
ProQuest Sentiment Analysis Final Report 
Written by: Taylor Murray 
Project team: Pranay Shah, Vishnu Nair, Arun Annamalai, Eamy Mo, Rakshit 

Gogia, Sebastian Jin, Taylor Murray 
Sponsor Partners: John Dillon and Dan Hepp 
Advisor: Sugih Jamin 
 
 
1. Project Description and Impact 
This project was in collaboration with ProQuest, an education technology company. Their main 
service is in providing textual content for their users, who are mostly academic researchers. This 
project’s purpose was to enhance their users capabilities in their new text-data-mining (TDM) 
environment where their users can go to run data analytics on any ProQuest content they want, 
and also to improve ProQuests internal use of their mass amounts of textual data.  
 
The two focal points of this project are word embeddings and sentiment analysis. ProQuest 
wanted custom word embeddings made on their own corpora as well as a system for their users 
to be able to create their own custom word embeddings. The pre-trained word embeddings could 
be used on any number of internal projects to improve their recommender systems, support 
search features and optical character recognition, and any other natural language processing tasks 
that the company works on. Additionally, word embeddings can be utilized for sentiment 
analysis, i.e. identifying emotion in text. Thus the most crucial role of the word embeddings was 
to train them on internal ProQuest corpora so that they could them be used when training 
sentiment analysis models. The hope is that training sentiment analysis models with word 
embeddings that themselves were trained on the same data as the sentiment task would yield 
better results than using word embeddings trained on more general corpora like text from 
Wikipedia.  
 
In addition to sets of custom word embeddings and a word embeddings generation system, we 
were also tasked with creating these custom corpora sentiment analysis models along with 
walk-through notebooks that would allow users to predict emotion on their own data. The 
sentiment analysis models besides being used in the notebooks could be used by the company to 
help show researchers a variety of perspectives (using sentiment as a proxy) on different topics.  
 

2. Background 
Word embeddings are essentially representations of words in a vector space and are necessary 
for sentiment analysis. They are created using unsupervised machine learning, so though we 
don’t know exactly what properties are being identified about the words we do know that they 



encode  a mix of semantic and syntactic properties. They can be used in a variety of different 
contexts however for our purposes, we utilized them solely for sentiment analysis.  
 
Sentiment analysis is the process of computationally identifying sentiments expressed in a 
document - it is powerful in the study of affective states. To obtain sentiment analysis models, 
i.e. functions that provide a predicted emotion when given text, we use supervised machine 
learning. Supervised machine learning means we have to provide sentences with emotion labels 
so that the model can start to identify what words correspond to each emotion. 
 
We were given three datasets by ProQuest to utilize: LION (Literature Online) poetry, Book 
Blurbs, and NYTimes Articles 1960s-2018. LION poetry is a set of 389,000 poems, Book Blurbs 
is a set of more than 10 million excerpts from various books and NYTimes articles is a set of 
more than 6 million New York Times articles that includes the following categories: Obituary, 
Op-ed, Feature, Article, General Information, News, Front page/cover story, Correspondence, 
Letter to the Editor, Review, Commentary, and Editorial. All of these sets were used to make 
word embeddings, and subsets of the NYT articles and LION poems were truthed or labeled by 
our team with emotions so that we could use them for sentiment analysis tasks as well.  
 
When doing truthing we randomly chose the documents and labeled each sentence with one of 
nine emotions that best described the emotion of the writer. We used Ekman’s 6 emotions [1]: 
anger, disgust, fear, sadness, happiness, and surprise and we added on 3 extra emotions: love, 
neutral, and other. We added love because we were expecting it to be a dominant emotion in our 
poems dataset and we believed it was distinct enough from the other emotions. We also added 
neutral in the case that the author wasn’t expressing any emotion, which we also expected to see 
for a lot of the New York Times data, given that their goal is to objectively report the facts. And 
finally we added other in the case that a sentence did not exhibit any of the other emotions.  
 

