For the mechanical design of the exoskeleton, focus was placed on the adjustability of the frame, making it more sleek, and designing it to be modular and have components be easily adapted. It uses motor actuation at knees and hips, and it has a spring ankle design that will ensure a continuous load-path to the ground.

Electrical Work with MLX:
- The electrical work for LEXO 2.0 is still in progress, but at this point motor transparency has been achieved. This lets the user move freely without the motors inhibiting movement.
- The next steps for the electrical team is working on a control algorithm for actuating the hip motors during the gait cycle to aid with walking and controlling the knee motors to be used as dampers.

MECHANICAL DESIGN: SAM-E
The second prototype of SAM-E focuses on using pneumatic air muscles to mirror arm muscles and enhance the wearers arm strength. A new frame was designed to accommodate the air muscles for optimal positioning and to better and more comfortably secure the frame to the wearer's arm.

Electrical Design: SAM-E
The electrical design of SAM-E focuses on the use of myoelectrics to detect electric signals from muscle contraction and flexion and actuate the frame based on arm movement. A control system was designed to process the signal and inflate the pneumatic muscles with high pressure air that forces the air muscles to contract. Further work is being done to improve the response time between arm movement and muscle actuation as well as improving the precision of the air muscle activation.

Special Thanks To:
Professor Elliott Rouse