
1997) 

 
 
 
PlanetScope 

B1 
B2 
B3 
B4 

Blue (0.485) 
Green (0.545) 
Red (0.630) 
NIR (0.820) 

 

GCVI 
OSAVI 
NDVI 

(NIR / Green) − 1 
(NIR - Red) / (NIR + Red + 0.16) 
(NIR - Red) / (NIR + Red) 

(Gitelson et al. 
2003) 
(Sullivan et al. 
2006) 
(S. Fletcher 2016) 
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2.4 Random Forest Classification 

We used random forest (RF), an ensemble-based algorithm, to classify ZT versus CT fields. 
To ensure even representation in our training data regardless of field size, we randomly sampled 
twenty pixels from each field; for fields that were smaller than twenty pixels, we considered all 
available pixels within that field. In addition, we ensured an equal ratio between ZT and CT fields 
in both our training and validation datasets. To reduce the effect of multicollinearity on our 
analyses given the large number of features considered in our models, we removed highly 
correlated features (r > 0.9) using the caret package in R Project Software (Kuhn 2008). We set 
the number of trees for RF parameters as 500 and the number of features as √𝑝𝑝, where p equals 
the number of features in the dataset. All RF classifier operations were run using the package 
randomForest in R Project Software (Ayyadevara 2018). The input datasets for all seven models 
for sowing season and full season analyses are shown in Table 3. 

Table 3. Feature components of different sensor and sensor combinations and full and sowing season models  

Model Sensor & Sensor 
combinations 

No. of 
Features 

No. of 
Selected 
Features 

Feature Components 

 
 
 
 
 
Full 
Model 
 
 
 
 

Sentinel-1 39 15 (2 bands + 1 index) × 13 dates 
Sentinel-2 198 56 (10 bands + 8 indices) × 11 dates 
Planetscope 112 34 (4 bands + 3 index) × 16 dates 
Sentinel-1 + Sentinel-2 237 61 (2 bands + 1 index) × 13 dates + 

(10 bands + 8 indices) × 11 dates 
Sentinel-1 + Planetscope 151 45 (2 bands + 1 index) × 13 dates + 

(4 bands + 3 index) × 16 dates 
Sentinel-2 + Planetscope  310 77 (10 bands + 8 indices) × 11 dates+ 

(4 bands + 3 index) × 16 dates 
Sentinel-1+ Sentinel-2 + 
Planetscope 

349 88 (2 bands + 1 index) × 13 dates + 
(10 bands + 8 indices) × 11 dates+ 
(4 bands + 3 index) × 16 dates 

 
 
 
 
Sowing 
Model 

Sentinel-1 24 11 (2 bands + 1 index) × 8 dates 
Sentinel-2  126 38 (10 bands + 8 indices) × 7 dates 
Planetscope  77 25 (4 bands + 3 index) × 11 dates 
Sentinel-1 + Sentinel-2 150 41 (2 bands + 1 index) × 8 dates + 

(10 bands + 8 indices) × 7 dates 
Sentinel-1 + Planetscope 101 30 (2 bands + 1 index) × 8 dates + 

(4 bands + 3 index) × 11 dates 
Sentinel-2 + Planetscope  203 49 (10 bands + 8 indices) × 7 dates+ 

(4 bands + 3 index) × 11 dates 
Sentinel-1+ Sentinel-2 + 
Planetscope 

222 55 (2 bands + 1 index) × 8 dates + 
(10 bands + 8 indices) × 7 dates+ 
(4 bands + 3 index) × 11 dates 

 

We evaluated our model using boostrapping, where 70% of field polygons were used for 
model training and 30% of field polygons were used for model validation. We conducted the 
bootstrap analysis for 400 iterations as previous work has shown this leads to results with a 95% 
confidence level (Davidson and MacKinnon 2000). 
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2.5 Impact of spatial, temporal, and spectral resolution 

To better understand the effect of improved spatial, temporal, or spectral resolution on 
classification accuracies, we conducted analyses that examined the individual contribution of each 
in our models. First, to assess the contribution of spatial resolution on classification accuracies, we 
resampled the spatial resolution of Planet (3 m) to 10 m to match the spatial resolution of Sentinel-
2 imagery using bilinear interpolation in GEE. We reran our single sensor Planet model using the 
aggregated, coarser resolution (10 m) data, and compared model results with those from the model 
using the original Planet data (3 m). Second, to identify the impact of improved temporal resolution 
on classification accuracy, we reduced the number of images used in our Planet analysis to only 
those dates that were similar to those available with Sentinel-2 data (Table 1). We then reran our 
single sensor Planet model using these limited dates (7 dates), and compared the results of this 
model with those from the original Planet model that included all available image dates (11 dates). 
Finally, to assess the impact of increased spectral information on classification accuracies, we 
reduced the number of bands and indices used in the single sensor Sentinel-2 model to match those 
used in the single sensor Planet model. We then reran our single sensor Sentinel-2 model using 
these limited spectral bands and indices (7 bands and indices), and compared the results of this 
model with those from the original Sentinel-2 model that included all available bands and indices 
(18 bands and indices). We only conducted these analyses using the sowing period data and 
compared results to those obtained using the original sowing period models.  

