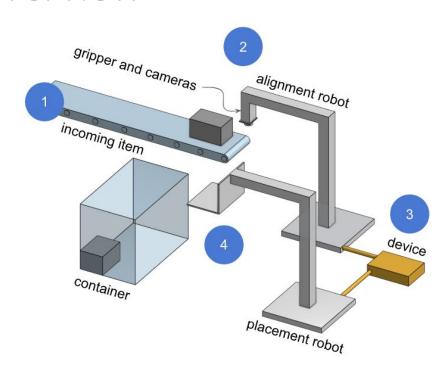
# Comau Robotic 3-D Tetris

Joseph Berman, Travis Gurlik, Shannon Lau, Hannah Moon, Arjun Raman, Jonathan Wong


12/21/2020

# About Me





## **Problem Overview**



# The Potential for Saving Time and Money





## The Two Subproblems

- We were responsible for addressing two primary problems:
  - The online bin packing problem in a three-dimensional space
    - Goals:
      - Fill the bin to at least 85% capacity
      - Place each item within 10 seconds
  - Determining the incoming objects dimensions
    - Goal:
      - Determine the dimensions of every object to within 2.5% margin of error

#### Division of Labor

# **Camera System**

Develop a system that can detect an incoming object

- Integrate camera/hardware into system
- Generate a point cloud from camera

#### Segmentation

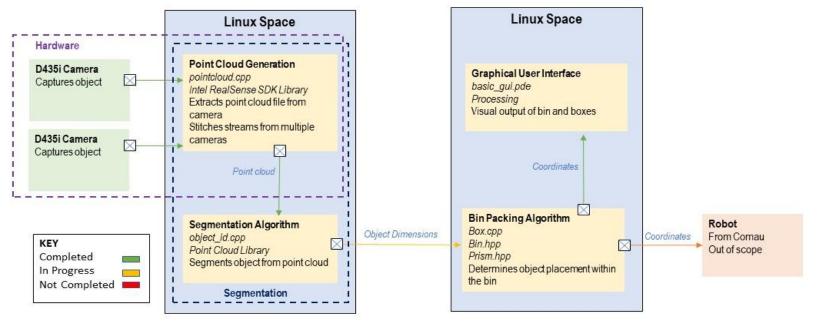
Segment data from object detection system into usable information

- Segment out the object from the pointcloud
- Identify the dimensions of the object

# Bin Packing Algorithm

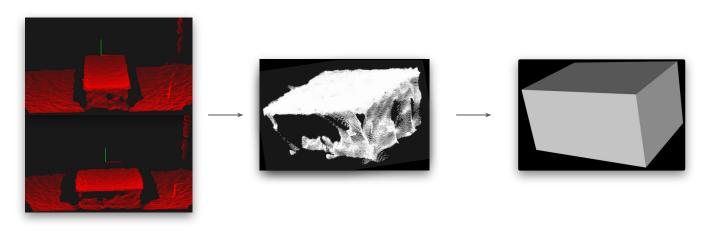
Code an algorithm that optimally places objects into a bin

- Devise bin packing heuristic
- Consider edge cases of different objects and scenarios
- Document system


# Front End Interaction

Create a Graphical
User Interface

- Show human user bin placement process
- Notify when the system requires human intervention

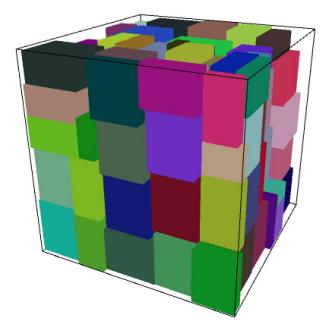

### Our Solution

#### Computer Architecture of System



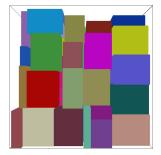


# Point Cloud & Segmentation Results



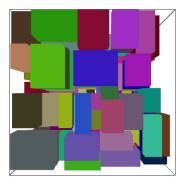

Point Clouds from Varying Angles

Merged Point Clouds


Segmented Image with Bounding Box

# Bin Packing Results






Left View



**Right View** 

123 of 140 items placed Fill Percentage: 75.328%



Top View

# Full System Results



# Implication and Conclusion

| Goal                                                                   | Status                               |
|------------------------------------------------------------------------|--------------------------------------|
| Fill bin to 85% capacity                                               | Currently at 73% capacity            |
| Place each item in under 10 seconds                                    | Technically Complete, unable to test |
| Determine the dimension of every object to within 2.5% margin of error | Complete                             |
| Display results on graphical user interface                            | Complete                             |

# Thanks for Listening!



# Q&A

- 1) How did you get involved in this project?
- 2) How did you connect with your capstone advisor, lab, team?
- 3) What hurdles were most difficult or least anticipated?
- 4) How do you hope to use what you learned from this project in your future career?

## Goals and Project Scope

- The specific code for directing the robot where to go
- Only looked at rectangular prisms of varying shapes
- What we did consider (and goals)
  - Varying shaped items
  - Segment item to within 2.5% margin of error
  - 85% fill capacity
  - Whole placing under 10 seconds