3. Sentiment Datasets 
This section gives an overview of our 4 datasets we use for sentiment analysis tasks: NYT, LION 
poems, SemEval, and Fairytales, as well as our dataset for valence analysis: Stanford Treebank. 
.  
3.1 NYT and LION poems Datasets 
These datasets are the two datasets our team created ourselves by each member truthing a 
random subset of the LION poems and NYT data given to us by ProQuest. We truthed 1,132 
sentences for the LION poems dataset and 1,852 sentences for the NYT dataset. Both have 9 
possible emotion labels: anger, fear, disgust, happiness, sadness, surprise, love, neutral, and 
other. They are composed mainly of neutrals. Below you can see both datasets’ emotion 
distribution:  



 
Figure 3.1 - Distribution of each emotion label in the New York Times truthed dataset 

  

 
Figure 3.2 - Distribution of each emotion label in the LION poems truthed dataset 



3.2 SemEval-2007 Dataset 
The SemEval-2007 dataset was created by Carlo Strapparava and Rada Mihalcea and it is 
composed of 1250 news headlines [2]. For each headline there are 6 reported scores for each 
emotion, indicating how much human evaluators felt that that emotion was present in the 
headline on a scale of 0 (no presence of that emotion) to 100 (strong presence of that emotion). 
To make the labels discrete for each sentence we chose the label with the highest score as the 
label for that sentence. While technically there are two sets, a train (1000 sentences) and test set 
(250 sentences), we decided to combine them into one set for our evaluation. The SemEval 
dataset has only 6 emotion labels (corresponding to Ekman’s 6 emotions [1]): sadness, surprise, 
joy/happiness, anger, fear, and disgust, making it our only dataset without neutrals. Below you 
can see the emotion distribution for SemEval:

 
Figure 3.3 - Distribution of each emotion label in the SemEval dataset 

 
 
 
 
 
 
 
 
 



3.3 FairyTales Dataset 
The fairytale dataset is a dataset created by Cecilia Ovesdotter Alm and is composed of 15,302 
sentences from fairytales by authors such as Beatrix Potter, H.C. Andersen and Grimms [3]. 
There is only one label per sentence given by a human annotator. The dataset has seven possible 
emotion labels: neutral, angry, fearful, happy, disgusted, surprised (technically it contains 
surprise positive and surprise negative but we combined them into one surprised), and sad. 
Below you can see the emotion distribution for FairyTales: 

 
Figure 3.4 - Distribution of each emotion label in the FairyTales dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 



3.4 Stanford Treebank 
Our last dataset is our only valence set which measures how positive or negative a text is and 
was created by a team at Stanford including Richard Socher, Alex Perelygin, Jean Y. Wu, Jason 
Chuang,Christopher D. Manning, Andrew Y. Ng and Christopher Potts [4]. It consists of 10,754 
sentences extracted from movie reviews. We use the fine-grained version where each sentence is 
given one of 5 valence labels: very positive, positive, negative, very negative, and neutral. Below 
you can see the emotion distribution for Stanford Treebank: 

 
Figure 3.5 - Distribution of each emotion label in the Stanford Treebank dataset 

 
 

4.  Problem  
Over the course of this project we were looking to identify the best sentiment analysis model for 
classifying affective state overall, valence state overall, and specific emotions in the hopes of 
proving that our sentiment analysis models trained with in-domain word embeddings (meaning 
word embeddings trained on the same set that the sentiment task is on) would be able to 
outperform models with general word embeddings.  
 

5. Methodologies 
This section goes into how we evaluated our various word embeddings and then it transitions 
into talking about the various sentiment analysis models used and the methodology for testing 
the models on each sentiment dataset. 
 
 



5.1 Word Embeddings Evaluation Methodology 
First we identified which word embeddings were the most promising from each dataset, i.e. the 
best word embeddings trained on the New York Times data, the best word embeddings trained 
on LION poems, and the best word embeddings trained on book blurbs. The word embeddings 
varied by how much data they trained on as well as whether or not they used an epoch method to 
train instead of one-pass.  
 
We identified the best word embeddings by using 3 types of intrinsic evaluators: 
relatedness/similarity, analogies, and concept categorization. Intrinsic evaluators are intrinsic 
because they are not performing some downstream application, they are simply measuring the 
innate relationship between the vectors. 
 