 
3. Results 

 Considering which sensor and sensor combinations led to the highest classification 
accuracy (Research Question 1), we found that for single sensor models, PlanetScope led to the 
best performing model for both the sowing period and full period models. The Planet model 
obtained accuracies that were 3-5% higher than the next best performing single sensor model that 
used Sentinel-2 data. Findings indicated that the model that used only Sentinel-1 data performed 
poorly, with accuracies at least 20% lower than models using Sentinel-2 or Planet. We found that 
combining Sentinel-2 data and Planet data led to higher accuracies than individual sensor models, 
though this two-sensor model had an increase in accuracy of only 1% compared to the Planet 
model. We found that adding Sentinel-1 data did little to improve classification accuracy, and in 
many cases reduced overall accuracy compared to individual sensor models that used Sentinel-2 
or Planet imagery. Finally, we found that the highest classification accuracy in both the sowing 
period and full period models were obtained with the three-sensor model. The accuracies of the 
three sensor models, however, were only 1% better than the single sensor model that used Planet 
data.   

 Considering whether using only images from the sowing period could lead to high 
classification accuracies (Research Question 2), we found that models that used only image dates 
from the sowing period obtained accuracies that were very similar to the full season model, usually 
within a 1% difference. This was especially true for the models that included PlanetScope either 
in single or multi-sensor models. The biggest difference between the sowing versus full period 
models were seen for models that used Sentinel-2 data, with overall accuracies decreasing by 
approximately 3% for the sowing date model compared to the full model. These results suggest 
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that using only images during the sowing season is as effective as using images throughout the 
growing season in mapping tillage practices in this region.  

Table 4. Classification results for single and multiple sensor models during the sowing period (Oct - Dec) and full 
study period (Oct - Mar) 

 
Sensor & Sensor combinations 

Sowing Model 
Overall Accuracy 

Full Model Overall 
Accuracy 

Sentinel-1 61.24% 62.28% 
Sentinel-2 80.8% 83.24% 
PlanetScope 85.78% 86.55% 
Sentinel-1 + Sentinel-2 79.95% 82.65% 
Sentinel-1 + PlanetScope 86.03% 86.39% 
Sentinel-2 + PlanetScope 86.93% 87.61% 
Sentinel-1 + Sentinel-2 + PlanetScope  86.84% 87.71% 

 

 Finally, considering the impact of improved spatial, temporal, and spectral resolution 
(Research Question 3), we found that the model that used Planet satellite data aggregated to 10 m 
resolution led to a reduction in accuracy of 4.5% compared to the original Planet model using 3 m 
resolution data (Table 5). This result suggests that improved spatial resolution (3 m vs 10 m) 
moderately increases the accuracy of mapping field-level tillage practices. Considering temporal 
resolution, we found that the model that used 7 Planet scenes had a reduction in accuracy of 2% 
compared to the Planet model that used all 11 available scenes (Table 5). This result suggests that 
increased temporal resolution from Planet plays a minor role in improving accuracies. Finally, 
considering spectral resolution, we found that the model that used Sentinel-2 data with only the 
bands and indices available with Planet led to a reduction in accuracy of 0.5% compared to the 
original Sentinel-2 model (Table 5). This result suggests that the increased spectral resolution of 
Sentinel-2 does not play a significant role in mapping field-level tillage practices. 

Table 5. Classification results for low and high spatial, temporal, and spectral resolution models 

Changing 
Resolution  

Low Resolution Model Overall Accuracy High Resolution Model Overall Accuracy 

Spatial 81.32% (Planet images aggregated to 10 m) 85.78% (Planet images at 3 m) 

Temporal 84.55% (7 Planet scenes) 86.55% (11 Planet scenes) 
Spectral 80.17% (Sentinel-2 images with 7 bands and 

indices) 
80.8% (Sentinel-2 images with 18 bands 
and indices) 

 

4. Discussion and Conclusion 

Our study examined which satellite sensor and sensor combinations as well as time periods 
resulted in the highest classification accuracies for mapping tillage practices for smallholder farms 
in Bihar, India. We found that models that included Planet data led to the highest classification 
accuracies, and that models that included Sentinel-1 led to the lowest classification accuracies. 
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Though previous studies have found that using multiple sensors can lead to higher classification 
accuracies, we found that the best performing two sensor model and three sensor model only 
improved accuracies by approximately 1% compared to models that only used Planet data. This 
suggests that in the case of smallholder farms, Planet data alone may be able to effectively map 
tillage practices, at least during dry growing seasons with limited cloud cover. Considering time 
periods, we found that the models built using only data during the sowing period were as effective 
as models that used data throughout the growing season. This suggests that it may be possible to 
map tillage practices with high accuracy after sowing has ended, providing the ability to produce 
real-time, within season maps of zero tillage practices at scale. Our results broadly show that tillage 
practices can be mapped with high accuracy (> 86%), even in heterogeneous, smallholder systems 
when using relatively new high-resolution, readily available satellite imagery. 

