2020 Comau MDP Project - Robotic 3D Tetris

Presented by: Travis Gurlik (CSE 2020, Engineering Honors Program)

Other Team Members: Joey Berman, Shannon Lau, Hannah Moon, Arjun Raman, \& Jonathan Wong

Faculty Mentor: Dr. Vineet Kamat

Sponsor Mentor: Joshua Graff

This presentation covers the Comau 2020 MDP project:

 Robotic 3D Tetris.

Our Solutions

Our project measures the dimensions of an incoming item and determines the optimal location for it within a container.

Point cloud of an incoming item

GUI visualization of a packed container

Our system measures incoming items by merging two point clouds and creating a minimal oriented bounding box.

Point cloud of the incoming item

The generated bounding box for the item

Our system packs items into the container using a modified version of the Online Bin Packing Heuristic.

Two items placed in a container

The corresponding Empty Maximal Spaces for the items

Our system displays data via two programs: a bin packing visualizer and a data and parameters interface.

The bin packing visualization

```
Starting packing server
Packing server started
Connected to visualization GUI
Received message "Visualization GUI connected"
Enter bin dimensions:
    Width: }10
    Height: 100
    Depth: 100
New item placed
    Dimensions
            Width: 30
            Height: 18
            Depth: 12
    Location:
        X: 0
        Y: 0
        Z: 12
Starting segmentation server
Segmentation server started
Waiting for next object
New object detected
object dimensions:
    Width: 42.0094
    Height: 19.7191
    Depth: 39.155
Waiting for next object
```

The data and parameter interface

The various components of our system communicate via the TCP/IP communication protocol.

```
start server
42.009388 19.719147 39.154961
Response sent
39.922001 45.582371 9.877568
Response sent
16.761137 38.411480 13.888736
Response sent
27.698500 23.869852 31.443544
Response sent
18.239223 25.670046 47.611488
Response sent
```

```
42.009388 19.719147 39.154961
Dimensions sent
Server received dimensions
39.922001 45.582371 9.877568
Dimenstons sent
Server received dimensions
16.761137 38.411480}13.88873
Dimenstons sent
Server received dimensions
27.698500 23.869852 31.443544
Dimenstons sent
Server received dimensions
18.239223 25.670046 47.611488
Dimensions sent
Server received dimensions
```


Our system's components met or made very good progress towards our original goals.

Our segmentation algorithm measures items within a 2.5% margin of error

Our bin packing algorithm fills at most 75% of the container

Our system worked as a whole and met our desired cycle time.

More realistic item modeling \& simulation would help our algorithms and the system as a whole better reflect reality.

An excerpt of the left view of our best packing case

Note the empty spaces between the items

The bin packing algorithm could be improved by cutting down on the empty spaces between items.

A top view of our best packing case

Combining the GUI's components into a single program would increase ease of use.

```
Starting packing server
Packing server started
Connected to visualization GUI
Received message "Visualization GUI connected"
Enter bin dimensions:
    Width: 100
    Height: 100
    Depth: 100
New item placed
    Dimensions:
        Width: 30
        Height: 18
        Depth: 12
    Location:
        X: 0
        Y: 0
    Z: 12
Starting segmentation server
Segmentation server started
Waiting for next object
New object detected
object dimensions:
    Width: 42.0094
    Height: 19.7191
    Depth: 39.155
Waiting for next object
Our current data and parameter
interface
```

Please input dimension of incoming item

An early prototype of our GUI

In summary, our project successfully solved the problem we were presented with, but can still be improved.

- We met our goal for accurately measuring items
- Our bin packing algorithm fills 75% of the container (our goal was 85\%)
- Our GUI is functional but could be a bit clearer

(