5.1.1 Intrinsic Tests  
Relatedness tests compare how well word embeddings encode the relationship between pairs of 
words (as determined by human evaluators). The test sets consist of pairs of words with their 
relatedness rating. After obtaining the word embeddings for both of the words we measure the 
vector similarity by computing their cosine similarity. To evaluate, we simply take the spearman 
correlation coefficient between our cosine similarity scores and the human evaluator’s scores. 
 
Analogies tests evaluate the degree to which the word embeddings encode similar relationships 
between pairs. Suppose we have representations for two pairs of words (a1, b1) and (a2, b2), 
both having an analogous syntactic or semantic relation: a1 is to b1 what a2 is to b2. By the word 
analogy assumption, this analogous relation should be represented in terms of some optimal 
vector r: r ≈ b1 − a1 ≈ b2 − a2. The typical example used is the pair (man, king) and (woman, 
queen), where the optimal vector would be some common vector r = king − man = queen - 
woman. The analogies set contains a list of these kinds of similar related pairs of word pairs and 
we evaluate our performance by calculating b1 − a1 + a2 to see whether the closest word 
embedding is the embedding for b2.  
 
Concept Categorization (also called word clustering) evaluates the relationships between word 
embeddings by clustering a set of words in various categories. For example, we might have 5 
sets of categories (e.g. places, foods, professions, planets, etc), each with 10 words in them. We 
would then convert all the words into their word embedding form and run a k-means clustering 
algorithm on them. We evaluate the clustering by measuring the purity score [5].  
 
You can find the specific tests we used for each intrinsic evaluator category in Appendix A. 
 
5.1.2 Sentiment Analysis Models 
After identifying the best performing word embeddings for each dataset, we created 3 sentiment 
analysis models for each -- one using LSTM, one using linear regression, and one using linear 



regression with synthetic minority oversampling technique done to it (also referred to as 
SMOTE). Because our own labelled datasets were heavily dominated by the “neutral” class, we 
used SMOTE to add duplicate elements of the minority classes when training to remove bias 
from our classifier for the majority class. 
 
The other models we looked at were XLNet, sbert-bert, and google models. XLNet is a 
pretrained sentiment analysis model trained with BooksCorpus, English Wikipedia, Giga5 news 
articles, ClueWeb and CommonCrawl web crawls. There are 6 SBERT-BERT models:  

● Sbert-bert-base-nli-max-tokens 
● Sbert-bert-base-nli-mean-tokens 
● Sbert-bert-base-nli-stsb-mean-tokens 
● Sbert-bert-base-wikipedia-sections-mean-tokens 
● Sbert-bert-base-nli-cls-tokens 
● Sbert-bert-large-nli-stsb-mean-tokens 

Each of these models starts by getting the word embeddings for each word in a given sentence 
using a BERT model and then uses Sentence-BERT, shorted as SBERT, to create a sentence 
embedding from those word embeddings. It has 3 techniques for creating sentence embeddings: 
max (where you compute a max-over-time of the output vectors), mean (where you take an 
average of the word embeddings), and simply using the CLS token that is attached to every 
sentence in BERT.  
 
As for the different kinds of BERT configurations, we have 3 parameters for each: model, 
training dataset, and fine-tuning dataset. There are two models: base and large. The base model 
is a 12-layer, 768-hidden, 12-heads, 110M parameter neural network architecture, and the large 
model is a 24-layer, 1024-hidden, 16-heads, 340M parameter neural network architecture. And 
we have 2 different training sets: nli which means the model was trained on the Natural 
Language Inference Corpus (SNLI) and the Multi-Genre Natural Language Inference Corpus 
(MultiNLI), wikipedia-sections which means the model was trained on English Wikipedia, and 
stsb which means the model was trained on the Semantic Textual Similarity (STS) benchmark. 
Additionally, all of these models used a linear regression machine learning model when fine 
tuned again on each sentiment dataset. Finally, the Google model is a linear regression model 
using the default embeddings given by Gensim. 
 
We evaluated our models on 5 datasets, our New York Times labelled data, LION poems 
labelled data, the FairyTales dataset, and the SemEval dataset, and we an aggregation of the four 
previous datasets, called Aggregate. To evaluate on each, we did an 80/20 split, meaning we 
trained on 80% of the data and tested on the other 20% for each dataset.  
 
