
Honors Final Report

Organization: ​MDP, Little Caesars Enterprises Inc.

Sponsors:​ Tim Somero, Kevin Hinks

Faculty Mentor:​ Brent Griffin

Team:​ Batuhan Akcay, Susie Alptekin, Ziyang Ji, Kevin Li, Yue Yao, Ran Yoo

Date:​ Dec 11, 2020

Introduction

Little Caesar Enterprises Inc. is the third-largest pizza chain in the United States. It

operates and franchises pizza restaurants internationally. Little Caesars strives to always

deliver the best pizzas to its customer. However, it is not easy to maintain consistency in

quality at every place and every time.

One way to tackle this problem is to establish an automated pizza quality checking

process. Our team uses Image Analysis and Computer Vision to help Little Caesars

accomplish this goal. In the past year, we created a system that performs quality

checking after pizzas come out of the oven and detects bad quality pizzas before being

served to customers. The system is also connected to an online web application that

offers real-time specific feedback to Little Caesars employees regarding the pizza

quality. Employees are able to make changes as per the advice.

Project Review

This project focuses on building a software system to evaluate pizza quality. Our system

will share feedback of pizza quality with Little Caesars employees given a pizza image. In

the real use case, the images will be taken from cameras above the ovens in store

kitchens. However, implementing the camera system is out of our project scope, so we

only focus on working with images collected by ourselves. Deploying the Pizza Quality

Evaluator in Little Caesars stores will help employees to prepare high quality pizzas with

better consistency. Furthermore, in the future, the system could play an important role

if Little Caesars decides to automate the process of preparing pizza.

The final deliverable of this project is a web application with built-in neural network

models. The web application evaluates the quality of pizza given its image and generates

feedback to the employees via the user interface (UI). For example, given a burnt pizza

image, the final deliverable will inform the users that the pizza is not of high quality

because it is burnt. Given a pizza image with incorrectly placed toppings (bad topping

distribution), the users will be notified that the pizza is not of high quality because the

toppings are not equally distributed on the pizza.

Team Approach

We divided our team members into 3 subteams: Model, Data, and User Interface (UI).

The Model team was responsible for developing a fully functional model that analyzes

pizza quality given pizza images. Neural networks along with image analysis techniques

were used to accomplish this task. The Model team concluded that breaking up the

quality analysis into smaller parts would improve the accuracy and the quality of the

feedback. To execute this approach, neural networks were trained for each part of the

quality analysis, totaling the 5 following models: Pizza Classifier, Pizza Detector, Burnt

Classifier, Pizza Type Classifier, Pepperoni Detector. In addition to neural networks, the

image analysis process was responsible for cropping images, centering the image on the

pizza if it has one, and analyzing pepperoni distribution.

By pipelining the 5 neural network models together, the Model team were able to build

an end to end system. Given an image, it will first go through Pizza Classifier to

determine if a pizza is in the image. If so, the image will go through Pizza Detector to

detect the location of the pizza. Then, the image is cropped and centered on the pizza.

Then we will run Burnt Classifier on the image to classify if the pizza in the image is

burnt. If all criteria passes so far, Pizza Type Classifier will be run on the image to

classify the type of pizza. If the pizza type is pepperoni, we will run Pepperoni Detector

to locate the pepperonis and check if the pepperoni numbers are within a specified

range, and if they are evenly distributed. In order to improve the training speed, the

Model team utilized a Microsoft Azure Virtual Machine equipped with a GPU.

Figure 1: End-to-End system diagram

The Data team was responsible for collecting, storing, augmenting, and annotating a

diverse set of images for the neural network models. Images were collected mainly from

3 sources. Most of them were from the internet. A few of them were provided by the

Little Caesars corporate sponsors. The Data team also purchased some pizzas from

Little Caesars store directly and took pizza images themselves with different conditions

in a controlled environment.

Collected images were divided into 3 categories: training set, validation set, and testing

set. The training set was to help the Model team train separate models. The validation

set's images were similar to the training set. It was used to test the accuracy of

individual models. The testing set images were never utilized during the training and

validation of the models, but would be used to verify whether the real-life performance

of the models passed the threshold values or not. More specifically, the testing set was

composed of 90% good quality pizza, and 10% bad quality pizza, because the data team

thought this ratio could best mimic the real-life scenario happening in Little Caesars

store. The Data team used Microsoft Azure’s Blob Storage to store the images,

Microsoft’s Visual Object Tagging Tool to annotate them, and Python scripts to create

datasets from images and their corresponding annotations.