We believe that the main reason Planet performed better than additional sensors is due to 
its higher spatial resolution. This is because our analyses that examined the individual effect of 
improved spatial, temporal, and spectral resolutions found that reduced spatial resolution led to the 
greatest change in model accuracies (4.5% compared to ≤ 2%). The reason improved spatial 
resolution is likely important for model accuracy is because Planet’s improved spatial resolution 
of 3 m leads to fewer mixed pixels than when using coarser Sentinel-2 imagery (10 m resolution; 
Figure 3) given the small size of fields within our study region (< 0.3 ha). Interestingly, even 
though PlanetScope has improved temporal coverage as well compared to Sentinel-2, this 
increased temporal availability improved model accuracy only modestly (2 %), despite more than 
doubling the number of images available. Sentinel-2 data led to models with moderate accuracy, 
though these models were only ~5% lower in accuracy compared to Planet models. Overall we 
found that Sentinel-1 led to low classification accuracies and did little to improve multi-sensor 
model accuracies; these results are similar to those found by Azzari et al. [4], which mapped tillage 
practices across the United States Midwest. 

Figure 3. (A) PlanetScope Image (3 m) and (B) Sentinel-2 Image (10 m) 

Interestingly, we found that models that relied on using data only from the sowing season 
had similar accuracies to models that used data from the full study period. This suggests that the 
factors that are most important for distinguishing between ZT and CT likely occur during the field-
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preparation and sowing periods. Mechanistically this makes sense given that ZT fields are often 
covered in crop residue in this region, while CT fields are often bare. This is because under ZT, 
farmers do not till the soil and can plant wheat seeds within remaining rice residue. This remaining 
residue may lead to higher NDVI values in ZT fields compared to CT (Figure 2) due to remaining 
green vegetated biomass from the prior rice harvest (Daughtry et al. 2005).   

 There are several limitations of our study. First, we predicted only a binary variable of ZT 
versus CT, instead of a continuous variable representing tillage intensity. In reality, farmers who 
practice CT have heterogeneous management, with farmers varying the number of times they till 
their fields. Previous studies have found that it is possible to accurately classify tillage intensity of 
large-scale farms (Azzari et al. 2019),and future work should explore whether this is also possible 
in smallholder systems. Second, we conducted our study during the largely dry winter growing 
season which has limited cloud cover compared to India’s main growing season during the 
monsoon. It is possible that which sensor(s) lead to the highest classification accuracies may differ 
during cloudy seasons where optical image availability is more limited. Previous studies, for 
example, have shown that Sentinel-1 becomes more important for improving classification 
accuracies during periods of high cloud cover when optical imagery is unavailable. This is largely 
because studies have shown that Sentinel-1 C-band data can appropriately detect vegetation 
phenologies across a wide range of land-cover types (Song and Wang 2019; Supriatna 2019), and 
our data suggest that ZT versus CT fields have distinct vegetation phenologies (Figure 2), 
particularly during the early part of the growing season. Finally, our study is limited in spatial and 
temporal scale; future work should examine how generalizable our findings are to different 
smallholder farming systems and across time.  

 In conclusion, we found that it is possible to use readily-available, high spatial resolution 
satellite data to map tillage practices of smallholder farms. In particular, Planet satellite data 
resulted in high classification accuracy models (> 86%) and including data from additional sensors 
did little to improve accuracies. Tillage practices can also be mapped effectively using only data 
from the period of sowing, suggesting that real-time, within season maps of tillage can be produced 
at scale. Our work highlights the important role of micro-satellite data to map agricultural 
characteristics of smallholder farms, which is exciting given that the temporal resolution of such 
imagery is only expected to increase over the coming years as additional satellites are launched.   
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Appendices 
Table S1. Crop Residue & Soil Till Information (Only collect this information for wheat plots) 

Did you till the soil before planting wheat?              Yes              No 

If yes: 

How many days before seeding wheat did you till your field?  

What did you use to till your soil (circle all applicable choices)? 

Rotovator 

Plough/Harrow 

Planking 

Other ________________ 

What was the number of passages you used for each method? 

Rotovator _________ 

Plough/Harrow _________ 

Planking ____________ 

Other _________________ 

What type of tractor did you use to till your soil? 

My own tractor 

Rented tractor 

Other _____________ 

Did you irrigate your wheat plot before sowing?              Yes              No 

If yes:  How many days before seeding did you irrigate your wheat?  

Which crop was grown before wheat seeding?  

How was this previous monsoon crop harvested?  

Manual 

Combine 

Other _________________ 

How was the previous monsoon crops’ residue managed?  

Collected 

Burnt 

Other _________________ 

What crop will you plant in this plot during the upcoming monsoon season?  

Will you till the soil before planting this monsoon crop? 

Yes, I already tilled 

Yes, I will till later 

No, I will not till 

If yes:  Will you do puddling before planting the monsoon crop, and is it 
deep or light? 

Yes, I do deep puddling 

Yes, I do light puddling 

No, I do not do puddling 