To determine the best sentiment analysis model overall, we took the average of the macro 
f1-scores of each of the 5 datasets (NYT, LION, FairyTales, SemEval, and Aggregate). And for 



finding the best valence model overall, we simply took the macro-f1 score on the Stanford 
Dataset. To find the best sentiment score for each emotion we took the average of the f1-scores 
for that emotion over all of the datasets that included that emotion.  
 

6. Results 
We will first dive into our results for which word embeddings performed the best for each of 
ProQuest’s three corpora, and then we will move on to the results using those word embeddings 
in our comparisons on sentiment analysis tasks. 
 
6.1 Word Embeddings Results and Recommendations 
Each section describes the performance of our word embeddings on concept categorization, 
analogy, and relatedness tasks, for each dataset given to us by ProQuest. It should be noted that 
each of these word embeddings was created using the Gensim package.  
 
6.1.1 Book blurbs corpora 
First we compare word embeddings made on the book blurbs dataset, where we see 
skip-gram_book-blurbs_3.5.bin perform the best in relatedness and analogy tasks, and 
comparable in the concept categorization tasks. Because of these accomplishments, we chose 
skip-gram_book-blurbs_3.5.bin to be the word embeddings we used for our sentiment analysis 
model trained on the book blurbs dataset.  

 
Figure 6.1 - Performance of book blurb word embedding models on similarity (relatedness) tests 



 
Figure 6.2 - Performance of book blurb word embedding models on analogy tests 

 

 
Figure 6.3 - Performance of book blurb word embedding models on concept categorization tests 
 



6.1.2 LION poems corpora 
Next we compare word embeddings made on the LION dataset, where we see 
skip-gram_Lion-Poem-v2.bin perform the best in all of the relatedness tasks and concept 
categorization tasks, and perform equally to skip-gram_Lion-Poem.bin on the analogy tasks 
(which is why a graph is not pictured). Because of these accomplishments, we chose 
skip-gram_Lion-Poem-v2.bin to be the word embeddings we used for our sentiment analysis 
model trained on the LION poem dataset.  

 
Figure 6.4 - Performance of LION poem word embedding models on similarity (relatedness) 

tests 
 

 



Figure 6.5 - Performance of book blurb word embedding models on concept categorization tests 
 
6.1.3 NYT corpora 
Next we compare word embeddings made on the NYT dataset. Unfortunately we were not able 
to test the skip-gram_6M.bin and skip-gram-3M-EPOCH-documents.bin word embeddings 
on the analogy tasks, however we do see skip-gram_6M.bin do the best overall on the 
relatedness tasks and comparable to the other WEs on the concept categorization task, so we 
have chosen it to use for our NYT word embedding representative for sentiment analysis. 
Another interesting result is the strong performance of the skip-gram_2-4_256GB-mem.bin 
word embeddings on the analogy tasks and comparable performance on the relatedness and 
concept categorization tasks. It is interesting to know by comparing 
skip-gram_2-4_256GB-mem.bin vs. skip-gram_6M.bin, there will be no improvements on its 
performance if adding more vocabulary to the word embedding or even get worse results.

 
Figure 6.6 - Performance of book blurb word embedding models on similarity (relatedness) tests 



 
Figure 6.7 - Performance of NYT word embedding models on analogy tests 

 
Figure 6.8 - Performance of NYT word embedding models on concept categorization tests 

 
 



 
6.2 Sentiment Analysis Results and Recommendations 
This section goes into the performance of our sentiment analysis models on overall valence 
performance, overall affective state performance, as well as the emotion specific performances. 
After giving the performance, it also gives the recommendation for which model performs the 
best. This model will be used in our corresponding notebook for TDM users to run on their own 
datasets. 
 
6.2.1 Valence Results  
Model recommendation: XLNet (fine-tuned on Stanford dataset) 

 
Figure 6.9: Performance of all sentiment models (Macro F1-scores) for predicting valence 

scores 
 
Figure 6.9 shows our models’ macro F1-scores across the Stanford valence dataset. For 
predicting labels across five valence score classes, XLNet (#1) outperforms all other models. The 
state-of-the-art (SOTA) for Stanford is a 56.2%[6] for accuracy using a 
Biattentive-Classification-Network (BCN) model. Our models’ performance compared with the 
SOTA model’s performance is graphed below in Figure 6.10, where you can see XLNet 
performs the 2nd best. 
 



