ProQuest Sentiment Analysis MDP

Taylor Murray
Honors Capstone
Dec 16th, 2020
Context

Our Sponsor

- Education technology company
- Content collection that encompasses 90,000 authoritative sources, 6 billion digital pages and spans 6 centuries

Motivations

- Enhance user experience in the TDM (text-data-mining) environment
- Improve ProQuest’s internal use of data
High Level Goals

Help ProQuest users (commonly academic researchers) create word embeddings and predict sentiment on their own datasets.

Word Embeddings System
Generate word embeddings on ProQuest’s corpora

Sentiment Analysis System
Detect emotions expressed in the documents

Evaluation
Compare which models performed the best on various sentiment analysis datasets.
Word Embeddings

Word embeddings (WEs) are representations of words in the vector space.

Dimensionality of the vector is a hyperparameter, typically chosen to be between 50-300.

Each word embedding takes up constant space.
Properties of Word Embeddings

Semantic property: Related to a word’s *meaning*

Example: doctor, child, woman \rightarrow human

Syntactic property: Related to a word’s *structure* and *grammatical features*

Example: geese, children, apples \rightarrow plural nouns; ran, helped, changed \rightarrow past tense

Linear Behaviour

Vector(“King”) - Vector(“Man”) + Vector(“Woman”) \approx Vector(“Queen”)
Cosine Similarity

Calculate similarity between different words

\[
\cos(\theta) = \frac{A \cdot B}{||A|| ||B||}
\]

France and Italy are quite similar
\(\theta\) is close to 0°
\(\cos(\theta) \approx 1\)

ball and crocodile are not similar
\(\theta\) is close to 90°
\(\cos(\theta) \approx 0\)

(2)
Sentiment Analysis System

Labelled Data
{Sentences, Labels}

Sentiment Analysis System

Word2vec Embeddings

Process Data

Evaluate Model

Training Split (80%)

Testing Split (20%)

Save Model

Unlabelled Data
{Sentences}

Choose Model

Classification

Model

Train Model

Predict

Evaluation System

Emotion Labels
{Happy, Sad, Fear, Disgust, Surprise, Anger, Love, Neutral, Other}
Emotion prediction

Goal: Classify text as having one of nine sentiments

- Happy
- Sad
- Fear
- Disgust
- Surprise
- Anger
- Love
- Neutral
- Other

Ekman’s 6 Basic Emotions$^{(3)}$

Example Text:

Sentiment: Happy
ProQuest corpora

1. New York Times

2. Book Blurbs

3. LION (Literature Online) Poems
Key Question: Can using in-domain corpora for word embeddings improve sentiment analysis performance?
What did we discover?

We tested 18 models, 9 of which used custom word embeddings.

We used different sampling techniques, filtering methods, ML models, and sentence embeddings.

In the end, it seemed conclusive that more generally trained models performed the best.
Using in-domain corpora not correlated with better performance on sentiment tasks
End Deliverables

- Made Jupyter Notebooks for:
 - Word Embeddings Generation
 - Word Embeddings Usage
 - Predicting affective state (“happiness”, “sadness”, etc.)
 - Predicting valence state (“very negative”, “positive”, etc.)
 - Visualizations for Sentiment Analysis Results
- Set of word embeddings
- Set of sentiment analysis models
- Emotion-labelled data
Lesson: You should record all of your parameters and brainstorm new ones you might try later

The parameters we noted:

- What data was trained on
- If there was over/undersampling done
- Whether or not the data trained on was stratified
- What the ML model was maximizing (F1-score or accuracy)
How I got involved?

- Interested in machine learning
- Wanted to try my hand at research
- Enjoyed the psychological aspect
Next steps for the project

- Emotion as a vector
- Using word embeddings for optical character recognition
- Neutral filter

https://inchoatepsyche.files.wordpress.com/2015/06/modified-plutarch-wheel3.jpg
Thanks!

Sponsor Partners: John Dillon and Dan Hepp

Advisor: Sugih Jamin

Team: Pranay Shah, Vishnu Nair, Arun Annamalai, Eamy Mo, Rakshit Gogia, Sebastian Jin