Figure 2: Sample Pizza Images from Testing and Validation Dataset

The User Interface team focused on building and deploying a user-friendly web

application that runs the neural network models in the back-end. The web application

would allow users to upload a pizza image, execute the end-to-end system to evaluate

the quality of the pizza, and display appropriate feedback to users. The web application

is hosted locally and is not accessible by users in the Little Caesars’ internal network.

This was approved by the Little Caesars sponsors due to security and confidentiality

reasons. The User Interface team also conducted user testing with Little Caesars

employees to improve the usability of the user interface and make sure our target users

are satisfied with the functions of our project. Flask and Yarn were used for the

back-end framework, while React was used for the front-end of the web application. The

User Interface team used Microsoft Azure’s App Services to deploy the web application.

Figure 3: User Interface of the Prototype for the Web Application

Critical Requirements and Results

For the successful completion of the project, we defined our requirements as follows.

Number Group Requirement Target Result

1.1 Model Validation Set Accuracy:

Pizza Classifier > 95%

Burnt Classifier > 95%

Pizza Type Classifier> 90%

Pizza Detector AP 50 > 95%

Pepperoni Detector AP 50 > 90%

Validation Set Accuracy:

Pizza Classifier = 99.6%

Burnt Classifier = 97.8%

Pizza Type Classifier = 97.2%

Pizza Detector AP 50 = 100%

Pepperoni Detector AP 50 = 90.38%

1.2 Model Testing Set Accuracy:

Pizza Classifier > 95%

Burnt Classifier > 95%

Pizza Type Classifier> 90%

Pizza Detector AP 50 > 95%

Pepperoni Detector AP 50 > 90%

Testing Set Accuracy:

Pizza Classifier = 98.52%

Burnt Classifier = 99.22%

Pizza Type Classifier = 97.48%

Pizza Detector AP 50 = 100%

Pepperoni Detector AP 50 = 90.93%

1.3 Model End-to-End accuracy > 90% End-to-End accuracy = 85.93%

2 System

Integration

End-to-End system can process 10

images and give feedback under a

total runtime of 1 minute

We didn’t start testing because we

prioritized satisfying model

performance requirements over

system runtime

Table 1: Critical Requirements and Results

We chose these critical requirements since they represent our project requirements from

frontend to backend. From users’ side, we would like our interface to be easy to use and

give clear feedback; from backend, in order for our whole system to work, we would like

our model to give accurate predictions; and the connection between frontend and

backend should be smooth and fast. The requirements above play an integral role in our

minimum viable product, which is why they are high priority for our sponsors.

For requirement 2, currently, our backend model can process 1 image and make

predictions under 1 second. However, loading all models and weight will take around 6

seconds. Due to time constraints and after discussing with our sponsors, we did not do

further optimization because we prioritized satisfying model performance requirements

over system runtime.

3.1 User

Interface

At least 80% of 15 users can

navigate the application from

image upload to receiving

feedback with minimal guidance

within 2 minutes

100% of 6 participating users can

navigate the application from image

upload to receiving feedback with

minimal guidance within 2 minutes

3.2 User

Interface

Conduct user testing on 15 users

and at least 80% of users correctly

identify the given feedback

through survey form

Conduct user testing on 6 users and

100% of users correctly identify the

given feedback through survey form

Table 2: Model Loading and Processing Time

For critical requirement 3, due to Covid-19, we were unable to conduct user testing in

person with kitchen employees. However, as an alternative, the team coordinated with

our sponsors and performed the test with 6 corporate office employees who also had

good knowledge on the kitchen operation.

Conclusion and Future Work

In the end to end system, the team found that feeding in a cropped image with pizza

centered would give a much better result. Which meant that our pizza detection and

Model loading time mean over 100 images 5.986s

Pizza Classifier prediction time 0.036s

Pizza Detector +Burnt Classifier prediction time 0.317s

Pizza Type Classifier prediction time 0.039s

Pepperoni Detector prediction time 0.294s

Distribution Analysis prediction time 0.005s

Overall time 6.677s

pizza cropping process could still be improved. Considering this observation, below are

a few suggestions for future work:

● Retrain Pizza Detector to detect more accurate pizza bounding boxes

● Conduct image analysis on uncropped images to make the whole system more

robust

Despite a few unfilled requirements, our team learned and grew a lot through this

project, both technically and professionally. One year ago when we started this project,

we did not have any background knowledge in Machine Learning. But now we built a

Computer Vision system from the ground up. We truly appreciate our sponsors and

faculty mentor for providing us resources and guiding us through this journey.