 
Figure 6.10: Performance of all sentiment models (F1-scores) for predicting valence scores 

6.2.2 Overall Affective State Predictions 
Model recommendation: sbert-bert-base-nli-mean-tokens-LR 
 
 

 
Figure 6.11: Performance of all sentiment models (F1-scores) for predicting overall affective 

states 
 
For predicting labels across five valence score classes, SBERT outperforms all other models. 
Although the SBERT max tokens model (#1) has a higher overall performance than the SBERT 
mean tokens model (#2), we recommend the latter. We make this recommendation because the 
mean tokens model performs better at predicting more of the less common emotions like 
“disgust”, “fear”, “surprise”, and “other.” Figure 6.12 shows the higher performance of the mean 



tokens model for one of these labels. Moreover, the difference between the performance of both 
models overall is negligible. This allows for a more well-rounded model overall. 
 
 

 
Figure 6.12: The mean tokens model outperforms the max tokens model while predicting disgust, 

one of the less common emotions in our dataset 

6.2.3 Emotion Specific Predictions 

Happiness 
Model recommendation: sbert-bert-large-nli-stsb-mean-tokens-LR 
 

 
Figure 6.13: Performance of all sentiment models (F1-scores) for predicting happiness 

 



The figure above displays the averaged F1-scores across all our models for the emotion label, 
happiness. On average, -bert-large-nli-stsb-mean-tokens-LR outperforms all other models for 
this emotion label. For happiness, the state-of-the-art F1-score across SemEval is 0.710[7]. 
Currently, our recommended model achieves an F1-score of .496 for happiness on the SemEval 
dataset. 

Sadness 
Model recommendation: XLNet 
 

 
Figure 6.14: Performance of all sentiment models (F1-scores) for predicting sadness 

 
The figure above displays the averaged F1-scores across all our models for the emotion label, 
sadness. On average, the average F1-score of all the trained XLNet models outperforms all other 
models for this emotion label. For sadness, the state-of-the-art F1-score across SemEval is 
0.475[7]. Currently, our XLNet model performs slightly below that with an F1-score of .438.  
  



Anger 
Model recommendation: sbert-bert-base-nli-max-tokens-LR 
 

 
Figure 6.15: Performance of all sentiment models (F1-scores) for predicting anger 

 
The figure above displays the averaged F1-scores across all our models for the emotion label, 
anger. On average, the sbert-bert-base-nli-max-tokens-LR model outperforms all other models 
for this emotion label. For anger, the state-of-the-art F1-score on SemEval is 0.278[7] whereas our 
recommended model has an F1-score of .333. 
 
7. Discussion 
One of the key questions for this project was identifying whether we could outperform external 
models which used general word embeddings by using word embeddings trained on the same 
corpora that we would then be testing on (such as NYT and LION Poems). Below you can find 
the macro-f1 scores for each dataset where the blue bar represents our highest macro-f1 score out 
of our sentiment models that used word embeddings trained on NYT, book blurbs, or LION 
poems, and the red bar marks the highest macro-f1 score out of the external models we used 
which used general word embeddings.  



 
Figure 7.1: Macro-F1 scores for each dataset comparing the best external model to our best 

custom model 
Unfortunately, it seems that in every dataset even for NYT and LION poems we see that our 
custom models are unable to outperform the external models. Proving at this point that just 
because you are using word embeddings from the same corpora to train your sentiment model, 
you will not necessarily have a better performance. 
 

8. Further Exploration 
One topic for further research might be into looking at sentiment as a vector, so then you could 
use a different kind of analysis on which sentiment analysis models performed the best. For 
example, if a sentence is labelled with “sadness” but we predict “anger” there should be some 
way to acknowledge that our model noticed a negative sentiment overall and should be rewarded 
for not predicting the opposite of sadness, i.e. happiness. 
 
Additionally, it may also be interesting to see how sentiment analysis models trained with the 
word embeddings we did not use perform. While intrinsic evaluators like concept categorization, 
analogies, and relatedness give you a rough idea of the quality of your word embeddings, they 
don’t always correlate directly with sentiment analysis performance.  
 
 
 
 
 
 



References  
[1] Ekman, Paul. “An Argument for Basic Emotions.” Cognition and Emotion, vol. 6, no. 3–4, 

May 1992, pp. 169–200. DOI.org (Crossref), doi:10.1080/02699939208411068 

[2] SemEval-2007 Task 14: Affective Text Carlo Strapparava author Rada Mihalcea author 
2007-jun text Proceedings of the Fourth International Workshop on Semantic Evaluations 
(SemEval-2007) Association for Computational Linguistics Prague, Czech Republic 
conference publication strapparava-mihalcea-2007-semeval 
https://www.aclweb.org/anthology/S07-1013 2007-jun 70 74  

[3] C.O. Alm. 2008. Affect in Text and Speech. Lrc.cornell.edu. 

[4] Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,C. D.; Ng, A. Y.; and Potts, C. 
2013. Recursive deep models for semantic compositionality over a sentiment treebank. In 
EMNLP. 

[5] Evaluation of Clustering. 
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#fig:clu
stfg3. Accessed 19 Dec. 2020. 

 
[6] Vecto-Ai. (2018). Vecto-ai/word-benchmarks. Retrieved December 04, 2020, from 

https://github.com/vecto-ai/word-benchmarks 
 

[7] Herzig, Jonathan, et al. “Emotion Detection from Text via Ensemble Classification Using 
Word Embeddings.” Proceedings of the ACM SIGIR International Conference on Theory 
of Information Retrieval, ACM, 2017, pp. 269–72. DOI.org (Crossref), 
doi:10.1145/3121050.3121093. 

 
[8] K. Radinsky, E. Agichtein, E. Gabrilovich, and S. Markovitch. 2011. A word at a time: 

computing word relatedness using temporal semantic analysis. InWWW ’11, pages 
337–346. 

 
[9] Evgeniy Gabrilovich Yehuda Koren Guy Halawi,Gideon Dror. 2012. Large-scale learning of 

word relatedness with constraints.KDD, pages 1406–1414. 
 
[10] H. Rubenstein and J. Goodenough. 1965. Contextual correlates of synonymy. 

Communications of the ACM,8:627–633, October. 
 
[11] Thang Luong, Richard Socher, and Christopher Man-ning. 2013. Better word 

representations with recur-sive neural networks for morphology. In Proceed-ings of 
CoNLL, pages 104–113, Sofia, Bulgaria. 

 

https://github.com/vecto-ai/word-benchmarks


[12] Camacho-Collados, José & Pilevar, Mohammad Taher & Collier, Nigel & Navigli, Roberto. 
(2017). SemEval-2017 Task 2: Multilingual and Cross-lingual Semantic Word Similarity. 
15-26. 10.18653/v1/S17-2002. 

 
 
[13] Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: Evaluating semantic models 

with (genuine) similarity estimation.Computational Linguistics, 41(4):665–695, 
December 

 
[14] Baker,  S.,  Reichart,  R.,  &  Korhonen,  A.  (2014).  An  unsupervised model  for  instance 

level  subcategorization  acquisition.  In Proceedings of the 2014 conference on empirical 
methods in natural language processing (EMNLP), (pp. 278–289). 

 
[15] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,Z. Solan, G. Wolfman, and E. Ruppin. 

2001. Placing search in context: The concept revisited. In WWW, pages 406–414. ACM. 
 
[16] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pas ̧caand A. Soroa. 2009. A study on 

similarity and relatedness using distributional and wordnet-based approaches. In NAACL 
’09, pages 19–27. 

 
[17] Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic Regularities in Continuous Space 

Word Representations. In HLT-NAACL (pp. 746–751). Retrieved from 
http://www.aclweb.org/anthology/N13-1#page=784 

 
[18] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 

representations in vector space. In Proceedings of International Conference on Learning 
Representations (ICLR). 

 
[19] A. Almuhareb,  “Attributes  in  lexical  acquisition,”  Ph.D.  dissertation,University of 

Essex, 2006. 
 
[20]  M. Baroni and A. Lenci, “How we blessed distributional semantic evaluation,” 

inProceedings  of  the  GEMS  2011  Workshop  on  GEometricalModels of Natural 
Language Semantics.   Association for ComputationalLinguistics, 2011, pp. 1–10. 

 
 
 
 
 
 
 
 
 
 
 
 

http://www.aclweb.org/anthology/N13-1#page=784
http://www.aclweb.org/anthology/N13-1#page=784


Appendix A 
 
Similarity/Relatedness 
 
Mturk-287.csv 
Recommended by Wang as Generic Evaluation Set: No 
Part of Speech: Not specified 
Description of Set: Dataset collected from Amazon Mechanical Turk users. 287 pairs assessed by 
semantic relatedness with a scale from 0 to 5 [8].  
 
Mturk-771.csv 
Recommended by Wang as Generic Evaluation Set: Yes  
Part of Speech: Not specified Description of Set: Dataset collected from Amazon Mechanical 
Turk users. 771 pairs assessed by semantic relatedness with a scale from 0 to 5 [9] 
 
rg-65.csv  
Recommended by Wang as Generic Evaluation Set: No 
Part of Speech: Noun  
Description of Set: Classic Rubenstein and Goodenough dataset from 1965 testing the similarity 
65 noun pairs with 51 subjects. The subjects score the similarity of the words on a discrete scale 
from 0 to 4 [10]. 
 
Rw.csv 
Recommended by Wang as Generic Evaluation Set: No 
Part of Speech: Not specified  
Description of Set: The Stanford Rare Word (RW) Similarity Dataset with 2 034 pairs of words 
with low occurrences assessed by semantic similarity with a scale from 0 to 10 [11]. 
 
semeval17.csv 
Recommended by Wang as Generic Evaluation Set: Yes 
Part of Speech: Not specified  
Description of Set: 500 pairs assessed by semantic similarity with a scale from 0 to 4 prepared 
for the SemEval-2017 Task 2 (Multilingual and Cross- lingual Semantic Word Similarity) [12]. 
Notably, the dataset contains not only words, but also collocations (e.g. climate change)." 
 
simlex999.csv 
Recommended by Wang as Generic Evaluation Set: No 
Part of Speech: Not specified Description of Set: 999 pairs assessed with a strong respect to 
semantic similarity with a scale from 0 to 10 [13]. 
 
verb-143.csv 
Recommended by Wang as Generic Evaluation Set: No  
Part of Speech: Verbs  
Description of Set: 143 pairs of verbs assessed by semantic similarity with a scale from 0 to 4 
[14]. 
 



wordsim353-rel.csv  
Recommended by Wang as Generic Evaluation Set: Yes 
Part of Speech: Not specified  
Description of Set: 252 pairs, a subset of WordSim-353 containing pairs that are related (not 
similar) such as 'family' and 'planning'. Scored with a scale from 0 to 10 [15]. 
 
wordsim353-sim.csv  
Recommended by Wang as Generic Evaluation Set: Yes 
Part of Speech: Not specified  
Description of Set: 203 pairs, a subset of WordSim-353 containing semantically similar or 
unassociated (to mark all pairs that receive a low rating as unassociated) pairs [16]. 
 
wordSim353.csv 
Recommended by Wang as Generic Evaluation Set: Yes 
Part of Speech: Not specified  
Description of Set: 353 pairs assessed by semantic similarity (however, some researchers find the 
instructions for assessors ambiguous with respect to similarity and association) with a scale from 
0 to 10 [15]. 
 
Analogy 
 
MSR 
Analogies dataset of syntactic (i.e. morphological) questions only. Composed of 8,000 questions 
with 8 kinds of relations. [17] 
 
Google  
An unbalanced analogies dataset with 8,869 semantic and 10,675 syntactic questions, with 20-70 
pairs per category; country:capital relation is over 50% of all semantic questions. Relations in 
the syntactic part largely the same as MSR. [18] 
 
Concept Categorization 
 
AP 
The AP dataset is used for concept categorization and contains 402 words that are divided into 
21 categories. [19] 
 
BLESS 
The BLESS dataset  is used for concept categorization and consists of 200 words divided into 27 
semantic classes. [20] 
 

 


